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Abstract

Following the pivotal success of learning strategies to win at tasks, solely by inter-
acting with an environment without any supervision, agents have gained the ability
to make sequential decisions in complex MDPs. Yet, reinforcement learning poli-
cies face exponentially growing state spaces in high dimensional MDPs resulting in
a dichotomy between computational complexity and policy success. In our paper
we focus on the agent’s interaction with the environment in a high-dimensional
MDP during the learning phase and we introduce a theoretically-founded novel
paradigm based on experiences obtained through counteractive actions. Our anal-
ysis and method provide a theoretical basis for efficient, effective, scalable and
accelerated learning, and further comes with zero additional computational com-
plexity while leading to significant acceleration in training. We conduct extensive
experiments in the Arcade Learning Environment with high-dimensional state
representation MDPs. The experimental results further verify our theoretical anal-
ysis, and our method achieves significant performance increase with substantial
sample-efficiency in high-dimensional environments.

1 Introduction

Utilization of deep neural networks as function approximators enabled learning functioning policies
in high-dimensional state representation MDPs [Mnih et al., 2015]. Following this initial work, the
current line of research trains deep reinforcement learning policies to solve highly complex problems
from game solving [Hasselt et al., 2016, Schrittwieser et al., 2020] to mathematical and scientific
reasoning of large language models [Guo et al., 2025]. Yet, there are still remaining unsolved
problems restricting the current capabilities of reinforcement learning in exponentially growing
state spaces. One of the main intrinsic open problems in deep reinforcement learning research is
sample complexity and experience collection in high-dimensional state representation MDPs. While
prior work extensively studied the policy’s interaction with the environment in bandits and tabular
reinforcement learning, and proposed various algorithms and techniques optimal to the tabular form
or the bandit context [Fiechter, 1994, Kearns and Singh, 2002, Brafman and Tennenholtz, 2002,
Kakade, 2003, Lu and Roy, 2019], experience collection in deep reinforcement learning remains an
open challenging problem while practitioners repeatedly employ quite simple yet effective techniques
(i.e. ϵ-greedy) [Whitehead and Ballard, 1991, Flennerhag et al., 2022, Hasselt et al., 2016, Wang
et al., 2016, Hamrick et al., 2020, Kapturowski et al., 2023, Korkmaz, 2024, Schmied et al., 2025,
Krishnamurthy et al., 2024].

Despite the provable optimality of the techniques designed for the tabular or bandit setting, they
generally rely strongly on the assumptions of tabular reinforcement learning, and in particular on the
ability to record tables of statistical estimates for every state-action pair which have size growing
with the number of states times the number of actions. Hence, these assumptions are far from what is
being faced in the deep reinforcement learning setting where states and actions can be parametrized
by high-dimensional representations. Thus, in high-dimensional complex MDPs, for which deep
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neural networks are used as function approximators, the efficiency and the optimality of the methods
proposed for tabular settings do not transfer well to deep reinforcement learning [Kakade, 2003].
Hence, in deep reinforcement learning research still, naive and standard techniques (e.g. ϵ-greedy) are
preferred over both the optimal tabular techniques and over the particular recent experience collection
techniques targeting only high scores for particular games [Mnih et al., 2015, Hasselt et al., 2016,
Wang et al., 2016, Bellemare et al., 2017, Dabney et al., 2018, Flennerhag et al., 2022, Korkmaz,
2024, Kapturowski et al., 2023].

Sample efficiency still remains to be one of the main challenging problems restricting research
progress in reinforcement learning. The magnitude of the number of samples required to learn
and adapt continuously is one of the main limiting factors preventing current state-of-the-art deep
reinforcement learning algorithms from being deployed in many diverse settings from large language
model reasoning to the physical world, but most importantly one of the main challenges that needs to
be dealt with on the way to building neural policies that can generalize and adapt continuously in
non-stationary environments. Hence, given these limitations in our paper we aim to seek answers for
the following questions:

• How can we construct policies that have the ability to collect novel experiences in high-
dimensional complex MDPs without any additional computational complexity?

• What is the natural theoretical motivation that can be used to design a zero-cost experience
collection strategy while achieving high sample efficiency?

