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ABSTRACT
Within the domain of blind face restoration (BFR), approaches lack-
ing facial priors frequently result in excessively smoothed visual
outputs. Exiting BFR methods predominantly utilize generative
facial priors to achieve realistic and authentic details. However,
these methods, primarily designed for images, encounter challenges
in maintaining temporal consistency when applied to face video
restoration. To tackle this issue, we introduce StableBFVR, an in-
novative Blind Face Video Restoration method based on Stable
Diffusion that incorporates temporal information into the genera-
tive prior. This is achieved through the introduction of temporal
layers in the diffusion process. These temporal layers consider
both long-term and short-term information aggregation. Moreover,
to improve generalizability, BFR methods employ complex, large-
scale degradation during training, but it often sacrifices accuracy.
Addressing this, StableBFVR features a novel mixed-degradation-
aware prompt module, capable of encoding specific degradation
information to dynamically steer the restoration process. Compre-
hensive experiments demonstrate that our proposed StableBFVR
outperforms state-of-the-art methods.

CCS CONCEPTS
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1 INTRODUCTION
In real-world scenarios, both face images and videos may suffer
from unknown and varied types of degradation, such as downsam-
pling, noise, blur, and compression. Blind Face Restoration (BFR)
is a challenging task that aims at restoring low-quality faces suf-
fering from unknown degradation. Existing BFR methods usually
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Figure 1: Four consecutive frames restored by different meth-
ods. Blind face image restorationmethodCodeFormer results
in inconsistent visual effects between the face and other re-
gions and temporal inconsistency. Video restoration method
BasicVSR++ results in an over-smoothing effect. Our method
strikes a good balance between generating texture and tem-
poral consistency.

use facial priors such as reference prior, geometry prior, and gen-
erative prior in the network structure. Among various priors, the
generative prior from pre-trained generators, due to its ability to
bring more realistic texture and details, has been popularly lever-
aged by recent BFR methods to restore faces. For example, GFP-
GAN [54] incorporates the pre-trained StyleGAN [22] as a decoder
into an encoder-decoder architecture. DiffBIR [35] first utilizes a
restoration model for preliminary restoration, then introduces Sta-
ble Diffusion [45] as generative prior to further refine facial details.
Although these existing BFR methods work well in the blind face
image restoration (BFIR) problem, they do not fully consider blind
face videos. When these BFIR methods are applied to face videos,
they usually restore the face cropped from each frame of the video
and paste it back into the original frame, and the background is
restored using other restoration models such as RealESRGAN [55].

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MM ’24, October 28–November 1,2024, Melbourne, Australia Anon. Submission Id: 908

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

As shown in Fig. 1, this strategy typically leads to two problems: 1)
the visual effects of the face and the background are inconsistent;
2) the generated texture is unstable, and the face attributes (e.g.,
hairstyle, eyes, mouth) may change between frames.

On the other hand, existing video restoration methods achieve
temporal consistency by fusing information across frames. For ex-
ample, BasicVSR++ [7] uses second-order grid propagation and
flow-guided deformable alignment to effectively exploit informa-
tion from the entire input video. VRT [32] adopts transformer ar-
chitecture for attaining long-range receptive fields. As shown in
Fig 1, due to the lack of facial prior, when these methods are used
for blind face video restoration, they usually produce over-smooth
results that are very inconsistent with human perception. Thus,
existing video restoration methods are not applicable for restoring
blind face videos. Besides, to the best of our knowledge, there is
still no specialized method for restoring blind face videos.

To tackle these challenges, in this paper, we present a Stable
Blind Face Video Restoration (StableBFVR). StableBFVR uses the
pre-trained latent diffusion model (LDM) Stable Diffusion as facial
prior. At the same time, to maintain temporal consistency and use
multiple frame information to improve the restoration performance,
we introduce temporal layers to Stable Diffusion. These temporal
layers comprehensively consider both long-term and short-term
information in the video. Specifically, we present Shift-ResBlock
which uses the proposed forward temporal shift block and backward
temporal shift block alternatively to achieve bi-directional aggre-
gation. The temporal shift blocks first shift input features in the
temporal dimension, followed by fusion using convolution blocks.
By using Shift-ResBlock repeatedly, the aggregation of long-term
information is achieved. For short-term information aggregation,
we introduce a Nearby-Frame Attention (NFA). By seeking comple-
mentary sharp information existing in neighboring frames, NFA
can refine restoration details.

BFR methods usually utilize a wide range of degradation when
synthesizing training data. This enhances the generalization ability
of the restoration model but also results in a decrease in accu-
racy. To further improve the restoration performance, we propose
a Degradation-Aware Prompt Module (DAPM). DAPM first extracts
degradation-aware features from the input frames to predict prompt
weights about different types of degradation. Then DAPM utilizes
these weights to adjust the corresponding prompt corresponding to
different types of degeneration and fuses these prompts to obtain
degradation-aware prompts which encode discriminative infor-
mation about various types of degradation. By interacting with
degradation-aware prompts, the StableBFVR can make adaptive
responses to various unknown degradations to effectively restore
input faces.

Our main contributions can be summarized as follows: (1) We
propose StableBFVR which uses generative facial prior to address
the blind face video restoration task for the first time. To maintain
temporal consistency and improve the restoration performance, we
convert pre-trained Stable Diffusion into video restoration mod-
els by inserting temporal layers. (2) We present a Degradation-
Aware Prompt Module (DAPM) to generate prompts that con-
tain degradation-specific information for dynamically guiding the
restoration network. In this way, we can improve the restoration
performance and enable the restoration network to adapt to diverse,

unknown degradations. (3) Extensive experimental studies demon-
strate StableBFVR achieves SOTA performance on both the public
synthetic dataset and real-world low-quality face video dataset we
collected from the Internet.

2 RELATEDWORK
2.1 Video Restoration
Video restoration aims to restore high-quality videos from low-
quality ones. Most existing video restoration methods can be di-
vided into two categories according to the way they propagate
information.

