
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FM4NPP: A SCALING FOUNDATION MODEL FOR NU-
CLEAR AND PARTICLE PHYSICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have revolutionized artificial intelligence by enabling
large, generalizable models trained through self-supervision. This paradigm has
inspired the development of scientific foundation models (FMs). However, apply-
ing this capability to experimental particle physics is challenging due to the sparse,
spatially distributed nature of detector data, which differs dramatically from nat-
ural language. This work addresses if an FM for particle physics can scale and
generalize across diverse tasks. We introduce a new dataset with more than 10 mil-
lion particle collision events and a suite of downstream tasks and labeled data for
evaluation. We propose a novel self-supervised training method for detector data
and demonstrate its neural scalability with models that feature up to 188 million
parameters. With frozen weights and task-specific adapters, this FM consistently
outperforms baseline models across all downstream tasks. The performance also
exhibits robust data-efficient adaptation. Further analysis reveals that the represen-
tations extracted by the FM are task-agnostic but can be specialized via a single
linear mapping for different downstream tasks.

1 INTRODUCTION

The emergence of large-scale language and vision models Wang et al. (2023) has marked a paradigm
shift from specialized neural architectures, tailored to individual tasks, toward universal, scalable,
and multitasking models. These large models, containing billions of parameters and trained through
self-supervised learning on massive unlabeled datasets, can be efficiently adapted to diverse down-
stream tasks, ranging from language translation and code generation to general reasoning. Recog-
nizing their transformative potential, the scientific community has termed these scalable, general-
purpose models as foundation models (FMs) Bommasani et al. (2021). Among their underpinning
features, FMs can leverage self-supervised learning on extensive unlabeled datasets, allowing them
to develop generalized representations adaptable to various downstream tasks with minimal addi-
tional labeled training. However, scientific data often fundamentally differ from natural language
or visual data. Hence, the design and implementation of FMs for scientific fields still faces chal-
lenges Li et al. (2024); Pyzer-Knapp et al. (2025a).
This work investigates developing FMs tailored for experimental nuclear and particle physics
(NPP), utilizing data from the Relativistic Heavy Ion Collider (RHIC) and the sPHENIX detec-
tor Brookhaven National Laboratory (2025). NPP research uses particle colliders, such as RHIC or
the Large Hadron Collider (LHC), to explore subatomic phenomena. Discovery of the Higgs boson
exemplified the transformative significance of collider-based NPP Collaboration et al. (2012). In
particular, RHIC collides heavy ions and polarized protons, enabling essential studies of quark-
gluon plasma and the structure of protons and nuclei Belmont et al. (2024). Commissioned in
2023 Moskowitz (2023), the sPHENIX detector features advanced tracking and calorimetry and
generates extensive and complex data. The complexity of collider data and the breakthrough sci-
ence it enables have motivated exploration of new data processing tools like FMs that employ self-
supervised learning. In particular, the high occupancy of hadronic collisions at RHIC or the LHC is
particularly challenging for traditional reconstruction algorithms, motivating exploration into new
methods.
However, developing an FM for NPP poses several challenges. The sparse, three-dimensional (3D)-
spacepoint nature of collider data lacks an established framework for formulating self-supervised
tasks. Additionally, optimal neural architectures and the scaling behavior of pre-training losses with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

FM4NPP embedding
pretrain

prediction
model

Stage 1: Pretrain FM4NPP on a self-supervised autoregressive forecasting (kNNN [Sec. 4.1])

FM4NPP
(frozen) embedding

Stage 2: Adapt FM4NPP for downstream tasks (Sec. 4.2)

downstream
adapter

Task 1 : Track Finding

downstream
adapter

Signal Noise

Task 3: Noise Tagging

downstream
adapter

Pion Kaon

Proton Electron Others

Task 2: Particle Identification

Figure 1: Overview of a pretrained foundation model that can be adapted to various downstream
tasks. We answer two questions in this work: a) Whether the foundation model is scalable, i.e., can
larger model and dataset sizes improve performance; b) Whether the foundation model is adaptable
to solve multiple downstream tasks.

respect to model and data size remain unknown. Crucially, it is uncertain if neural representations
from a frozen, pre-trained FM can generalize effectively to various downstream tasks, thereby out-
performing existing traditional solutions and specialized AI models.
Here, we take a first step toward enabling the use of FMs for NPP by adopting a cost-effective two-
stage paradigm: (1) pretrain a large FM using a self-supervised objective and (2) pair the frozen FM
with lightweight, task-specific adapters (Figure 1). The core hypothesis is that a sufficiently trained
FM encodes rich, task-agnostic representations that can be efficiently adapted to diverse downstream
tasks with minimal additional training.
To this end, we construct a large-scale dataset, exceeding 10 million simulated collision events and
characterized by sparse, high-dimensional detector data. We also define three downstream tasks
with corresponding labeled datasets to evaluate FM adaptability. We introduce a self-supervised
pre-training strategy tailored to the sparsity and structure of detector data and demonstrate strong
neural scaling behavior with models up to 188 million parameters. With frozen FMs and simple
adapters, we achieve state-of-the-art performance across all downstream tasks. This analysis further
reveals that FM representations are broadly task-agnostic and can be specialized using a single linear
transformation. In summary, our contributions are:

• A large-scale, open benchmark dataset for FM training and evaluation in particle physics.
• A self-supervised pre-training method designed for sparse detector data.
• Empirical evidence of scaling behavior and data-efficient adaptation with frozen FMs.
• Insight into the structure and adaptability of FM representations across diverse tasks.

2 RELATED WORK

Scientific Foundation Models. Developing FMs for scientific domains is a promising yet
formidable endeavor. Progress has been most evident in domains where data exhibit modality struc-
tures similar to language or vision. For instance, Aurora Bodnar et al. (2025) is an atmospheric FM

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

trained on continuous spatiotemporal climate data, and recent work has demonstrated FM-based dis-
ease detection from retinal images Zhou et al. (2023). In high-energy physics, recently developed
foundation models such as OmniJet-α Birk et al. (2024) and OmniLearned Bhimji et al. (2025)
focus on high-level physics objects known as jets — collimated sprays of particles that can be rep-
resented as dense matrices. However, many scientific disciplines, including low-level detector data
(e.g. raw hits or clusters) in particle physics, materials science, and single-cell omics, present unique
challenges like irregularly structured and sparse data. Traditional approaches, such as graph neural
networks (GNNs), are well-suited for sparse data, but they face scalability issues due to phenomena,
e.g., oversmoothing Rusch et al. (2023). Surveys in materials science Pyzer-Knapp et al. (2025b)
and single-cell omics Ma et al. (2024) emphasize additional bottlenecks, including limited data
availability and high computational costs. These challenges also apply to NPP, where it remains un-
clear how best to model extremely sparse data, how much data are needed, and whether pretraining
benefits can effectively transfer to downstream tasks. This work takes a first step toward addressing
these questions by developing a scalable FM for sparse lower level detector data in NPP, focused on
efficient pretraining, architectural scalability, and downstream generalization.

Scalable Neural Architectures. Three neural network architectures are prominent for their scala-
bility: Transformers, Mixture-of-Experts (MoE), and State Space Models (SSMs). The Transformer
architecture Vaswani et al. (2017) has revolutionized deep learning via self-attention, enabling ef-
fective modeling of long-range dependencies. This has led to widespread adoption in both natural
language processing (NLP) and computer vision Dosovitskiy et al. (2021). However, the quadratic
time and space complexity of self-attention limits scalability on long sequences – a critical bot-
tleneck for scientific data. MoE architectures Fedus et al. (2022) improve inference efficiency by
activating only a subset of the model per input, although they face challenges, such as training insta-
bility and expert imbalance. The Mamba architecture Gu & Dao (2024), an SSM variant, achieves
linear time complexity and shows competitive or superior performance to Transformers. Given the
relatively large number of spacepoints per collision event, which can result in especially long se-
quences, we explore SSMs as a backbone due to their favorable training efficiency and memory
usage.

AI Model Tasks in NPP. In collider physics, high-energy particles collide to produce new par-
ticles, whose trajectories—called tracks—are reconstructed from discrete spacepoints recorded by
layered detector components. Track finding, or assigning spacepoints to different tracks, is one of
the most important tasks. Traditional algorithms rely on combinatorial seeding followed by Kalman-
filter-based refinement Kalman (1960). These classical methods are computationally expensive
and difficult to parallelize on modern accelerators. GNN-based approaches have become popular
in track finding. Exa.TrkX Ju et al. (2021) formulates the task as edge classification, whereas
EggNet Calafiura et al. (2024) employs contrastive learning followed by clustering. Each predicted
track then corresponds to a connected subgraph of spacepoints. Other recent work has introduced
Transformer-based models such as HEPT Miao et al. (2024) and SSM-based Jiang & Qian (2025)
tracking models at O(1M) parameter scale. Beyond track finding, another common task is parti-
cle identification (PID). Previous ML-based PID approaches, such as MLPF Mokhtar et al. (2025)
and HGPF Kakati et al. (2025), rely on reconstructed tracks as key inputs and typically incorporate
calorimeter topoclusters. In contrast, we employ a lightweight adapter model—designed as a probe
of FM generalizability—that performs PID directly at the low level using only TPC spacepoint data,
without requiring high-level track information or calorimeter inputs.
While these models are promising – with some achieving strong results using fewer than one million
parameters – there is no systematic study of scaling behavior. Moreover, open datasets designed
for scaling and evaluating FMs are limited. In this work, more than 10 million simulated collision
events are generated, affording comprehensive scaling studies. We also develop an FM with 188
million parameters, two orders of magnitude larger than prior models, and evaluate its performance
in tracking and broader NPP tasks.

3 PARTICLE DETECTOR DATASET

Dataset. As part of the sPHENIX detector’s central tracking system, the high-granularity Time
Projection Chamber (TPC) Klest (2020) records more than 85% of the total data volume. The TPC
consists of 48 concentric cylindrical readout layers, encompassing approximately 160,000 channels
that each record 260 time samples, totaling 41.6 million voxels. Functioning as a three-dimensional

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

r

ϕ

ηfirst

last

r

ϕ

η

startse
q
u
en
ce

or
d
er

(a) 3D grid partition and ordering

E
η
ϕ
r

×k ×k ×k ×k ×k ×k ×k ×k
η
ϕ
r

Positional Encoding (NeRF)

Mamba blocks ×L

(b) Foundation model

Figure 2: (a) Hierarchical Raster Scan strategy to serialize the unordered spacepoints into a 1D
sequence. (b) A Mamba FM backbone for k-Next-Nearest-Neighbor prediction.

camera, the TPC records the paths of particles emerging from collision events, delivering continuous
3D spacepoint information.
We use a publicly available dataset with over 10 million simulated p+p collision events at

√
s =

200GeV Li et al. (2025). The natural sparsity of events in p+p collisions makes them an ideal
testing ground for developing an FM for NPP applications. The simulation pipeline includes real
detector geometry, electromagnetic fields, hadronic interactions, continuous energy loss, multiple
scattering, decay processes, secondary particle production, and precise energy deposition. The raw
detector hits subsequently are reconstructed to spacepoints which serve as inputs in this work. More
concretely, a collision event E is represented as a set of spacepoints {si}, where each spacepoint is
expressed by its deposit energy and location (E , x, y, z). The number of spacepoints per event can
vary from hundreds to thousands.

Downstream Tasks. We select three complementary downstream tasks to evaluate the generaliz-
ability of an FM: Track Finding, Particle Identification (PID), and Noise Tagging. Track Finding
assigns each spacepoint to its corresponding predicted track as shown in Figure 1 (Task 1, 2, and
3). Assume there are m tracks {Tj}mj=1, where each track Tj consists of its associated spacepoints
{si ∈ Tj}. The goal of track finding is to predict a partition P over the set of spacepoints, where
P j
i = 1 if spacepoint si is assigned to track Tj . The number of tracks can vary from event to event.