To be able to answer these questions, in our paper we focus on environment interactions in deep
reinforcement learning and make the following contributions:

Contributions. We introduce a fundamental theoretically well-motivated paradigm for reinforce-
ment learning based on state-action value function minimization, which we call counteractive temporal
difference learning. Our approach centers on solely reconstituting and conceptually shifting the core
principles of learning and as a result increases the information gained from the environment interac-
tions of the policy in a given MDP without adding computational complexity. We first provide the
theoretical analysis in Section 3, explaining why and how minimization will result in higher temporal
difference. We then as a first step demonstrate the efficacy of counteractive temporal difference
learning in a motivating example, i.e. the canonical chain MDP setup, in Section 4. The results in the
chain MDP verify the theoretical analysis provided in Section 3 that counteractive temporal difference
learning increases temporal difference obtained from the experiences. Furthermore, we conduct
an extensive study in the Arcade Learning Environment 100K benchmark with the state-of-the-art
algorithms and demonstrate that our temporal difference learning algorithm CoAct TD learning
improves performance by 248% across the entire benchmark compared to the baseline algorithm. We
demonstrate the efficacy of our proposed CoAct TD Learning algorithm in terms of sample-efficiency.
Our method based on maximizing novel experiences via minimizing the state-action value function
reaches approximately to the same performance level as model-based deep reinforcement learning
algorithms, without building and learning any model of the environment. Finally, we show that CoAct
TD learning is a fundamental improvement over canonical methods, it is modular and a plug-and-play
method, and any algorithm that uses temporal difference learning can be immediately and simply
switched to CoAct TD learning.

2 Background and Preliminaries

The reinforcement learning problem is formalized as a Markov Decision Process (MDP) [Puterman,
1994]M = ⟨S,A, r, γ, ρ0, T ⟩ that contains a continuous set of states s ∈ S , a set of actions a ∈ A,
a probability transition function T (s, a, s′) on S × A × S, discount factor γ, a reward function
r(s, a) : S ×A → R with initial state distribution ρ0. A policy π(s, a) : S ×A → [0, 1] in an MDP
assigns a probability distribution over actions for each state s ∈ S. The main goal in reinforcement
learning is to learn an optimal policy π that maximizes the discounted expected cumulative rewards
R = Eat∼π(st,·),st+1∼T (st,at,·)

∑
t γ

tr(st, at). In Q-learning [Watkins, 1989] the learned policy is
parameterized by a state-action value function Q : S ×A → R, which represents the value of taking
action a in state s. The optimal state-action value function is learnt via iterative Bellman update

Q(st, at)← Q(st, at) + α[r(st, at) + γmax
a

Q(st+1, a)−Q(st, at)]
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where maxa Q(st+1, a) = V(st+1). Let a∗ be the action maximizing the state-action value function,
a∗(s) = argmaxa Q(s, a), in state s. Once the Q-function is learnt the policy is determined via
taking action a∗(s). Temporal difference learning [Sutton, 1988] improves the estimates of the
state-action values in each iteration via the Bellman Operator [Bellman, 1957]

(Ω∗Q)(s, a) = Es′∼T (s,a,·)[r(s, a) + γmax
a′

Q(s′, a′)].

For distributional reinforcement learning, QRDQN is an algorithm that is based on quantile regression
[Koenker and Hallock, 2001, Koenker, 2005] temporal difference learning

ΩZ(s, a) = r(s, a) + γZ(s′, argmax
a′

Ez∼Z(s′,a′)[z]) and Z(s, a) := 1

N

N∑
i=1

δθi(s,a)

where Zθ ∈ ZQ maps state-action pairs to a probability distribution over values. In deep reinforce-
ment learning, the state space or the action space is large enough that it is not possible to learn and
store the state-action values in a tabular form. Thus, the Q-function is approximated via deep neural
networks. In deep double-Q learning, two Q-networks are used to decouple the Q-network deciding
which action to take and the Q-network to evaluate the action taken

θt+1 = θt + α(r(st, at) + γQ(st+1, argmax
a

Q(st+1, a; θt); θ̂t)−Q(st, at; θt))∇θtQ(st, at; θt).

Current deep reinforcement learning algorithms use ϵ-greedy during training [Wang et al., 2016,
Mnih et al., 2015, Hasselt et al., 2016, Hamrick et al., 2020, Flennerhag et al., 2022, Kapturowski
et al., 2023, Krishnamurthy et al., 2024, Schmied et al., 2025]. In particular, the ϵ-greedy [Whitehead
and Ballard, 1991] algorithm takes an action ak ∼ U(A) with probability ϵ in a given state s, i.e.
π(s, ak) =

ϵ
|A| , and takes an action a∗ = argmaxa Q(s, a) with probability 1− ϵ, i.e.

