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Abstract

Graphical user interface (GUI) agents face severe efficiency bottlenecks when processing
long sequences of high-resolution screenshots, making inference costly and memory-bound.
Existing KV cache compression methods, designed for natural images, remain suboptimal
as they fail to exploit the unique spatial and temporal redundancies of GUIs. In this work,
we first demonstrate that unlike natural images, GUI attention sparsity is uniformly high
(> 0.99) across all transformer layers, invalidating complex layer-varying budget strategies.
Building on this insight, we introduce GUI-KV, a training-free compression method that
allocates a uniform budget driven by two novel mechanisms: (1) spatial saliency guidance,
which augments attention with residual stream L2 norms to preserve semantic visual tokens;
and (2) temporal redundancy scoring, which employs subspace projection to identify and
prune historical frames that are redundant to the current view. Across six benchmarks,
GUI-KYV outperforms competitive baselines, often recovering near-full-cache accuracy at
10-20% budgets. Notably, on AgentNetBench, it reduces decoding FLOPs by 38.9% while
increasing step accuracy by 4.1% over the full-cache baseline.

1 Introduction

Graphical user interface (GUI) agents, which automate tasks by interacting with graphical user interfaces,
have emerged as a crucial application of vision-language models (VLMs) (Qin et al., [2025; [Wang et al., [2025;
Gou et al. |2025)). These agents navigate complex digital environments by processing sequences of screenshots
and generating actions to accomplish user-specified goals. However, the computational demands of processing
high-resolution GUI screenshots with VLMSs present significant efficiency challenges. For example, running
inference UI-TARS-1.5-7B (Qin et al 2025)) with bfloat16 and flash attention 2 using Huggingface inference
on a 5-screenshot example for a single step from OSWorld-Verified (Xie et al. |2024) can take over 15 seconds
on a H200 on average.

Some work address the inference challenge by merging input visual tokens (Lin et al. 2025) or pruning visual
representations at higher layers (Chen et al.l [2025). However, such approaches require re-training GUI agents.
A more desirable approach is key-value (KV) cache, which offers a plug-and-play solution where previously
computed key and value representations from attention layers are stored in memory to avoid redundant
computations during autoregressive generation. Nevertheless, caching all KV states can require extensive
GPU memory. For instance, UI-TARS-1.5-7B can consume over 80GB GPU memory on a single inference
when feeding 5 screenshots with a maximum steps of 50. This can easily trigger out-of-memory error for
most of the consumer GPUs.

While recent work has introduced various KV cache compression techniques (Xiao et al., [2024; |Zhang et al.,
2023; |Cai et al.| 2025} [Yang et al., 2024; |Li et al., |2024b} Tu et al.| 2025)), their effectiveness on GUI agent
tasks remains unexplored. GUI agent tasks present unique characteristics that distinguish them from typical
vision-language understanding. Screenshots contain substantial spatial redundancy—Ilarge regions of uniform
backgrounds, repeated Ul elements, and static components that persist across time steps. Moreover, the
sequential nature of GUI interactions introduces temporal redundancy, as consecutive screenshots often share
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significant visual overlap. These properties suggest that existing KV cache approaches, developed primarily
for natural images and documents, may not be optimal for GUI environments.

In this work, our first contribution is the first systematic analysis for understanding if current KV cache
budget allocation strategies across transformer layers remain effective for GUI agents (§3)). Results show
that existing approaches fail to capture the unique properties of GUI scenarios. Our analysis indicate GUI
screenshots exhibit uniformly extreme and flat attention sparsity across layers (> 0.99), whereas natural
images can have sparsity reaches as low as 0.88. Figure [1). This causes per-layer budget schedules that
normalize sparsity (e.g., PyramidKV (Cai et al., 2025) and VL-Cache (Tu et al., [2025))) to over-amplify tiny
differences and misallocate cache. Thus, we posit that it is best to assign uniform KV cache budget to each
layer for GUI agents.

Furthermore, our second contribution is GUI-KV, a KV cache compression method tailored for GUI agents
(. Our approach introduces two key innovations. First, we develop a residual stream-based saliency
guidance mechanism that augments attention-based scoring with the L2 norm of visual token hidden states.
This design is inspired by insights from previous work showing that certain tokens act as information
sinks (Darcet et al.|[2024). Second, motivated by the fact that screenshots from prior steps contain overlapping
information as the current frame, we introduce temporal redundancy scoring mechanism that performs QR
decomposition over the current screenshots to determine redundant visual information from prior steps. To
our knowledge, this is the first approach in KV cache compression that exploit inter-frame correlations. The
two components work synergistically to determine the spatio-temporal saliency of each token.

Finally, our third contribution is the comprehensive experiments on two leading GUI agent models, Ul-
TARS-1.5-7B (Qin et al. 2025) and OpenCUA-7B (Wang et al., |2025), across six GUI agents benchmarks
covering visual grounding and end-to-end evaluation in web, desktop, and mobile ( Our findings show
that GUI-KV enables GUI agents to operate with significantly reduced memory, while maintaining high
performance across six benchmarks. Empirically, GUI-KV recovers near—full-cache accuracy with modest
budgets (typically 10-20%) and matches or outperforms the best competing compression baselines across tasks,
occasionally even exceeding the full-cache accuracy at intermediate budgets. On efficiency, pre-filling overhead
is negligible (increase < 0.29%), while decoding compute drops substantially—for example, at a 40% budget
with five screenshots we reduce FLOPs per decoded token by 38.9% and simultaneously improve step accuracy
by +4.1%; the savings grow with more screenshots. Ablations further show complementary benefits: spatial
saliency is more effective when the number of screenshots is small, temporal redundancy becomes increasingly
beneficial as more screenshots are provided, and combining both yields the best performance across settings.

