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Abstract

Ainsworth et al. (2023) empirically demonstrated
that linear mode connectivity (LMC) can be
achieved between two independently trained neu-
ral networks (NNs) by applying an appropriate pa-
rameter permutation. LMC is satisfied if a linear
path with non-increasing test loss exists between
the models, suggesting that NNs trained with
stochastic gradient descent (SGD) converge to a
single approximately convex low-loss basin under
permutation symmetries. However, Ainsworth
et al. (2023) verified LMC for two models and
provided only limited discussion on its extension
to multiple models. In this paper, we conduct
a more detailed empirical analysis. First, we
show that existing permutation search methods de-
signed for two models can fail to transfer multiple
models into the same convex low-loss basin. Next,
we propose a permutation search method using
a straight-through estimator for multiple models
(STE-MM). We then experimentally demonstrate
that even when multiple models are given, the test
loss of the merged model remains nearly the same
as the losses of the original models when using
STE-MM, and the loss barriers between all per-
muted model pairs are also small. Additionally,
from the perspective of the trace of the Hessian
matrix, we show that the loss sharpness around the
merged model decreases as the number of mod-
els increases with STE-MM, indicating that LMC
for multiple models is more likely to hold. The
source code implementing our method is available
at https://github.com/e5-a/STE-MM.
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1. Introduction
Deep neural networks have achieved great success in vari-
ous fields, including image classification, speech recogni-
tion, and natural language processing (Vaswani et al., 2017;
van den Oord et al., 2016; Zhao et al., 2023). The opti-
mization of the large neural network (NN) models used in
these applications poses a massive non-convex optimization
problem. Nevertheless, stochastic gradient descent (SGD),
despite its simplicity, consistently finds good solutions. One
hypothesis for this seemingly contradictory situation is that
the loss functions of NNs have a much simpler structure than
we might imagine. Several prior studies have empirically
shown that solutions of different NNs can be connected by
simple low-loss nonlinear paths. Furthermore, in recent
years, Entezari et al. (2022) hypothesized that the following
conjecture holds when all permutation symmetries of NNs
are taken into account.

Conjecture 1.1 (Permutation invariance, informal). Let θa
and θb be two SGD solutions (trained model parameters).
With high probability, there exists a permutation π such that
the loss barrier between θa and π(θb) is sufficiently small.

Here, a barrier refers to the increase in the loss observed
during linear interpolation between two models. When the
barrier between two models is sufficiently small, we say
that linear mode connectivity (LMC) holds between those
models. Entezari et al. (2022) hypothesized that LMC can
be achieved by considering the permutation symmetries
of NNs. Subsequently, Ainsworth et al. (2023) and Singh
& Jaggi (2020) empirically demonstrated that appropriate
permutation search methods can identify permutations that
satisfy Conjecture 1.1. Based on these findings, Ainsworth
et al. (2023); Entezari et al. (2022) argued that the weights
of trained multiple models can be transferred into a single
approximately convex loss basin. If this claim holds, the
optimization of NNs could be interpreted as approximately
convex optimization, thereby explaining the effectiveness
of SGD. In addition, analyzing LMC among multiple mod-
els under permutation symmetries is important not only for
understanding how SGD works but also for model merging,
where independently trained models are combined. For ex-
ample, permutation-based model merging has the potential
to combine multiple models without significant costs, such
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as training. Indeed, several prior studies (Singh & Jaggi,
2020; Wang et al., 2020; Peña et al., 2023; Yamada et al.,
2024) have proposed methods for model merging, federated
learning, and continual learning based on the permutation
symmetries of NNs.

In this paper, we investigate more deeply whether the
weights of multiple models can be transferred into a sin-
gle (approximately convex) loss basin. First, we show that
gathering multiple models into a single loss basin is difficult
by simply applying a permutation search method that targets
only two models. We also demonstrate that, although some
previous studies (Ainsworth et al., 2023; Crisostomi et al.,
2024) have proposed permutation search methods for mul-
tiple models, the test loss and the accuracy of the merged
model deteriorate as the number of models increases in these
methods. To overcome this issue, we propose a novel permu-
tation search method using a straight-through estimator for
multiple models (STE-MM), and experimentally confirm its
effectiveness.

Contributions. This paper makes the following three con-
tributions:

• Difficulty in satisfying LMC among three or more
models. We demonstrate that simply applying conven-
tional permutation search methods, which focus only
on two models, makes it difficult to establish LMC
among multiple models. In addition, we show that
even when using existing permutation search methods
for multiple models (Ainsworth et al., 2023; Crisos-
tomi et al., 2024), the performance decreases when the
multiple models are merged.

• Matching methods for multiple models. We propose
a permutation search method using a straight-through
estimator for multiple models (STE-MM). In STE-MM,
permutations are explored by repeatedly solving the
linear assignment problem (LAP), which incurs a high
computational cost. To address this, we also propose a
method to accelerate the LAP solver.

• Effectiveness verification of STE-MM through ex-
periments and loss sharpness analysis. We evaluate
STE-MM on MLP, VGG-11, and ResNet-20 trained on
MNIST, FMNIST, and CIFAR-10. Our results show
that STE-MM enables the merging of multiple models
while maintaining test accuracy and loss comparable
to the originals. Additionally, the merged models ex-
hibit reduced loss sharpness, which decreases further
as more models are merged. These findings suggest
that STE-MM facilitates the transfer of multiple mod-
els into an approximately convex loss basin.

2. Background
2.1. Notation

For any k ∈ N, let [k] = {1, 2, . . . , k}. Bold uppercase
and lowercase variables represent matrices (e.g., X), and
vectors (e.g., x), respectively. For any matrix X , vec(X)
denotes its vectorization, and ∥X∥ denotes its Frobenius
(L2) norm.