π(s, argmax
a

Q(s, a)) = 1− ϵ+
ϵ

|A|
While a family of algorithms have been proposed based on counting state visitations (i.e. the number
of times action a has been taken in state s by time step t) with provable optimal regret bounds using
the principal of optimism in the face of uncertainty in the tabular MDP setting, yet incorporating these
count-based methods in high-dimensional state representation MDPs requires substantial complexity
including training additional deep neural networks to estimate counts or other uncertainty metrics. As
a result, many state-of-the-art deep reinforcement learning algorithms still use simple, randomized
experience collection methods based on sampling a uniformly random action with probability ϵ [Mnih
et al., 2015, Hasselt et al., 2016, Wang et al., 2016, Hamrick et al., 2020, Flennerhag et al., 2022,
Korkmaz, 2023, Kapturowski et al., 2023]. In our experiments, while providing comparison against
canonical methods, we also compare our method against computationally complicated and expensive
techniques such as noisy-networks that is based on the injection of random noise with additional layers
in the deep neural network [Hessel et al., 2018] in Section 5, and count based methods in Section 4 and
Section 6. We further highlight that our method is a fundamental theoretically motivated improvement
of temporal difference learning. Thus, any algorithm that is based on temporal difference learning
can immediately be switched to CoAct TD learning.

3 Maximizing Temporal Difference with Counteractive Actions

Seeking experiences that contain high information has long been the focus of reinforcement learning
[Schmidhuber, 1991, 1999, Moore and Atkeson, 1993] and more particularly the experiences that
correspond to higher temporal difference [Moore and Atkeson, 1993]. In this section we will provide
the theoretical analysis for our proposed algorithm counteractive TD learning. Section 5 further
provides the experimental results verifying the theoretical predictions. In deep reinforcement learning
the state-action value function is initialized with random weights [Mnih et al., 2015, 2016, Hasselt
et al., 2016, Wang et al., 2016, Schaul et al., 2016, Oh et al., 2020, Schrittwieser et al., 2020, Hubert
et al., 2021]. During a large portion of the training prior to convergence, the Q-function behaves
as a random function rather than providing an accurate representation of the optimal state-action
values while interacting with new experiences in high-dimensional MDPs as the learning continues.
In particular, in high-dimensional environments in a significant portion of the training the Q-function,
on average, assigns approximately similar values to states that are similar, and has little correlation
with the immediate rewards. Hence, let us formalize these facts on the state-action value function in
the following definitions.
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Definition 3.1 (η-uninformed). Let η > 0. A Q-function parameterized by weights θ ∼ Θ is
η-uninformed if for any state s ∈ S with amin = argmina Qθ(s, a) we have

|Eθ∼Θ[r(st, a
min)]− Ea∼U(A)[r(st, a)]| < η.

Definition 3.2 (δ-smooth). Let δ > 0. A Q-function parameterized by weights θ ∼ Θ is δ-smooth if
for any state s ∈ S and action â = â(s, θ) with s′ ∼ T (s, â, ·) we have

|Eθ∼Θ[max
a

Qθ(s, a)]− Es′∼T (s,â,·),θ∼Θ[max
a

Qθ(s
′, a)]| < δ

where the expectation is over both the random initialization of the Q-function weights, and the
random transition to state s′ ∼ T (s, â, ·).
Definition 3.3 (Disadvantage Gap). For a state-action value function Qθ the disadvantage gap
in a state s ∈ S is given by D(s) = Ea∼U(A),θ∼Θ[Qθ(s, a) − Qθ(s, a

min)] where amin =
argmina Qθ(s, a).

The following theorem captures the intuition that choosing counteractive actions, i.e. the action
minimizing the state-action value function, will achieve an above-average temporal difference.

Theorem 3.4 (Counteractive Actions Increases Temporal Difference). Let η, δ > 0 and suppose that
Qθ(s, a) is η-uninformed and δ-smooth. Let st ∈ S be a state, and let amin be the action minimizing
the state-action value in a given state st, amin = argmina Qθ(st, a). Let smin

t+1 ∼ T (st, amin, ·). Then
for an action at ∼ U(A) with st+1 ∼ T (st, at, ·) we have

Esmin
t+1∼T (st,amin,·),θ∼Θ[r(st, a

min) + γmax
a

Qθ(s
min
t+1, a)−Qθ(st, a

min)]

> Eat∼U,(A)st+1∼T (st,at,·),θ∼Θ[r(st, at) + γmax
a

Qθ(st+1, a)−Qθ(st, at)] +D(st)− 2δ − η

Proof. Since Qθ(s, a) is δ-smooth we have

Esmin
t+1∼T (st,amin,·),θ∼Θ[γmax

a
Qθ(s

min
t+1, a)−Qθ(st, a

min)]