This task is analogous to instance segmentation in computer vision.
To evaluate performance, we employ both conventional physics-motivated metrics, tracking effi-
ciency and purity Calafiura et al. (2018), as well as the statistical metric Adjusted Rand Index
(ARI) Hubert & Arabie (1985). As the exact definition of whether or not a predicted track matching
a true track can differ among physics experiments, we adopt the “double-majority rule” from the
TrackML challenge Amrouche et al. (2020). The rule enforces that a predicted track is successfully
matched to a true track only when greater than 50% of the predicted track’s spacepoints belong to
that track and more than 50% of the true track’s spacepoints are present in the predicted track. This
stringent rule guarantees neither predicted tracks nor true tracks are matched more than once. Then,
tracking efficiency (recall) is defined as the ratio between the true positive and total number of truth
tracks, while tracking purity (precision) is the ratio between the true positive and total number of
predicted tracks.
PID aims to label each spacepoint to the particle species that produced it, i.e., pion, kaon, proton,
electron, and others. This is comparable to a segmentation task in computer vision. Noise Tagging,
the third downstream task, seeks to identify spacepoints associated to low-momentum secondary
particles, primarily delta electrons as they typically are not associated with physics observables
of interest. This also can be considered a segmentation task. For these two downstream tasks, we
report overall accuracy, macro-averaged precision and recall. Additional information about the TPC
detector, data generation pipeline, and statistical analysis are included in Appendix A.

4 METHODOLOGY

This section introduces the scalable FM for NPP, including a novel serialization method for sparse
spacepoints, adaptation to the Mamba architecture, and a self-supervised pretraining objective, and
lightweight adapter models for downstream tasks. Additional information is included in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Adapter Model for Track Finding

track queries
Transformer
Decoder

spacepoint
embeddings

MLP

MLP

track instance
predictions

track
embeddings

Instance
seg. loss

Linear

Linear

mamba blocks

mamba blocks
...

mamba blocks

Spacepoints

Transformer
Decoder

MLP
semantic

predictions
semantic
seg. loss

query

key, value

inner product

Foundation Model Adapter Model for Particle Identification or Noise Tagging

Track Finding

Particle Identification

Figure 3: The pretrained FM is kept frozen during training of the adapter models for downstream
tasks. The adapter models for particle identification and noise tagging share the same architecture
but are trained independently.

4.1 SELF-SUPERVISED SCALING FOUNDATION MODEL

Serialization of Spacepoints. A key challenge in applying sequence-based models like Mamba to
particle detector data is in serializing the unordered set of 3D spacepoints si from an event E into a
meaningful one-dimensional (1D) sequence. The serialization strategy must balance two competing
objectives: preserving the global structure of particle trajectories, which typically propagate outward
from the collision point, and maintaining local continuity along individual tracks Tj to retain fine-
grained geometric information. Naive serialization schemes struggle to achieve this balance. For
example, space-filling curves (e.g., Hilbert or Z-order) prioritize spatial locality but often interleave
points from different tracks, disrupting trajectory coherence. Conversely, sorting points by their
radial distance preserves the outward particle flow but scatters spacepoints from the same track
across distant positions in the sequence, breaking local continuity. An effective serialization must
navigate this trade-off, allowing the model to learn both global and local physics from a sequential
input.
We propose a Hierarchical Raster Scan strategy to serialize the unordered spacepoints si into a 1D
sequence suitable for sequence models as shown in Figure 2(a). First, all spacepoints are transformed
from Cartesian (x, y, z) to a cylindrical-polar system (r, ϕ, η) that better reflects the geometry and
symmetries of collider experiments, where r is radial distance, ϕ depicts the azimuthal angle, and η
represents the pseudorapidity (angle to the beam axis). The raster scan method operates on two lev-
els. The first is inter-box ordering, where spacepoints are initially partitioned into non-overlapping
3D spatial boxes. Then, these boxes are ordered based on the (r, ϕ, η) coordinates of their geometric
centers, starting from the innermost region and progressing outward. This produces a global ordering
over the spatial domain. The second is intra-box ordering, where, within each box, spacepoints are
sorted by their radial coordinate r, which generally aligns with the direction of particle propagation.
By concatenating the intra-box sequences according to the inter-box order, we obtain a globally se-
rialized sequence that preserves both local spatial continuity and global physical progression. This
hierarchical structure captures important geometric and physical priors while producing a format
compatible with sequence models. Specifically, we partition the spatial domain into a 6 × 8 × 8
grid along the (r, η, ϕ) axes, respectively. The r bins are aligned with the physical boundaries of the
TPC detector layers, while the η and ϕ bins are determined using frequency-based binning to ensure
balanced point distributions across the grid.

Mamba as a FM Model Backbone. Mamba is a selective SSM that efficiently processes long
sequences, achieving linear time complexity Gu & Dao (2023). It features a selection mechanism
that makes its internal state matrices input-dependent, allowing the model to dynamically focus
on relevant information and filter out noise – all while using a hardware-aware algorithm for fast
computation. In this work, we employ Mamba2 Dao & Gu (2024), which further improves upon this
foundation. Mamba2 introduces structured State Space Duality (SSD), a new theoretical framework
that simplifies the architecture and enhances hardware utilization, leading to significant speedups in
both training and inference.
We treat every spacepoint as an input “token” in a sequence. To map an input tuple (E , r, ϕ, η) to the
model width dmodel, we employ a two-pathway process inspired by Neural Radiance Fields Milden-
hall et al. (2021). First, the feature component E is projected into a feature embedding of dimension
dmodel. Concurrently, the spatial coordinates (r, ϕ, η) are transformed with a high-frequency po-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

sitional encoding function, γ(·), which uses sine and cosine transformations. Then, this encoded
position is also projected into a positional embedding of dimension dmodel. The final representation
is the element-wise sum of the feature and positional embeddings, yielding a single vector of size
dmodel that holistically captures the event’s properties and location.

Self-supervised Pretraining Objectives. To create a self-supervised pretraining task, the pre-
diction objective must be decoupled from the sequence order as a naive “next-spacepoint predic-
tion” would learn artifacts of the serialization itself. The target for any given spacepoint si, must
be defined by its geometric relationship to other spacepoints in 3D, not its 1D sequence position.
While predicting nearest neighbors is a natural geometric objective, a standard k-Nearest Neigh-
bor task is unsuitable in an autoregressive framework due to information leakage from previously
seen spacepoints. We partially address this by introducing k-Next-Nearest-Neighbor prediction (k-
NNN) (Figure 2(b)), which aligns the objective with particle propagation. For any query space-
point si, the model’s task is to predict its k nearest spacepoints within its next neighborhood
Nc(si) = {sj ∈ E | rj > ri}, i.e. those with larger radius. Let Ŷi = {ŷi,1, . . . , ŷi,k} denote
the predictions and Yi = {yi,1, . . . ,yi,k} the ground truth neighbors, both ordered by increasing
distance. The loss is then Li =

1
k

∑k
m=1∥ŷi,m − yi,m∥22. Larger k expands the geometric horizon

and makes the task more difficult.

4.2 ADAPTIVE MODELS FOR DOWNSTREAM TASKS

Track Finding. Figure 3 depicts how our downstream adapter model for track finding, formulated
as an instance segmentation task, is inspired by image panoptic segmentation models Cheng et al.
(2021; 2022) and adapted to sparse spacepoints data.
Point-level features from the FM are first projected to spacepoint embeddings via a single linear
layer. This projection serves as a task-alignment filter, compressing and reorienting the pretrained
representation into a lower-dimensional space, while also providing a probing point to assess the task
relevance of the FM features. We initialize N learnable queries (track queries) Q = {qk}Nn=1 and
refine them over L transformer decoder layers. In each layer, cross-attention aggregates information
from spacepoint embeddings, modulated by an additive attention mask computed from intermediate
assignment logits, followed by self-attention among the queries. The resulting refined track queries
are passed through two separate multilayer perceptron (MLP) heads to produce a track embedding
and a classification score ŷn . Point-to-query assignment probability p̂in is computed as the sigmoid
of the dot product between spacepoint embeddings and each track embedding.
Let E = {Tj}Mj=1 be the set of true tracks of an event E. We match the refined track queries to E via
the Hungarian algorithm, minimizing the combined cost of Dice loss Ldice, Focal loss Lfocal on the
per-point assignments, and classification loss Lcls for track versus no-object. For each matched pair
(Tj ,qn), the loss is L(j,n)

match = λdice L(j,n)
dice + λfocal L(j,n)

focal + λcls L(n)
cls . Unmatched track queries incur

only L(n)
cls . We also apply auxiliary losses at each decoder layer. At inference time, each spacepoint

i is assigned to the track n∗
i = argmaxn

(
p̂in · ŷn

)
and labeled accordingly.

Particle Identification and Noise Tagging. For both PID and noise tagging tasks, illustrated
in Figure 3, our lightweight adapter first projects each d-dimensional point feature into a
dp-dimensional embedding via a linear layer then aggregates global context with a single self-
attention layer. Finally, it feeds the result through an MLP classifier.

5 EXPERIMENTS AND RESULTS

Here, we begin by examining the scaling behavior of our FM with respect to model size, dataset size,
and computational cost. We then benchmark the FM paired with lightweight adapters against strong
baselines across three downstream tasks. Finally, we present additional analyses to better understand
the adaptation behavior of the FM.

5.1 NEURAL SCALING BEHAVIORS OF FM4NPP

We evaluate our FM’s scaling behavior across three axes: model size, dataset size, and compute
budget. Results are summarized in Figures 4(a–c).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Model Sizes and Compute Resources

Model Sizes Compute Resources

m1 m2 m3 m4 m5 m6 NVIDIA GPU H100 80GB A100 80GB

Model Width 64 128 256 512 1024 1536 Num GPUs 1 1 4 8 24 64
Model Params 0.34M 1.3M 5.3M 21M 84M 188M Train Hrs 10 12 20 32 50 72

(a) (b) (c)

Figure 4: Neural Scaling Behaviors of FM4NPP. We evaluate neural scaling trends on increasing (a)
model parameter size M , (b) training spacepoint count D, and (c) compute in FLOPs. Cmin denotes
the minimum L for each compute.

Model Scaling. We construct a series of FMs with varying capacities, denoted m1 through m6 in
Table 1. Figure 4(a) shows the validation mean squared error (MSE) plotted against model size on
a log-log scale, revealing a clear power-law relationship. As the number of parameters increases,
validation loss consistently decreases, which aligns with neural scaling laws observed in language
and other scientific domains Kaplan et al. (2020); Hoffmann et al. (2022); Nguyen et al. (2023);
Bodnar et al. (2025). Notably, performance plateaus at m6, suggesting a possible saturation point,
which we leave for future investigation.

Data Scaling. To isolate the effect of training dataset size, we train the m3 model on varying sub-
sets (1%, 2.4%, 11.6%, 20%, 47.6%, 100%) of the full dataset. Figure 4(b) shows how performance
improves steadily with more data, again following a power-law trend. This suggests the FM can
continue to benefit from the large-scale data routinely produced in collider experiments.

Compute Scaling. Finally, we study the relationship between compute and model performance.
Figure 4(c) shows validation MSE against the total number of floating-point operations (FLOPs)
used during training. Models up to m3 are trained at 25%, 50%, and 100% of their total iteration
budget, while larger models (m4-m6) are trained to full completion only. The results show that
smaller models are initially more compute-efficient, but larger models outperform them when more
resources are allocated. This highlights the importance of compute-optimal model scaling for de-
ployment in high-throughput environments. All experiments have been conducted using A100 and
H100 GPUs with corresponding hardware costs summarized in Table 1.
All models are trained with a batch size of 256. An optimal learning rate of 2 × 10−4 is se-
lected through hyperparameter tuning on the m3 model and reused across all variants using the
µ-parameterization principle Vankadara et al. (2024). This approach ensures consistent gradient flow
across model sizes and enables zero-shot hyperparameter transfer Yang et al. (2022). Smaller mod-
els (m1, m2) are trained for 50,000 iterations, while larger models (m3–m6) are trained for 100,000
iterations. We apply cosine learning rate decay with 10,000-step linear warmup and use gradient
clipping at a threshold of 0.1. All experiments employ the AdamW optimizer Loshchilov & Hutter
(2017) with a weight decay of 0.01. Additional training details are provided in Appendix B.