The first [53, 61] usually uses sliding window to aggregate in-
formation from adjacent frames to restore the middle single frame.
During the alignment stage, they often align all frames in the sliding
window towards the middle frame. Earlier methods [5, 62] estimate
the optical flow between low-quality neighbouring frames and then
perform spatial warping for alignment. Recent approaches employ
implicit alignment. For example, some methods [49, 53] align dif-
ferent frames at the feature level with the deformable convolution.
Some methods [21, 71] leverage dynamic filters to achieve motion
compensation. Some methods [32, 33] mainly use transformer to
fuse useful features from adjacent frames. However, multi-frame
inputs lead to higher computational complexity and is hard to use
larger window sizes to aggregate more distant frames.

The second [6, 7, 33] typically utilizes the recurrent-basedmethod
to propagate information from one frame to the next frame, which
is accumulated to restore the subsequent frames. These methods
usually focuses on designing efficient propagation methods for uti-
lizing longer distance frames. For example, RSDN [19] propose a
novel unidirectional propagation with a hidden state adaptation
module to enhance robustness to appearance change and error ac-
cumulation. Some methods [6, 7] employ bidirectional propagation
to better exploit temporal features.

2.2 Generative Prior for Blind Face Image
Restoration

Early blind face image restoration (BFIR) methods usually employ
geometric [4, 8, 9, 65] and reference priors [29–31, 48] to improve
the restoration performance. reference priors use the facial com-
ponent dictionary obtained from additional high-quality face im-
ages to guide the face restoration process. Geometric priors use
the unique geometric shape and spatial distribution information
of faces like facial landmarks, facial heatmaps, and facial parsing
maps to help restore high-quality face. However, geometric prior
and reference prior are unable to provide rich facial details.

For better visual effects, the generative facial priors from pre-
trained generators have been explored for BFIR recently. Some
works [54, 63, 73] incorporate the pre-trained StyleGAN [22] as a de-
coder into an encoder-decoder architecture. Some other works [13,
56, 70] first train VQGAN [11] on high-quality faces with a recon-
struction objective, then fine-tune the decoder to adapt to BFIR.
Recently, DiffBIR [35] leverages the pre-trained Stable Diffusion
(SD) [45] as generative prior which can provide more prior knowl-
edge compared with existing GAN prior and achieves realistic face
restoration. Inspired by these works, our approach, for the first time,
applies generative priors to the task of blind face video restoration.

2
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Figure 2: The architecture of the proposed StableBFVR. We turn Stable Diffusion into a video restoration method by adding
temporal layers Shift-Resblock and Nearby-Frame Attention (NFA) into the U-Net block. To further improve performance, we
adopt a Degradation-Aware Prompt Module (DAPM) that dynamically guides the diffusion process.

Moreover, we develop effective techniques to maintain the tempo-
ral consistency among continuous frames when restoring facial
details.

2.3 Diffusion Model
Recently, due to the more stable generation ability than GAN, the
diffusion model has been popular in image restoration. Some meth-
ods [14, 46, 57] train a diffusion model conditioned on low-quality
images and performs restoration through a stochastic denoising
process. Somemethods [35, 51] fine-tune directly on the pre-trained
stable diffusionmodel to achieve impressive performance. Although
the diffusion model has shown promise in image restoration, it is
still under-explored in video restoration.

With notable advancements in image generation diffusion model,
the number of methods [1, 12, 15, 44] use off-the-shelf image diffu-
sion models with additional temporal layers to achieve video gener-
ation. Some methods [16, 17, 47] extend image diffusion models by
training them on extensive video pairs. Some methods [24, 36, 52]
employ temporal attention mechanisms to generate videos. Some
methods [10, 41] propose to introduce optical flow warping in dif-
fusion process. Inspired by video generation works [15, 44, 60] that
employ off-the-shelf image diffusion models, our video restora-
tion method exploits pre-trained stable diffusion as a generative
prior and proposes a novel temporal strategy, resulting in temporal
consistency.

2.4 Prompt Learning
With the extensive application of prompt learning in the field of
NLP [3, 37] and high-level vision tasks [18, 20], prompt learning
has recently also been widely used in image restoration to better
utilize the degradation context, such as the all-in-one restoration

tasks [38, 43]. Although prompt learning performs well in all-in-
one restoration tasks, the degraded image contains only a single
type of degradation. Our approach for the first time explores the
application of prompt learning in dealing with mixed degradation
tasks like the case of blind face restoration.

3 METHODOLOGY
BFR methods can use pre-trained generation models to restore high-
quality images with clear facial details. However, if we directly
use generative prior for video restoration, the inherent stochastic
nature of the generation model leads to temporal inconsistencies
in the restored video. Especially for face videos, in addition to the
flickering artifacts, it also causes the face attributes (e.g., hairstyle,
eyes, mouth) in the restored video to be inconsistent.

By training on a massive amount of high-quality images, Stable
Diffusion has powerful prior knowledge about face images. Our ob-
jective is to harness the knowledge from Stable Diffusion for blind
face video restoration. As shown in Fig. 2, we introduce temporal
layers in the Stable Diffusion to preserve temporal consistency.
First, we propose Shift-Resblock which implicitly captures global
information for long-term aggregation. Second, we further improve
restoration performance and temporal consistency by introduc-
ing Nearby-Frame Attention to aggregate short-term information.
Moreover, to enable adaptive responses to complex and large-range
blind degradation, we propose a degradation-aware prompt module
to encode degradation-specific information as prompts to guide the
restoration network.

3.1 Preliminary: Latent Diffusion Models
Pre-trained Stable Diffusion Stable Diffusion employs the LDM
framework. It utilizes the encoder of Variational Autoencoders
(VAE) to map the image 𝑥 into the latent 𝑧 to perform the diffusion

3
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Figure 3: The structure of the proposed Shift-Resblock and Nearby-Frame Attention (NFA).

and denoising processes, then reconstruct it with the decoder of
VAE. In the diffusion process, the diffused latent 𝑧𝑡 can be directly
generated by applying Gaussian noise with variance 𝛽𝑡 ∈ (0, 1) to
the latent 𝑧 at any time step 𝑡 . This process can be described as:

𝑧𝑡 =
√
𝛼𝑡𝑧 +

√
1 − 𝛼𝑡𝜖, (1)

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 and 𝜖 ∼ N(0, 𝐼 ) is a random
Gaussian noise. In the reverse process, the U-Net denoiser 𝜖𝜃 pa-
rameterized by 𝜃 is trained to predict the noise 𝜖 . The optimization
objective of the latent diffusion model can be defined as follows:

L = E𝑧𝑡 ,𝑡,𝑐,𝜖 [| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐) | |22], (2)

where 𝑡 is a randomly selected time-step, 𝑐 is an optional condition
(e.g., text, images, and representations), and 𝜖 is sampled from the
standard Gaussian distribution.