> γEθ∼Θ[max
a

Qθ(st, a)]− δ − Eθ∼Θ[Qθ(st, a
min)]

> γEst+1∼T (st,at,·),θ∼Θ[max
a

Qθ(st+1, a)]− 2δ − Eθ∼Θ[Qθ(st, a
min)]

≥ Eat∼U(A),st+1∼T (st,at,·),θ∼Θ[γmax
a

Qθ(st+1, a)−Qθ(st, at)] +D(st)− 2δ

where the last line follows from Definition 3.3. Further, because Qθ(s, a) is η-uninformed,
Eθ∼Θ[r(st, a

min)] > Eat∼U(A)[r(st, at)]− η. Combining with the previous inequality completes the
proof.

Theorem 3.4 shows that counteractive actions, i.e. actions that minimize the state-action value
function, in fact increase temporal difference. Now we will prove that counteractive actions achieve
an increase in temporal difference further in the case where action selection and evaluation in the
temporal difference are computed with two different sets of weights θ and θ̂ as in double Q-learning.

Definition 3.5 (δ-smoothness for Double-Q). Let δ > 0. A pair of Q-functions parameterized by
weights θ ∼ Θ and θ̂ ∼ Θ are δ-smooth if for any state s ∈ S and action â = â(s, θ) ∈ A with
s′ ∼ T (s, â, ·), we have∣∣∣∣∣ E

θ,θ̂∼Θ
s′∼T (s,â,·)

[
Qθ̂(s, argmax

a
Qθ(s, a))

]
− E

θ,θ̂∼Θ
s′∼T (s,â,·)

[
Qθ̂(s

′, argmax
a

Qθ(s
′, a))

] ∣∣∣∣∣ < δ

where the expectation is over both the random initialization of the Q-function weights θ and θ̂, and
the random transition to state s′ ∼ T (s, â, ·).

Now we will prove that counteractive actions, i.e. actions that minimize the state-action value instead
of maximizing, will lead to increase in temporal difference in the case of two Q-functions, i.e. Qθ

and Qθ̂, that are alternatively used to take an action and evaluate the value of the action.
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Theorem 3.6. Let η, δ > 0 and suppose that Qθ and Qθ̂ are η-uniformed and δ-smooth. Let
st ∈ S be a state, and let amin = argmina Qθ(st, a). Let smin

t+1 ∼ T (st, amin, ·). Then for an action
at ∼ U(A) with st+1 ∼ T (st, at, ·) we have

Est+1∼T (s,a,·),θ∼Θ,θ̂∼Θ[r(st, a
min) + γQθ̂(s

min
t+1, argmax

a
Qθ(s

min
t+1, a))−Qθ(st, a

min)]

> Eat∼U(A),st+1∼T (s,a,·),θ∼Θ,θ̂∼Θ[r(st, at) + γQθ̂(st+1, argmax
a

Qθ(st+1, a))−Qθ(st, at)]

+D(st)− 2δ − η

Proof. Since Qθ and Qθ̂ are δ-smooth we have

Esmin
t+1∼T (st,amin,·),θ∼Θ,θ̂∼Θ[+γQθ̂(s

min
t+1, argmax

a
Qθ(s

min
t+1, a))−Qθ(st, a

min)]

> Esmin
t+1∼T (st,amin,·),θ∼Θ,θ̂∼Θ[+γQθ̂(st, argmax

a
Qθ(st, a))−Qθ(st, a

min)]− δ

> Est+1∼T (st,at,·),θ∼Θ,θ̂∼Θ[+γQθ̂(st+1, argmax
a

Qθ(st+1, a))−Qθ(st, a
min)]− 2δ

≥ Est+1∼T (st,at,·),θ∼Θ,θ̂∼Θ[+γQθ̂(st+1, argmax
a

Qθ(st+1, a))−Qθ(st, at)] +D(st)− 2δ

where the last line follows from Definition 3.3. Further, because Qθ and Qθ̂ are η-uniformed,
Eθ∼Θ,θ̂∼Θ[r(st, a

min)] > Eat∼U(A)[r(st, at)]−η. Combining with the previous inequality completes
the proof.
Core Counterintuition:

How could minimizing the state-action value function accelerate learning?

