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Abstract

The ability to detect whether an object is a 2D or 3D object is extremely
important in autonomous driving, since a detection error can have life-
threatening consequences, endangering the safety of the driver, passengers,
pedestrians, and others on the road. Methods proposed to distinguish
between 2 and 3D objects (e.g., liveness detection methods) are not suitable
for autonomous driving, because they are object dependent or do not
consider the constraints associated with autonomous driving (e.g., the need
for real-time decision-making while the vehicle is moving). In this paper, we
present EyeDAS , a novel few-shot learning-based method aimed at securing
an object detector (OD) against the threat posed by the stereoblindness
syndrome (i.e., the inability to distinguish between 2D and 3D objects).
We evaluate EyeDAS ’s real-time performance using 2,000 objects extracted
from seven YouTube video recordings of street views taken by a dash cam
from the driver’s seat perspective. When applying EyeDAS to seven state-
of-the-art ODs as a countermeasure, EyeDAS was able to reduce the 2D
misclassification rate from 71.42-100% to 2.4% with a 3D misclassification
rate of 0% (TPR of 1.0). Also, EyeDAS outperforms the baseline method
and achieves an AUC of over 0.999.

1 Introduction

After years of research and development, automobile technology is rapidly approaching
the point at which human drivers can be replaced, as commercial cars are now capable
of supporting semi-autonomous driving. To create a reality that consists of commercial
semi-autonomous cars, scientists had to develop the computerized driver intelligence required
to: (1) continuously create a virtual perception of the physical surroundings (e.g., detect
pedestrians, road signs, cars, etc.), (2) make decisions, and (3) perform the corresponding
action (e.g., notify the driver, turn the wheel, stop the car).

While computerized driver intelligence brought semi-autonomous driving to new heights
in terms of safety (1), recent incidents have shown that semi-autonomous cars suffer from
the stereoblindness syndrome: they react to 2D objects as if they were 3D objects due
to their inability to distinguish between these two types of objects. This fact threatens
autonomous car safety, because a 2D object (e.g., an image of a car, dog, person) in a
nearby advertisement that is misdetected as a real object can trigger a reaction from a
semi-autonomous car (e.g., cause it to stop in the middle of the road), as shown in Fig. 1.
Such undesired reactions may endanger drivers, passengers, and nearby pedestrians as well.
As a result, there is a need to secure semi-autonomous cars against the perceptual challenge
caused by the stereoblindness syndrome.

The perceptual challenge caused by the stereoblindness syndrome stems from object detectors’
(which obtain data from cars’ video cameras) misclassification of 2D objects. One might
argue that the stereoblindness syndrome can be addressed by adopting a sensor fusion
approach: by cross-correlating data from the video cameras with data obtained by sensors
aimed at detecting depth (e.g., ultrasonic sensors, radar). However, due to safety concerns, a
"safety first" policy is implemented in autonomous vehicles, which causes them to consider a
detected object as a real object even when it is detected by a single sensor without additional
validation from another sensor (2; 3). This is also demonstrated in Fig. 1 which shows how
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Figure 1: Two well-known incidents that demonstrate how Teslas misdetect 2D objects as
real objects.

a Tesla’s autopilot triggers a sudden stop due to the misdetection of a 2D object as a real
object, despite the fact that Teslas are equipped with radar, a set of ultrasonic sensors, and
a set of front-facing video cameras.

In addition, while various methods have used liveness detection algorithms to detect whether
an object is 2D/3D (4; 5; 6), the proposed methods do not provide the functionality required
to distinguish between 2D/3D objects in an autonomous driving setup, because they are
object dependent (they cannot generalize between different objects, e.g., cars and pedestrians)
and do not take into account the real-time constraints associated with autonomous driving.
As a result, there is a need for dedicated functionality that validates the detections of video
camera based object detectors and considers the constraints of autonomous driving.

In this paper, we present EyeDAS , a committee of models that validates objects detected by
the on-board object detector. EyeDAS aims to secure a single channel object detector that
obtains data from a video camera and provides a solution to the stereoblindness syndrome,
i.e., distinguishes between 2 and 3D objects, while taking the constraints of autonomous
driving (both safety and real-time constraints) into account. EyeDAS can be deployed on
existing advanced driver-assistance systems (ADASs) without the need for additional sensors.