2.2. Permutation Invariance

For simplicity, we consider L-layer multilayer perceptrons
(MLPs) f(x;θ) while our analyses are applicable to any
model architecture. Here, x ∈ Rdin is an input to the NN,
and θ ∈ Rdparam represents the model parameters. Regard-
ing the ℓ-th layer output zℓ, we have z0 = x, and, for all
ℓ ∈ [L], zℓ = σ(Wℓzℓ−1 + bℓ), where σ denotes the ac-
tivation function, and Wℓ and bℓ denote the ℓ-th layer’s
weight and bias, respectively. Note that, in this MLP, the
model parameters are given by θ =

∥∥L
ℓ=1

(vec(Wℓ) ∥ bℓ),
where ∥ represents the concatenation of vectors. Neural
networks (NNs) have permutation symmetries within their
weight space. Let us consider an NN with model param-
eters θ. For the ℓ-th layer, the following equation holds:
zℓ = P⊤Pzℓ = P⊤σ(PWℓzℓ−1+Pbℓ), where P repre-
sents a permutation matrix. Since permutation matrices are
orthogonal, by permuting the input to the (ℓ+1)-st layer us-
ing P⊤, the model’s parameters can be transformed without
affecting the NN’s input-output functionality. Specifically,
the updated weights and bias are expressed as W ′

ℓ = PWℓ,
b′ℓ = Pbℓ, and W ′

ℓ+1 = Wℓ+1P
⊤. This type of permuta-

tion can be applied independently to each layer. We define
the tuple of permutation matrices applied across all layers as
π = (Pℓ)ℓ∈[L]. Furthermore, for a given model θ, applying
a permutation π to θ is denoted as π(θ).

2.3. Permutation Selection For Two Models

Ainsworth et al. (2023) introduced two methods, weight
matching (WM) and the straight-through estimator (STE),
to identify permutations which satisfy Conjecture 1.1.

Weight matching. The WM aims to find a permutation π
that minimizes the L2 distance between two models1:

∥θa − π(θb)∥2 =
∑
ℓ∈[L]

∥W (a)
ℓ − PℓW

(b)
ℓ P⊤

ℓ−1∥2, (1)

where, without loss of generality, PL = I and P0 = I ,
with I denoting the identity matrix. Ainsworth et al. (2023)
propose a method to approximately solve this optimization
by iteratively solving the linear assignment problem (LAP)
because this optimization problem is NP-hard (Koopmans &

1Although the focus is on weights, biases can also be incorpo-
rated by concatenating them with the weights.
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Beckmann, 1957; Sahni & Gonzalez, 1976; Ainsworth et al.,
2023). We will describe their algorithm in Section 4.2.

Straight-through estimator. STE directly minimizes the
loss barrier between the two models. Its objective function is
expressed as argminπ L

(
1
2 (θa + π(θb))

)
. Since solving

this directly is difficult, Ainsworth et al. (2023) proposed
a strategy that splits the optimization into two stages: a
forward pass to determine permutations and a backward
pass to train the model using the obtained permutations.
By iteratively repeating these steps, they approximated the
solution effectively.

2.4. Linear Assignment Problem

The linear assignment problem (LAP) is used to determine
the permutation matrix in permutation search methods such
as WM and STE. Given a cost matrix C and a permutation
matrix P , the LAP can be formulated as follows:

minimize
∑
i,j

Ci,jPi,j ,

subject to
∑
i

Pi,j = 1,∀j ∈ [m],∑
j

Pi,j = 1,∀i ∈ [m],

Pi,j ≥ 0,∀i, j ∈ [m], (2)

where m denotes the size of the matrices C and P , and
Ci,j and Pi,j represent the (i, j)-th components of matrices
C and P , respectively.

Classical algorithms such as the Hungarian algorithm and
the Jonker-Volgenant algorithm (Kuhn, 1955; Jonker & Vol-
genant, 1987) reformulate the problem into the following
dual problem to indirectly obtain the optimal solution:

maximize
∑
i

vi +
∑
j

uj ,

subject to vi + uj ≤ Ci,j ,∀i, j ∈ [m], (3)

where u ∈ Rm and v ∈ Rm are dual variables.

According to the complementary slackness theorem of linear
programming, the necessary and sufficient condition for the
feasible solutions of the primal and dual problems to be
optimal solutions is given by:

Pi,j(Ci,j − vi − uj) = 0,∀i, j ∈ [m]. (4)

From this complementary condition, if the optimal solutions
v∗ and u∗ of the dual problem Equation (3) are obtained, it
is possible to determine which components of the permu-
tation matrix P must be zero. Using this information, the
optimal solution of Equation (2) can be determined.

Equation (4) shows that adding or subtracting a constant to
any row or column of the cost matrix C does not change the
optimal solution (permutation matrix) of the primal problem.
This property will be utilized in Section 4.2.

3. Difficulty in Transferring Multiple Models
into Convex Loss Basin

Ainsworth et al. (2023); Entezari et al. (2022) have claimed
that SGD solutions can be transferred into a single approxi-
mately convex loss basin by identifying a permutation that
satisfies LMC between two SGD solutions. They experi-
mentally demonstrated the existence of such a permutation
when the model width is sufficiently large for MLP, VGG,
and ResNet models trained on MNIST and CIFAR10.

However, even if this experimental observation holds gener-
ally, it does not necessarily imply that SGD solutions can be
transferred into a single convex basin. For instance, consider
three SGD solutions θa, θb, and θc. Assume that there exist
permutations such that LMC holds for every model pair. In
this case, there exist permutations πb and πc such that LMC
holds between θa and πb(θb), as well as between θa and
πc(θc). If these parameters can be transferred into the same
convex basin, the loss within the triangle formed by θa,
πb(θb), and πc(θc) must be uniformly low. However, there
is no guarantee that πb(θb) and πc(θc) are linearly mode-
connected. Note that, from the assumption, there should
exist a permutation π such that LMC holds between πb(θb)
and π(πc(θc)), but this does not necessarily mean LMC
holds between πb(θb) and πc(θc). Therefore, it remains un-
clear whether these parameters can be gathered into a single
convex basin. In this section, we experimentally demon-
strate that as the number of models increases, the loss of the
merged model increases, revealing that matching algorithms
only for two models are insufficient.