In this work, we start with the pre-trained Stable Diffusion and
create a new video diffusion model for blind face video restoration.
By adopting temporal strategies within the LDM framework, our
method can achieve temporal consistency while leveraging the
prior knowledge from Stable Diffusion.

3.2 Temporal Layers in StableBFVR
To apply the pre-trained Stable Diffusion to video-related tasks, we
propagate both long-term and short-term temporal information
among different input frames to maintain temporal consistency.
Long-term information helps preserve face attribute consistency
among long-range frames. Short-term information relieves flick-
ering artifacts of adjacent frames. Considering that the degree of
degradation between different frames of the video is different, prop-
agating temporal information also helps improve the restoration
performance.

Long-term InformationAggregation. Previous works [10, 41]
demonstrate the benefits of optical flow-guided long-term propa-
gation in video diffusion models. Considering that blind degraded
video usually contains severe blur or noise, this kind of degrada-
tion will affect the accuracy of the optical flow estimation net-
work [28, 66, 72], subsequently leading to poor performance of the
optical flow-guided restoration network. This suggests that optical
flow is not suitable for our task. Prior works [34, 40] have demon-
strated that temporal shift operation can blend information from
other frames with the current frame along the temporal dimension

and establish the temporal correspondences implicitly. Thus, we
introduce the Shift-Resblock in the basic U-Net blocks to effectively
establish temporal correspondences and conduct long-term fusion.

As shown in Fig. 3, supposing the 𝑖-th frame input feature of
Shift-Resblock at time step 𝑇 is 𝑍𝑇

𝑖
∈ R𝐶×𝐻×𝑊 , Shift-Resblock

consists of Forward Temporal Shift Block (FTSB) which fuses the
feature of (𝑍𝑖−1, 𝑍𝑖 ) and a Backward Temporal Shift Block (BTSB)
which fuses the feature of (𝑍𝑖 , 𝑍𝑖+1). By stacking FTSB and BTSB
alternatively, Shift-Resblock can achieve bi-directional aggregation.
Although a single Shift-Resblock can only fuse adjacent frame
information, we can achieve long-term aggregation by using Shift-
Resblock in our framework repeatedly. In the temporal shift, each
𝑍𝑇
𝑖
is split into two parts 𝑍 1𝑇

𝑖 ∈ R𝐶1×𝐻×𝑊 and 𝑍 2𝑇
𝑖 ∈ R𝐶2×𝐻×𝑊

along the channel dimension. In the forward temporal shift, we
shift the feature 𝑍 1𝑇

𝑖−1 from the (𝑖 − 1)-th frame to the 𝑖-th frame,
then feature 𝑍 1𝑇

𝑖−1 and feature 𝑍 2𝑇
𝑖 are merged as feature 𝑍 𝑓 𝑇

𝑖 of
the 𝑖-th frame. The output of the forward temporal shift for the 𝑖-th
frame can be defined as:

𝑍 𝑓 𝑇

𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑍 1𝑇
𝑖−1, 𝑍

2𝑇
𝑖 ), 0 < 𝑖 ≤ 𝐹, (3)

where 𝐹 is the number of input frames. In particular, in the forward
temporal shift, the first frame remains unchanged. In the backward
temporal shift, we shift the feature 𝑍 2𝑇

𝑖+1 from the (𝑖 + 1)-th frame
to the 𝑖-th frame, then feature 𝑍 2𝑇

𝑖+1 and feature 𝑍 1𝑇
𝑖 are merged as

feature 𝑍𝑏𝑇𝑖 of the 𝑖-th frame. The output of the backward temporal
shift for the 𝑖-th frame can be defined as

𝑍𝑏
𝑇

𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑍 1𝑇
𝑖 , 𝑍

2𝑇
𝑖+1), 0 ≤ 𝑖 < 𝐹 . (4)

Analogously, in the backward temporal shift, the last frame remains
unchanged. After the temporal shift, we utilize a simple convolution
block independently on each frame to capture and aggregate both
the spatial and temporal information.

Moreover, following the existing methods [1, 58], we also intro-
duce temporal attention to the U-Net blocks. The temporal attention
performs self-attention along the temporal dimension for temporal
modeling.

Short-term Information Aggregation. The original U-Net
block has a spatial self-attention. When the input is multiple frames,
it acts only on each frame alone. Considering that the short-term
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Table 1: Quantitative comparison on VFHQ-Test and WebVideo-Test for blind face video restoration. Red and Blue indicate the
best and the second-best performance.

VFHQ-Test WebVideo-Test

LPIPS↓ NIQE↓ MUSIQ↑ CLIP-IQA↑ WE ↓ PSNR↑ SSIM↑ NIQE↓ MUSIQ↑ CLIP-IQA↑
Input 0.4591 10.237 16.35 0.276 13.66 25.84 0.7564 8.361 37.08 0.286

GFPGAN [54] 0.4139 5.587 65.86 0.601 16.10 26.30 0.7624 4.897 72.01 0.615
RestoreFormer [56] 0.4162 5.615 59.86 0.583 16.73 26.17 0.7504 4.842 68.08 0.628
CodeFormer [70] 0.4116 5.603 64.04 0.604 16.24 26.32 0.7588 4.991 70.55 0.640

DiffBIR [35] 0.4354 7.293 53.15 0.512 15.88 26.38 0.7603 6.012 63.78 0.581
BaiscVSR++ [7] 0.3406 9.149 50.15 0.294 6.28 28.05 0.8213 7.803 54.88 0.299
DSTNet [42] 0.3493 9.641 43.66 0.297 6.27 28.30 0.8319 8.340 53.66 0.350
RVRT [33] 0.3710 9.419 37.81 0.246 6.21 27.79 0.8104 8.316 45.57 0.272