2 Related Work

Vision Token Compression. Recent approaches to reducing vision token computational burden fall
into two categories: architectural modifications and adaptive token pruning. |Chu et al. (2024) employ
lightweight projector architectures with average pooling layers to compress visual tokens. Adaptive methods
like LLaVA-PruMerge (Shang et al.| [2024)) and MADTP (Cao et all 2024) dynamically reduce tokens based
on importance scores derived from attention patterns. |(Chen et al|(2024) combine adaptive attention in early
layers with token pruning in later stages. Recently, |Chen et al.| (2025) extends these ideas to GUI agents
through context-aware simplification strategies.

KV Cache Compression. Post-training KV cache compression methods fall into four categories. Token-
wise eviction strategies like StreamingL.LM (Xiao et al., [2024) retain attention sinks and recent tokens for
infinite-length generation, while|Zhang et al. (2023)) and |Li et al.| (2024b) identify heavy-hitter tokens, though
potentially sacrificing context. Token-wise merging approaches preserve more information—Zhang et al.
(2024) consolidate information from multiple tokens, and [Wan et al.| (2024a) employ dynamic discriminative
operations based on semantic similarity. Static layer-wise reduction methods like|Cai et al.[(2025)) apply uniform
compression ratios across layers following a pyramidal structure but may overlook varying layer importance.
Quantization techniques reduce memory through precision reduction, with [Liu et al.| (2024) demonstrating
effective 2-bit asymmetric quantization and [Kang et al.| (2024]) achieving near-lossless compression through error
reduction frameworks. Most methods focus on text-based compression, overlooking multimodal challenges.
While Wan et al.| (2024b) address multimodal compression, they use fixed allocation strategies that ignore
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Figure 1: Attention sparsity for UI-TARS-1.5-7B across layers for screenshots from ScreenSpot-V2. All
scenarios exhibit extremely high sparsity (mostly > 0.99) across all layers.

inter-layer attention variations. Recent works by [Wan et al.| (2025]) and [Tu et al.| (2025]) introduce dynamic
allocation, advancing toward more adaptive multimodal compression strategies.

3 Preliminary & Analysis

3.1 GUI Agent Problem Definition

GUI agents are designed for GUI navigation tasks, where they sequentially generate actions and interact with
the GUI environment to achieve a specified goal (Qin et al., [2025; Wang et al., 2025)). This interaction can
be formulated as a sequential decision-making process. More formally, a GUI agent task can be modeled
as a Partially Observable Markov Decision Process (POMDP), defined by a tuple (S, A, F,R,O). At each
step t, the agent is in a state s; € S, which represents the true state of the GUI environment (e.g., the
current desktop environment). The agent receives a partial observation o, € O, which typically includes a
screenshot of the GUI. The agent also has access to the natural language instruction or goal G. Based on the
observation o; and its history of past observations and actions, the agent performs an action a; € A, such as
clicking or typing text. The environment then transitions to a new state s;1 ~ F(s¢,at), where F is the
state transition function. The agent receives a new observation ory1 ~ O(s:41) and a reward r; = R(s¢, az).
For interactive settings such as OSWorld-Verified, the interaction loop continues until a terminal action is
generated or a maximum number of steps is reached.

3.2 KV Cache in Vision-Language Models

When GUI agents process sequences of observations and generate actions, the underlying VLMs must
efficiently handle the multimodal inputs. A critical component in this process is the key-value (KV) cache
mechanism, which avoids redundant processing. Below, we provide an overview of KV caching.

Prefill phase. When a VLM encodes multimodal input, the visual encoder processes the screenshot to
generate visual tokens, which are then mapped to a unified embedding space through a projection layer.
Concurrently, any language input, such as the task goal, is tokenized and embedded. The language model
component of VLM processes these tokens in parallel. During this process, the key and value states are
cached in GPU memory to avoid recomputation in subsequent steps.

Decoding phase. After the prefill phase, the model generates action tokens auto-regressively. Each step
produces new key-value pairs corresponding to the newly generated token, which are appended to the cache.
For GUI agents that maintain history containing multiple high-resolution screenshots and long action outputs,
the KV cache can grow substantially, creating memory bottlenecks that limit the agent’s ability to process long
interaction sequences. To address this memory bottleneck, researchers have developed KV cache compression
techniques that maintain only a subset of the full cache while minimizing accuracy loss. These algorithms
operate along two main dimensions: (1) budget allocation across layers, and (2) token selection policies.

Budget Allocation. Given the transformer’s layered architecture, early work allocates equal KV cache
slots to each layer (Xiao et al. 2024; Zhang et al., |2023)), while recent work has shown that different layers
have varying sensitivity to cache reduction (Cai et all 2025; [Yang et al. 2024]).
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Figure 2: Performance comparison of KV cache methods on ScreenSpotV2. SnapKV’s uniform allocation
outperforms approaches that allocate varying budgets.

Token Scoring Policy. For a given cache budget v € (0,1] (i.e., keeping v of KV states for a layer),
we need a scoring function 1 to rank token importance. In practice, this scoring is typically computed
using observation tokens, the last w input tokens that serve as queries to determine which KV states are
most relevant to retain (Li et all 2024b). Let n be the number of total input prompt tokens, with indices
C ={1,2,...,n}. The scoring function ¢ : C — R™ assigns importance scores to each token based on the
attention they receive from these observation tokens. Based on the scoring function ¢ and budget v, we
select the indices with top scores:

Cp={ieC:[{j€C:v@) >} <[y nl} 1
3.3 High Spatial Redundancy in GUI

GUI screenshots exhibit fundamentally different visual characteristics compared to natural images, particularly
in terms of spatial redundancy. Unlike natural scenes that contain rich textures and continuous variations,
GUI interfaces are dominated by large uniform regions, such as blank spaces, solid-colored backgrounds, and
repeated Ul elements. This structural difference has profound implications for attention patterns in VLMs
and, consequently, for KV cache compression strategies.