3.1. Experimental Results

We experimentally demonstrate that matching algorithms
between two models are insufficient for gathering multi-
ple SGD solutions into a single convex basin. Specifically,
we first prepare n SGD solutions θ1,θ2, . . . ,θn. Next, for
all i ∈ [n − 1], we identify a permutation πi such that
LMC holds between θn and πi(θi). Then, we investi-
gate the test loss and accuracy of the merged model of
n− 1 models θ1, . . . ,θn−1 after applying the permutations,
1

n−1

∑
i∈[n−1] πi(θi). If the n SGD solutions can be trans-

ferred into a single convex basin using the permutations
π1, π2, . . . , πn−1, it is expected that the test loss and accu-
racy of these merged models would remain unchanged when
the number of models used for model merging increases.

Figure 1 shows the experimental results. In this experiment,
model merging was performed on ResNet-20 and VGG-11
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(a) Test accuracies of merged models.
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(b) Test losses of merged models.

Figure 1: Test accuracy and loss of the merged model
1

n−1

∑
i∈[n−1] πi(θi) when the number of models used for

model merging is increased. The figures show the mean and
standard deviation from three trials of model merging.

models trained on the CIFAR10 dataset. Details on the
dataset used, the training procedures for the models, and the
experimental conditions for model merging, are described
in Appendix B. Similar to prior studies (Ainsworth et al.,
2023; Yamada et al., 2024), the model width is increased
to establish LMC between two models (specifically, by 16
times for ResNet-20 and 4 times for VGG-11).

Figure 1 shows that both STE and WM result in a mono-
tonic degradation of the test accuracy and loss of the merged
model as the number of models increases. Notably, STE ex-
hibits a sharp decline in performance. These results indicate
that the conventional methods using WM and STE cannot
transfer all models into the same convex loss basin.

4. Permutation Search for Multiple Models
In this section, we propose STE for multiple models (STE-
MM) that handle multiple models simultaneously to transfer
multiple SGD solutions into a single convex loss basin. First,
in Section 4.1, we explain the algorithm of STE-MM. STE-
MM is derived by extending STE to multiple models and,
therefore, uses SGD to find permutations. However, this
training process becomes computationally expensive since
solving the linear assignment problem (LAP) is required at
each iteration of SGD. To address this issue, in Section 4.2,
we propose a method to accelerate the LAP solving process.

4.1. Straight-through Estimator for Multiple Models

Merging multiple independently trained models is challeng-
ing because it requires solving a combinatorial optimiza-
tion problem over permutations. Inspired by the success

Algorithm 1 STE-MM

Require: Models θ1,θ2, . . . ,θn, the number of epochs ne

Ensure: Permutations π1, . . . , πn−1

1: θ̂i ← θn for all i ∈ [n− 1] ▷ Initialize dummy
parameters θ̂i.

2: for e = 1 . . . Ne do
3: π′

i ← WM(θ̂i,θi) for all i ∈ [n− 1]
4: (λi)

n
i=1 ← UniformDist((0, 1))

5: λi ← λi/
∑

j λj for all i ∈ [n]

6: loss← L(∑n−1
i=1 λiπ

′
i(θi) + λnθn)

7: for i = 1 . . . n− 1 do
8: gradi ← GetGradient(loss, π′

i(θi))

9: θ̂i ← Update(θ̂i, gradi)
10: end for
11: end for
12: πi ←WM(θ̂i,θi) for all i ∈ [n− 1]

of straight-through estimators (STEs) in other discrete op-
timization problems (Bengio et al., 2013; Ainsworth et al.,
2023), we propose a straight-through estimator for multiple
models (STE-MM), a method to learn permutations that can
transfer multiple models into the same convex loss basin in
a differentiable framework.

Let θ1,θ2, . . . ,θn be model parameters obtained by SGD.
Our goal is to find permutations π1, . . . , πn−1 such that
their convex combination minimizes the expected loss:

argmin
π1,...,πn−1

Eλ1,...,λn
L
(

n−1∑
i=1

λiπi(θi) + λnθn

)
, (5)

where λ1, . . . , λn are sampled from a uniform distribution
over the simplex (i.e., positive and summing to 1). We
optimize only n− 1 permutations, since the last one can be
fixed without loss of generality thanks to Theorem D.1.

Direct optimization of Equation (5) is infeasible because
permutations are discrete and non-differentiable. To ad-
dress this, we adopt a STE approach: instead of optimiz-
ing permutations directly, we introduce dummy parameters
θ̂1, . . . , θ̂n−1 as continuous proxies. During the forward
pass, we compute the best permutation π′

i aligning π′
i(θi) to

θ̂i using the WM algorithm from (Ainsworth et al., 2023).
In the backward pass, we compute gradients with respect to
π′
i(θi) and update θ̂i via standard gradient descent.

This procedure is formalized in Algorithm 1. At initializa-
tion (line 1), we set all θ̂i = θn as suggested by prior work,
since it improves the quality of merged models. Then, for
each training epoch:

• (Line 3) For each i, find the permutation π′
i minimizing

∥θ̂i − π′
i(θi)∥2 using the WM algorithm.
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• (Lines 4–5) Sample mixture weights λ1, . . . , λn from
a uniform simplex.

• (Line 6) Compute the loss of the weighted sum of
permuted models.

• (Lines 7–10) Compute gradients w.r.t. π′
i(θi) and up-

date θ̂i accordingly.

After training, the final permutations πi are obtained by
aligning the updated θ̂i with θi again via WM (line 12).