5.2 PERFORMANCE ON DOWNSTREAM TASKS

Track Finding. Our baseline coverage prioritizes reproducible, end-to-end pipelines. Some recent
SSM- and Transformer-based trackers cited in Related Work are therefore omitted, as they either do
not report full end-to-end results or lack public, runnable releases. We thus focus on Exa.TrkX Ju
et al. (2021) and EggNet Calafiura et al. (2024), both GNN-based methods designed specifically for
tracking, as well as HEPTMiao et al. (2024), a Transformer-based method that uses locality-sensitive
hashing for efficient attention. Because their original implementations target different detector ge-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance on Track Finding, Particle Identification, and Noise Tagging. Results for the
FM4NPP(m6) model are averaged over 10 random seeds; uncertainties shown in the parentheses
indicate standard deviation of the mean in the last digit. The best-performing results for each metric
are highlighted in bold, while the second-best results are underlined.

Track Finding Particle Identification Noise Tagging

model #trnbl
para. ARI↑ efficiency↑ purity↑ model #trnbl

para. acc.↑ recall↑ pre.↑ acc.↑ recall↑ pre.↑

EggNet 0.16M 0.726 74.2% 75.1% SAGEConv 0.91M 0.726 0.456 0.650 0.917 0.723 0.817
Exa.TrkX 3.86M 0.877 91.8% 66.4% GraphConv 0.91M 0.7079 0.4176 0.6425 0.9190 0.7213 0.8252
HEPT 0.31M 0.831 81.2% 78.0% OneFormer3D 44.95M 0.770 0.490 0.577 0.965 0.940 0.895
AdapterOnly 2.39M 0.724 78.0% 64.5% AdapterOnly 0.74M 0.663 0.339 0.611 0.911 0.622 0.836
FM4NPP(m6) 2.39M 0.945(3) 96.1(2)% 93.1(1)% FM4NPP(m6) 0.74M 0.904(1) 0.765(3) 0.878(3) 0.971(1) 0.937(1) 0.919(1)

ometries, we adapt them to this dataset (see Appendix C). To verify embeddings extracted using the
pretrained FM provide richer information, we also train the lightweight adapter model alone.
Table 2 reports the track finding results of our FM with several baselines. All metrics are computed
over the entire test set rather than averaged per event. For example, tracking efficiency is defined as
the fraction of all true tracks in the dataset that are successfully matched. Our model achieves higher
performance on conventional clustering metrics such as ARI, and also outperforms other approaches
in tracking efficiency (recall) and purity (precision).
We also compare this work against the official sPHENIX reconstruction pipeline, which employs a
Cellular Automaton seeding followed by a Kalman filter Osborn et al. (2021). As that algorithm is
optimized for high transverse momentum (pT), long tracks within the TPC acceptance, we restrict
this comparison to tracks that leave at least 20 spacepoints in the TPC and satisfy pT > 1GeV and
|η| < 1.1. Under these criteria, our model reaches a tracking efficiency of 99.6%, exceeding the
sPHENIX pipeline’s 94.6%.

Particle Identification and Noise Tagging. For the PID and noise tagging tasks, we experiment
with four conventional GNN models and report on the best performing one, SAGEConv. The graph
edge set is constructed by k-nearest neighbors with a distance cap. We also adapt and train a state-
of-the-art segmentation model for 3D point cloud data named OneFormer3D Kolodiazhnyi et al.
(2024).
Table 2 reports the segmentation accuracy, as well as macro-averaged recall and precision. For the
PID task, our FM consistently outperforms all baselines, achieving the highest accuracy, recall,
and precision. Meanwhile, for the noise tagging, the FM outperforms all GNN-based baselines with
similar performance compared to OneFormer3D. It is worth noting that OneFormer3D has about
45 million trainable parameters, whereas our adapter head has 0.74 million. More details about
comparative model implementations and sample outputs are provided in Appendix C.

5.3 INSIGHTS ABOUT FM ADAPTATION

We aim to further understand FM adaptation behaviors by answering the following questions:

• Q1: Does increasing the size of the FM lead to improved performance on downstream tasks?
• Q2: Do larger FMs require fewer labeled examples to achieve comparable performance (i.e.,

better data efficiency)?
• Q3: Are the learned FM embeddings task-agnostic, and, if so, how much adaptation is needed to

specialize them for specific tasks?

Figure 5(a) shows the downstream performance of all three tasks plotted against a pretrained FM
size. All tasks use the same frozen pretrained representation. Larger pretrained models consistently
yield higher performance across every task, confirming that scaling up the pretrained model size im-
proves on various downstream performance even when only the lightweight decoder head is trained.
Figure 5(b) depicts the ARI for the track finding task training on different numbers of labeled data,
from 100 to 70,000. Larger FMs consistently outperform smaller ones across different levels of
labeled data, indicating neural embeddings extracted from larger FMs contain richer information
and can be generalized easier. This confirms common empirical observations that larger models can
generalize better Novak et al. (2018). In addition, compared to a baseline adapter-only model trained
solely on labeled data (dashed line in Figure 5(b)), pretraining a self-supervised FM model on a large

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Adapter Model for Track Finding

track queries
Transformer
Decoder

spacepoint
embeddings

MLP

MLP

track instance
predictions

track
embeddings

Instance
seg. loss

Linear

Linear

mamba blocks

mamba blocks
...

mamba blocks

Spacepoints

Transformer
Decoder

MLP
semantic

predictions
semantic
seg. loss

query

key, value

inner product

Foundation Model Adapter Model for Particle Identification or Noise Tagging

Track Finding

Particle Identification

Figure 5: The effect of FM model size and dataset size on downstream task performance.

Table 3: Ablation study results on downstream tasks performances. Numbers show absolute drops
in metric, with relative increases in the remaining gap to perfect performance (in parentheses).
“Hilbert” represents Hilbert space-filling curve.

Ablation Noise Tagging (Acc.) PID (Acc.) Track Finding (ARI)

Next-token prediction (vs. k-NNN) −0.0010 (4.6%) −0.0023 (2.5%) −0.0009 (1.6%)
k = 1 (vs. k = 30) −0.0012 (5.7%) −0.0049 (5.3%) −0.0019 (3.3%)
k = 5 (vs. k = 30) −0.0007 (3.6%) −0.0016 (1.7%) −0.0003 (0.5%)
Hilbert (vs. Hierarchical Raster Scan) −0.0014 (7.0%) −0.0075 (8.0%) −0.0051 (9.1%)

amount of unlabeled data – easy to come by in NPP – proves effective. The relative gain in ARI is
greater in the fewer labeled data regions compared to those with abundant labeled data: 2.9× versus
1.3×.

5.4 ABLATION STUDIES

All ablations use our second-largest model m5 and identical training budgets. We report absolute
changes in task metrics and the relative increase in the remaining gap to perfect performance in
Table 3. For bounded metrics such as accuracy and ARI, this normalizes small absolute changes
near saturation.

Neighborhood Size k. Our baseline uses k=30 during pretraining for the k-NNN objective.
Smaller neighborhoods (k=1 or k=5) reduce downstream performance, as the model is conditioned
only on very local geometry and misses longer-range structure. In contrast, a moderately larger k al-
lows the FM to capture richer global context while still preserving locality. Takeaway: incorporating
broader geometric neighborhoods during pretraining produces more transferable representations.

k-NNN vs. Next-token Prediction. Autoregressive next-token prediction is a widely used strategy
in vision and language van den Oord et al. (2016); Radford et al. (2018). Thus, we compare against
it to isolate the value of geometry-aware neighborhoods. Takeaway: conditioning on local geometric
neighborhoods (k-NNN) yields more transferable representations than generic next-token training.

Serialization Strategy. Space-filling curves are common for locality-preserving serialization in
imaging/point-cloud pipelines Chen et al. (2022). We test the popular Hilbert ordering against Hi-
erarchical Raster Scan (Sec. 4.1) serialization. Takeaway: trajectory-consistent serialization beats
purely spatial locality—interleaving tracks harms downstream coherence.

6 CONCLUSION AND FUTURE WORK

With this work, we demonstrate that FMs can be effectively extended to experimental particle
physics by introducing a scalable self-supervised training strategy tailored to sparse detector data.
Our model, trained on more than 10 million events, generalizes across diverse downstream tasks
with frozen weights and lightweight adapters, consistently outperforming task-specific baselines.
Its effective performance and data efficiency suggest the model learns rich, task-agnostic repre-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

sentations that are easily adapted using simple mappings. These findings reveal the potential for
general-purpose, scalable models in NPP.

Limitations and Future Work. While our work establishes a proof-of-principle for scaling foun-
dation models on sparse detector data, we acknowledge limitations regarding the scope of our current
evaluation. We demonstrated this approach using a single collider experiment (sPHENIX); trans-
forming this into a universal foundation model spanning diverse detector systems, multiple facil-
ities (e.g. LHC) as well as various collision systems will require significant future research and
community-wide data curation. Additionally, with TPC-only inputs, the number of well defined
downstream tasks is naturally limited. Although we tested generalizability on three downstream
tasks, we recognize that a broader scope of multi-level and multi-modal tasks with multiple detector
system is necessary to fully stress-test the model’s understanding. Most importantly, validating this
approach on real experimental data remains essential to realizing the full potential of this technology
for the NPP community.

Reproducibility Statement. We provide anonymized source code and run scripts in the supple-
mentary material to reproduce pretraining and all downstream experiments. Hyperparameters, train-
ing schedules, and model sizes (m1–m6) are specified in Sec. 5.1 and Table 1; dataset provenance,
preprocessing, and labeling rules are in Appx. A; architectural/serialization details and optimization
settings (AdamW, batch size 256, learning rate 2 × 10−4 with cosine decay and 10k warmup, gra-
dient clipping 0.1) are in Sec. 4 and Appx. B; evaluation metrics and the TrackML double-majority
matching protocol are described in Sec. 3; and baseline adaptations plus additional results are in
Appx. C and Tables 2–3. We fix random seeds for all reported runs and include configuration files to
replicate numbers. Due to storage limits we do not include pretrained checkpoints, but the provided
scripts reproduce them. Hardware used (A100/H100) is reported in Table 1, and exact environment
specs and seeds are listed in the supplementary run scripts.

REFERENCES

Sabrina Amrouche, Laurent Basara, Paolo Calafiura, Victor Estrade, Steven Farrell, Diogo R. Fer-
reira, Liam Finnie, Nicole Finnie, Cécile Germain, Vladimir Vava Gligorov, Tobias Golling,
Sergey Gorbunov, Heather Gray, Isabelle Guyon, Mikhail Hushchyn, Vincenzo Innocente, Moritz
Kiehn, Edward Moyse, Jean-François Puget, Yuval Reina, David Rousseau, Andreas Salzburger,
Andrey Ustyuzhanin, Jean-Roch Vlimant, Johan Sokrates Wind, Trian Xylouris, and Yetkin Yil-
maz. The tracking machine learning challenge: Accuracy phase. In Sergio Escalera and Ralf
Herbrich (eds.), The NeurIPS ’18 Competition, pp. 231–264, Cham, 2020. Springer International
Publishing.

Ron Belmont et al. Predictions for the sPHENIX physics program. Nucl. Phys. A, 1043:122821,
2024. doi: 10.1016/j.nuclphysa.2024.122821.

Wahid Bhimji, Chris Harris, Vinicius Mikuni, and Benjamin Nachman. Omnilearned: A foundation
model framework for all tasks involving jet physics. arXiv preprint arXiv:2510.24066, 2025.

Joschka Birk, Anna Hallin, and Gregor Kasieczka. Omnijet-α: the first cross-task foundation model
for particle physics. Machine Learning: Science and Technology, 5(3):035031, 2024.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Anna Allen, Johannes Brandstetter,
Patrick Garvan, Maik Riechert, Jonathan A Weyn, Haiyu Dong, et al. A foundation model for the
earth system. Nature, pp. 1–8, 2025.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Brookhaven National Laboratory. sPHENIX Detector at RHIC. https://www.bnl.gov/rhic/sphenix.
php, 2025. Accessed: 2025-07-19.

Paolo Calafiura, Jay Chan, Loic Delabrouille, and Brandon Wang. Eggnet: An evolving graph-based
graph attention network for particle track reconstruction, 2024. URL https://arxiv.org/abs/2407.
13925.