To investigate whether current KV cache budget allocation strategies remain effective for GUI agents, we
analyze attention sparsity patterns across different GUI environments. We measure the sparsity of the
attention score matrix in different transformer layers during the prefill and decoding phases, where the
attention scores are computed from observation tokens (the most recent decoder tokens) to all cached tokens.
First, for each head h, we let Q" € R¥*% denote the queries of the last w input tokens, K" € R("—«)xdn he

Ah grh T
the previous key states, and A" = softmax(Q\/Ic% ) € Rw*(n=@) he the subset of attention scores from the

last w tokens to the previous tokens. Then, we aprly a filter with a relative threshold p to the attention score
matrix A":

Alhj if Afj >p- maxj(A?j) @)
0 otherwise

where threshold p € (0,1) controls the strength of induced sparsification. Following [Tu et al. (2025)), we
heuristically set p = 1%, such that the filtered-out scores have an insignificant impact on the output of the
transformer layer. After filtration, we calculate sparsity ¢ € [0, 1] as:

ThresholdFilter(A”, p);; = {

. ZHn_ij 1[ThresholdFilter(A", p);; = 0] @)
‘ {AL itn—w>j}]

which represents the percentage of zero entries. This metric captures how concentrated the attention
distribution is—higher sparsity indicates that the model focuses on fewer tokens.

We compute ¢ across transformer layers using GUI agent trajectories from ScreenSpotV2 (Wu et al., 2025)),
which provides diverse interaction scenarios spanning web, mobile, and desktop environments. Figure []
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Figure 3: Overview of GUI-KV. Spatial Saliency Guidance utilizes the L2 norms (r;) of Step ¢ visual
representations to identify intrinsically important features. Temporal Redundancy Scoring constructs a
subspace (QF') from Step ¢ keys to prune historical tokens that possess low projection residuals (p), indicating
redundancy. The final score combines these signals to retain only spatially salient and temporally unique KV
states.

reveals a striking finding: attention sparsity in GUI screenshots consistently averages above 0.99 across all
transformer layers, with the lowest values around 0.98. These are significantly higher than natural images,
which average 0.92 with minimums around 0.88 (Tu et al.l 2025). This extreme sparsity remains remarkably
stable across layers, forming an almost flat line when plotted against layer depth. In contrast, natural images
exhibit decreasing sparsity in deeper layers, reflecting the model’s need to integrate increasingly diverse visual
features for complex scene understanding.

This uniformly high sparsity suggests that existing budget allocation strategies may be suboptimal for GUI
agents. Methods like PyramidKV (Cai et al., 2025) and VL-Cache (Tu et al., |2025) allocate cache budgets
based on the assumption that attention sparsity varies significantly across layers. However, when sparsity
differences are minimal, their normalization procedures can artificially create budget variations that do not
reflect actual attention patterns. Specifically, VL-Cache normalizes attention sparsity scores before computing
per-layer budgets, which amplifies small numerical differences into substantial budget disparities even when
the underlying attention patterns are nearly identical.

To validate this hypothesis, we compare three budget allocation strategies on ScreenSpotV2 tasks: (1) |Li
et al| (2024b), which allocate equal budget across all layers; (2) PyramidKV, which heuristically assigns
more budget to shallower layers; and (3) VL-Cache, which computationally determines budgets based on
normalized attention sparsity.

As shown in Figure [2] SnapKV achieves significantly better performance than both PyramidKV and VL-Cache
across various compression ratios. This result confirms that uniform budget allocation is indeed more
appropriate for GUI environments, where the extreme spatial redundancy leads to consistently
high attention sparsity across all layers. The performance gap widens at higher compression ratios,
particularly when retaining only 5% to 20% of the original cache budget, suggesting that misallocated budgets
become increasingly detrimental when cache resources are scarce. These findings demonstrate that prior
studies on budget allocation strategies, developed primarily for natural images and text, are
not transferable to GUI agent tasks.

4 GUI-KV

In this section, we introduce our method GUI-KV, which enhances KV cache compression for GUI agents
through two novel mechanisms: (1) spatial saliency guidance that leverages the L2 norm of visual token
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Step t-2

Thought: As I'm looking at this
settings interface, I realize it might
not be easy to find the search
engine option by browsing directly.
However, the address bar suggests
I can search, so I might as well just
type "search engine" ...

Action:

type(content='search engine')

Step t-1

Thought: Great, I've finally found
the search engine settings page! I
see Bing is in the list, and next to
it are three vertical dots, which is
the 'more options' button I'm
looking for. Setting the default
search engine is actually very
simple...

Action:
click(start_box='(1128,856)')

Step t

Thought: It looks like things are
going smoothly now! I see
Microsoft Bing in the search
engine list and have already
expanded the options menu next
to it. Right here, there's a "Make
default" option. ...