EyeDAS is based on few-shot learning and consists of four lightweight unsupervised models,
each of which utilizes a unique feature extraction method and outputs a 3D confidence score.
Finally, a meta-classifier uses the output of the four models to determine whether the given
object is a 2 or 3D object.

We evaluate EyeDAS using a dataset collected from seven YouTube video recordings of
street views taken by a dash cam from the driver’s seat perspective; the 2D objects in the
dataset were extracted from various billboards that appear in the videos. When applying
EyeDAS to seven state-of-the-art ODs as a countermeasure, EyeDAS was able to reduce the
2D misclassification rate from 71.42-100% to 2.4% with a 3D misclassification rate of 0%
(TPR of 1.0). We also show that EyeDAS outperforms the baseline method and achieves an
AUC of over 0.999.

In this research we make the following contributions: (1) we present a practical method for
securing object detectors against the stereoblindness syndrome that meets the constraints of
autonomous driving (safety and real-time constraints), and (2) we show that the method
can be applied using few-shot learning, can be used to detect whether an inanimate object is
a 2D or 3D object (i.e., distinguishes between a real car from an advertisement containing
an image of a car), and can generalize to different types of objects and between cities.

The remainder of this paper is structured as follows: In Section 2, we review related work.
In Section 3, we present EyeDAS , explain its architecture, design considerations, and each
expert in the committee of models. In Section 4, we evaluate EyeDAS ’s performance under
the constraints of autonomous driving, based on various YouTube video recordings taken by
a dash cam from several places around the world. In Section 5 we discuss the limitations of
EyeDAS , and in Section 6, we present a summary.
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2 Related Work

The ability to detect whether an object is a 2D or 3D object is extremely important
in autonomous driving, since a detection error can have life-threatening consequences,
endangering the safety of the driver, passengers, pedestrians, and others on the road.
Without this capability, Tesla’s autopilot was unintentionally triggered, causing the car to:
(1) continuously slam on the brakes in response to a print advertisement containing a picture
of a person that appeared on a bus (7), and (2) stop in response to a billboard advertisement
that contained a stop sign (8). Moreover, attackers can exploit the absence of this capability
and intentionally trigger: (1) Tesla’s autopilot to suddenly stop the car in the middle of a
road in response to a stop sign embedded in an advertisement on a digital billboard (2), and
(2) Mobileye 630 to issue false notifications regarding a projected road sign (9).

The need to detect whether an object is 2 or 3D is also important for authentication systems
(e.g., face recognition systems) where the identity of a user can be spoofed using a printed
picture of the user. Various methods have been suggested for liveness detection (4; 5; 6),
however the two primary disadvantages of the proposed methods are that they: (1) fail to
generalize to other objects (e.g., distinguish between a real car and a picture of car), since
they mainly rely on dedicated features associated with humans (4) (e.g., eye movements (5),
facial vein map (6)), which makes them object dependent; or (2) have high false negative
rates for pictures of objects that were not taken from a specific orientation, angle, or position
(e.g., they fail to detect liveness if the picture of the person was taken from the back). As a
result, these methods are not suitable for autonomous driving.

3 EyeDAS

The requirements for a method used to secure the perception of autonomous cars against
stereoblindness syndrome are as follows. The method must be capable of: (1) operating under
the constraints of autonomous driving, and (2) securing an object detector that obtains data
from a single video camera, because a few commercial ADASs, including Mobileye 630 PRO,
rely on a single video camera without any additional sensors, and (3) utilizing just a small
amount of training data; the fact that there may be just a small amount of 2D objects in
each geographical area necessitates a method with high performance and minimum training
so that it can be generalized to different types of objects and between geographical locations.

3.1 Architecture

Fig. 2 provides an overview of EyeDAS ; whenever an object is detected by the vehicle’s
image recognition model, it is tracked during t consecutive frames sampled at a frequency
of f frames per second (FPS), cropped from each frame and serially passed to EyeDAS .
EyeDAS then predicts whether the object is a 2D (e.g., an image of a person) or 3D object
(e.g., a real person).