At first, the results in Theorem 3.4 and 3.6 might appear counterintuitive. Yet, understanding this
counterintuitive fact relies on first understanding the intrinsic difference between the randomly
initialized state-action value function, i.e. Qθ, and the optimal state-action value function, i.e. Q∗.
In particular, from the perspective of the function Q∗, the action amin

Qθ
(s) = argmina Qθ(s, a) is

a uniform random action. However, from the perspective of the function Qθ, the action amin is
meaningful, in that it will lead to a higher TD-error update than any other action; hence the realization
of the intrinsic difference between amin

Qθ
(s) and amin

Q∗ (s) with regard to Qθ and Q∗ provides a valuable
insight on how counteractive actions do in fact increase temporal difference. In fact, Theorem 3.4
and 3.6 precisely provide the formalization that the temporal difference achieved by taking the
minimum action is larger than that of a random action by an amount equal to the disadvantage gap
D(s). Experimental results reported in Section 5 further verify the theoretical analysis. Now we will
formalize this intuition for initialization and prove that the distribution of the minimum value action
in a given state is uniform by itself, but is constant once it is conditioned on the weights θ.
Proposition 3.7 (Marginal and Conditional Distribution of Counteractive Actions). Let θ be the
random initial weights for the Q-function. For any state s ∈ S let amin(s) = argmina′∈A Qθ(s, a

′).
Then for any a ∈ A, Pθ∼Θ [argmina′∈A Qθ(s, a

′) = a] = 1
|A| i.e. the distribution Pθ∼Θ[a

min(s)] is
uniform. Simultaneously, the conditional distribution Pθ∼Θ[a

min(s) | θ] is constant.
The proof is provided in the supplementary material. Proposition 3.7 shows that in states in which
the Q-function has not received sufficient updates, taking the minimum action is almost equivalent
to taking a random action with respect to its contribution to the rewards obtained. However, while
the action chosen early on in training is almost uniformly random when only considering the current
state, it is at the same time still completely determined by the current value of the weights θ, as is the
temporal difference. Thus while the marginal distribution on actions taken is uniform, the temporal
difference when taking counteractive actions, i.e. the minimum action, is quite different than from the
case where an independently random action is chosen. In particular, in expectation over the random
initialization θ ∼ Θ, the temporal difference is higher when taking the minimum value action than
that of a random action as demonstrated in Section 3.

The main objective of our approach is to increase the information gained from each environment
interaction, and we show that this can be achieved via actions that minimize the state-action value
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Algorithm 1 CoAct TD Learning: Counteractive Temporal Difference Learning
Input: In MDPM with γ ∈ (0, 1], s ∈ S, a ∈ A with Qθ(s, a) function parametrized by θ, ϵ
dithering parameter, B experience replay buffer, N is the training learning steps.
Populating Experience Replay Buffer:
for st in e do

Sample κ ∼ U(0, 1)
if κ < ϵ then
amin = argmina Q(st, a)
smin
t+1 ∼ T (st, amin, ·)
B ← (r(st, a

min), st, s
min
t+1, a

min)
else
amax = argmaxa Q(st, a)
st+1 ∼ T (st, amax, ·)
B ← (r(st, a

max), st, st+1, a
max)

end if
end for

Learning:
for n in N do

Sample from replay buffer:
⟨st, at, r(st, at), st+1⟩ ∼ B
Thus, T D receives update with probability ϵ

T D = r(st, a
min) + γmaxa Q(smin

t+1, a) −
Q(st, a

min)
T D receives update with probability 1− ϵ:
T D = r(st, a

max) + γmaxa Q(st+1, a) −
Q(st, a

max)
Gradient step with∇L(T D)

end for

function. While minimization of the Q-function may initially be regarded as counterintuitive, Section
3 provides the exact theoretical justification on how taking actions that minimize the state-action value
function results in higher temporal difference for the corresponding state transitions, and Section
5 provides experimental results that verify the theoretical analysis. Our method is a fundamental
theoretically well-motivated improvement on temporal difference learning. Thus, any algorithm in
reinforcement learning that is built upon temporal difference learning can be simply switched to
CoAct TD learning. Algorithm 1 summarizes our proposed algorithm CoAct TD Learning based on
minimizing the state-action value function as described in detail in Section 3. Note that populating
the experience replay buffer and learning are happening simultaneously with different rates. TD
receives an update with probability ϵ solely due to the experience collection.

CoAct TD is modular: It is a plug-and-play method with any canonical baseline algorithm.