Action:
click(start_box='(1079,797)')

QR decomposition & Subspace projection

Key Subspace of Step t Screenshot Spanned by Q'

Figure 4: Ilustration of our temporal redundancy scoring mechanism. We first perform QR decomposition
on the current screenshot at step ¢ to obtain a subspace spanned by Q. Then, we project key vectors ks of
visual tokens from previous frames onto Q7. The magnitude of the residual p (the component orthogonal to
the subspace) quantifies the visual token’s non-redundancy. In this example, k3 and k4 are less redundant
than k; and ky since they have larger residuals orthogonal to Q.

hidden states to better identify important tokens (§4.1]), and (2) temporal redundancy-aware scoring that
exploits the sequential nature of GUI interactions (§4.2). An overview of GUI-KV is shown in Figure

4.1 Spatial Saliency Guidance

GUI agents process screenshots, where only a small fraction of the visual tokens are typically relevant to the
task at hand. While attention mechanisms are designed to identify these salient regions, they are not always
sufficient. Furthermore, studies on vision transformers suggest that not all visual tokens contribute equally
to the model’s understanding. Some tokens act as “register-like” information sinks, aggregating content
from across the visual input, while others are less informative (Darcet et all,[2024). This motivates us to
supplement attention-based selection with a more direct measure of a token’s content strength, allowing us to
better identify salient visual information.

Let Z; and T; denote the set of visual token indices and text token indices in the current step (step t), and let
x; € R? be the residual-stream hidden state of token i at a given layer. We define per-token magnitudes with
r; = ||zi||2 and w, with a sample mean of ¢, and standard deviation of 7. Saliency score can be computed by
applying softmax to the standardized norms:

Si = [softmax(ﬁ)]i, (4)

where r = [r;]iez,, 7 > 0 is a temperature hyperparameter, and ¢ = 10~® for numerical stability. Intuitively,
if attention is “demand,” then S; is the normalized “payload.” The raw norm r; remains a reliable proxy
for the strength of the information carried by token i because the learned value and output projections
are approximately norm-preserving (Xiong et al.| [2020). Computing 7; on the residual-stream hidden state
before self-attention ensures that z; captures the accumulated content up to the given layer. The subsequent
standardization and softmax preserve the ordering induced by r; while yielding saliency weights that are
comparable across samples. By combining this normalized measure of absolute content strength with the
relational signal in the attention scores A;;, our method maintains both content magnitude and contextual
relevance in token selection.

We therefore score the current visual tokens by a linear combination of attention and norm:

wh B Azh + aS; if i € Ty (visual tokens)
R if i € T; (text tokens)
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where > 0 balances the two signals. We prefer an additive form over a product A; - S; for numerical
stability and for easier calibration of a. discusses the various S5; we experimented.

4.2 Temporal Redundancy Scoring

Consecutive GUI screenshots share substantial structure (e.g., static backgrounds, persistent UT elements),
while only a small subset of regions changes between steps. We capitalize on this temporal redundancy by
preferentially retaining tokens from earlier frames whose content is not already represented by the most
recent frame. At step t, let Z;_1,...,Z;_; denote the token indices of k previous images. For a head h of
dimensionality d,, let K" € RTX% be the key matrix at the selection layer for all tokens in the prompt.
Let ny = |Z;| denote the number of tokens in the last image, and let K%t be the submatrix of K" containing
the rows for indices in Z;. We compute a rank-r QR decomposition:

(K7,)' ~QIR!, Q] € R"™ ", (6)

where r is a fixed rank and Q" has orthonormal columns spanning a low-dimensional subspace of the
last image’s key space. We define the projector onto this subspace as P! := QrQ!T € R4 *dn. For any
previous-image token i € Z;_y, let k! € R1*? denote the i-th row of K". We define its redundancy score
relative to the last-image subspace as

pi = ||k (X — P

, (7)

so that tokens whose information lies largely in the span of the last image (small pf) are deemed redundant,
while large p? indicates genuinely new directions worth keeping. Computationally, for each head we form
Q! once from the last image and score previous-image tokens with two matrix multiplications per image,
K%j — (K%J QMQIT for j < t. Figure {illustrates an overview of our method.

4.3 Spatial and Temporal Combination

To combine spatial saliency with temporal redundancy, we compute p? for all tokens in Z; _; U---UZ;_j and
determine a percentile threshold per head. v, we set the threshold as

ﬁh = Percentile; _, ({p? cje€Li1U--- UL,IQ}). (8)

We then define the final scoring function that combines both spatial saliency and temporal redundancy:

Af‘ + aS; if i € Z; (current frame visual tokens)
O =S Al 1[ph > " ifi€ T, 1 U---UT,_y (previous frames visual tokens) 9)
Al if i € T (text tokens)

For each head h, we select the top-scoring tokens:
Chy ={ieC: | eC: Bl > < [n-41} (10)
where v € (0,1] is the budget applied uniformly across all heads.

The two mechanisms work synergistically: spatial saliency guidance identifies important visual tokens based
on their attention reception and representational strength, while temporal redundancy scoring filters out
previous-frame tokens that duplicate information already present in the current frame. This combination
ensures we retain tokens that are both intrinsically important and temporally unique, maximizing the
information content of the compressed KV cache. We provide a detailed algorithmic description of our
method in Algorithm [ and hyper-parameter selection in §C}

5 Experiments

5.1 Experimental Settings

Benchmarks. We assess the effectiveness of GUI-KV on six benchmarks. For GUI visual grounding,
which evaluates the ability to locate specific Ul elements from natural language descriptions, we use
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Table 1: Performance comparison of different KV cache compression methods across GUI agent benchmarks.
A represents the average absolute improvement of our method (GUI-KV) over the best performing baseline
across all budget levels, excluding the 100% (full cache) budget.