10

https://www.bnl.gov/rhic/sphenix.php
https://www.bnl.gov/rhic/sphenix.php
https://arxiv.org/abs/2407.13925
https://arxiv.org/abs/2407.13925

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Polo Calafiura, Steven Farrell, Heather Gray, Jean-Roch Vlimant, Vincenzo Innocente, Andreas
Salzburger, Sabrina Amrouche, Tobias Golling, Moritz Kiehn, Victor Estrade, Cécile Germaint,
Isabelle Guyon, Ed Moyse, David Rousseau, Yetkin Yilmaz, Vladimir Vava Gligorov, Mikhail
Hushchyn, and Andrey Ustyuzhanin. Trackml: A high energy physics particle tracking challenge.
In 2018 IEEE 14th International Conference on e-Science (e-Science), pp. 344–344, 2018. doi:
10.1109/eScience.2018.00088.

Wanli Chen, Xinge Zhu, Guojin Chen, and Bei Yu. Efficient point cloud analysis using hilbert curve.
In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner
(eds.), Computer Vision – ECCV 2022, pp. 730–747, Cham, 2022. Springer Nature Switzerland.
ISBN 978-3-031-20086-1.

Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not all you
need for semantic segmentation, 2021. URL https://arxiv.org/abs/2107.06278.

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation, 2022. URL https://arxiv.org/abs/
2112.01527.

ATLAS Collaboration, Georges Aad, et al. Observation of a new particle in the search for the
standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29,
2012. doi: 10.1016/j.physletb.2012.08.020.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Forty-first International Conference on Machine Learn-
ing, 2024. URL https://openreview.net/forum?id=ztn8FCR1td.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=tEYskw1VY2.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
1985.

Cheng Jiang and Sitian Qian. Application of structured state space models to high energy physics
with locality sensitive hashing. In International Conference on Artificial Intelligence and Statis-
tics, pp. 3961–3969. PMLR, 2025.

Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steven Farrell,
Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe
Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer,
Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow,
and Alina Lazar. Performance of a geometric deep learning pipeline for hl-lhc particle track-
ing. The European Physical Journal C, 81(10), October 2021. ISSN 1434-6052. doi:
10.1140/epjc/s10052-021-09675-8. URL http://dx.doi.org/10.1140/epjc/s10052-021-09675-8.

11

https://arxiv.org/abs/2107.06278
https://arxiv.org/abs/2112.01527
https://arxiv.org/abs/2112.01527
https://openreview.net/forum?id=ztn8FCR1td
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=tEYskw1VY2
http://dx.doi.org/10.1140/epjc/s10052-021-09675-8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nilotpal Kakati, Etienne Dreyer, Anna Ivina, Francesco Armando Di Bello, Lukas Heinrich, Marumi
Kado, and Eilam Gross. Hgpflow: extending hypergraph particle flow to collider event reconstruc-
tion. The European Physical Journal C, 85(8):1–18, 2025.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Ba-
sic Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL
https://doi.org/10.1115/1.3662552.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Henry Klest. Overview and design of the sPHENIX TPC. J. Phys. Conf. Ser., 1498:012025, 2020.
doi: 10.1088/1742-6596/1498/1/012025.

Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, and Danila Rukhovich. Oneformer3d:
One transformer for unified point cloud segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 20943–20953, 2024.

Qing Li, Zhihang Hu, Yixuan Wang, Lei Li, Yimin Fan, Irwin King, Le Song, and Yu Li. Progress
and opportunities of foundation models in bioinformatics. Briefings in Bioinformatics, 2024. doi:
10.1093/bib/bbad123. Survey of foundation models in bioinformatics.

Shuhang Li, Yi Huang, David Park, Xihaier Luo, Haiwang Yu, Yeonju Go, Christopher Pinkenburg,
Yuewei Lin, Shinjae Yoo, Joseph Osborn, Christof Roland, Jin Huang, and Yihui Ren. Tpcpp-
10m: Simulated proton-proton collisions in a time projection chamber for ai foundation models,
2025. URL https://arxiv.org/abs/2509.05792.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Qin Ma, Yi Jiang, Hao Cheng, and Dong Xu. Harnessing the deep learning power of foundation
models in single-cell omics. Nature Reviews Molecular Cell Biology, 25(8):593–594, 2024.

Siqi Miao, Zhiyuan Lu, Mia Liu, Javier Duarte, and Pan Li. Locality-sensitive hashing-based effi-
cient point transformer with applications in high-energy physics. In International Conference on
Machine Learning, pp. 35546–35569. PMLR, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Farouk Mokhtar, Joosep Pata, Dolores Garcia, Eric Wulff, Mengke Zhang, Michael Kagan, and
Javier Duarte. Fine-tuning machine-learned particle-flow reconstruction for new detector geome-
tries in future colliders. Physical Review D, 111(9):092015, 2025.

Clara Moskowitz. Tiny bubbles of primordial soup re-create early universe. Sci-
entific American, 328(3), March 2023. URL https://www.scientificamerican.com/article/
tiny-bubbles-of-primordial-soup-recreate-early-universe/. Accessed: 2025-07-19.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K. Gupta, and Aditya Grover. Climax:
a foundation model for weather and climate. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
Sensitivity and generalization in neural networks: an empirical study. In International Conference
on Learning Representations, 2018.

Joseph D. Osborn, Anthony D. Frawley, Jin Huang, Sookhyun Lee, Hugo Pereira Da Costa, Michael
Peters, Christopher Pinkenburg, Christof Roland, and Haiwang Yu. Implementation of ACTS
into sPHENIX Track Reconstruction. Comput. Softw. Big Sci., 5(1):23, 2021. doi: 10.1007/
s41781-021-00068-w.

12

https://doi.org/10.1115/1.3662552
https://arxiv.org/abs/2509.05792
https://www.scientificamerican.com/article/tiny-bubbles-of-primordial-soup-recreate-early-universe/
https://www.scientificamerican.com/article/tiny-bubbles-of-primordial-soup-recreate-early-universe/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Edward O. Pyzer-Knapp, Matteo Manica, Peter Staar, Lucas Morin, Patrick Ruch, Teodoro Laino,
John R. Smith, and Alessandro Curioni. Foundation models for materials discovery – cur-
rent state and future directions. npj Computational Materials, 11:15, 2025a. doi: 10.1038/
s41524-025-01538-0.

Edward O Pyzer-Knapp, Matteo Manica, Peter Staar, Lucas Morin, Patrick Ruch, Teodoro Laino,
John R Smith, and Alessandro Curioni. Foundation models for materials discovery–current state
and future directions. Npj Computational Materials, 11(1):61, 2025b.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. Technical report, OpenAI, 2018.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016.

Leena Chennuru Vankadara, Jin Xu, Moritz Haas, and Volkan Cevher. On feature learning in struc-
tured state space models. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, and
et al. Internimage: Exploring large-scale vision foundation models with deformable convolutions.
In CVPR 2023, pp. 3591–3600, 2023. doi: 10.1109/CVPR52688.2023.00356.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Yukun Zhou, Mark A Chia, Siegfried K Wagner, Murat S Ayhan, Dominic J Williamson, Robbert R
Struyven, Timing Liu, Moucheng Xu, Mateo G Lozano, Peter Woodward-Court, et al. A founda-
tion model for generalizable disease detection from retinal images. Nature, 622(7981):156–163,
2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASET

The dataset used in this work is based on simulated proton–proton (p+p) collisions at a center-of-
mass energy of

√
s = 200GeV, corresponding to conditions of the sPHENIX experiment at the

Relativistic Heavy Ion Collider (RHIC). Charged-particle trajectories are recorded with the Time
Projection Chamber (TPC). p+p collisions serve as a precision workhorse for testing QCD and
nucleon structure and provide the baseline for quantifying how particle production in heavy-ion
collisions, viewed as a superposition of p+p interactions, is modified by the QGP Busza et al. (2018).

Relativistic Heavy Ion Collider

1.2 km

Time Projection Chamber

particle beam

particle beam

Figure 6: Relativistic Heavy Ion Collider at Brookhaven National Lab and sPHENIX Experiment.

A.1 SIMULATION AND PROVENANCE

Minimum-bias p+p collisions are generated with PYTHIA-8.307 Sjöstrand et al. (2015) ‘Detroit’
tune Aguilar et al. (2022), and then propagated through a full GEANT4 Agostinelli et al. (2003) sim-
ulation of the as-built sPHENIX detector, including its detailed CAD geometry and measured 1.4T
field map. The ‘FTFP BERT HP’ physics list is used for high-precision treatment of neutron and
hadron interactions. The simulation chain models continuous energy loss, multiple scattering, sec-
ondary particle production, and decay processes with the true material budget, supports space-charge
distortion and its data-driven correction, and carries signals through the full front-end electronics
(shaping, digitization, zero suppression, and channel-by-channel gain/noise).
The simulated TPC response, so-called G4HITS, emulates raw ionization signals from charged par-
ticles traversing the TPC volume, which are reconstructed into spacepoints reflecting the true spatial
resolution and distortions. Each spacepoint is then matched to the Monte Carlo truth particle that
produced it, and the particle’s properties—identity, momentum, and track association—are recorded
as ground-truth labels for our downstream tasks (track finding, PID, and noise identification).

A.2 CONTENTS AND STRUCTURE

Each event contains:

• Reconstructed spacepoints from the TPC, including position and ionization energy.

• Monte Carlo truth particles with their PDG identity, momentum at production, and vertex
location at production.

• Associations between spacepoints and truth particles.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 DATASET STATISTICS

The event-level complexity in the dataset varies widely. As shown in Fig 7, the number of recon-
structed TPC spacepoints per event ranges from a few hundred to tens of thousands, reflecting low-
multiplicity to relatively busy collision topologies. Correspondingly, the number of truth tracks per
event spans from under ten up to nearly one hundred.
Figure 8 summarizes the class composition for the noise-tagging and particle identification (PID)
downstream tasks.

0 2,000 4,000 6,000 8,000
0

200

400

600

800

Number

C
o
u
n
t

(a) Number of spacepoints distribution

mean= 856

0 20 40 60 80
0

100

200

300

400

Number

(b) Number of tracks distribution

mean= 15.6

Figure 7: Distributions of number of spacepoints and tracks per event.

Noise-tagging. Noise spacepoints are defined operationally based on the truth-level kinematics
of their progenitor particles. Specifically, any spacepoint associated with a Monte Carlo truth track
whose momentum is below 60 MeV/c is labeled as noise. Particles produced in the primary p+p
collision with such low momentum are kinematically unable to reach the active TPC volume due
to the magnetic field; therefore, spacepoints matched to these low-momentum tracks arise predomi-
nantly from secondary interactions with detector material (e.g., delta electrons, conversion products,
or other material-induced processes). These secondary-origin spacepoints are not part of the pri-
mary signal topology of interest and are treated as “noise” for the purposes of the corresponding
downstream classification task.

11.2%

88.8%

(a) Noise tagging

noise signal

58.2%

2.7%

6.7%

23.8%

8.6%

(b) Particle ID

pion kaon proton

electron others

Figure 8: Class ratio of noise tagging and particle identification.

PID. The PID task uses five coarse-grained target classes, grouping charge-conjugate species to-
gether to reduce sparsity while preserving physics relevance:

• Pion: π+, π−

• Kaon: K+, K−

• Proton: proton and anti-proton
• Electron: electron and positron
• Other: all remaining particle species

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The class ratios shown in Fig. 8 reflect the inherent imbalance in these labels, driven by the under-
lying particle production spectra and the noise definition.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B METHODOLOGY

B.1 PRELIMINARIES

This section outlines a compact mathematical way to express the hierarchical relationship between
events, tracks, and spacepoints in a particle detector like a Time Projection Chamber (TPC). A
collision event E is represented as a set of tracks {Tj}, where each track Tj is an ordered sequence
of spacepoints (sk), and each spacepoint s is a vector (Edep, x, y, z, . . .) containing its physical
properties. Concretely, we express a single event, E, as follows:

E = {Tj}mj=1

This states that an event (E) is a set containing m individual tracks (Tj). The number of tracks, m,
is variable for each event. Each track, in turn, is defined by its constituent spacepoints:

Tj = (sj,k)
nj

k=1

This expresses that a single track (Tj) is an ordered sequence of nj spacepoints (sj,k). The sequence
is ordered because particles follow a specific path through the detector, and the number of space-
points per track, nj , is also variable. Finally, each individual spacepoint is a vector of its properties,
which can be represented abstractly as:

sj,k ∈ RD

A spacepoint (s) is a vector in a D-dimensional feature space. A Spacepoint (sj,k) is now explicitly
defined as a vector containing its primary physical properties:

sj,k = (E , x, y, z)j,k
where E is the energy deposited by the particle at that point in the detector, and (x, y, z) is the spatial
coordinates of the spacepoint.