Ours 0.3119 5.262 75.33 0.759 13.45 26.58 0.7689 4.512 74.20 0.693
GT 0 4.778 72.83 0.645 7.10 ∞ 1 - - -

adjacent frames are usually highly similar to the current frame, they
can provide sufficient information for the restoration of the current
frame. Thus, to further enhance the restoration performance, we
present a Nearby Frame Attention (NFA) mechanism that extends
the spatial self-attention to the temporal domain. By seeking com-
plementary sharp information in neighboring frames, NFA can cap-
ture spatio-temporal consistency. The structure of NFA is shown in
Fig. 3. Specifically, given the 𝑖-th frame feature maps𝑍𝑖 ∈ R𝐶×𝐻×𝑊

as input, our NFA takes current frame input features 𝑍𝑖 as query
𝑄 =𝑊𝑞 (𝑍𝑖 ), while the key 𝐾 =𝑊𝑘 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑍𝑖−1, 𝑍𝑖+1)) and value
𝑉 =𝑊𝑣 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑍𝑖−1, 𝑍𝑖+1)) are generated from the concatenation
of the former frame and the latter frame, where𝑊𝑞,𝑊𝑘 ,𝑊𝑣 are
projection matrices shared across space and time. Finally, we adopt
the self-attention mechanism to conduct short-term information
aggregation. The output is a weighted sum of the value, weighted
by the similarity between the query and key features. Note that, in
the training process, we only update the parameters of the query
process, and the other parts of the parameters are frozen.

3.3 Degradation-Aware Prompt Module
Previous work [68] has proven that when using complex large-scale
degradation to train blind face restoration methods, it will enhance
the generalization ability, but at the cost of decreasing accuracy.
To address this problem, we propose a degradation-aware prompt
module (DAPM) to generate prompts that can dynamically adjust
the prediction of the degree of degradation of the input frames.
It can help the restoration network make adaptive responses to
various unknown degradations.

The structure of DAPM is shown in Fig 2. Considering that
blind degradation usually consists of four different degradations:
blur, noise, compress, and downsample, we establish a degradation
set 𝑃 = {𝑃1, 𝑃2, 𝑃3, 𝑃4 | 𝑃𝑁 ∈ R𝐿×𝐶 } to encapsulate information
for different degradation. Serving as learnable parameters, 𝑃 can
interact with the dynamical weights that are predicted from the
input degraded frame. Thus it can function as prompts aware of
degradations.

Specifically, to predict dynamical weights, DAPM first extracts
features 𝐹 0

𝑖
∈ R𝐶×𝐻×𝑊 from a given degraded input frame 𝐼𝑖 by

applying a convolution operation. Then the feature is sent to a

three-level encoder, with each level of the encoder employs several
residual blocks. The feature will be transformed into the compact
feature 𝐹 1

𝑖
∈ R4𝐶× 𝐻

4 ×𝑊
4 which is rich in degradation-aware infor-

mation. Then we apply global average pooling (GAP) across the
spatial dimension to generate a feature vector 𝑉𝑖 ∈ R𝐶 . Next, we
use a linear layer and softmax operation to obtain prompt weights
𝑤1,𝑤2,𝑤3,𝑤4 about the four kinds of degradation. Finally, consid-
ering that different degradation is not independent, degradation
will also affect each other. After we use these weights to make
adjustments in the degradation set 𝑃 , we use a linear layer to fuse
them. The process of generating degradation-aware prompts is

𝑤𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝐺𝐴𝑃 (𝐹 1
𝑖 ))), (5)

𝑃 = 𝐿𝑖𝑛𝑒𝑎𝑟 (
4∑︁

𝑖=1
𝑤𝑖𝑃𝑖 ) . (6)

The generated degradation-aware prompt will be fed into CrossAt-
tention in the denoising U-Net block to dynamically guide the
restoration network.

4 EXPERIMENT
4.1 Datasets and Implementation
Training Datasets. We train our method on 2, 000 clips randomly
chosen from VFHQ [59]. VFHQ is a high-quality video face dataset,
which contains over 16, 000 high-fidelity clips of human faces. We
resize all the frames to 512 × 512 during training. We train our
method on synthetic data that approximate to the real low-quality
images. Similar to the common practice in blind face restoration [54,
70], the degradation model is as follows:

𝑦 = [(𝑥 ⊛ 𝑘𝜎 ) ↓𝑟 +𝑛𝛿 ]FFMPEG𝑐𝑟 𝑓
, (7)

where 𝑦 is the synthetic low-quality frame, 𝑥 is the high-quality
frame, 𝑘𝜎 is Gaussian blur kernel, 𝑟 represents the down-sample fac-
tor, and𝑛𝛿 is white Gaussian noise.We incorporate the 𝐹𝐹𝑀𝑃𝐸𝐺𝑐𝑟 𝑓

compress into the degradation model, where 𝑐𝑟 𝑓 is the constant
rate factor that decides how many bits will be used for each frame.
Compared with the 𝐽𝑃𝐸𝐺 compress used in BFIR, 𝐹𝐹𝑀𝑃𝐸𝐺𝑐𝑟 𝑓 can
implicitly consider the inter-dependencies between frames, pro-
viding temporal and spatial degradations. For each training pair,
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Figure 4: Visual comparison results of different methods on the VFHQ-Test. Our StableBFVR produces more faithful details.
Zoom in for best view.

we randomly sample 𝜎 , 𝑟 , 𝛿 , and 𝑐𝑟 𝑓 from [0.1, 10], [1, 4], [0, 15],
[18, 25], respectively.

Testing Datasets.We evaluate our method on synthetic dataset
VFHQ-Test and real-world dataset WebVideo-Test. They both
have no overlap with our training dataset. VFHQ-Test is composed
of 50 high-quality clips. We choose the first 100 frames of each clip,
a total of 5, 000 frames as our test set. To synthesize testing pairs, we
apply the same degradation model as the training phase. To better
evaluate the generalization of blind face video restoration methods
in the real world, we propose a real-world test set WebVideo-Test.
The videos in our WebVideo-Test dataset are collected from video
websites. It consists of 10 video clips, each containing 100 frames
of diverse and complicated degradation.