Dataset Model Method Budget A
1% 3% 5% 10% 15% 20% 40% 80% 100%
SnapKV 7.0 235 300 324 357 378 408 42.3 426
PyramidKV 4.6 139 20.8 264 295 335 388 42.3 426
UL-TARS-1.5-7B VL-Cache 0.1 103 158 187 203 233 253 268 426
GUL-KV 6.8 24.0 30.5 33.3 36.1 38.9 41.2 421 426 404
ScreenSpotPro
SnapKV 101 169 182 17.0 153 17.1 147 271  44.6
PyramidKV 15.4 142 145 114 145 125 133 145 446
OpenCUA-7B VL-Cache 1.6 138 151 152 128 163 152 145 446
GUI-KV 10.1 167 19.4 185 17.3 19.3 18.3 28.0 446 +1.4
SnapKV 16.3 626 77.0 834 853 868 88.2 835 883
PyramidKV 17.3 466 57.1 676 76.6 828 858 835 833
UL-TARS-1.5-7B VL-Cache 1.3 280 521 634 704 769 8.1 87.5 883
GUL-KV 16.7 63.6 79.1 83.5 857 87.9 88.2 89.3 883 407
ScreenSpotV2
SnapKV 41.9 707 73.4 734 737 636 67.3 746 927
PyramidKV ~ 16.1 34.6 41.1 41.0 41.0 63.0 57.2 744 927
OpenCUA-TB VL-Cache 1.1 503 572 604 67.8 555 650 76.2 927
GUL-KV 419 721 728 75.1 745 67.9 69.5 759 927 +14
SnapKV 18.5 26.0 289 39.0 41.9 445 47.4 465  49.9
PyramidKV ~ 11.1  20.7 247 283 314 368 443 465  49.9
UL-TARS-1.5-7B VL-Cache 2.1 6.0 8.6 245 395 427 461 459 499
AndroidControl GUI-KV 184 257 30.1 41.2 44.7 46.0 459 46.8 499 408
SnapKV 31 151 185 21.3 276 237 286 239 411
PyramidKV 1.9 11.1 151 21.3 273 27.4 21.8 245 411
OpenCUA-TB VL-Cache 00 02 25 114 127 199 275 35 411
GUI-KV 3.1 159 20.1 23.8 30.2 233 30.9 317 411 422
SnapKV 05 3.6 57 98 141 164 205 227 232
PyramidKV 0.9 23 37 57 90 101 191 227  23.2
ULTARS-1.5-7B VL-Cache 0.0 0.1 0.0 0.4 3.3 54  19.7 22.8 232
Multimodal- GUI-KV 05 34 6.5 12.7 16.5 18.4 21.9 22.8 232 +1.2
Mind2Web SnapKV 05 28 5.8 10.0 126 14.2 16.6 0.1 34.2
PyramidKV. 00 06 1.7 53 65 95 00 00 342
OpenCUA-TB VL-Cache 00 00 00 00 01 00 132 03 342
GUI-KV 04 31 44 94 137 14.2 156 13.1 342 +14
SnapKV 03 07 16 30 81 106 190 190 175
PyramidKV. 0.5 04 08 15 24 44 100 190 175
ULTARS-1.5-7B VL-Cache 0.5 26 1.9 5.7 2.2 2.2 2.9 2.3 17.5
AgentNetBench GUI-KV 02 10 18 6.1 11.9 16.3 21.6 22.6 175 423
SnapKV 1.2 45 46 77 112 101 11.1 283  66.8
PyramidKV. 0.2 09 1.1 28 45 67 179 29.0 668
OpenCUA-TB VL-Cache 00 06 07 18 05 45 04 00 668
GULKV 1.6 7.6 82 12.6 14.1 16.7 187 276 668 +3.6
SnapKV 22 32 69 161 166 184 193 227  26.0
PyramidKV. 1.9 28 1.9 63 95 150 159 200  26.0
UL-TARS-1.5-7B VL-Cache 0.5 0.0 0.0 0.0 0.0 167 152 19.8  26.0
OSWorld- GUI-KV 25 34 89 161 18.0 20.7 251 228 260 +1.5
Verified SnapKV 05 05 05 1.1 1.3 13 13 168 214
PyramidKV. 05 05 05 05 08 1.6 1.7 134 214
OpenCUA-TB VL-Cache 05 05 05 10 1.3 14 13 154 214
GUI-KV 05 08 06 08 10 1.6 1.7 17.5 214 402

ScreenSpotV2 (Wu et al., 2025) and ScreenSpot-Pro (Li et al.| 2025). For offline agent evaluation, which
tests action prediction on pre-collected interaction trajectories, we employ AndroidControl (Li et al., |2024a)),
Multimodal-Mind2Web (Deng et al., [2023)), and AgentNetBench (Wang et al.l |2025). For online agent
evaluation, which measures real-time task completion in live environments, we evaluate on OSWorld-Verified
(Xie et al.l [2024)).
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Metrics. We employ different evaluation metrics tailored to each benchmark. For ScreenSpot-V2 and
ScreenSpot-Pro, we measure click accuracy, defined as the proportion of test samples where the model’s
predicted coordinate falls within the ground truth bounding box. For OSWorld-Verified, we use success rate,
determined by whether a series of operations are successfully executed and specific milestones are achieved.
For the remaining benchmarks, we adopt step accuracy, which assesses whether a single predicted step
contains the correct operation (e.g., click, write) and arguments (e.g., coordinate or textual content). We
follow the same evaluation settings as UGround (Gou et al.| 2025]).