4 Motivating Example

To truly understand the intuition behind our counterintuitive foundational method, we consider a
motivating example: the chain MDP. In particular, the chain MDP which consists of a chain of n
states s ∈ S = {1, 2, · · ·n} each with four actions. Each state i has one action that transitions the
agent up the chain by one step to state i+1, one action that transitions the agent to state 2, one action
that transitions the agent to state 3, and one action which resets the agent to state 1 at the beginning
of the chain. All transitions have reward zero, except for the last transition returning the agent to the
beginning from the n-th state. Thus, when started from the first state in the chain, the agent must
learn a policy that takes n− 2 consecutive steps up the chain, and then one final step to reset and get
the reward. For the chain MDP, we compare standard approaches in temporal difference learning in
tabular Q-learning with our method CoAct TD Learning based on minimization of the state-action
values. In particular we compare our method CoAct TD Learning with both the ϵ-greedy action
selection method, and the upper confidence bound (UCB) method. In more detail, in the UCB method
the number of training steps t, and the number of times Nt(s, a) that each action a has been taken in
state s by step t are recorded. Furthermore, the action a ∈ A selection is determined as follows:

aUCB = argmax
a∈A

Q(s, a) + 2

√
log t

Nt(s, a)
.

In a given state s if N(s, a) = 0 for any action a, then an action is sampled uniformly at random
from the set of actions a′ with N(s, a′) = 0. For the experiments reported in our paper the length of
the chain is set to n = 10. The Q-function is initialized by independently sampling each state-action
value from a normal distribution with µ = 0 and σ = 0.1. In each iteration we train the agent
using Q-learning for 100 steps, and then evaluate the reward obtained by the argmax policy using
the current Q-function for 100 steps. Note that the maximum achievable reward in 100 steps is 11.
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Figure 1: Human normalized scores median and 80th percentile over all games in the Arcade Learning
Environment (ALE) 100K benchmark for CoAct TD Learning and the canonical temporal difference
learning with ϵ-greedy for QRDQN. Left: Median. Right: 80th Percentile.

Figure 2: Learning curves in the chain MDP with our proposed algorithm CoAct TD Learning, the
canonical algorithm ϵ-greedy and the UCB algorithm with variations in ϵ.

Figure 2 reports the learning curves for each method with varying ϵ ∈ [0.15, 0.25] with step size
0.025. The results in Figure 2 demonstrate that our method converges faster to the optimal policy
than either of the standard approaches.

5 Experimental Results

The experiments are conducted in the Arcade Learning Environment (ALE). We conduct empirical
analysis with multiple baseline algorithms including Deep Double-Q Network [Hasselt et al., 2016]
initially proposed in [van Hasselt, 2010] trained with prioritized experience replay [Schaul et al.,
2016] without the dueling architecture with its original version [Hasselt et al., 2016], and the QRDQN
algorithm that is also described in Section 2. The experiments are conducted both in the 100K
Arcade Learning Environment benchmark, and the canonical version with 200 million frame training
[Mnih et al., 2015, Wang et al., 2016]. Note that the 100K Arcade Learning Environment benchmark
is an established baseline proposed to measure sample efficiency in deep reinforcement learning
research, and contains 26 different Arcade Learning Environment games. The policies are evaluated
after 100000 environment interactions. All of the polices in the experiments are trained over 5
random seeds. The hyperparameters, the architecture details, and additional experimental results
are reported in the supplementary material. All of the results in the paper are reported with the
standard error of the mean. The human normalized scores are computed as, HN = (Scoreagent −
Scorerandom)/(Scorehuman − Scorerandom).

Figure 1 reports results of human normalized median scores and 80th percentile over all of the games
of the Arcade Learning Environment (ALE) in the low-data regime for QRDQN, while Figure 5
reports results for double Q-learning. The results reported in Figure 1 once more demonstrate that the
performance obtained by the CoAct TD Learning algorithm is approximately double the performance
achieved by the canonical experience collection techniques. For completeness we also report several
results with 200 million frame training (i.e. 50 million environment interactions). Furthermore, we
also compare our proposed CoAct TD Learning algorithm with NoisyNetworks as referred to in Sec-
tion 2. Table 1 reports results of human normalized median scores, 20th percentile, and 80th percentile
for the Arcade Learning Environment 100K benchmark. Table 1 further demonstrates that the CoAct
TD Learning algorithm achieves significantly better performance results compared to NoisyNetworks.
Primarily, note that NoisyNetworks includes adding layers in the Q-network to increase exploration.
However, this increases the number of parameters that have been added in the training process; thus,
introducing substantial additional cost. Figure 4 demonstrates the learning curves for our proposed
algorithm CoAct TD Learning and the original version of the DDQN algorithm with ϵ-greedy training.
In the large data regime we observe that while in some MDPs our proposed method CoAct TD Learn-
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Figure 3: Temporal difference for our proposed algorithm CoAct TD Learning and the canonical
ϵ-greedy algorithm in the Arcade Learning Environment 100K benchmark. Dashed lines report the
temporal difference for the ϵ-greedy algorithm and solid lines report the temporal difference for the
CoAct TD Learning algorithm. Colors indicate games.