The key insight behind this approach is that if π′
i(θi) be-

comes sufficiently close to θ̂i during training (i.e., π′
i(θi) ≈

θ̂i), then θ̂i can be regarded as a good approximation to
π′
i(θi). This idea is supported by empirical results (Sec-

tion 5), showing that our method consistently transfers mod-
els into a shared low-loss region, suggesting an approximate
convexity in the parameter space under learned permuta-
tions.

4.2. Accelerating WM

This subsection proposes a method to accelerate WM to
speed up STE-MM. In particular, since STE-MM requires
performing WM in every iteration of each epoch, this accel-
eration leads to a significant improvement in efficiency. To
explain the proposed method, we first describe the original
WM algorithm. Next, we present the fundamental idea for
solving the LAP (linear assignment problem) more quickly.
Then, we describe the WM algorithm incorporating the pro-
posed method. Finally, we show the experimental results of
our proposed method to verify its effectiveness.

Algorithm of weight matching. For two given models
θa and θb, the goal of WM is to find a permutation π that
minimizes ∥θa − π(θb)∥2. Ainsworth et al. (2023) pro-
posed Algorithm 2 as a method to approximately solve
Equation (1). First, in line 1, the permutation matrices
are initialized as identity matrices (Inℓ

)Lℓ=0, where nℓ rep-
resents the size of the permutation matrix for ℓ-th layer.
Next, the permutation matrices are updated in lines 3–6
until the L2 distance ∥θa−π(θb)∥ between the two models
converges. In line 3, a list of permutation matrices to be
updated is prepared. Then, in line 5, a layer is randomly
selected from this list, and it is removed from the list. In
line 6, the cost matrix C corresponding to the selected layer
ℓ is computed, and in line 7, the permutation matrix Pℓ that
minimizes this cost is obtained by solving LAP. The ob-
tained permutation matrix Pℓ minimizes the following term:
∥W (a)

ℓ+1 − Pℓ+1W
(b)
ℓ+1P

⊤
ℓ ∥2 + ∥W (a)

ℓ − PℓW
(b)
ℓ P⊤

ℓ−1∥2.
The most time-consuming step in WM is solving the LAP.
For instance, the computational cost of solving LAP with
the Hungarian algorithm is O(n3

ℓ). Therefore, we propose a
method to solve LAP more efficiently.

Algorithm 2 WM

Require: Two SGD solutions θa =
∥∥L
ℓ=1

(vec(W (a)
ℓ )) and

θb =
∥∥L
ℓ=1

(vec(W (b)
ℓ ))

Ensure: Permutation π
1: π ← (Inℓ

)Lℓ=0

2: while ∥θa − π(θb)∥ has not converged do
3: LayerList← {1, 2, . . . , L− 1}
4: while LayerList is not empty do
5: ℓ← PopRandomly(LayerList)

6: C ← −W (a)
ℓ Pℓ−1W

(b)⊤

ℓ −
W

(a)⊤

ℓ+1 Pℓ+1W
(b)
ℓ+1

7: Pℓ ← SolveLAP(C)
8: end while
9: end while

Basic idea. The idea to speed up the LAP solver is to
use the optimal solution of the dual problem obtained in
the previous iteration to adjust the cost matrix. Below, we
provide an intuitive explanation of this idea. In the while
loop on lines 2–9 of Algorithm 2, let C ′, P ′, v′, and u′

be the cost matrix, optimal permutation matrix, and dual
variables for the ℓ-th layer in a given iteration, respectively.
Similarly, let C and P be the cost matrix and optimal per-
mutation matrix in the next iteration. For simplicity, we
omit the subscript ℓ in the variables. If the iterations have
sufficiently progressed, the permutation in Algorithm 2 is ex-
pected to converge. Thus, we can assume that C ′ ≈ C and
P ′ ≈ P . Complementary slackness condition yields that
0 = P ′

i,j(C
′
i,j−v′

i−u′
j) ≈ Pi,j(Ci,j−v′

i−u′
j). Based on

this, we define a new cost matrix C
(new)
i,j = Ci,j − v′

i − u′
j

and solve the LAP for C(new) instead of C. Note that the
optimal solution (permutation) does not change when tran-
sitioning from C to C(new). Let v and u be the optimal
solutions to the dual problem for C(new). From Equation (4),
Pi,j(C

(new)
i,j −vi−uj) = Pi,j(Ci,j−v′

i−u′
j−vi−uj) = 0

must hold. However, if Pi,j(Ci,j − v′
i − u′

j) ≈ 0 holds,
then vi and uj are expected to be close to zero, even with-
out explicitly solving for them. Therefore, solving the dual
problem for C(new) is likely to be easier than for C.

Proposed method. The accelerated WM algorithm is
shown in Algorithm 3. Since most of Algorithm 3 is the
same as Algorithm 2, we will only explain the differences
between them. The first difference is that Algorithm 3 takes
the dual variables (vℓ)ℓ and (uℓ)ℓ as inputs and also returns
the dual variables obtained at the end of the algorithm. This
is used to accelerate STE. Specifically, in Algorithm 1, WM
function is replaced with the proposed accelerated WM al-
gorithm, and the dual variables of the i-th model obtained
from the previous epoch (or the previous iteration of SGD
for finding permutation) are passed to the replaced WM func-
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Figure 2: Processing time of WM and STE.