Models. We evaluate two top-performing GUI agent models, UI-TARS-1.5-7B (Qin et al.| [2025) and
OpenCUA-7B (Wang et al., |2025). These two models share the same vision encoder but employ distinct
language models, position encoding strategies, and training methods. UI-TARS-1.5-7B uses Qwen2.5 as
the language model and was trained with supervised fine-tuning (SFT) and Direct Preference Optimization
(DPO) (Rafailov et all 2023), where as OpenCUA-7B’s language model is based on Qwen2 and trained with
SE'T only.

Baselines. We consider three competitive and representative baselines: (1) SnapKV (Li et al.l |2024b) is a
classic and effective method that assigns a fixed budgets across all layers (2) PyramidKV (Cai et al.l 2025)
assigns a pyramid-shaped budgets to each layer based on herustics (3) VL-Cache (Tu et al.l [2025)) determines
the budget for each layer by computing the corresponding attention sparsity.

5.2 Accuracy Evaluation

Table [I] displays the comparison between GUI-KV and baseline methods on the evaluated six benchmarks.
We have the following observations:

GUI-KYV is the most effective in retaining Full KV cache performance. Across six benchmarks
and budgets from 1% to 80%, GUI-KV consistently matches or surpasses the best competing compression
schemes, recovering near — full-cache accuracy with modest budgets (often 10-20% for UI-TARS-1.5-7B). On
ScreenSpotPro and ScreenSpotV2, 10-20% already closes most of the gap, and by 40% the gap is negligible.
On four of six benchmarks, GUI-KV achieves positive average absolute gains over the best baseline at
sub-100% budgets, ranging from +0.7 to +3.6, with the largest improvements on online and offline agent
evaluation tasks (e.g., +2.2 on AndroidControl and +3.6 on AgentNetBench for OpenCUA-7B). Notably, on
multiple datasets such as ScreenSpotV2 and AgentNetBench, GUI-KV slightly exceeds the full-cache accuracy
at 40-80% budgets, suggesting that targeted KV pruning can reduce long-context distraction. Compared
to baselines, GUI-KV exhibits smoother, near-monotonic gains as the budget increases and avoids the
high-budget regressions that several baselines show; at ultra-low budgets (1-3%), a baseline may edge out
GUI-KV on isolated cells, but GUI-KV reliably overtakes by 5-10% and then dominates across mid and
high budgets.

UI-TARS-1.5-7B is more robust than OpenCUA-7B against evicting KV states. UI-TARS-1.5-7B
retains a higher fraction of full-cache performance under aggressive compression, reaching near saturation by
10-20% budget on visual grounding (e.g., 83-89% on ScreenSpotV2) and maintaining strong step accuracy
on action prediction (e.g., 41.2% at 10% and 46.0% at 20% on AndroidControl with GUI-KV. In contrast,
OpenCUA-7B is more sensitive to KV eviction, showing larger drops and non-monotonic behavior across
budgets for multiple methods (e.g., pronounced fluctuations on ScreenSpotPro and Multimodal-Mind2Web).
Even with GUI-KV, OpenCUA-7B typically requires more budget to close the gap to full-cache performance
and still trails UI-TARS-1.5-7B at comparable budgets on the harder action-prediction tasks (e.g., 23.8%
at 10% and 23.3% at 20% on AndroidControl). These trends indicate that UI-TARS-1.5-7B’s architecture
and training methods are intrinsically more tolerant to KV state pruning, while OpenCUA-7B benefits
disproportionately from GUI-KV but remains less robust overall.

5.3 Efficiency Analysis

We quantify efficiency by reporting MFLOPs per token for pre-filling and decoding on UI-TARS-1.5-7B
evaluated on AgentNetBench. We vary the budget v as well as the number of screenshots (including current
and the most recent previous frames). As shown in Table [2f when v = 40% in the 5 screenshot settings, we
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Table 2: Efficiency analysis conducted on AgentNetBench,
assessed by MFLOPs per decoded token.

i
o]

_16 r &
# Screenshots KV Cache ~ (%) MFLOPs/ decoded token g 4 Ng $ 4 -
Full Cache 100 213.2 g
3
3 GULKV 20 123.6 (az.0%) g2
GULKV 40 145.3 (1.5 §0l ¢
Full Cache 100 290.4 ’ ,
s 4
5 GUL-KV 20 139.5 (52.0%)
GUI-KV 40 177.4 9
(:38.9%) e 3 5 7 10 15 20 25
Full Cache 100 471.5 Number of Screenshots
10 Full Cache Spatial only ~ ~@- Temporal only — ~@- GUI-KV SnapkV
GUI-KV 20 175.3 (o2.5%)
GULKV 40 249.9 47 0%

Figure 5: Ablation studies on AgentNetBench
with various number of screenshots.

observe a 38.9% reduction in MFLOPs per decoded tokens and an absolute increase in step accuracy by 4.1%
compared to the full cache baseline (see Table . The savings grow with more screenshots, indicating larger
gains under image-heavy contexts. Pre-filling overhead is negligible (increase < 0.29% across all settings) as
the QR step operates on the (dj, x n;) block for the last image and costs O(d2n;) per head, where dj, is the
head dimension and n; = |Z;| is the number of visual tokens in the current image. This is dominated by the
O(n?dy,) attention cost per head during pre-filling with total sequence length n, so the added computation
is negligible, while decoding compute drops substantially. Overall, GUI-KV achieves significant decoding
FLOP reductions with minimal pre-filling overhead.