Let x = (x1, ..., xt−1, xt) be a time series of t identical RGB objects cropped from t consecutive
frames where each object is centered. To predict whether an object is 2D or 3D, we could
build a supervised machine learning model which receives x, which consists of images of
an object to classify, and predicts whether the object detected is 2D or 3D. However, such
an approach would make the machine learning model reliant on specific features and thus
would not generalize to objects extracted when the vehicle is traveling in different locations
or at different speeds, or when the vehicle is approaching the object from different angles or
distances.

To avoid this bias, we utilize the committee of experts approach used in machine learning
applications (10), in which there is an ensemble of models, each of which has a different
perspective of interpreting the incoming data. By combining different perspectives, we (1)
create a more resilient classifier that performs well even in cases where one aspect fails to
capture the evidence, and (2) reduce the false alarm rate by focusing the classifier on just the
relevant input features; EyeDAS consists of an ensemble of unsupervised models (experts),
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Figure 2: EyeDAS ’s architecture. When an object is detected, (i) a time series of the cropped
object images is transferred to EyeDAS , (ii) four types of unique features are processed by
four unsupervised models (i.e., experts), resulting in four 3D confidence scores, and (iii) the
meta-classifier model interprets the confidence scores and makes the final decision regarding
the object (2D or 3D).

each of which outputs a 3D confidence score, and a supervised model (meta-classifier), which
produces the final outcome (decision) given the set of confidence scores.

Although each of the proposed unsupervised models (experts) focuses on a different perspec-
tive, they have a common property: given x, which consists of images of an object to classify
as 2D or 3D, each model measures a difference between each two consecutive elements in the
series; in this study, we show that the combination of a proper feature extraction method
together with the proper distance metric (applied between each two consecutive elements)
is a good basis for building such a classifier. In addition, decisions based on a distance
observed between two consecutive elements in a given series allows EyeDAS to generalize;
this approach minimizes dependency on object types or geographical locations. In addition,
EyeDAS finds the optimal balances between time to decision and classification accuracy; we
compare EyeDAS utilizing t > 1 object frames to a state-of-the-art image classifier that is
designed to process a single frame at a time.

From the perspective of a software module like EyeDAS , a 3D object itself is not expected
to change significantly within a short period of time, even in cases in which the 3D object
is a human, animal, or vehicle (i.e., a real object). Therefore, it is not trivial to find
distance metrics that can detect statistically significant differences that: (1) allow accurate
differentiation between 2D and 3D objects by considering just the object, and (2) can be
computed quickly. Therefore, we suggest a time-efficient approach that considers objects
entangled with their close surrounding background.

Each of the proposed unsupervised models utilizes a unique feature extraction method and a
corresponding distance metric; these models are designed to process image time series of
any size t (t > 1). This property is crucial, since the exact time point at which there is a
significant difference between two images (in cases in which the object detected is 3D) is
unpredictable. In addition, the images to analyze should be represented in such a way that
ensures that a statistically significant difference can be efficiently obtained for 3D objects,
while the error rate for 2D objects is minimized. In other words, considering the objects
entangled with their close surrounding background, we are interested in feature extraction
methods whose outcomes for 2D objects and 3D objects are statistically distinguishable
within a short period of time.

3.2 Proposed Models

Our committee consists of four unsupervised models, each focusing on a different perspective
(see Fig. 3 for a demonstration of each model’s perspective); each model receives the time
series of consecutive images of an object to classify, extracts features from each image,
measures a type of difference between the features extracted from two consecutive images,
and finally outputs a 3D confidence score. Additional details on the four models are provided
below:
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Figure 3: Examples of EyeDAS models’ views on 2D and 3D objects and the corresponding
distances (both raw and EyeDAS ’s distances are presented) calculated as 3D confidence
scores.

Blurring Model (B) - This model utilizes the automatic focus (auto-focus) capability of
video cameras commonly used to build 3D cameras (11). Unlike 2D object images, for 3D
object images, the blurring effect differs and is applied alternately on the object and its
surrounding background during the auto-focus process; this is reflected in a large amount of
contrast, which is observed when examining the blurring maps (12) corresponding to the
raw images. Thus, using the structural image similarity measure proposed by Wang et al.
(13), the blurring model outputs the maximum value obtained by calculating the differences
between each two consecutive blurring maps.