Algorithm 3 Accelerated WM

Require: Two SGD solutions θa and θb, dual variables
(vℓ)ℓ and (uℓ)ℓ

Ensure: Permutation π, dual variables (vℓ)ℓ and (uℓ)ℓ
1: π ← (Inℓ

)Lℓ=0

2: while ∥θa − π(θb)∥ has not converged do
3: LayerList← {1, 2, . . . , L− 1}
4: while LayerList is not empty do
5: ℓ← PopRandomly(LayerList)

6: C ← −W (a)
ℓ Pℓ−1W

(b)⊤

ℓ −
W

(a)⊤

ℓ+1 Pℓ+1W
(b)
ℓ+1

7: (C ′
i,j)← (Ci,j − uℓ,i − vℓ,j)

8: Pℓ,u
′
ℓ,v

′
ℓ ← SolveLAPWithDuals(C ′)

9: vℓ ← vℓ + v′
ℓ; uℓ ← uℓ + u′

ℓ

10: end while
11: end while

tion, enabling faster execution. In fact, our implementation
of STE-MM adopts this approach. Note that, when the first
iteration of STE-MM is executed, uℓ and vℓ input to the
WM are set to 0. The second difference is in line 7, where
the dual variables are subtracted from the cost matrix to get
C(new). This step has already been explained above. The
third difference is in line 8, where not only the permuta-
tion matrix but also the dual variables u′

ℓ and v′
ℓ obtained

by solving the LAP are returned. Then, in line 9, the dual
variables vℓ and uℓ are updated by adding these values. By
using this adjustment, the dual variables vℓ and uℓ obtained
in line 9 match the optimal solutions of the dual problem
for the original cost matrix C.

Experimental comparison. Figure 2 shows the process-
ing time of WM and STE to find permutations for two
models, with and without the proposed acceleration of the
LAP solver described in Section 4.2. The figure presents
the mean and standard deviation of processing time when a
permutation search is conducted three times. For STE, the
number of epochs was set to one. From the figure, we can
see that both WM and STE with our acceleration method are
at least approximately ten times faster than those without
it, regardless of the model architecture. In particular, when
finding permutations for ResNet-20 models, our method
reduces the processing time to 1/40 of the original.

5. Merging Multiple Models
This section conducts some experiments using multiple
SGD solutions to confirm the effectiveness of STE-MM.
Since verifying directly that all models belong to a convex
basin is difficult, we investigate the test losses of merged
models within a scope that can be easily verified. In the
next section, a deeper analysis is conducted, focusing on the
sharpness of the loss function around the merged models.

Section 5.1 first examines the losses of merged models ob-
tained by applying permutations. Then, in Section 5.2, we
examine the losses between all pairs of models. These losses
are expected to be comparable to the original models. Fi-
nally, Section 5.3 experimentally demonstrates that larger
model widths lead to lower losses in the merged models.

5.1. Merging All Models

Figure 3(a) shows the test accuracy of the merged model.
Specifically, given n SGD solutions θ1,θ2, . . . ,θn and the
coresponding permutations π1, π2, . . . , πn (where, in STE-
MM, πn = (Inℓ

)ℓ∈[L] holds), it presents the test accu-
racy of the merged model 1

n

∑
i πi(θi). For reference, the

figure also includes results using two other methods for
model merging: MergeMany, proposed in Appendix A.10
of Ainsworth et al. (2023), and cycle consistent multi-model
merging (CCMM), proposed by Crisostomi et al. (2024).
Both methods aim to find permutations π1, π2, . . . , πn that
minimize the sum of L2 distances between all model pairs,∑

i,j ∥πi(θi)− πj(θj)∥2. Additionally, Figure 3(b) shows
how much the test loss of the merged model increases com-
pared to the original models’ losses.

First, Figure 3(a) shows that the test accuracy of the merged
model increases with the number of models with STE-MM,
whereas it decreases with other methods. This difference is
likely due to the fact that the objective function of STE-MM
directly minimizes the loss values, whereas the objective
functions of MergeMany and CCMM focus on reducing the
distances between models. Next, Figure 3(b) shows that, ex-
cept for the MLP models trained on MNIST, increasing the
number of models leads to an increase in the test loss. No-
tably, the increase is more pronounced in MergeMany and
CCMM. While the loss of the merged model also tends to in-
crease with the number of models in STE-MM, the increase
in test loss value becomes small as the number of models
grows. In fact, as shown in Figure 3(a), the test accuracy
improves as the number of models increases, suggesting
that the increase in test loss may converge. Furthermore,
the difference between the original models’ losses and the
merged model’s loss is close to zero in STE-MM, indicating
that the merged model’s loss is sufficiently small.
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(a) Test accuracies of merged models.
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(b) Difference between the test loss of merged model and the average test loss of original models: L( 1
n

∑
i πi(θi))− 1

n

∑
i L(θi).

Figure 3: Experimental results of merged models 1
n

∑
i∈[n] πi(θi) when the number of models is increased. The figures

show the mean and standard deviation from three trials of model merging.
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Figure 4: Difference in average test losses between the merged models (for all model pairs) and the original models:
2

n(n−1)

∑
i<j L( 12 (πi(θi) + πj(θj)))− 1

n

∑
i L(θi).

5.2. Merging Each Model Pair

Next, we investigate the loss when merging each model
pair. Figure 4 illustrates the difference between the aver-
age loss of the merged models for all model pairs and the
loss of the original models (i.e., 2

n(n−1)

∑
i<j L( 12 (πi(θi)+

πj(θj)))− 1
n

∑
i L(θi)). For MLP models trained on FM-

NIST, it was observed that the average loss of the model
pairs increases when using STE-MM. However, the differ-
ence in loss remains below 0, and the amount of the increase
in loss value diminishes as the number of models grows.
This suggests that increasing the number of models may not
pose an issue when transferring multiple models to the same
low-loss basin. For MLP, VGG-11, and ResNet-20 models
trained on MNIST or CIFAR-10, the impact of increasing
the number of models on the loss is very small, with the
difference in loss remaining very close to 0. Consequently,
this indicates that the loss barrier between any model pair is
not particularly significant.