B.2 COORDINATE TRANSFORMATION

We transform spacepoint coordinates from Cartesian (x, y, z) to a cylindrical-polar system (r, ϕ, η)
that better reflects the geometry and symmetries of collider experiments. The radial distance r is
defined as r =

√
x2 + y2, measuring how far a point lies from the beamline in the transverse

plane, and is essential for evaluating transverse momentum and energy. The azimuthal angle ϕ is
given by ϕ = atan2(y, x), describing the orientation of the spacepoint in the x-y plane and ex-
ploiting the detector’s cylindrical symmetry around the beam axis. The pseudorapidity η is defined
as η = − ln [tan (θ/2)], where θ = atan2(r, z) is the polar angle; this coordinate is used instead
of θ because particle production tends to be uniform in η, and for highly relativistic particles, η
approximates the Lorentz-invariant rapidity. Finally, to ensure consistent feature scaling, we apply
a min-max normalization to the spatial coordinates, transforming the pseudorapidity (η ∈ [−2, 2]),
azimuthal angle (ϕ ∈ [−π, π]), and radial distance (r ∈ [30, 78], centimeters) into the interval [0, 1].
The transformed si = (E , r, ϕ, η)i are used for all analyses described in this paper.

B.3 SERIALIZATION

Our objective is to perform self-supervised pretraining on the raw 3D point cloud of particle space-
points from a collision event, S = {s1, . . . , sN}. To leverage the power of sequential models like
MAMBA, which have excelled in learning rich representations, we must first solve the fundamen-
tal problem of transforming the unordered 3D set into an ordered 1D sequence. This serialization
process is not merely a technical step; the choice of ordering scheme is critical to preserving the
underlying physical structure of the data.
An ideal serialization must satisfy two competing demands: it must respect the global physics of
the event (i.e., particles flying outwards) while simultaneously preserving the local continuity of
individual particle tracks.
We first analyze and dismiss naive approaches. A space-filling curve, for example, excels at preserv-
ing 3D locality but completely disregards the concept of a track; its path erratically jumps between
physically distinct trajectories, creating a chaotic signal. Conversely, a simple global raster scan on
the spacepoints’ cylindrical coordinates, s′i = (ri, ϕi, ηi), respects the outward propagation along
the radius but fails on local continuity. The initial hits of a track (at low r) become “context-starved,”
as their preceding elements in the sequence belong to entirely different tracks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proposed Solution: Hierarchical Raster Scan To resolve this dichotomy, we introduce a Hier-
archical Raster Scan. This method balances global structure with local context by operating on two
levels:

1. Partitioning: The entire detector volume is partitioned into a grid of smaller 3D “boxes.”

2. Ordering: A raster scan using the physically-motivated order (r, ϕ, η) is applied twice.
First, it orders the spacepoints within each box (intra-box ordering). Second, it orders the
boxes themselves based on their geometric centers (inter-box ordering).

This strategy ensures that the sequence progresses globally outwards but maintains local contiguity
within each partitioned region. However, even with this optimal serialization, a profound challenge
remains. If the learning objective were to simply predict the next hit in this sequence, the model
would be forced to learn the arbitrary artifacts of the serialization itself, particularly the artificial
jumps at box boundaries.
Therefore, designing a robust serialization scheme is a necessary but insufficient step. The learning
objective must be intelligently designed to be independent of these serialization artifacts, a challenge
we address in the subsequent section.

Physics Informed Partitioning The division of the detector volume into a grid is not uniform; it
is a physics-informed partitioning designed to align with both the detector’s physical geometry and
the observed distribution of particle hits. This ensures the partitioning itself provides a meaningful
structural prior for the learning task.
For the azimuthal angle (ϕ) and pseudorapidity (η) dimensions, the binning is data-driven. The
boundaries are specifically chosen to create bins with a roughly uniform density of hits. This strat-
egy balances the information content across partitions, preventing high-occupancy regions from
disproportionately influencing the model. A detailed number of bins and illustration of this binning
strategy is provided in Figure 9.

Figure 9: Physics Informed Partitioning. Top-left graph shows the binning of the data space into 384
bins (8× 8× 6). The other plots show the distribution of spacepoint values in normalized Phi, Eta,
and Radius dimensions, respectively, computed using 50,000 events.

For the radial dimension (r), the partitioning mirrors the physical construction of the sPHENIX
detector. The detector’s 48 layers are arranged in three major groups; therefore, we create six radial
bins, allocating two bins to each major detector group. By embedding the detector’s known layered
structure into the partitioning scheme, we further ground the serialization process in the experiment’s
physical reality.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 MAMBA: SELECTIVE STATE SPACE MODELS

Mamba represents a significant advancement in sequence modeling, challenging the dominance of
the Transformer architecture, particularly for long sequences. It is a selective state space model
(SSM) that combines the strengths of recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) to offer linear-time complexity and constant-time inference.
Mamba’s foundation is the State Space Model, a continuous-time system described by the following
linear ordinary differential equation:

dh(t)

dt
= Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t)

Here, h(t) is the latent state, x(t) is the input, and y(t) is the output. A, B, C, and D are matrices
that are typically learned from data.
For use in deep learning, this continuous system is discretized. A crucial step in Mamba is making
the key matrices, particularly the transition matrix A and the input projection matrix B, selective and
input-dependent. This is achieved by having dedicated neural networks that predict these matrices
based on the current input token.
The discretized formulation of the state transition is:

ht = Āht−1 + B̄xt (1)
Where Ā and B̄ are the discretized, input-dependent matrices. This selectivity allows Mamba to
modulate its recurrent state, effectively controlling how much of the past to retain and how to incor-
porate the current input. The model can be unrolled for efficient parallel training, similar to a CNN,
or used in a recurrent manner for constant-time inference.

Architectural Principles The core innovation of Mamba lies in its selective mechanism, which
allows the model to dynamically adapt its parameters based on the input. This enables it to focus
on relevant information and filter out noise, a crucial capability for processing long and complex
sequences. Unlike traditional SSMs, which are time-invariant, Mamba’s parameters are functions of
the input, making it a time-varying system. Key components of the Mamba architecture include:

• Selective State Space Layer: This is the fundamental building block of Mamba. It replaces
the attention mechanism and feed-forward network of a Transformer block.

• Hardware-Aware Algorithm: Mamba employs a parallel scan algorithm that is optimized
for modern hardware (GPUs), enabling efficient training and inference. This algorithm
avoids the materialization of the full state sequence, a significant memory bottleneck in
traditional SSMs.

Mamba2 Mamba2 is a direct successor to Mamba, designed to further improve upon its efficiency
and performance. It introduces a new theoretical framework called Structured State Space Duality
(SSD), which provides a deeper understanding of the relationship between SSMs and other archi-
tectures like Transformers. The primary motivation behind Mamba-2 was to address some of the
hardware utilization inefficiencies of the original Mamba. While Mamba offered linear-time com-
plexity, its performance on modern GPUs could still be optimized. Key improvements in Mamba-2
include:

• State Space Duality (SSD): This framework establishes a formal equivalence between a
class of structured SSMs and a form of global convolution. This duality allows for the
design of more efficient algorithms by leveraging insights from both perspectives.

• Architectural Simplifications: Mamba-2 simplifies the Mamba block by replacing the
complex selective scan with a more structured and hardware-friendly formulation derived
from the SSD framework. This often involves a multi-headed Mamba block, analogous to
the multi-head attention in Transformers.

• Improved Hardware Utilization: The redesigned architecture of Mamba-2 is more amenable
to parallelization on modern hardware, leading to significant speedups in both training and
inference compared to the original Mamba.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.5 FM4NPP: ARCHITECTURE

Positional Embedding The model first transforms the raw input data into a high-dimensional
space suitable for sequence processing. An input batch of serialized collision events is represented as
a tensor of shape (B,S, 4), where B is the batch size, S is the sequence length, and each spacepoint
is a 4-dimensional vector comprising its deposited energy and 3D spatial coordinates (Edep, η, ϕ, r).
This tensor is processed by an embedding module that projects the 4D spacepoint features into the
model’s latent space, Dmodel. It also computes a positional encoding from the 3D spatial coordinates
using a function γ(·) inspired by Neural Radiance Fields (NeRF), defined as:

γ(p) =
(
p, sin(2p), cos(2p), . . . , sin

(
2lp

)
, cos

(
2lp

))
where p is the coordinate vector and the frequencies 2l are sampled from a geometric progression.
This encoding, also mapped to Dmodel, is combined with the feature representation via element-wise
addition. The output of this stage is a single tensor of shape (B,S,Dmodel), where Dmodel is the
model width.

Network Architecture and k-Next Nearest Neighbor Prediction Head The core architecture
consists of a stack of Mamba blocks that sequentially process the embedded hits. The input to the
first block is the (B,S,Dmodel) tensor from the embedding stage. Each block operates as follows:

• Pre-Normalization: The input tensor is first passed through a Root Mean Square Normal-
ization (RMSNorm) layer. This layer normalizes the feature vector of each spacepoint
independently.

• Sequence Modeling: The normalized (B,S,Dmodel) tensor is then processed by the
Mamba2 layer.

• Residual Connection: A residual or “skip” connection is applied around the normalization
and Mamba2 layers. The original input to the block is added element-wise to the output of
the Mamba2 layer.

After passing through the final Mamba block, the sequence is processed by one last RMSNorm layer.
The resulting (B,S,Dmodel) tensor is then fed into the prediction head. This head is a single linear
layer that projects the Dmodel-dimensional representation of each hit to a 3k-dimensional vector,
yielding a final output tensor of shape (B,S, 3k). Here, k = 30 is the number of neighbors to
be predicted. This output format is designed specifically for the Causal k-Nearest Neighbor (kNN)
objective.

B.6 MAXIMAL UPDATE PARAMETERIZATION

Challenge in Scaling Models Imagine building with LEGOs. If you build a small car, it’s stable.
But if you try to build a life-sized car using the exact same small-brick techniques, it will be flimsy
and fall apart. Modern AI models face a similar problem. When we try to make them bigger and more
powerful by adding more “width” or digital neurons, their internal mathematics can become unstable
during training. The signals inside can either “explode” into uselessly large numbers or “vanish”
to zero, making it impossible for the model to learn. µ-Parameterization (µP) is a groundbreaking
set of rules that solves this problem. It’s like a master blueprint for building AI models, telling
us exactly how to adjust the initial settings and the learning rate based on the model’s size. This
ensures that as the model scales up, its internal signals stay perfectly balanced, allowing it to train
stably and effectively. A major benefit is that the best training settings found on a small, cheap
model can be directly transferred to a massive, expensive one, saving enormous amounts of time
and computational cost.
Concretely, standard infinite-width network analyses, such as those based on the Neural Tangent
Kernel (NTK), predict that wide networks operate in a “lazy regime” where they fail to learn mean-
ingful features from data. µ-Parameterization (µP) was introduced to overcome this limitation by
defining a specific scaling of model initializations and learning rates that guarantees non-trivial fea-
ture evolution in the infinite-width limit. A significant practical advantage of µP is that it enables
zero-shot hyperparameter transfer, allowing optimal settings found on small-scale models to be di-
rectly applied to their large-scale counterparts. This mitigates the often prohibitive computational
costs associated with tuning large models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Applications in Modern Architectures The principles of µP have been successfully extended be-
yond simple multi-layer perceptrons (MLPs) to a range of complex architectures. In Transformers,
µP facilitates hyperparameter transfer, although achieving a stable feature-learning limit requires
careful scaling with respect to both model width and depth. The framework has also been adapted
for scientific machine learning models like Fourier Neural Operators (FNOs), where a specific
µ-FNO parameterization ensures stable training as the model size and number of Fourier modes
are scaled. More recently, µP has been applied to stabilize the training of large Diffusion Models,
again enabling hyperparameter transfer for these computationally intensive generative systems. This
body of research highlights both the generality of the µP framework and the necessity of deriving
architecture-specific scaling laws.