Sharpness Model (S) - This model utilizes the possible image sharpness-level instability
observed in 3D object images due to the objects’ movements; the sharpness model extracts
the overall sharpness level (a numeric value) from each raw image received, using the method
described by Bansal et al. (14), and outputs the maximum value obtained by calculating the
differences between each two consecutive sharpness levels.

Color Model (C) - This model utilizes the possible movement expected in the surrounding
environment of 3D objects; this movement is reflected in a large difference in the color
distributions of the raw images. Thus, the color model extracts the color distributions from
each raw image using a clustering algorithm (15), computes the size of the largest cluster
observed, and then outputs the maximum value obtained by calculating differences between
each two consecutive elements.

Edge Model (E) - This model is based on the Sobel edge detector (16), a gradient-based
method for estimating the first order derivatives of the image separately for the horizontal
and vertical axes; these derivatives are not expected to change significantly for static objects
like 2D objects. The edge model operates similarly to the blurring model except for one
thing: given the raw images, the edge model extracts the edging maps instead of the
blurring maps for comparison; extraction is performed using the method described by Gao
et al. (17).

Meta-Classifier - To make a prediction as to whether or not an object is a 2D or 3D
object, we combine the knowledge of the unsupervised models described above in a final
prediction; we utilize a gradient boosting (GB) based binary classifier (18) trained on the
outputs of the models. We choose the GB algorithm, since it can capture nonlinear function
dependencies; in our case, the above unsupervised models complement each other, and their
output scores form a nonlinear relationship.

The reader can use the following link to download the code that implements the method
(the link will be added after the review, the project zip file has been already shared during
paper submission).
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4 Evaluation

The experiments described in this section were designed in recognition of the needs of
autonomous driving in the real world; to ensure safety, a solution needs to both accurately
distinguish between 2D and 3D objects and make a fast decision.

The experiments are aimed at evaluating: (1) the performance of each expert in the committee,
(2) the performance of the entire committee, (3) improvement in the false positive rate of
ODs when EyeDAS is applied for validation, (4) the practicality of EyeDAS in real-time
environments (in terms of computational resources and speed), and (5) the ability to generalize
between objects (i.e., humans, animals and vehicles) and geographical locations (i.e., cities).

All the experiments described in this section, including the speed and memory benchmark
(described in Section 4.4), were conducted on an Intel 2.9 GHz Intel Core i7-10700 and 32GB
RAM. The machine’s operating system was Windows 10.

4.1 Experiment Setup

Dataset. Since some ADASs (e.g., Mobileye 630 PRO) rely on a single channel camera,
all of the data collected for our experiments was obtained from single-channel cameras; we
utilized seven YouTube video recordings 1 of street views taken by a dash cam from the
driver’s seat perspective. The distribution of the dataset represents the real distribution of
2D and 3D objects encountered by autonomous driving in the real world: 2,000 RGB objects
(i.e., humans, animals, and vehicles) were extracted from driving view videos taken in seven
cities: New York (NY, USA), San Francisco (CA, USA), Dubai (United Arab Emirates),
Miami (FL, USA), London (UK), Los Angeles (CA, USA), and George Town (Singapore), of
which approximately 95% are 3D objects and 5% are 2D objects extracted from billboards.

The objects were extracted and cropped using the highest performing OD described by
Redmon et al. (19); in our experiments, each input instance x associated with an object to
classify contains up to five images taken at 200 millisecond intervals, starting at the time
point at which an object was detected by the OD. Input instance xi is labeled as ‘True‘ if
the instance represents a 3D object and ‘False‘ if the instance represents a 2D object.

Training. We denote TR3D and TR2D as two training sets representing 3D and 2D objects
respectively. To avoid an unbalanced training set, we extend TR2D by utilizing known image
data augmentation techniques (20) to randomly selected instances from TR2D; we apply the
rotation technique.