5.3. Model Width

Finally, we examine the impact of model width on the
test loss of the merged model. Figure 5 shows the effect
of model width on the difference between the loss of the

100
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STE-MM
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Figure 5: Difference between the test loss of the merged
model and the average test loss of the original models when
varying model width.

merged model of all the original models and the average loss
of the original models when ten SGD solutions are merged.
The figure shows that, for all methods, the wider the model,
the closer the loss difference approaches zero. This result
is the same as the trend observed in previous studies on
merging two models, indicating that increasing the model
width also facilitates LMC in multiple models.

6. Sharpness of Merged Model
This section investigates the sharpness of the loss for the
merged model. If the permuted models belong to the same
low-loss convex basin, the sharpness of the merged model’s
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Figure 7: Histogram of degrees of all model pairs using STE.

loss can be expected to be smaller than that of the original
models. First, in Section 6.1, we examine the geometric rela-
tion of models in the parameter space after applying the per-
mutations and reveal that the models form an approximately
regular simplex. Next, in Section 6.2, we measure sharpness
using the Hessian matrix of the models and demonstrate that
the sharpness of the merged model is smaller than that of
the original models when using STE-MM.

6.1. Geometric Relation of Models

Figure 6 shows the L2 distances between each pair of n per-
muted models π1(θ1), π2(θ2), . . . , πn(θn) (i.e., ∥πi(θi)−
πj(θj)∥). This figure illustrates the results for n = 10 mod-
els when STE-MM is used to find permutations. The experi-
mental results for other permutation methods are shown in
Figure 9. Since there are n(n−1)

2 = 45 model pairs, the L2

distances are presented as a histogram.

The horizontal axis in Figure 9 represents the ratio
of the L2 distance for each model pair to the av-
erage L2 distance across all pairs (i.e., ∥πi(θi) −
πj(θj)∥/ 2

n(n−1)

∑
i<j ∥πi(θi)−πj(θj)∥). Figure 9 shows

that the distances for all model pairs are close to the average
distance. This tendency is particularly strong for VGG-11
and ResNet-20, where the distance ratios are very close to
1. This result suggests that the permuted models are located
at approximately equal distances from each other, forming
an n-dimensional regular simplex. Figures 7 and 10 also
shows the angles between all possible triplets of models,
which supports the conclusion that the models form a regular
simplex.

6.2. Sharpness

Since the models π1(θ1), π2(θ2), . . . , πn(θn), after apply-
ing permutations, form an approximately regular simplex in

n dimensions, the condition for these models to form a con-
vex low-loss basin is that the losses at all points within the
regular simplex are small. However, as the dimensionality
increases, the space of points where loss needs to be verified
grows exponentially, making it impractical to examine the
loss at all points. Therefore, in this subsection, we inves-
tigate the sharpness of the loss at the center point, which
corresponds to the merged model. If multiple models form
a convex low-loss basin, it is expected that the sharpness of
the loss at the center will be smaller than the sharpness at
the vertices (i.e., the trained models).

Definition of sharpness. Although there are various defi-
nitions of sharpness, we focus on the trace of the Hessian
matrix H of the loss function, trH , which measures the
sharpness of the loss in a random direction (Wen et al., 2023).
trH has good theoretical properties. For example, under
certain assumptions, sharpness-aware minimization (Foret
et al., 2021) and label noise SGD induce a small trace of
the Hessian (Bartlett et al., 2023; Damian et al., 2021; Wen
et al., 2023). However, using trH directly presents an is-
sue for rectifier neural networks (i.e., those using ReLU as
an activation function), as its value is not unique (Li et al.,
2018; Kwon et al., 2021). Specifically, trH is not invariant
to weight rescaling, even though such rescaling does not
change the input-output functionality. To address this issue,
instead of trH , we use tr(H ⊙ θθ⊤), which is known
to asymptotically match the average-case sharpness (An-
driushchenko et al., 2023). Experimentally, to compute
tr(H ⊙θθ⊤) for a model θ, we use the following equation:

tr(H ⊙ θθ⊤) = Ez(z diag(θ))⊤H(z diag(θ)), (6)

where z is a Rademacher random vector, and diag(θ)
denotes a diagonal matrix with the elements of θ as
its diagonal entries. The proof of this equation is pro-
vided in Appendix D.2. The product of any vector
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Figure 8: Sharpness of merged models.

µ and the Hessian matrix H (i.e., µH) can be com-
puted using torch.autograd.functional.vhp in
PyTorch2. This enables the evaluation of tr(H ⊙ θθ⊤).

Experimental results. Figure 8 shows the sharpness of
the merged models. In the figure, ”Baseline” represents
the average sharpness of the models used for merging. For
MLP models trained on MNIST and FMNIST, Figure 8
shows that the sharpness decreases as the number of models
increases, regardless of the methods. Notably, the sharpness
of the merged models is smaller than that of the original
models. On the other hand, for VGG-11 and ResNet-20
models, as the number of models increases, the sharpness
monotonically increases for MergeMany and CCMM, while
it decreases for STE-MM. This indicates that when models
are transferred using the permutations found by STE-MM,
the loss in the center of those models is, on average, flat.
Thus, this indicates that STE-MM would successfully gather
the models into an approximately convex low-loss basin.

7. Conclusion
In this paper, we analyzed whether multiple models can
be gathered into a single approximately convex basin by
using the permutation symmetries of neural networks. First,
we experimentally showed that the performance of merged
models decreases when the number of models is increased
in the conventional permutation search method for two mod-
els. Next, we proposed a permutation search method using a
straight-through estimator for multiple models (STE-MM).
We then demonstrated the effectiveness of STE-MM using
MLP, VGG-11, and ResNet-20 models trained on MNIST,
FMNIST, and CIFAR10. Finally, we investigated the sharp-
ness of the loss function and found that the sharpness of the
merged model monotonically decreases when using STE-
MM, which indicates that the multiple models are gathered
into a single approximately convex basin.