µP for MAMBA To address this, a corrected scaling for State Space Models (SSMs), termed µP-
SSM (Maximal Update Parameterization for SSMs), was derived by analyzing signal propagation
directly within the Mamba architecture. This analysis yielded specific scaling rules for initialization
variances (σ), which control the scale of the model’s initial random weights, and learning rates (η),
which determine the step size during training. The key formulas dictate how these parameters for
Mamba’s weight matrices (WB ,WC) should be scaled relative to the model’s latent state dimension
(Nx) and input dimension (Nu). Using asymptotic Big-Theta (Θ) notation, the rules are:

• Initialization Variances: σB ∈ Θ(
√

Nx

Nu
) and σC ∈ Θ(1√

NxNu
)

• Learning Rates: ηB ∈ Θ(Nx√
Nu

) and ηC ∈ Θ(1
Nx

√
Nu

)

We have integrated this µP-SSM methodology into our own Mamba-based model. The effectiveness
of this approach is evidenced by the stable scaling of layer-wise activation norms across different
model sizes, as empirically verified in our experiments. Unlike standard parameterizations which
lead to exploding signals or heuristic µP which leads to vanishing signals, our model’s activations
and their updates remain correctly scaled, confirming that the model is operating in a stable feature-
learning regime.

B.7 ADDITIONAL DETAILS FOR PRETRAINING

The model is trained using the AdamW optimizer, which incorporates weight decay for regulariza-
tion against overfitting. To manage the learning rate dynamics, we employ a cosine decay schedule,
which is preceded by a brief linear warmup period at the beginning of training to ensure initial stabil-
ity. To further prevent training instabilities arising from large gradients, we apply gradient clipping.
The learning objective is to minimize a Mean Squared Error (MSE) loss function. This loss quanti-
fies the Euclidean distance between the model’s predicted coordinates for the k-Nearest Neighbors
(kNN) and the truth coordinates. These truth neighbors are pre-computed for each particle space-
point during the data loading phase to ensure efficient throughput during training.

Loss Re-scaling by Event Difficulty We identified a nuisance structure in the training data re-
lated to event spacepoint density; events with a larger number of spacepoints are inherently easier to
predict, as the average distance between neighboring spacepoints is smaller. This variance in diffi-
culty can lead to training instability, manifesting as loss spikes. To mitigate this, we introduce a loss
re-scaling strategy based on event binning. Events are first grouped into discrete bins based on their
average k-Nearest Neighbor (kNN) distance, which serves as a proxy for prediction difficulty. Let
g(i) be the function that maps event i to its corresponding difficulty bin. The loss objective is then
modified as follows: (1) the Mean Squared Error (MSE) for each event is re-weighted by a factor
wg(i) corresponding to the average difficulty of its bin, and (2) the total batch loss is calculated by
averaging these re-weighted individual losses. This is formulated as:

L =
1

B

B∑
i=1

wg(i)Li =
1

B

B∑
i=1

wg(i)

 1

Sn

Sn∑
j=1

||sij − yij ||22


Here, B is the number of events in the batch, Li is the standard MSE for event i with Sn spacepoints,
sij and yij are the predicted and truth coordinates respectively, and wg(i) is the pre-computed weight
for the difficulty bin to which the event belongs. This ensures that a single batch-averaged loss is
computed only after accounting for the inherent difficulty of each event in the batch.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C ADDITIONAL RESULTS

C.1 DOWNSTREAM MODEL

C.1.1 TRACKING (INSTANCE SEGMENTATION)

Our lightweight downstream model for track finding—formulated as a per-point instance seg-
mentation task—is inspired by image panoptic segmentation models such as MASKFORMER and
MASK2FORMER, adapted to point cloud data.
Let X = {xi}Ni=1 denote the input set of N points, where each xi ∈ Rd is a d-dimensional point-
level feature (either raw input, pretrained representation, or from a randomly initialized encoder).
These are first projected into a latent embedding space via a linear layer:

ei = Wprojxi, ei ∈ Rde .

We denote the set of projected spacepoint embeddings as E = {ei}Ni=1.

To represent candidate tracks, we use K learnable queries (track queries) Q(0) = {q(0)
k }Kk=1, where

each q
(0)
k ∈ Rde . These prototypes are refined over L transformer decoder layers. Each decoder

layer consists of:

• Cross-attention: updates qk by attending to point embeddings E.
• Self-attention: refines interaction among the K prototypes.
• Feed-forward network (FFN): standard transformer update.

After L decoder layers, we obtain the refined track queries Q(L) = {q(L)
k }Kk=1. Each refined query

vector is then processed by two MLPs:

mk = MLPmask(q
(L)
k), ŷk = MLPcls(q

(L)
k),

where mk ∈ Rde is the track embedding for the k-th prototype, and track instance prediction ŷk ∈
[0, 1] is the probability of corresponding to a real track (vs. a “no-object” class).
Each track embedding mk is used to compute point-to-prototype assignment logits:

zik = e⊤i mk, p̂ik = σ(zik),

where σ(·) denotes the sigmoid function. The predicted assignment probability p̂ik represents the
likelihood that point i belongs to prototype k.
To encourage each track query to focus on the subset of points it is likely responsible for, we apply
an additive attention mask during cross-attention. The attention mask is defined as:

Aik = − log(p̂ik + ϵ),

with a small constant ϵ added for numerical stability. This mask is added to the attention logits before
the softmax operation in the cross-attention layer. This dynamic masking suppresses contributions
from low-probability points and improves localization by making each prototype attend selectively
to its likely constituent points.

Training Loss. Let T = {Tj}Mj=1 be the set of M ground-truth tracks (instance labels). We com-
pute a bipartite matching between the M ground-truth tracks and the K refined track queries using
the Hungarian algorithm. The matching minimizes a cost function combining:

• Dice loss Ldice on the per-point predicted vs. ground-truth track,
• Focal loss Lfocal on point-wise assignment probabilities,
• Classification loss Lcls on the track/no-object prediction.

For each matched pair (Tj ,qk), the total loss is:

L(j,k)
match = λdice · L(j,k)

dice + λfocal · L(j,k)
focal + λcls · L(k)

cls .

For unmatched prototypes, we only compute L(k)
cls with the ground truth label being “no-object”.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The final training loss includes auxiliary losses from each decoder layer ℓ = 1, . . . , L, as well as
from the initial prototype vectors:

Ltotal =

L∑
ℓ=0

L(ℓ).

During inference, we assign each spacepoint i to the track whose combined mask and classification
score is maximal. Concretely, we compute k∗i = argmaxk

(
p̂ik ŷk

)
, and label point i as belonging

to track k∗i .
This formulation enables end-to-end training of the instance segmentation model, while allowing
the pretrained or learned point embeddings to guide track-level grouping.

C.1.2 PARTICLE IDENTIFICATION AND NOISE IDENTIFICATION

For both PID and noise classification, we use a simple lightweight adapter:

• Embedding: A linear layer projects each point feature xi ∈ Rd to a dp-dimensional em-
bedding.

• Context: A single Self-attention layer aggregates global information across all point em-
beddings.

• Prediction: An MLP with softmax over C output classes.

C.2 COMPARATIVE METHODS FOR DOWNSTREAM TASKS

C.2.1 ADAPT EXA.TRKX PIPELINE FOR SPHENIX TRACKING-FINDING

In this section, we discuss the several adaptions to the Exa.TrkX pipeline for it to work well
on the sPHENIX data. We need to apply adaptions to the first four stages – data pre-processing,
hit embedding, edge filtering, and GNN edge classification – out of six stages of the Exa.TrkX
pipeline.

Pre-processing. The Exa.TrkX’s study was based on the TrackML dataset Amrouche et al.
(2020). The dataset provides two sources for the construction of the neural network input – the
3 dimensional location of the spacepoints and the directional information and summary statistics
from the charge deposited in each spacepoint (8-dimensional). The second source of information is
called cell features by the paper. The hit feature is the concatenation of the location and cell features.
Since sPHENIX data does not provide cell features, we only used the location of hits in the HEP-
coordinate to construct the input. More precisely, let (η̂, ϕ, r̂) be the location of a hit (normalized
pseudorapidity, angle, and normalized radius), the features of this hit is a 5-dimensional vector

(E , η̂, cos(ϕ), sin(ϕ), r̂) ,
where E is the energy. We used (cos(ϕ), sinϕ) instead of ϕ to overcome the discontinuity of ϕ at 2π.
We normalized the pseudorapidity η by 1.96 to get the normalized pseudorapidity η̂ ∈ (−1, 1). To
normalized a radius, we first match it to the closest one of the 48 radius bins and use the bin index to
replace the radius. And then, we divided the index by 48 to normalized radius to a number between
[0, 1). We do this because the distance between the sPHENIX TPC layers are not uniform with outer
layers spacing farther apart than the inner ones. This may be a problem for distance-based edge set
construction for a GNN model since same-track hits toward the end of the track may be less likely
to be connected by the model.

Embedding and filtering. The Exa.TrkX pipeline embeds the spacepoints and filters the edges
as two separate steps. To adapt them for sPHENIX, we modified the procedure in the following
aspects: 1) how to determine whether a pair of hits is connected; 2) how candidate hit pairs are
generated; 3) how to trained the models; and 4) how to construct the models.
In the embedding stage, Exa.TrkX trained a multi-layer perceptron (MLP) network to embed each
hit into a latent representation so that pairs of neighboring hits from the same track are closer in the
latent space than pairs that are not (e.g. from different tracks or not neighbors on the same track).
The embedding network is trained by first passing the two hits through the same embedding network
and then minimizing the hinge loss of the distance between the two embeddings.
Since sPHENIX data does not provide information to determine whether two same-track hits are
direct neighbors (although this information could be inferred for high-energy tracks), we decided

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

not to distinguish whether two same-track hits are neighboring or not. This approach was also rec-
ommended by the Exa.TrkX research as a valid alternative.
In the filtering stage, Exa.TrkX takes a pair of hits, passes them through the embedding network,
concatenates the two embeddings, and pass the concatenation through a MLP filtering network to
predict whether the two hits are connected. The prediction is optimized by a binary cross entropy
loss.
For both the embedding and filtering models, we need to provide candidate hit pairs. For the embed-
ding stage, Exa.TrkX uses two types of pairs: random pairs and k-nearest neighbor (KNN) pairs
as a form of hard negative mining. As a random pair has an extremely low chance to be connected,
Exa.TrkX also trains on pairs formed by a hit and its closest neighbors in the latent representation
space.
We follow the pipeline as closely as possible. However, because of the different between sPHENIX
and TrackML input features and the fact we treating all pairs from the same track as being connected
(in contrast to Exa.TrkX’s approach where only immediate neighbors are connected), we had to
choose different cutoffs in both embedding and filtering. More specifically, we set a threshold of
2. for distance in the embedding space with pairs less than the threshold apart classified as having
an edge between them. The threshold was so chosen as it ensures that we have an over .8 recall
(efficiency in the Exa.TrkX terminology) in identifying pairs from the same track. Note here we
didn’t selected a threshold that will ensure close to a 100% recall. This is because we can afford the
model to fail to recognize faraway points from the same track as being connected.
For the filtering step, we chose a threshold of .675 for probability of a true edge with pairs over
the threshold considered as being connected. The threshold was selected because it ensures the false
positive rate in edge identification to go below 1%.

GNN edge classification. For the final GNN step, we also used the Interaction Network Battaglia
et al. (2016) architecture with the same hyperparameters used by the Exa.TrkX pipeline. For edge
classification, we chose a threshold of .9 as probability of a true edge. With this choice, we achieved
a 91.79% tracking efficiency (recall) (and 94.74% for tracks with pT > 1GeV), and a track purity
(precision) of 66.42%. With a threshold of .8, the tracking efficiency drops slightly to 90.01% (and
92.60% for pT > 1GeV) with a large improvement in purity to 76.72%.