Figure 4: The learning curves for our proposed method CoAct TD Learning algorithm and canonical
temporal difference learning in the Arcade Learning Environment with 200 million frame training.
Left: JamesBond. MiddleLeft: Gravitar. MiddleRight: Surround. Right: Tennis.

ing that focuses on experience collection with novel temporal difference boosting via counteractive
actions converges faster, in other MDPs CoAct TD Learning simply converges to a better policy.

Table 1: Human normalized scores median, 20th and 80th

percentile across all of the games in the Arcade Learning
Environment 100K benchmark for CoAct TD Learning, ϵ-
greedy and NoisyNetworks with DDQN.

Method CoAct TD ϵ-greedy NoisyNetworks

Median 0.0927±0.0050 0.0377±0.0031 0.0457±0.0035
20th Percentile 0.0145±0.0003 0.0056±0.0017 0.0102±0.0018
80th Percentile 0.3762±0.0137 0.2942±0.0233 0.1913±0.0144

Table 1 demonstrates that our pro-
posed CoAct TD Learning algo-
rithm improves on the performance
of the canonical algorithm ϵ-greedy
by 248% and NoisyNetworks by
204%. The results reported in both
of the sample regimes demonstrate
that CoAct TD learning results in
faster convergence rate and signifi-
cantly improves sample-efficiency in deep reinforcement learning. The large scale experimental
analysis verifies the theoretical predictions of Section 3, and further discovers that the CoAct TD
Learning algorithm achieves substantial sample-efficiency with zero-additional cost across many
algorithms and different sample-complexity regimes over canonical baseline alternatives.

6 Investigating the Temporal Difference

In Section 3 we provided the theoretical analysis and justification for collecting experiences with
counteractive actions, i.e. the minimum Q-value action, in which counteractive actions increase the
temporal difference. Increasing temporal difference of the experiences results in novel transitions,
and hence accelerates learning [Andre et al., 1997]. The theoretical analysis from Theorem 3.4
and Theorem 3.6 shows that taking the minimum value action results in an increase in the temporal
difference. In this section, we further investigate the temporal difference and provide empirical
measurements of the TD. To measure the change in the temporal difference when taking the minimum
action versus the average action, we compare the temporal difference obtained by CoAct TD Learning
with that obtained by several other canonical methods. In more detail, during training, for each batch
Λ of transitions of the form (st, at, st+1) we record, the temporal difference T D

E(st,at,st+1)∼ΛT D(st, at, st+1) = E(st,at,st+1)∼Λ[r(st, at) + γmax
a

Qθ(st+1, a)−Qθ(st, at)].

The results reported in Figure 3 and Figure 6 further confirm the theoretical predictions made via
Definition 3.2, Theorem 3.6 and Theorem 3.4. In addition to the results for individual games reported
in Figure 3, we compute a normalized measure of the gain in temporal difference achieved when
using CoAct TD Learning and plot the median across games. We define the normalized T D gain
to be, Normalized T D Gain = 1 + (T Dmethod − T Dϵ-greedy)/(|T Dϵ-greedy|), where T Dmethod and
T Dϵ-greedy are the temporal difference for any given learning method and ϵ-greedy respectively.
The leftmost and middle plot of Figure 6 report the median across all games of the normalized
T D gain results for CoAct TD Learning and NoisyNetworks in the Arcade Learning Environment
100K benchmark. Note that, consistent with the predictions of Theorem 3.4, the median normalized
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Figure 5: Human normalized scores median and 80th percentile over all games in the Arcade Learning
Environment (ALE) 100K benchmark in DDQN for CoAct TD Learning algorithm and the canonical
temporal difference learning with ϵ-greedy. Left:Median. Right: 80th Percentile.