Evaluation Metrics. For evaluation of the VFHQ-Test with
ground truth, we adopt pixel-wise metrics PSNR and SSIM and
perceptual metric LPIPS [69]. We also employ widely-used non-
reference perceptualmetrics NIQE [39], CLIP-IQA [50], andMUSIQ [23].
For the real-world dataset WebVideo-Test without ground truth,
we adopt only the three non-reference metrics mentioned above.
Compared with BFIR, one major aspect of the BFVR problem is the
temporal consistency of the restored videos. In this work, we adopt
the average warping error (WE) [26] of the restored videos to quan-
titatively measure the temporal consistency. It can be calculated
as:

𝑊𝐸 =
1

𝑁 − 1

𝑁∑︁
𝑖=2

| |𝐼𝑖 −W(𝐼𝑖−1, 𝑆𝑖−1−>𝑖 ) | |1, (8)

where 𝐼𝑖 is the predicted frame, W denotes the spatial warping
operation, and 𝑆𝑖−1−>𝑖 is the estimated optical flow from ground-
truth video. We use 10−3 quantity level when showing this metric.

Implementation Details.We utilize Stable Diffusion V2.1 to
initialize the weight of our StableBFVR. Then we fix the weight
of our StableBFVR except for the proposed components and the
condition. Regarding the condition, we first employ frozen pre-
trained BasicVSR++ for preliminary restoration, then adopt train-
able ControlNet [67], initialized with the weight from BFIR method
DiffBIR [35], encode the input frame as a condition and inject it
into the denoising U-Net. The training is conducted on 4 NVIDIA
A100 GPUs, with batch size 4 and the number of input frames 8.
The learning rate is set to 1 × 10−4 using the Adam [25] optimizer
and we train it for 100𝐾 iterations. During inference, we divide the
low-quality video into multiple sequences. For each sequence, the
number of input frames is set to 32 and we run the sampling for 50
steps.

4.2 Results
We compare our StableBFVR with several state-of-the-art methods,
including four BFIR models, GFPGAN [54], Restoreformer [56],
CodeFormer [70], DiffBIR [35], and three video restoration models,
BasicVSR++ [7], DSTNet [42], RVRT [33]. For BFIR models, we
adopt their officially released models in the experiments. Following
original implementations in video restoration, the BFIR model only
restores the face detected in the video frame, while the background
is enhanced by RealESRGAN [55]. For video restoration models, to
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Figure 5: Visual comparison results of different methods on the real-world dataset WebVideo-Test. Our StableBFVR produces
more faithful details. Zoom in for best view.

ensure a fair comparison, these methods are re-trained under the
same training settings.

Quantitative Comparison. For the synthetic VFHQ-Test, the
quantitative results are shown in Tab. 1. The results indicate that
our method achieves state-of-the-art performance on all perceptual
metrics. Specifically, our StableBFVR achieves the best performance
regarding LPIPS, indicating that the perceptual quality of restored
face videos is closest to ground truth. Moreover, StableBFVR also
obtains the best results of NIQE, MUSIQ, and CLIP-IQA, showing
that the outputs better align with human visual and perceptive
systems. Note that, like other BFIR methods that use generative
prior, our model is also not strong at PSNR and SSIM. Because PSNR
and SSIM do not correlate well with the human visual and percep-
tive systems [2, 27]. In general, over-smoothing images will derive
higher PSNR and SSIM values. The methods based on generative
priors produce more high-frequency texture details, resulting in
lower PSNR and SSIM.

To assess the generalization ability, we extend the evaluation of
our model to the real-world dataset WebVideo-Test. The quantita-
tive results are presented in Tab. 1. StableBFVR exhibits superior
performance across all three metrics NIQE, MUSIQ, and CLIP-IQA,
showing its remarkable generalization capability. Furthermore, com-
pared with video restoration methods, BFIR methods also show
satisfactory performance, suggesting the importance of generative
prior in the scenery of unknown degradations in the real world.

Qualitative Comparison. For the synthetic VFHQ-Test, the
qualitative results are illustrated in Fig. 4. Compared with video
restoration methods, thanks to the powerful generative facial prior,
our method recovers faithful details in the eyes, mouth, beard etc.
On the contrary, face videos restored by video restoration methods
are over-smooth and lose facial texture details. BFIR methods only
restore the face detected in the video frame, with the background

restored by RealESRGAN. Consequently, face videos restored by
BFIR exhibit inconsistent visual effects between the face region
and background region, even showing obvious boundaries (3rd
row, Fig. 4). In contrast, our method treats the input as a whole in
restoration and performs well in all regions. In addition, compared
with BFIR methods, our method can aggregate information from
other frames to improve performance. As a result, in scenarios
where BFIR methods exhibit poor performance, our method can
still generate superior facial details (4th row, Fig. 4).

For WebVideo-Test, the qualitative results are shown in Fig. 5.
Our method produces realistic facial textures in the case of com-
plicated real-world degradation. As shown in the last column of
Fig. 5, previous BRIR methods fail to restore the hair textures on
the image boundary, while ours is successful. Compared with video
restoration methods, our method produces significantly more tex-
ture detail.

Temporal Consistency. The quantitative assessment of tem-
poral consistency is presented in Tab. 1. It is worth mentioning
that, the metric WE may not be able to faithfully reflect the human
perception of the temporal consistency [64]. For example, over-
smoothing sequences usually have much higher WE scores despite
unpleasant perceptual quality. As shown in Tab. 1, the scores of
the video restoration methods are even higher than the ground
truth. Given that our StableBFVR tends to generate more details
and textures, which adversely impact theWE value, it exhibits a less
favorable performance in this regard. Nonetheless, StableBFVR still
outperforms other BFIR methods driven by the generative facial
priors.

To thoroughly verify our method, we visualize the consecutive
frames generated by different methods in Fig. 6. It is observed
that, although sequences restored by BFIR methods exhibit realistic
texture, there are noticeable differences between the textures of
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Figure 6: Visual comparisons of the temporal consistency for restored videos. (a) GFP-GAN, (b) CodeFormer, (c) DiffBIR, (d)
RestoreFormer, (e) BaiscVSR++, (f) RVRT, (g) DSTNet, (h) Ours. Zoom in for best view.