Given the outputs calculated by the unsupervised models for each input instance (i.e., the 3D
confidence scores), the final meta-classifier training was performed; the best hyperparameters
for training were selected using the grid search algorithm (21) using the random shuffling
split method and 10-fold cross-validation. We vary the number of estimators in the set of
{20, 25, ..., 40} trees, while we change the maximum depth of the trees in the set of {2, 3, 4}.
To select the best set of hyperparameters, we evaluated the meta-classifier’s performance in
terms of accuracy.

In all of the experiments described in this section: (1) |TR3D| = 150 and |TR2D| = 70, and
(2) a decision was made within 200 milliseconds from the moment the object was detected
by the OD (i.e., t = 2).

4.2 Results

Performance. In Fig. 5, we present the receiver operating characteristic (ROC) plot and
the area under the ROC (AUC) for different combinations of the blurring (B), sharpness
(S), color (C), and edge (E) models; the combination of all four is our proposed method.
The ROC plot shows the true positive rate (TPR) and false positive rate (FPR) for every
possible prediction threshold, and the AUC provides an overall performance measure of a
classifier (AUC=0.5: random guessing, AUC=1: perfect performance).

1New York City (USA, NY) San Francisco (USA, CA) Dubai (UAE) Miami (USA, FL) London
(UK) Los Angeles (USA, CA) George Town (Singapore)
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In our case, there is a critical trade-off that must be considered: the classification threshold.
A lower threshold will decrease the FPR but often decrease the TPR as well. In Table 1,
we provide the TPR and FPR of the models when the threshold is set at 0.5 and for the
threshold value at which the TPR=1. As can be seen, the use of all of the proposed models
(B+S+C+E) in combination outperforms all other model combinations.

Figure 4: 2D misclassification rates using
state-of-the-art object detectors.

Figure 5: The values of the ROC curve
and AUC metrics for different model com-
binations (B: blurring model, S: sharpness
model, C: color model, E: edge model).

In Table 2, we compare EyeDAS ’s performance to that of two other approaches: (1) baseline
models based on the state-of-the-art pre-trained image classifiers (i.e., VGG16, VGG19 and
Resnet50 (22)); we utilize the known transfer learning technique (23) by re-training these
models, and (2) an optimized model similar to EyeDAS , except that it is based on a single
expert model which considers the raw images as is (i.e., it computes the image similarity based
distance (13) between the raw images directly, without extracting any features as EyeDAS
does). In both cases, 220 instances were randomly selected for training; the distribution of 3D
and 2D images is approximately 66.7% and 33.3% respectively, and the data augmentation
technique described above was applied to avoid an unbalanced training set.

Each baseline model was re-trained by (1) freezing all the layers except for the output layer
which was replaced by two trainable fully connected layers, (2) randomly picking 50 instances
from the training set to serve as the validation set, (3) pre-processing the input data (i.e.,
image resizing and scaling), and finally (4) minimizing the categorical_crossentropy loss
function on the validation set using the Adam optimizer. The first new layer contained 128
neurons and attached with the relu activation function, and the second layer (output layer)
contained two neurons and attached with the softmax activation function. Increasing the
first layer’s neurons count beyond 128 resulted in poorer results due to overfitting. As can
be seen, EyeDAS outperforms all of the abovementioned models.

Table 1: EyeDAS ’s TPR and FPR with different thresholds.

Table 2: Comparison to other approaches.
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Securing ODs with EyeDAS . To determine how effective EyeDAS is as part of a system,
we evaluated 2D misclassification rates on seven state-of-the-art ODs (19; 24; 25; 26). The
results are presented in Table 4; we present the 2D misclassification rates obtained for each
detector before and after applying EyeDAS as a countermeasure and the impact of the
different thresholds. The results show that for most ODs, when the detector mistakenly
classified a 2D object as real (i.e., 3D), EyeDAS provided effective mitigation, even for the
threshold value at which the TPR=1.

Table 3: Disagreements between the models.