These findings provide a promising foundation, but several
important questions remain open for future work. This study
focused on image classification tasks using relatively small

2https://pytorch.org/docs/stable/
generated/torch.autograd.functional.vhp.
html

models and simple datasets. An important direction for fu-
ture work is to investigate the applicability and effectiveness
of the proposed method in more practical settings involving
larger models and more complex data. Moreover, although
STE-MM successfully discovers suitable permutations for
merging multiple models, the reason for the existence of
such permutations remains unclear. Clarifying this from the
perspective of the learning dynamics of SGD would con-
tribute to a deeper theoretical understanding. In addition,
it is widely observed that satisfying LMC using permuta-
tion symmetries of NNs often requires increasing the model
width. Exploring whether LMC can be achieved without ex-
panding the width, potentially by developing more advanced
permutation strategies or leveraging inherent architectural
properties, remains an important open question.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Rodolà, E. C2M3: Cycle-consistent multi-model merg-
ing. arXiv preprint arXiv:2405.17897, 2024.

Damian, A., Ma, T., and Lee, J. D. Label noise sgd provably
prefers flat global minimizers. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 27449–27461. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
e6af401c28c1790eaef7d55c92ab6ab6-Paper.
pdf.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,
F. Essentially no barriers in neural network energy
landscape. In Dy, J. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 1309–1318. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
draxler18a.html.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
role of permutation invariance in linear mode connectivity
of neural networks, 2022.

Ferbach, D., Goujaud, B., Gidel, G., and Dieuleveut,
A. Proving linear mode connectivity of neural net-
works via optimal transport. In Dasgupta, S., Mandt,
S., and Li, Y. (eds.), Proceedings of The 27th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 238 of Proceedings of Machine Learn-
ing Research, pp. 3853–3861. PMLR, 02–04 May
2024. URL https://proceedings.mlr.press/
v238/ferbach24a.html.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=6Tm1mposlrM.

Frankle, J. and Carbin, M. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rJl-b3RcF7.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M.
Linear mode connectivity and the lottery ticket hy-
pothesis. In III, H. D. and Singh, A. (eds.), Pro-

ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3259–3269. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/frankle20a.html.

Freeman, C. D. and Bruna, J. Topology and geom-
etry of half-rectified network optimization. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=Bk0FWVcgx.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. Loss surfaces, mode connectivity,
and fast ensembling of dnns. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
be3087e74e9100d4bc4c6268cdbe8456-Paper.
pdf.

Hutchinson, M. A stochastic estimator of the trace of
the influence matrix for laplacian smoothing splines.
Communications in Statistics - Simulation and Com-
putation, 19(2):433–450, 1990. doi: 10.1080/
03610919008812866. URL https://doi.org/10.
1080/03610919008812866.

Ito, A., Yamada, M., and Kumagai, A. Analysis of lin-
ear mode connectivity via permutation-based weight
matching: With insights into other permutation search
methods. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=lYRkGZZi9D.

Jonker, R. and Volgenant, T. A shortest augmenting path al-
gorithm for dense and sparse linear assignment problems.
Computing, 38:325–340, 1987. URL https://api.
semanticscholar.org/CorpusID:7806079.

Jordan, K., Sedghi, H., Saukh, O., Entezari, R., and
Neyshabur, B. REPAIR: REnormalizing permuted ac-
tivations for interpolation repair. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=gU5sJ6ZggcX.
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A. Additional Related Work
(Linear) Mode Connectivity. Several studies (Garipov et al., 2018; Draxler et al., 2018; Freeman & Bruna, 2017) have
demonstrated that different neural networks (NNs) can be connected through simple nonlinear paths with negligible loss
increase. Nagarajan & Kolter (2019) were the first to discover that, in the case of models trained on MNIST with the same
random initializations, solutions obtained via stochastic gradient descent (SGD) can also be connected by linear paths
while maintaining an almost constant loss value. Subsequently, Frankle et al. (2020) empirically showed that linear mode
connectivity (LMC) does not always hold between two SGD solutions, even when they share the same initialization, as it
depends on the dataset and model architecture. However, they also demonstrated that if a model is initially trained for a certain
duration and then used as the starting point for training two independent models, these models are linearly mode-connected.
Furthermore, Frankle et al. (2020) explored the relationship between LMC and the lottery-ticket hypothesis (Frankle &
Carbin, 2019). Entezari et al. (2022) conjectured that LMC holds, with high probability, when considering permutation
symmetries in hidden layers. Later, Ainsworth et al. (2023) proposed a weight-matching (WM) method by formulating
neuron alignment as a bipartite graph matching problem and solving it approximately. Following this, Peña et al. (2023)
introduced the use of Sinkhorn’s algorithm to directly solve the WM problem. Although several works (Venturi et al., 2019;
Nguyen et al., 2019; Nguyen, 2019; Kuditipudi et al., 2019) have investigated nonlinear mode connectivity, theoretical
analyses of LMC remain limited. Ferbach et al. (2024) provided an upper bound on the minimal width of the hidden layer to
satisfy LMC if the independence of all neurons’ weight vectors inside a given layer holds. Zhou et al. (2023) introduced
the concept of layerwise linear feature connectivity (LLFC) and established that LLFC implies LMC. Ito et al. (2025)
demonstrated that the top singular vectors of the parameters obtained by SGD play an important role in satisfying LMC,
especially when permutations are found using WM. There are few studies on merging multiple models using permutations.
Ainsworth et al. (2023) proposed MergeMany, which extends WM to multiple models. Crisostomi et al. (2024) proposed a
method for searching permutations by minimizing the sum of distances between all model pairs as the objective function
using the Frank-Wolfe algorithm. However, as shown in Section 5, these methods have the problem that the performance of
the merged model worsens as the number of models increases.