(a) (b) (c) (d) (e)

Figure 7: Visual comparison results of ablation study. (a) Full
Method, (b) w/o Shift-Resblock, (c) replace NFA with SA, (d)
replace DAPM with CLIP, (e) w/o DAPM. Zoom in for best
view.

Table 2: Ablation studies of our StableBFVR on VFHQ-Test.

Configuration LPIPS↓ MUSIQ↑ WE↓
replace NFA with SA 0.3312 73.18 14.89
w/o Shift-Resblock 0.3541 72.33 15.44

w/o DAPM 0.3263 74.69 13.48
replace DAPM with CLIP 0.3289 74.86 13.52

inference frames 8 0.3162 74.82 14.91
inference frames 16 0.3144 75.19 13.96
inference frames 24 0.3120 75.23 13.65

Full method 0.3119 75.33 13.45

continuous frames. Conversely, sequences restored by video restora-
tion methods demonstrate commendable temporal consistency but
tend to be excessively smooth, lacking textures. StableBFVR strikes
a favorable balance, reconstructing more textures, while simultane-
ously preserving temporal consistency.

4.3 Ablation Studies
Effectiveness of Temporal Layers. As depicted in Tab. 2, we
explore the significance of the temporal layers. Specifically, we first
remove Shift-ResBlock, resulting in a noticeable decline in both
temporal consistency and perceptual metrics. The impact of this
configuration change is shown in Fig. 7, where not only are the
details of the teeth inadequately restored, but artifacts also emerge
in the background. It implies that Shift-Resblock can improve per-
ceptual quality and consistency through the aggregation of long-
term information. Subsequently, we replace NFA with the original

Self-Attention from Stable Diffusion. This replacement leads to a
performance decrease in terms of both temporal consistency and
perceptual metrics. Fig. 7 illustrates that, while the texture of the
teeth can be generated, the quality is notably diminished. This ob-
servation emphasizes that the rich contextual information from
neighboring frames extracted by NFA plays a crucial role in refining
details.

Effectiveness of DAPM.We then investigate the significance
of the DAPM. We first directly remove DAPM. This alteration leads
to a drop in perceptual performance. Subsequently, we replace
DAPM with CLIP. Following other Stable Diffusion-based restora-
tion methods [35, 51], we set the input of CLIP as an empty string.
This substitution similarly leads to a reduction in perceptual per-
formance. Fig. 7 visually demonstrates that both configurations fail
to restore the texture of teeth, implying the instrumental role of
DAPM in enhancing restoration.

The Number of Inference Frames. As detailed in Tab. 2, we
observe that the input number of frames during inference can affect
the performance. The more the input frames are, the better the
performance is. Especially for temporal consistency, there is a sig-
nificant enhancement when the number of input frames increases
from 8 to 16. These results also illustrate that propagating informa-
tion about distant frames helps improve restoration performance
and temporal consisten.

5 CONCLUSION
In this work, we tackle the BFVR problem for the first time. We
propose StableBFVR leveraging the strong generative prior from
the pre-trained generative model Stable Diffusion to restore face
videos with realistic details. To ensure content consistency among
frames and use multi-frame information for improved restoration,
we develop Shift-Resblock and Nearby-Frame Attention to aggre-
gate both long-term and short-term information. Additionally, we
propose a Degradation-Aware Prompt Module to dynamically guide
the restoration process and further enhance performance. Exten-
sive experiments show that our StableBFVR achieves superior per-
formance than video restoration methods and blind face image
restoration methods.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Blind Face Video Restoration with Temporal Consistent Generative Prior and Degradation-Aware Prompt MM ’24, October 28–November 1,2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook

Kim, Sanja Fidler, and Karsten Kreis. 2023. Align your latents: High-resolution
video synthesis with latent diffusion models. In IEEE Conference on Computer
Vision and Pattern Recognition.

[2] Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli, and Lihi Zelnik-
Manor. 2018. The 2018 PIRM challenge on perceptual image super-resolution. In
European Conference on Computer Vision Workshop.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In Advances in Neural
Information Processing Systems.

[4] Adrian Bulat and Georgios Tzimiropoulos. 2018. Super-fan: Integrated facial
landmark localization and super-resolution of real-world low resolution faces in
arbitrary poses with gans. In IEEE Conference on Computer Vision and Pattern
Recognition.

[5] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes
Totz, Zehan Wang, and Wenzhe Shi. 2017. Real-time video super-resolution
with spatio-temporal networks and motion compensation. In IEEE Conference on
Computer Vision and Pattern Recognition.

[6] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. 2021.
Basicvsr: The search for essential components in video super-resolution and
beyond. In IEEE Conference on Computer Vision and Pattern Recognition.

[7] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. 2022.
Basicvsr++: Improving video super-resolution with enhanced propagation and
alignment. In IEEE Conference on Computer Vision and Pattern Recognition.

[8] Chaofeng Chen, Xiaoming Li, Lingbo Yang, Xianhui Lin, Lei Zhang, and Kwan-
Yee K Wong. 2021. Progressive semantic-aware style transformation for blind
face restoration. In IEEE Conference on Computer Vision and Pattern Recognition.

[9] Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, and Jian Yang. 2018. Fsrnet:
End-to-end learning face super-resolution with facial priors. In IEEE Conference
on Computer Vision and Pattern Recognition.

[10] Zijun Deng, Xiangteng He, Yuxin Peng, Xiongwei Zhu, and Lele Cheng. 2023.
MV-Diffusion: Motion-aware Video Diffusion Model. In Proceedings of the ACM
International Conference on Multimedia.

[11] Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021. Taming transformers
for high-resolution image synthesis. In IEEE Conference on Computer Vision and
Pattern Recognition.

[12] Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. 2023. Tokenflow:
Consistent diffusion features for consistent video editing. arXiv preprint
arXiv:2307.10373 (2023).

[13] Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, and
Ming-Ming Cheng. 2022. Vqfr: Blind face restoration with vector-quantized
dictionary and parallel decoder. In European Conference on Computer Vision.