Figure 6: Left and Middle: Normalized temporal difference T D gain median across all games in the
Arcade Learning Environment 100K benchmark for CoAct TD Learning and NoisyNetworks. Right:
Temporal difference T D when exploring chain MDP with Upper Confidence Bound (UCB) method,
ϵ-greedy and our proposed algorithm CoAct TD Learning.

temporal difference gain for CoAct TD Learning is up to 25 percent larger than that of ϵ-greedy.
The results for NoisyNetworks demonstrate that alternate experience collection methods lack this
positive bias relative to the uniform random action. Further note that to guarantee that every action
has non-zero probability of being chosen in every possible state for guaranteeing convergence of
Q-learning, one can additionally introduce noise, and achieve higher temporal difference by CoAct
TD learning. Albeit, across all of the experiments introduction of the noise was not necessary, as there
is sufficient noise in the training process that satisfies the property for convergence. Hence, across
all the benchmarks CoAct-TD Learning results in consistently and substantially better performance.
CoAct TD Learning is extremely modular, only requires two lines of additional code and can be
used as a drop-in replacement for any baseline algorithm that uses the canonical methods. The
fact that, as demonstrated in Table 1, CoAct TD Learning significantly outperforms noisy networks
in the low-data regime is further evidence of the advantage the positive bias in temporal difference
confers. The rightmost plot of Figure 6 reports T D for the motivating example of the chain MDP. As
in the large-scale experiments, prior to convergence CoAct TD Learning exhibits a notably larger
temporal difference relative to the canonical baseline methods, thus CoAct TD Learning achieves
accelerated learning across domains from tabular MDPs to large-scale.

7 Conclusion

In our study we focus on the following questions: (i) Is it possible to maximize sample efficiency in
deep reinforcement learning without additional computational complexity by solely rethinking the
core principles of learning?, (ii) What is the foundation and theoretical motivation of the learning
paradigm we introduce that results in one of the most computationally efficient ways to explore
in deep reinforcement learning? and, (iii) How would the theoretically well-motivated approach
transfer to high-dimensional complex MDPs? To be able to answer these questions we propose a
novel, theoretically motivated method with zero additional computational cost based on counteractive
actions that minimize the state-action value function in deep reinforcement learning. We demonstrate
theoretically that our method CoAct TD Learning based on minimization of the state-action value
results in higher temporal difference, and thus creates novel transitions with more unique experience
collection. Following the theoretical motivation we initially demonstrate in a motivating example
in the chain MDP setup that our proposed method CoAct TD Learning results in achieving higher
sample-efficiency. Then, we expand this intuition and conduct large scale experiments in the Arcade
Learning Environment, and demonstrate that our proposed method CoAct TD Learning increases the
performance on the Arcade Learning Environment 100K benchmark by 248%.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction and abstract of our paper describes the contributions of our
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper provides a theoretical analysis that introduces the basis on how the
minimization of the state-action value function will result in higher temporal difference.
Furthermore, we provide experimental results in the canonical training benchmarks, and the
results verify the theoretical analysis provided in Section 3. Furthermore, we specifically
report the temporal difference obtained by the agents in Section 6 in Figure 3 and Figure 6.
These results further verify the theoretical analysis provided in Section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical results are stated with full set of assumptions and a complete
proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the necessary details are explained in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The main paper references the algorithms used and describes our algorithm
with the theoretical analysis. All the necessary details regarding implementation are ex-
plained in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the necessary details regarding implementation are provided in the supple-
mentary material. The standard settings were implemented.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the results reported in the paper contain appropriate information about the
statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We test our method even against some of the compute exhaustive methods
which was also explained between Line 261 and 265. Furthermore, we state in Section 6
that CoAct TD Learning only requires two lines of additional code, is extremely modular,
and can be used as a drop-in replacement for any baseline algorithm that uses the canonical
methods between Line 310 and 311.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not violate the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Our work is foundational research. Yet, we believe it might still have potential
societal impacts. Particularly, our paper introduces a foundational drop-in replacement for
canonical algorithms that results in more efficient learning without additional cost. With
the rise of progress in artificial intelligence and the objectives to scale base algorithms to
benefit humanity, the energy consumption required by the hardware regarding AI training
is estimated to be at the level of an entire country’s electricity consumption, i.e. 85 to 134
terawatt hours (Twh) annually, [de Vries, 2023, Nations, 2024, Zewe, 2025]. Regarding the
carbon footprint of artificial intelligence and the climate crisis, our paper poses a line of
contribution on trying to minimize the environmental damage and impacts of the algorithms
we built by achieving significant improvement on the samples that are required to train them.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We reference the algorithms, training environments and the metrics that
evaluate algorithms throughout our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our paper does not include any LLM usage in any form.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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