C.2.2 ADAPT EGGNET FOR SPHENIX TRACK-FINDING

The EggNet study was also based on the TrackML dataset Amrouche et al. (2020) and share the
same data pre-processing approach with Exa.TrkX. To partially compensate the lack cell features
from sPHENIX data, we tried the following approach to augmented the input. Let (η̂0, ϕ0, r̂0) be
the location of a hit (normalized pseudorapidity, angle, and normalized radius), the features of this
hit is a 12-dimensional vector

(η̂0, cos(ϕ0), sin(ϕ0), r̂0; η̂1, cos(ϕ1), sin(ϕ1), r̂1; η̂2, cos(ϕ2), sin(ϕ2), r̂2) ,

where (η̂1, ϕ1, r̂1) and (η̂2, ϕ2, r̂2) are the locations of the two closest neighbors of the hit in the
(η̂, cos(ϕ), sin(ϕ), r̂) space. The motivation for augmenting the hit with two closest neighbors is
that for the majority of the hits in a high energy track, the two closest neighbors are most likely from
the same track in which case the augmented hit features can provide information on the direction of
track.
For the GNN model, EggNet adopted a similar approach to GravNet Qasim et al. (2019). The
outstanding feature of a GravNet-type model is that the edge set is not predetermined but con-
structed dynamically. More precisely, EggNet will run N normal GNN iterations, but before each
GNN iteration, the edge set will be constructed via KNN based on the current node embeddings.
To adapt EggNet to sPHENIX data, we set GNN iterations to be 4 and used 4 message-passing
rounds for each GNN iteration. The nearest 10 hits in the embedding space are used to form the
neighborhood of a hit. Different from the original GravNet (but similar to the interaction GNN
used by Exa.TrkX), EggNet also has an edge network for calculating edge messages. More-
over, EggNet also used a dedicated node decoding network to produce the node embeddings for
the KNN. All sub-networks of EggNet (node encoding/decoding networks and edge network) are
MLPs with 2 hidden layers and 64 hidden feature each. The embedding dimension of the node
(i.e. the number output features node decoding network) is 24.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The network is trained with a hinge loss of margin 1, aiming at reducing the Euclidean distance in
the embedding space between a pair of hits from the same track and enlarge the distance between a
pair from different tracks. The model was trained for 300 epochs and the final clustering was done
using DBSCAN with ϵ = 1 and minimum number samples = 2.

C.2.3 ADAPT HEPT FOR SPHENIX TRACK-FINDING

HEPT Miao et al. (2024) is a locality-sensitive hashing-based efficient point transformer designed
for large-scale point cloud processing in high-energy physics. Unlike Exa.TrkX and EggNet
which rely on graph neural networks, HEPT leverages self-attention mechanisms with LSH-based
approximation to achieve near-linear computational complexity.
To adapt HEPT for sPHENIX TPC tracking, we made the following modifications to the model and
training procedure:

Pre-processing. We used the same normalized HEP coordinates as discussed in C.2.1:
(η̂, cos(ϕ), sin(ϕ), r̂), where η̂ is the normalized pseudorapidity and r̂ is the normalized and binned
radius. For the input features, we concatenated the energy E of each hit with its Cartesian coordi-
nates (x, y, z) and the normalized HEP coordinates, resulting in an 8-dimensional feature vector per
spacepoint. Unlike some baseline methods, we did not filter tracks by transverse momentum pT and
considered particles across all momentum ranges.

Contrastive Learning. HEPT is trained using a contrastive learning objective that brings embed-
dings of same-track hits closer together while pushing embeddings from different tracks apart. For
negative sampling, we formed negative examples from at most 64 neighboring hits from different
tracks (reduced from the original 256 to accommodate the lower spacepoint density in sPHENIX
TPC data).

Training Configuration. We used the most recent model architecture from the HEPT example
folder. For optimization, we set the initial learning rate to 0.0001 (instead of the original 0.01)
and switched to the AdamW optimizer (from Adam) for better regularization. These adjustments
were necessary to achieve stable training convergence on the sPHENIX dataset.

Track Formation. Since HEPT produces per-point embeddings rather than end-to-end tracking pre-
dictions, we applied HDBSCAN McInnes et al. (2017) clustering on the learned embeddings to form
track candidates. We used the following HDBSCAN hyperparameters: metric="euclidean",
min cluster size=12, min samples=15, and cluster selection method="eom".
These parameters were tuned to maximize the average per-event Adjusted Rand Index (ARI) on the
test set, balancing cluster granularity and noise robustness.

C.2.4 ADAPT GNNS FOR SPHENIX PARTICLE IDENTIFICATION AND NOISE TAGGING

We selected four GNN models: GATConv, GCNConv, GraphConv, and SAGEConv as
benchmarking algorithms for the PID and noise-tagging downstream tasks. We used the
torch geometric implementations for the models. We used the same data pre-processing pro-
tocol as discussed in C.2.1. To generate the edge set, for a hit at location (η, cos(ϕ), sin(ϕ), r̂), we
connect to it 50 nearest neighbor hits with distance < 1. We allowed the edges to be directed. The
node features to the GNNs are the energy E of the hit together with its 4D location. For the node
encoding network, we use a MLP with 2 hidden layers and 256 hidden features each. We use uni-
formly 6 GNN layers for each GNN model. For the hit classification network, we use a MLP of 2
hidden layers with 128 and 64 hidden features. The GNNs are trained with cross entropy loss. Each
GNN is trained for 200 epochs.
In general, GNNs’ performance on the two downstream tasks are suboptimal. We hypothesis that the
failure of GNNs is a result of their difficulty in capturing and communicating more global patterns
of the tracks as solving both particle identification and noise-tagging require a model to understand
the general shape of tracks that span a significant space in TPC.

C.2.5 ADAPT ONEFORMER3D FOR SPHENIX PARTICLE IDENTIFICATION AND NOISE
TAGGING

OneFormer3D is a state-of-the-art object detection algorithm for 3D point cloud data that can solve
semantic and instance segmentation task in one run. The model architecture of OneFormer3D is
U-Net backbone followed by a Transformer decoder.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

To run OneFormer3D on a point cloud data, we first need to get the so-called super points (a
grouping of raw points) either by a clustering algorithm or voxelization. To adapt OneFormer3D
to sPHENIX data, we used the same pre-processing approach as discussed in C.2.1 and voxelized
the resulting point cloud to a grid of shape (64, 64, 48) in η̂, ϕ, r̂, respectively.
The super points first pass through the sparse convolution-powered U-Net backbone to be featur-
ized. Then the super point features serve as the keys and values in the Transformer encoder. The
learnable queries output from the Transformer decoder are then used to produce instance/semantic
segmentation predictions on the super points. In the final step, the prediction on the super points
will be broadcast to their constituent raw points. Since both particle identification and noise-tagging
can be considered as semantic segmentation tasks, we separated the part of the code (primarily in
prediction and loss function) for semantic segmentation from OneFormer3D, while kept the neural
architecture identical. We used the same network parameters as the example of OneFormer3D on
the S3DIS dataset.

Accuracy Macro Non-noise Noise

Recall Precision Recall Precision Recall Precision

GATConv 0.9099 0.6730 0.8060 0.9788 0.9242 0.3672 0.6878
GCNConv 0.9095 0.6728 0.8037 0.9784 0.9241 0.3672 0.6832
GraphConv 0.9190 0.7213 0.8252 0.9764 0.9351 0.4661 0.7152
SAGEConv 0.9174 0.7227 0.8165 0.9740 0.9355 0.4714 0.6975
OneFormer3D 0.9646 0.9404 0.8948 0.9716 0.9884 0.9092 0.8012
AdapterOnly 0.9111 0.6215 0.8359 0.9901 0.9169 0.2528 0.7548
FM4NPP(m6) 0.9708 0.9122 0.9114 0.9809 0.9812 0.8435 0.8416

Table 4: Noise tagging per-class recall and precision.

Table 5: Particle Identification per-class recall and precision.

Accuracy Macro Others Pion Kaon Proton Electron

Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre.

GATConv 0.6922 0.3973 0.6368 0.0947 0.5709 0.9106 0.7014 0.0057 0.6146 0.4567 0.6117 0.5190 0.6854
GCNConv 0.6892 0.3911 0.6319 0.0782 0.5762 0.9140 0.6966 0.0073 0.5871 0.4501 0.6140 0.5058 0.6858
GraphConv 0.7079 0.4176 0.6425 0.1304 0.5739 0.9133 0.7146 0.0080 0.5791 0.4766 0.6272 0.5597 0.7178
SAGEConv 0.7262 0.4563 0.6502 0.1085 0.5790 0.9126 0.7382 0.0338 0.5239 0.6242 0.7071 0.6024 0.7028
OneFormer3D 0.7701 0.4897 0.5767 0.3029 0.5758 0.9207 0.7658 0.0000 0.0000 0.4859 0.6991 0.7389 0.8427
AdapterOnly 0.6631 0.3387 0.6111 0.0095 0.7714 0.9511 0.6596 0.0002 0.2872 0.4120 0.6366 0.3209 0.7008
FM4NPP(m6) 0.904 0.6623 0.8328 0.4449 0.7647 0.9551 0.8484 0.2712 0.7829 0.8068 0.8763 0.8336 0.8919

Table 6: Diagnostic metrics for tracking performance.

model ARI overall spacepoint efficiency overall spacepoint purity no. parameters

EggNet 0.7256 93.01% 92.34% 0.16M
Exa.TrkX 0.8765 94.47% 98.83% 3.86M
AdapterOnly 0.7243 89.34% 92.09% 2.39M
FM4NPP(m6) 0.9448 97.56% 98.34% 188M + 2.39M

C.3 ADDITIONAL RESULT ON SHARED VS INDEPENDENT ADAPTER ARCHITECTURES FOR
DOWNSTREAM TASKS

To address whether the downstream tasks can benefit from end-to-end joint training with shared
adapter layers, we conducted an ablation study comparing multi-task learning against isolated task-
specific adapters. We focus on the two most architecturally similar tasks: particle identification and
noise tagging, both of which operate on point-level representations.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Noise Tagging Ground Truth AdapterOnly Prediction FM4NPP Prediction

signal (1028)

noise (1476)

(a) Event 6937

(0.97, 0.68)

(0.68, 0.97)

(0.98, 1)

(1, 0.99)

signal (3044)

noise (530)

(b) Event 6520

(1, 0.85)

(0.03, 0.67)

(0.97, 0.99)

(0.93, 0.85)

signal (3094)

noise (28)

(c) Event 492

(0.769, 0.992)

(0.357, 0.014)

(0.978, 0.997)

(0.643, 0.209)

Figure 10: Performance of AdapterOnly and FM4NPP on Noise Tagging. The numbers in the
parentheses in the target sub-figures are the number of signal and noise spacepoints. The numbers
in the parentheses in the prediction sub-figures are the recall and precision of the class.

Multi-Task Architecture. The multi-task model shares a common input projection layer followed
by two self-attention (SA) and feed-forward network (FFN) layers across both tasks, with separate
task-specific classification heads for PID and NID. The training objective combines both task losses
with manual weighting: Ltotal = wPIDLPID + wNIDLNID. We use the pretrained m5 backbone (1536-
dim, frozen) with weights wNID = 2.5 and wPID = 0.5 to prioritize the simpler binary noise tagging
task.

Results. Table 7 compares the best validation losses achieved by multi-task learning against iso-
lated training, where each task uses its own dedicated adapter layers. Despite sharing representations
through common SA+FFN layers, the multi-task model exhibits negative transfer: both tasks per-
form worse than when trained independently. The NID task degrades by 7.61%, while the PID task
suffers a more severe 30.69% increase in validation loss.

Table 7: Comparison of multi-task vs isolated adapter training for PID and noise tagging tasks. Both
configurations use the frozen m5 backbone with 2 shared SA+FFN layers. Lower validation loss is
better.