[14] Lanqing Guo, Chong Wang, Wenhan Yang, Siyu Huang, Yufei Wang, Hanspeter
Pfister, and Bihan Wen. 2023. Shadowdiffusion: When degradation prior meets
diffusion model for shadow removal. In IEEE Conference on Computer Vision and
Pattern Recognition.

[15] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and
Bo Dai. 2024. Animatediff: Animate your personalized text-to-image diffusion
models without specific tuning. In International Conference on Learning Repre-
sentations.

[16] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey
Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet,
et al. 2022. Imagen video: High definition video generation with diffusion models.
arXiv preprint arXiv:2210.02303 (2022).

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad
Norouzi, and David J Fleet. 2022. Video diffusion models. In Advances in Neural
Information Processing Systems.

[18] Qidong Huang, Xiaoyi Dong, Dongdong Chen, Weiming Zhang, Feifei Wang,
Gang Hua, and Nenghai Yu. 2023. Diversity-Aware Meta Visual Prompting. In
IEEE Conference on Computer Vision and Pattern Recognition.

[19] Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin Wang, and Qi Tian.
2020. Video super-resolution with recurrent structure-detail network. In Euro-
pean Conference on Computer Vision.

[20] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie,
Bharath Hariharan, and Ser-Nam Lim. 2022. Visual prompt tuning. In Euro-
pean Conference on Computer Vision.

[21] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. 2018. Deep
video super-resolution network using dynamic upsampling filters without ex-
plicit motion compensation. In IEEE Conference on Computer Vision and Pattern
Recognition.

[22] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN. In
IEEE Conference on Computer Vision and Pattern Recognition.

[23] Junjie Ke, Qifei Wang, Yilin Wang, PeymanMilanfar, and Feng Yang. 2021. Musiq:
Multi-scale image quality transformer. In IEEE International Conference on Com-
puter Vision.

[24] Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto
Henschel, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. 2023.
Text2video-zero: Text-to-image diffusion models are zero-shot video generators.
In IEEE Conference on Computer Vision and Pattern Recognition.

[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[26] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and
Ming-Hsuan Yang. 2018. Learning blind video temporal consistency. In IEEE
Conference on Computer Vision and Pattern Recognition.

[27] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-realistic single image super-resolution using a gener-
ative adversarial network. In IEEE Conference on Computer Vision and Pattern
Recognition.

[28] Dasong Li, Xiaoyu Shi, Yi Zhang, Ka Chun Cheung, Simon See, Xiaogang Wang,
Hongwei Qin, and Hongsheng Li. 2023. A Simple Baseline for Video Restoration
With Grouped Spatial-Temporal Shift. In IEEE Conference on Computer Vision
and Pattern Recognition.

[29] Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo,
and Lei Zhang. 2020. Blind face restoration via deep multi-scale component
dictionaries. In European Conference on Computer Vision.

[30] Xiaoming Li, Wenyu Li, Dongwei Ren, Hongzhi Zhang, Meng Wang, and Wang-
meng Zuo. [n. d.]. Enhanced blind face restoration with multi-exemplar images
and adaptive spatial feature fusion. In IEEE Conference on Computer Vision and
Pattern Recognition.

[31] Xiaoming Li, Shiguang Zhang, Shangchen Zhou, Lei Zhang, and Wangmeng
Zuo. 2022. Learning Dual Memory Dictionaries for Blind Face Restoration. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

[32] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li,
Radu Timofte, and Luc Van Gool. 2022. Vrt: A video restoration transformer.
arXiv preprint arXiv:2201.12288 (2022).

[33] Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan, Eddy Ilg, Simon Green,
Jiezhang Cao, Kai Zhang, Radu Timofte, and Luc V Gool. 2022. Recurrent video
restoration transformer with guided deformable attention. In Advances in Neural
Information Processing Systems.

[34] Ji Lin, Chuang Gan, and Song Han. 2019. Tsm: Temporal shift module for
efficient video understanding. In IEEE Conference on Computer Vision and Pattern
Recognition.

[35] Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli
Ouyang, Yu Qiao, and Chao Dong. 2023. Diffbir: Towards blind image restoration
with generative diffusion prior. arXiv preprint arXiv:2308.15070 (2023).

[36] Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. 2023. Video-
p2p: Video editing with cross-attention control. arXiv preprint arXiv:2303.04761
(2023).

[37] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang,
and Jie Tang. 2021. P-tuning v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint arXiv:2110.07602 (2021).

[38] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön.
2023. Controlling vision-language models for universal image restoration. arXiv
preprint arXiv:2310.01018 (2023).

[39] AnishMittal, Rajiv Soundararajan, and Alan C Bovik. 2012. Making a “completely
blind” image quality analyzer. IEEE Signal processing letters (2012).

[40] Andres Munoz, Mohammadreza Zolfaghari, Max Argus, and Thomas Brox. 2021.
Temporal shift GAN for large scale video generation. In IEEE Conference on
Computer Vision and Pattern Recognition.

[41] Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and Martin Renqiang Min.
2023. Conditional Image-to-Video Generation with Latent Flow DiffusionModels.
In IEEE Conference on Computer Vision and Pattern Recognition.

[42] Jinshan Pan, Boming Xu, Jiangxin Dong, Jianjun Ge, and Jinhui Tang. 2023. Deep
Discriminative Spatial and Temporal Network for Efficient Video Deblurring. In
IEEE Conference on Computer Vision and Pattern Recognition.

[43] Vaishnav Potlapalli, Syed Waqas Zamir, Salman Khan, and Fahad Khan. 2023.
PromptIR: Prompting for All-in-One Image Restoration. In Advances in Neural
Information Processing Systems.

[44] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying
Shan, and Qifeng Chen. 2023. FateZero: Fusing Attentions for Zero-shot Text-
based Video Editing Supplemental Material. In IEEE International Conference on
Computer Vision.

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
IEEE Conference on Computer Vision and Pattern Recognition.

[46] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and
Mohammad Norouzi. 2022. Image super-resolution via iterative refinement. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MM ’24, October 28–November 1,2024, Melbourne, Australia Anon. Submission Id: 908

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[47] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang,
Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, et al. 2022. Make-a-video:
Text-to-video generation without text-video data. arXiv preprint arXiv:2209.14792
(2022).