Ablation study. In order for the committee of experts approach to be effective, there must
be some disagreements between the models; although there is a clear indication that each
model (i.e., blurring, sharpness, color, and edge) contributes a unique perspective on the
final prediction, we perform an ablation study to provide further evidence that each model
has a unique contribution. For that, we utilize the SHAP (SHapley Additive exPlanations)
framework to explain the model’s predictions; each input feature is assigned a score (i.e., a
Shapley value) which represents its contribution to the model’s outcome. In our case, we are
interested in the contributions of each expert (i.e., each input feature to our meta-classifier)
to the final prediction. In Table 3, we present the measure of disagreement between each
possible sub-committee of experts: given an input instance x, we say that a sub-committee
disagrees on x if there is at least one expert whose Shapley value is negative and at least
one expert whose Shapley value is positive. Interestingly, the full combination of experts
(B+S+C+E) has the highest number of disagreements and results in the lowest FPR at
TPR=1.

Table 4: Evaluation results for different combinations of locations (NY: New York, GT:
George Town, MI: Miami, SF: San Francisco, LA: Los Angeles, DU: Dubai, LO: London).

4.3 Generalization

We also evaluate how EyeDAS ’s approach generalizes to different geographical locations and
even different types of objects.

Generalization to other geographical locations. To evaluate EyeDAS ’s geographical
location generalization ability, we trained and tested the models on complementary groups
of location types (i.e., cities). For training, we took minimum-sized city type combinations
in which there are at least 56 2D objects and at least 120 3D objects, since we observed
that less than that amount is insufficient for training the models and thus no meaningful
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conclusions could be derived. In Table 4, we present the evaluation results obtained for
different geographical location (i.e., cities) combinations. As can be seen, EyeDAS is not
dependent on the geographical location in which the training data was collected, as it is
capable of using the knowledge gained during training to distinguish between 2 and 3D
objects.

Generalization to other types of objects. To evaluate EyeDAS ’s object type generaliza-
tion ability, we trained and tested the models on complementary groups of object types. We
focused on humans (HU), animals (AN), and vehicles (VE). As previously done, for training
we used minimum-sized object type combinations in which there are at least 56 2D objects
and at least 120 3D objects. In Table 5, we present the evaluation results obtained for each
object type combination. As can be seen, EyeDAS is independent of the type of the object
appeared in the training set, as it is capable of using the knowledge gained during training
to distinguish between 2 and 3D objects.

Table 5: Evaluation results for different combinations of object types.

4.4 Speed and Memory Performance

We performed a speed benchmark experiment to assess EyeDAS ’s performance. We found
that EyeDAS took an average of 19 ms to process a single object frame, with a standard
deviation of 1 ms. This translates to an approximately 220 ms time to decision from the
time the object is detected. We also note that the meta-classifier is relatively small (45 kilo
bytes) and only utilizes less than 0.01% of the CPU per object frame.

5 Limitations

Despite the high performance achieved, EyeDAS has some limitations. First, technical
factors may influence the performance of EyeDAS . For example, EyeDAS may perform
poorly when image resolution is low or images are taken in low lighting. However, adequate
lighting conditions are expected on roads on which autonomous vehicles can typically drive.
Second, for 3D objects, if both the detected object and its close surrounding background are
stationary (e.g., the object does not move or its surrounding background does not change),
then EyeDAS may perform poorly. However, if the vehicle is moving or the camera’s
auto-focus process is operating, then EyeDAS ’s errors will likely to decrease significantly
even for 3D stationary objects. If the vehicle is not moving, the concern for the safety of
passengers does not exist.

6 Summary

In this paper, we proposed a novel countermeasure which can be used to secure object
detectors (ODs) against the stereoblindness syndrome; this syndrome can have life-threatening
consequences, endangering the safety of an autonomous car’s driver, passengers, pedestrians,
and others on the road.

Designed in recognition of the needs of autonomous driving in the real world, the proposed
method is based on few-shot learning, making it very practical in terms of collecting the
required training set. As presented in the previous sections, EyeDAS outperforms the
baseline method and demonstrates excellent performance and specifically its: (1) ability to
maintain a zero misclassification rate for 3D objects, (2) ability to improve the performance
of ODs, (3) practicality in real-time conditions, and (4) ability to generalize between objects
(i.e., humans, animals, and vehicles) and geographical locations (i.e., cities).
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