5.4 Ablation Studies

We analyze the contribution of the two components of GUI-KV—spatial saliency guidance ( and
temporal redundancy scoring (—on AgentNetBench using UI-TARS-1.5-7B with a budget of v = 20%
while varying the number of screenshots. As shown in Figure [5] among the variants, the spatial-only guidance
is more effective with fewer screenshots (< 7), while the temporal-only guidance excels as more screenshots
are added, capitalizing on cross-frame redundancy. Combining both guidance, GUI-KV achieves the best
performance, confirming the synergistic nature of the two components. All variants of our method consistently
outperform the SnapKV baseline across all screenshot counts, demonstrating the overall effectiveness of our
approach. Notably, with just a 20% KV cache budget at the 7-screenshot setting, GUI-KV matches the
performance of the full-cache counterpart, highlighting its efficiency. Performance for all methods peaks at
7 screenshots and declines thereafter, suggesting that excessive visual context introduces distraction. We
observe that GUI-KV exhibits a steeper performance drop beyond 7 screenshots compared to full-cache,
indicating that aggressive compression (20% budget) may amplify sensitivity to noisy visual context. This
represents a limitation when operating under both extreme compression and excessive screenshot counts
simultaneously. However, at practical operating points with moderate compression ratios (40-80% budgets as
shown in Table , GUI-KYV can effectively reduce such long-context distraction, even slightly exceeding
full-cache performance on datasets like ScreenSpotV2 and AgentNetBench.

6 Conclusion

This paper studies KV cache compression for GUI agents and introduces GUI-KV, a plug-and-play approach
that exploits the spatio-temporal structure of GUI interactions. Our analysis reveals that attention patterns on
GUI screenshots are highly sparse and relatively uniform across layers, making heuristic layer-wise schedules
designed for natural images suboptimal. Building on these insights, GUI-KV combines residual-stream
saliency to better surface semantically important visual tokens with a redundancy-aware temporal scoring rule
that preserves information not already captured by the most recent frame. Across six benchmarks spanning
visual grounding, offline action prediction, and online evaluation, GUI-KV recovers near—full-cache accuracy
at modest budgets and consistently outperforms strong baselines over a wide range of compression ratios. On
UI-TARS-1.5-7B, 10-20% of the cache typically closes most of the performance gap on visual grounding, and
competitive step accuracy is maintained on action-prediction tasks. Moreover, decoding compute drops sub-
stantially with negligible prefill overhead, enabling deployment of GUI agents under tight memory constraints.
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7 Ethics statement

This work studies inference-time KV cache compression for GUI agents and adheres to the ICLR Code of
Ethics. The research does not involve new data collection from human subjects, user studies, or crowdsourcing.
All experiments are conducted on publicly available benchmarks for GUT agents and web automation, including
ScreenSpotV2 and ScreenSpot-Pro for GUI grounding (Wu et al.| [2025; |Li et al., |2025|), AndroidControl and
Multimodal-Mind2Web for offline action prediction (Li et al., |2024a} Deng et al., [2023), AgentNetBench
(Wang et all 2025), and OSWorld-Verified for online evaluation (Xie et al.,|2024). We used these datasets
strictly under their respective licenses and terms of use and did not modify or augment them with additional
data containing personally identifiable information. To our knowledge, the benchmarks do not include
sensitive personal data; our study focuses on efficiency of inference-time caching and does not attempt to
extract, infer, or reconstruct private information.

For model evaluation, we rely on existing GUT agents, UI-TARS-1.5-7B (Qin et al., 2025 and OpenCUA-7B
(Wang et al., [2025)), and do not introduce additional training or fine-tuning on user data. For the online
setting (OSWorld-Verified), we followed the benchmark’s official evaluation protocol, confined tasks to benign
workflows, and did not attempt to circumvent security controls, access private accounts, or perform actions
beyond the scope of the benchmark. Our method improves computational efficiency and memory usage
for GUI agents; like other advances in automation, such capabilities could be misused if deployed without
adequate safeguards. We encourage responsible use aligned with the Code of Ethics, organizational policies,
and applicable laws, and we discourage applications that violate privacy, fairness, or safety norms.

We disclose the use of large language models only for polishing the writing of this paper (see Appendix), not
for conducting experiments or generating data or labels.

8 Reproducibility statement

We aim to make the study reproducible by specifying models, datasets, metrics, and implementation details
in the main text and appendix. The proposed method is defined in with algorithmic details provided in
§A| (Algorithm . Experimental settings, including benchmarks, evaluation metrics, compared baselines, and
model backbones (UI-TARS-1.5-7B and OpenCUA-7B), are described in Hyperparameters used across
experiments (e.g., rank r, temperature 7, and trade-off coefficients) are reported in Additional ablations
and profiling results, including breakdown of prefill-time overhead and sensitivity to the rank parameter, are
included in the appendix tables referenced therein. All datasets we evaluate on are public and cited in the
paper. Together, these details are intended to enable independent verification of the reported results. To
further facilitate reproducibility, our implementation will be made publicly available as open-source code
upon publication.
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A Details of GUI-KV

We provide a detailed algorithmic description of our KV cache compression method in Algorithm [I The
algorithm combines spatial saliency guidance with temporal redundancy scoring to selectively retain the most
informative tokens in the KV cache. The process consists of three main steps: (1) computing spatial saliency
scores that combine attention weights with hidden state norms, (2) identifying temporally redundant tokens
through subspace projection, and (3) combining both signals to select the final set of tokens for retention.

Algorithm 1 GUI-KV: Spatio-Temporal KV Cache Compression for GUI Agents

Require: Full context token indices C, partitioned into current visual Z;, past visual Z.,, and text T .
Require: Per-head key matrices { K"}Z hidden states X, per-head attention scores {A"} .
Require: Hyperparameters: saliency weight «, budget ratio v, QR rank 7.