[48] Jingfan Tan, Xiaoxu Chen, Tao Wang, Kaihao Zhang, Wenhan Luo, and Xiaocun
Cao. 2023. Blind Face Restoration for Under-Display Camera via Dictionary
Guided Transformer. IEEE Transactions on Circuits and Systems for Video Tech-
nology (2023).

[49] Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu. 2020. Tdan: Temporally-
deformable alignment network for video super-resolution. In IEEE Conference on
Computer Vision and Pattern Recognition.

[50] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. 2023. Exploring clip for
assessing the look and feel of images.

[51] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and
Chen Change Loy. 2023. Exploiting Diffusion Prior for Real-World Image Super-
Resolution. arXiv preprint arXiv:2305.07015 (2023).

[52] Wen Wang, Yan Jiang, Kangyang Xie, Zide Liu, Hao Chen, Yue Cao, Xinlong
Wang, and Chunhua Shen. 2023. Zero-shot video editing using off-the-shelf
image diffusion models. arXiv preprint arXiv:2303.17599 (2023).

[53] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. 2019.
Edvr: Video restoration with enhanced deformable convolutional networks. In
IEEE Conference on Computer Vision and Pattern Recognition Workshop.

[54] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. 2021. Towards real-world
blind face restoration with generative facial prior. In IEEE Conference on Computer
Vision and Pattern Recognition.

[55] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. 2021. Real-esrgan:
Training real-world blind super-resolution with pure synthetic data. In IEEE
International Conference on Computer Vision.

[56] Zhouxia Wang, Jiawei Zhang, Runjian Chen, Wenping Wang, and Ping Luo. 2022.
Restoreformer: High-quality blind face restoration from undegraded key-value
pairs. In IEEE Conference on Computer Vision and Pattern Recognition.

[57] Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G
Dimakis, and Peyman Milanfar. 2022. Deblurring via stochastic refinement. In
IEEE Conference on Computer Vision and Pattern Recognition.

[58] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei
Shi, Wynne Hsu, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. 2023. Tune-a-
video: One-shot tuning of image diffusion models for text-to-video generation.
In IEEE Conference on Computer Vision and Pattern Recognition.

[59] Liangbin Xie, Xintao Wang, Honglun Zhang, Chao Dong, and Ying Shan. 2022.
Vfhq: A high-quality dataset and benchmark for video face super-resolution. In
IEEE Conference on Computer Vision and Pattern Recognition Workshop.

[60] Zhen Xing, Qi Dai, HanHu, ZuxuanWu, and Yu-Gang Jiang. 2023. SimDA: Simple
Diffusion Adapter for Efficient Video Generation. arXiv preprint arXiv:2308.09710
(2023).

[61] Jiaqi Xu, Xiaowei Hu, Lei Zhu, Qi Dou, Jifeng Dai, Yu Qiao, and Pheng-Ann Heng.
2023. Video Dehazing via a Multi-Range Temporal Alignment Network with
Physical Prior. In IEEE Conference on Computer Vision and Pattern Recognition.

[62] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019.
Video enhancement with task-oriented flow. International Journal of Computer
Vision (2019).

[63] Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. 2021. Gan prior embedded
network for blind face restoration in the wild. In IEEE Conference on Computer
Vision and Pattern Recognition.

[64] Xi Yang, Chenhang He, Jianqi Ma, and Lei Zhang. 2023. Motion-Guided Latent
Diffusion for Temporally Consistent Real-world Video Super-resolution. arXiv
preprint arXiv:2312.00853 (2023).

[65] Xin Yu, Basura Fernando, Bernard Ghanem, Fatih Porikli, and Richard Hartley.
2018. Face super-resolution guided by facial component heatmaps. In European
Conference on Computer Vision.

[66] Huanjing Yue, Cong Cao, Lei Liao, Ronghe Chu, and Jingyu Yang. 2020. Super-
vised raw video denoising with a benchmark dataset on dynamic scenes. In IEEE
Conference on Computer Vision and Pattern Recognition.

[67] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding conditional
control to text-to-image diffusion models. In IEEE Conference on Computer Vision
and Pattern Recognition.

[68] Ruofan Zhang, Jinjin Gu, Haoyu Chen, Chao Dong, Yulun Zhang, and Wen-
ming Yang. 2023. Crafting training degradation distribution for the accuracy-
generalization trade-off in real-world super-resolution. In International Confer-
ence on Machine Learning.

[69] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric. In
IEEE Conference on Computer Vision and Pattern Recognition.

[70] Shangchen Zhou, Kelvin C.K. Chan, Chongyi Li, and Chen Change Loy. 2022.
Towards Robust Blind Face Restoration with Codebook Lookup TransFormer. In
Advances in Neural Information Processing Systems.

[71] Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie, Wangmeng Zuo, and
Jimmy Ren. 2019. Spatio-temporal filter adaptive network for video deblurring.
In IEEE Conference on Computer Vision and Pattern Recognition.

[72] Chao Zhu, Hang Dong, Jinshan Pan, Boyang Liang, Yuhao Huang, Lean Fu, and
Fei Wang. 2022. Deep recurrent neural network with multi-scale bi-directional
propagation for video deblurring.

[73] Feida Zhu, Junwei Zhu, Wenqing Chu, Xinyi Zhang, Xiaozhong Ji, Chengjie
Wang, and Ying Tai. 2022. Blind face restoration via integrating face shape and
generative priors. In IEEE Conference on Computer Vision and Pattern Recognition.

10


	Abstract
	1 Introduction
	2 Related Work
	2.1 Video Restoration
	2.2 Generative Prior for Blind Face Image Restoration
	2.3 Diffusion Model
	2.4 Prompt Learning

	3 Methodology
	3.1 Preliminary: Latent Diffusion Models
	3.2 Temporal Layers in StableBFVR
	3.3 Degradation-Aware Prompt Module

	4 Experiment
	4.1 Datasets and Implementation
	4.2 Results
	4.3 Ablation Studies

	5 Conclusion
	References