Task Isolated Training Multi-Task (Shared) ∆ (%)

Noise Tagging (NID) 0.0513 0.0552 +7.61%
Particle ID (PID) 0.2377 0.3107 +30.69%

Interpretation. These results suggest that despite conceptual overlap between PID and noise tag-
ging—both classify individual spacepoints—the learned representations required for optimal perfor-
mance differ substantially between tasks. The negative transfer likely arises from conflicting gradient

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Particle Identification Ground
Truth

AdapterOnly Prediction FM4NPP Prediction

pion (1212)

kaon (94)

proton (0)

electron (316)

others (514)

(a) Event 5

(0.97, 0.57)

(0, 0)

(0, 0)

(0.15, 0.54)

(0, 0)

(0.93, 0.94)

(0.81, 0.93)

(0, 0)

(0.91, 0.94)

(0.91, 0.87)

pion (1339)

kaon (109)

proton (134)

electron (410)

others (17)

(b) Event 1966

(0.98, 0.69)

(0, 0)

(0.38, 0.8)

(0.04, 0.46)

(0, 0)

(0.99, 0.94)

(0.79, 1)

(0.84, 0.93)

(0.92, 0.99)

(0.59, 0.67)

pion (652)

kaon (41)

proton (59)
electron (1691)

others (61)

(c) Event 6937

(0.76, 0.63)

(0, 0)

(0, 0)
(0.88, 0.87)

(0, 0)

(0.88, 0.74)

(0.59, 1)

(0.58, 0.97)
(0.89, 0.97)

(0, 0)

Figure 11: Performance of AdapterOnly and FM4NPP on particle identification. The numbers
in the parentheses in the target sub-figures are the number of spacepoints in each particle ID class.
The numbers in the parentheses in the prediction sub-figures are the recall and precision of the class.

signals: noise tagging requires distinguishing signal from detector noise based on energy deposition
patterns, while PID must differentiate between particle species using ionization profiles. The more
severe degradation in PID performance indicates that the shared adapter prioritizes the simpler, more
heavily weighted NID task at the expense of the more complex PID classification.
For the tracking task, which employs a fundamentally different DETR-style set prediction architec-
ture rather than point classification, joint training with PID/NID is even less suitable. Consequently,
we retain independent task-specific adapters for each downstream task, allowing each to specialize
its learned representations without interference while still leveraging the shared pretrained back-
bone.

C.4 ADDITIONAL RESULT ON ADAPTER HEAD CAPACITY VS FOUNDATION MODEL
QUALITY TRADE-OFF

To understand whether adapter capacity or foundation model quality is the limiting factor for down-
stream performance, we conducted an ablation study on the particle identification task by sweeping
adapter depth while keeping the pretrained m6 backbone frozen.

Experimental Setup. We varied the number of self-attention (SA) layers in the adapter head from
0 to 4, while maintaining the frozen m6 backbone. The configurations tested were:

• 0L (0.56M params): No SA layers—only linear projection + MLP
• 1L (1.09M params): 1 SA layer
• 2L (1.62M params): 2 SA layers
• 4L (2.67M params): 4 SA layers

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Track Finding Ground Truth AdapterOnly Prediction FM4NPP Prediction

(a) Event 5

(b) Track -14052 and 42

(c) Track 52 and 44

(d) Track -3832 and 2

(e) Track -3619 and 23

Figure 12: Performance of AdapterOnly and FM4NPP on track finding. In panel (a), we show
the ground-truth tracks, the AdapterOnly track candidates, and the FM4NPP track candidates
(note that two different tracks might have the same color since the length of the color cycle we used
may be smaller than the number of tracks). In panel (b)-(e), we show four pairs of close-by ground-
truth tracks that the AdapterOnly model fails to separate while the FM4NPP model does.

For each configuration, we trained two variants: one with the pretrained backbone (frozen) and one
without pretraining (replacing the backbone with a learnable linear layer) to isolate the effect of
pretraining quality.

Results. Figure 13 shows validation loss as a function of adapter capacity. Performance improves
substantially when adding the first SA layer (0L → 1L: 45.7% loss reduction), with diminishing

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

returns thereafter. The optimal configuration uses 2 SA layers, achieving validation loss of 0.238.
Adding more layers (4L) slightly degrades performance to 0.244, suggesting overfitting or that the
adapter capacity exceeds what the frozen backbone can effectively support.

0.5 1.0 1.5 2.0 2.5
Adapter Parameters (Millions)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Be

st
 V

al
id

at
io

n
Lo

ss

0L

1L
2L 4L

0L

1L

2L

4L

PID Classification: Validation Loss vs Adapter Size

With Pretraining
Without Pretraining
Pretraining Improvement (% loss)

0

10

20

30

40

50

Lo
ss

 Im
pr

ov
em

en
t

(%
)

+54.2%

+49.6%

+34.4%

+19.8%

Figure 13: Adapter capacity vs performance on PID task. Validation loss decreases as adapter
depth increases from 0 to 2 self-attention layers, then plateaus or slightly degrades at 4 layers. The
gap between pretrained and non-pretrained models shrinks with larger adapters, indicating that small
adapter heads were the performance bottleneck rather than FM quality.

Interpretation. The results reveal two key insights: (1) Performance plateaus after 2 SA layers,
indicating that the frozen FM representation is already sufficiently rich—small adapter heads were
the bottleneck rather than backbone quality. (2) While the relative pretraining benefit diminishes
with larger adapters (54.2% for 0L decreasing to 19.8% for 4L), the pretrained backbone still pro-
vides substantial absolute improvements across all configurations. Even with the largest 4L adapter,
the model with pretrained features achieves 0.244 validation loss compared to 0.304 without pre-
training—a significant gap that underscores the effectiveness of the FM representation.

C.5 ADDITIONAL LEARNED EMBEDDINGS RESULTS

FM4NPP
(frozen)

FM
features

Linear
map

Post-linear
features

Adapter
(trainable)

PCA Reduction PCA Reduction

Figure 14: Visualization of learned embeddings from the FM (left) and the post-linear map features
(right), projected via PCA reduction. Each marker corresponds to a spacepoint, colored by its asso-
ciated track identity.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We analyze the neural embeddings from the frozen FM and their transformation after a simple linear
projection, which precedes the lightweight adapter used for downstream tasks. To probe task speci-
ficity, we apply dimensionality reduction techniques (e.g., PCA) to both the raw FM embeddings and
linearly projected features, focusing on a representative downstream task: track finding. As shown
in Figure 14, the raw FM embeddings exhibit no clear separation among particle tracks, indicating
the representations are task-agnostic. However, after applying a single linear projection, distinct and
well-separated clusters emerge, corresponding to different particle tracks.
In Figure 15, we present results obtained by applying various dimensionality reduction techniques
(including PCA, t-SNE and UMAP) to both FM features and downstream adapter features. For
illustrative clarity, we randomly selected two test data samples. The results demonstrate consistent
improvement, clearly showcasing the FM features’ adaptability: even after a single linear projection,
the FM embeddings exhibit substantial clustering and separability, indicating rapid adaptation to
the downstream track-finding task. Adapter features consistently provided superior discrimination,
yielding distinctly well-separated clusters corresponding to different track categories. Because a
linear transformation alone cannot create separability where none exists, this demonstrates that the
FM encodes rich, general-purpose information that only requires minimal alignment to become task-
specific. It also explains why lightweight adapters, when built atop FM embeddings, outperform
non-FM baselines by leveraging semantically meaningful input features.

Figure 15: Dimensionality reduction results using PCA, t-SNE, and UMAP on randomly selected
test data samples.

To further validate the robustness and generalizability of the FM features, we systematically in-
vestigated the impact of varying dimensionality reduction parameters using t-SNE. Specifically, we
conducted experiments by setting the reduced dimensionality to 3, 4, and 5 and visualized the re-
sults by plotting the first two t-SNE components (See Figure 16). Across all tested dimensional
configurations, the FM features consistently demonstrated pronounced clustering patterns and clear
separability, highlighting their intrinsic adaptability and effectiveness in supporting diverse down-
stream classification tasks.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 16: T-SNE visualizations for randomly selected test instances across various reduced dimen-
sions.

In Figure 17, we extended our analysis to multiple downstream tasks, again using randomly se-
lected test data instances and employing t-SNE for visualization. The FM features’ separability was
notably effective for the track-finding task, slightly diminished for particle identification, and con-
siderably reduced for noise tagging. The limited performance observed in noise tagging is attributed
to the inherent imbalance of the binary classification data, making separability challenging due to
the dominant prevalence of a single label. Overall, our analyses confirm a hierarchy of effectiveness
in FM embeddings across downstream tasks: track-finding demonstrates the strongest separability,
followed by particle identification, and lastly noise tagging. These findings align well with the FM’s
pretraining objective, neighbor identification, and are consistent with task relevance from a physics
perspective.

Figure 17: T-SNE visualizations for randomly selected test instances across various downstream
tasks.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

REFERENCES

S. Agostinelli et al. GEANT4 - A Simulation Toolkit. Nucl. Instrum. Meth. A, 506:250–303, 2003.
doi: 10.1016/S0168-9002(03)01368-8.

Manny Rosales Aguilar, Zilong Chang, Raghav Kunnawalkam Elayavalli, Renee Fatemi, Yang He,
Yuanjing Ji, Dmitry Kalinkin, Matthew Kelsey, Isaac Mooney, and Veronica Verkest. pythia8
underlying event tune for RHIC energies. Phys. Rev. D, 105(1):016011, 2022. doi: 10.1103/
PhysRevD.105.016011.

Sabrina Amrouche, Laurent Basara, Paolo Calafiura, Victor Estrade, Steven Farrell, Diogo R. Fer-
reira, Liam Finnie, Nicole Finnie, Cécile Germain, Vladimir Vava Gligorov, Tobias Golling,
Sergey Gorbunov, Heather Gray, Isabelle Guyon, Mikhail Hushchyn, Vincenzo Innocente, Moritz
Kiehn, Edward Moyse, Jean-François Puget, Yuval Reina, David Rousseau, Andreas Salzburger,
Andrey Ustyuzhanin, Jean-Roch Vlimant, Johan Sokrates Wind, Trian Xylouris, and Yetkin Yil-
maz. The tracking machine learning challenge: Accuracy phase. In Sergio Escalera and Ralf
Herbrich (eds.), The NeurIPS ’18 Competition, pp. 231–264, Cham, 2020. Springer International
Publishing.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Wit Busza, Krishna Rajagopal, and Wilke van der Schee. Heavy Ion Collisions: The Big Pic-
ture, and the Big Questions. Ann. Rev. Nucl. Part. Sci., 68:339–376, 2018. doi: 10.1146/
annurev-nucl-101917-020852.

Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering.
Journal of Open Source Software, 2(11):205, 2017.

Siqi Miao, Zhiyuan Lu, Mia Liu, Javier Duarte, and Pan Li. Locality-sensitive hashing-based effi-
cient point transformer with applications in high-energy physics. In International Conference on
Machine Learning, pp. 35546–35569. PMLR, 2024.

Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, and Maurizio Pierini. Learning representations
of irregular particle-detector geometry with distance-weighted graph networks. The European
Physical Journal C, 79(7):1–11, 2019.

Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten,
Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An introduction
to PYTHIA 8.2. Comput. Phys. Commun., 191:159–177, 2015. doi: 10.1016/j.cpc.2015.01.024.

33

	Introduction
	Related Work
	Particle Detector Dataset
	Methodology
	Self-supervised Scaling Foundation Model
	Adaptive Models for Downstream Tasks

	Experiments and Results
	Neural Scaling Behaviors of FM4NPP
	Performance on Downstream Tasks
	Insights about FM Adaptation
	Ablation Studies

	Conclusion and Future Work
	Dataset
	Simulation and Provenance
	Contents and Structure
	Dataset Statistics

	Methodology
	Preliminaries
	Coordinate Transformation
	Serialization
	MAMBA: Selective State Space Models
	FM4NPP: Architecture
	Maximal Update Parameterization
	Additional Details for Pretraining

	Additional Results
	Downstream Model
	Tracking (Instance Segmentation)
	Particle Identification and Noise Identification

	Comparative Methods for Downstream Tasks
	Adapt Exa.TrkX Pipeline for sPHENIX Tracking-Finding
	Adapt EggNet for sPHENIX Track-Finding
	Adapt HEPT for sPHENIX Track-Finding
	Adapt GNNs for sPHENIX Particle Identification and Noise Tagging
	Adapt OneFormer3D for sPHENIX Particle Identification and Noise Tagging

	Additional result on Shared vs Independent Adapter Architectures for Downstream Tasks
	Additional Result On Adapter Head Capacity vs Foundation Model Quality Trade-off
	Additional Learned Embeddings Results