1: Let n < |C| be the total number of tokens.
2: Initialize sets of kept indices Cﬁcpt + ) for each head h.
3: for each head h=1,...,H do
4: > Compute Spatial Saliency Scores
5: Initialize spatial scores ¥ € R™.
6: for each token index i € C do
7: if i € Z; then > Visual tokens
8: S |lzill2 > L2 norm of residual-stream hidden state
9: ¢lh — A? + auS;
10: else > Text tokens
11: P Al
12: end if
13: end for
14: > §4.2; Compute Temporal Redundancy Scores
15: Let K%t be the key matrix rows for indices in the current frame Z;.
16: (K%)" ~ Q!'R} > Rank-r QR decomposition
17: Ph QM7 > Projector onto current frame’s key subspace
18: Initialize redundancy scores p" for tokens in Z,.
19: for each past visual token i € 7., do
20: kP < i-th row of K"
21: ol ||kI(T — PP)||2 > Residual norm (non-redundancy)
22: end for
23: 7 « Percentile; ., ({p? 1j € I<t}) > Redundancy threshold
24: > Combine Scores and Select Tokens
25: Initialize final scores ﬁh e R".
26: for each token index i € C do
27: if i € Z; then > Apply temporal filter to past visual tokens
25 G b1t > 1)
29: else > Keep spatial score for current visual and all text tokens
30: O PP
31: end if
32: end for
33: Let k < [n- 7] > Number of tokens to keep based on budget
34: Cgh + indices of top-k tokens from C based on scores )"
35: end for
36: return {Cgh ML > Return the set of indices to keep for each head
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Table 3: Compression breakdown in GFLOPs (averaged across a single instance).

Component GFLOPs
Attention Scoring 4.607
QR Decomposition 0.013
Projection 0.917
Top-K Selection 0.007

Memory Gathering 0.057

Table 4: Performance of UI-TARS-1.5-7B with GUI-KV on AgentNetBench under various budgets and rank
r.

Rank r Budget

1% 3% 5% 10% 15% 20% 40% 80%
8 0.2 09 1.9 6.3 9.9 14.6 19.2 21.7
16 0.2 05 1.8 6.8 10.9 14.3 18.4 19.3
32 0.2 1.0 1.8 6.1 11.9 163 21.6 22.6
64 0.2 0.7 1.8 6.4 11.5 16.6 19.6 20.1
128 0.2 09 1.9 6.3 9.9 14.6 19.2 21.7

B Further Discussions

B.1 Compression Overhead

We profile the computation introduced by GUI-KV during the prefill phase and observe that it is negligible
relative to the attention scoring computation. We measure the overhead using UI-TARS-1.5-7B on the
AgentNetBench benchmark. As summarized in Table [3] attention scoring dominates the cost, while QR
decomposition, top-k selection (0.007 GFLOPs; 0.15%), and memory gathering (0.057 GFLOPs; 1.22%)
together contribute under 2% overhead. Consequently, the QR-based subspace projection in our proposed
method adds a vanishingly small fraction to prefill-time computation and does not hinder throughput.

B.2 The Impact of » in Temporal Redundancy Scoring

We aim to understand the impact of different values of r. We vary different values of r and test UI-TARS-1.5-
7B on AgentNetBench. Table 4| show the results. We found that various values of r does not yield significantly
different results as all settings outperforming the other baselines in Table [I| Among these values, r = 32
results in the best overall performance.

B.3 Effectiveness of Other Spatial Saliency Guidance

In the early stage of our study, we experimented with other spatial saliency guidance. Essenatially, we can
replace S; discussed in with other methods that indicate spatial saliency. This includes: (1) Pixel
Histogram Entropy: we transform the current screenshot into gray-scale image. Then, we compute
histogram probability for each color bin b,b € {1,...,256}. S; for this method is defined as computing the
entropy of each histogram probability for each image patch. (2) Sobel Filter: Sobel Filter (Sobel, [1968]) is a
classic operator for detecting edges in an image. S; is defined as the output of a 3 x 3 Sobel operator. (3)
Center-Surround Contrast: For each patch, we compare its average color to the average color of a larger
surrounding region. A large difference implies high saliency. Concretely, we convert the image from RGB to
CIELAB, in which the Euclidean distance between two colors approximates the perceived difference to the
human eye.

The results are summarized in Table We observe that different guidance approaches have their own
strengths. For example, Center-Surround Contrast is most effective in the 10-20%, while Pixel Histogram
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Table 5: Performance of U-TARS-1.5-7B with GUI-KV on ScreenSpot-V2 using different spatial saliency
guidance under various budgets.

Spatial Saliency Guidance Budget

1% 3% 5% 10% 15% 20% 40% 80%
Pixel Histogram Entropy 17.3 61.1 76.2 835 855 86.8 83.1 88.9
Sobel Filter 1.2 10.3 21.5 33.7 432 464 80.1 87.8
Center-Surround Contrast 17.0  60.1 76.7 85.6 86.1 88.0 87.7 88.3

Residual Stream L2 Norm (§4.1 16,7 63.6 79.1 835 8.7 879 88.2 89.3

Entropy performs the best at 1% budget. Overall, the best-performing method is the L2 Norm of the residual
stream outlined in §4.1]

C Hyper-parameters Selection

In this section, we illustrate the values of the hyper-parameters used in our experiments. We set the QR rank
to r = 32 so that the projector in §4.2] spans a compact representation of the latest frame. The temperature
for normalizing residual-stream norms in Equation is fixed at 7 = 3.5, and the saliency-to-attention

trade-off in the same scoring rule uses a = 2 (Equation ) Finally, we retain w = 8 observation tokens
when forming the queries that drive token scoring, as described in

D Large Language Models Usage Statement

Large language models are only used for polishing the content of this paper.
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