Model Merging. Model merging and federated learning are relevant topics in the study of LMC. McMahan et al. (2017)
and Konečný et al. (2016) are the first to introduce federated learning, a technique where models are trained on partitioned
datasets. Wang et al. (2020) proposed a federated learning approach that involves permuting individual model components
before averaging their weights. Similarly, Singh & Jaggi (2020) developed a model merging technique that aligns model
weights using optimal transport, a method conceptually similar to that of Ainsworth et al. (2023). While Singh & Jaggi
(2020)’s approach is designed for model fusion and performs worse than Ainsworth et al.’s method, it can still be categorized
as an LMC-based technique due to its use of hard alignments within the same architecture. Wortsman et al. (2022) introduced
a weight-averaging strategy that enhances test accuracy without increasing inference costs, distinguishing it from traditional
ensemble methods.

B. Experimental Settings
This section describes the experimental setup for training neural networks to obtain SGD solutions. In addition, we describe
the hyperparameters for permutation search methods. Three datasets were used in this study: MNIST (Lecun et al., 1998),
Fashion-MNIST (FMNIST) (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009).

All experiments were conducted on a Linux workstation with two AMD EPYC 7543 32-Core processors, eight NVIDIA
A30 GPUs, and 512 GB of memory. The PyTorch 2.5.13, PyTorch Lightning 2.4.04, and torchvision 0.20.15 libraries were
used for model training and evaluation.

B.1. Model Training

MLP on MNIST and FMNIST. Following the approach outlined in (Ainsworth et al., 2023), we implemented a multi-
layer perceptron (MLP) consisting of three hidden layers, each with 512 units. The ReLU activation function was employed
for the hidden layers. For training on the MNIST and FMNIST datasets, the Adam optimizer was utilized with a learning
rate of 1× 10−3. The batch size was fixed at 512, and training was conducted for a maximum of 100 epochs. We did not

3https://pytorch.org/
4https://lightning.ai/docs/pytorch/stable/
5https://pytorch.org/vision/stable/index.html
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Figure 9: Histogram of L2 distances of all model pairs.

use a learning scheduler.

VGG-11 and ResNet-20 on CIFAR10. We utilized the VGG-11 and ResNet20 architectures of (Ainsworth et al., 2023).
To accomplish linear mode connectivity (LMC), we increased the widths of VGG11 and ResNet20 by factors of 4 and 16,
respectively. As described in (Jordan et al., 2023), we used the training dataset to repair the BatchNorm layers in these
models during model merging. Optimization was conducted using SGD with a learning rate of 0.4 and weight decay of
5 × 10−4. The batch size and maximum number of epochs were set to 500 and 100, respectively. The following data
augmentations were performed during training: random 32× 32 pixel crops, and random horizontal flips. Based on the
GitHub repository of (Jordan et al., 2023)6, the learning scheduler was prepared according to the following code:

# To execute this code, you need to import the packages as shown below in advance.
import numpy as np
import torch
# Here's the code for generating the learning rate scheduler.
# num_epochs: the number of epochs, opt: optimizer
lr_sch = np.interp(np.arange(1 + num_epochs), [0, 5, num_epochs], [0, 1, 0])
sch = torch.optim.lr_scheduler.LambdaLR(opt, lr_sch.__getitem__)

B.2. Permutation Search

WM and STE were implemented following the GitHub repository of (Ainsworth et al., 2023)7. For STE and STE-MM, the
learning rate, number of epochs, and batch size were set to 0.001, 10, and 256, respectively. As for CCMM, the source code
from the authors’ publicly available GitHub repository was used8.

C. Additional Experimental Results
C.1. L2 distance between all model pairs using MergeMany and CCMM

Figure 9 shows histograms of the L2 distance ratios between all model pairs for MergeMany and CCMM. The figure
indicates that the distances between model pairs are very close to their mean values, suggesting that they are nearly equivalent.

6https://github.com/KellerJordan/REPAIR
7https://github.com/samuela/git-re-basin
8https://github.com/crisostomi/cycle-consistent-model-merging
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Figure 10: Histograms of angles formed by all mode triplets.

C.2. Angle of each triplet taken from the models

Figure 10 represents the histogram of the angles of all triplets from the models after applying the permutation. From the
figure, most of the angles formed by the triplets are close to 60 degrees, suggesting, as described in Section 6.1, that the
models after applying the permutation are close to a regular simplex.

D. Proofs
D.1. Finding n− 1 permutations is sufficient

This subsection proves the following theorem:

Theorem D.1. Let g : Rdparam → R be a function from the parameter space to the real numbers and invariant to
permutations (i.e., for any parameter θ and permutation π, g(π(θ)) = g(θ) holds). Then, for any n models θ1, . . . ,θn,
any permutations π1, . . . , πn, and any scalars s1, . . . , sn ∈ R, there exist n − 1 permutations π′

1, . . . , π
′
n−1 such that

g(
∑

i∈[n] siπi(θi)) = g(
∑

i∈[n−1] siπ
′
i(θi) + snθn) holds. Here, π′

1, . . . , π
′
n−1 are independent of the function g.

Note that the loss function L and L2 norm are invariant to permutations.

Proof. We first prove the linearlity of permutaion π = (Pℓ)ℓ∈[L]. For any two parameters θ =
∥∥L
ℓ=1

(vec(Wℓ) ∥ bℓ)
and θ′ =

∥∥L
ℓ=1

(vec(W ′
ℓ) ∥ b′ℓ), and scalers s, s′ ∈ R, we consider π(sθ + s′θ′). From definition, since sθ + s′θ′ =∥∥L

ℓ=1
((vec(sWℓ + s′W ′

ℓ)) ∥ (sbℓ + s′b′ℓ)) holds, we have

π(sθ + s′θ′) =
∥∥L
ℓ=1

(
(vec(sPℓWℓP

⊤
ℓ−1 + s′PℓW

′
ℓP

⊤
ℓ−1)) ∥ (sPℓbℓ + s′Pℓb

′
ℓ)
)

(7)

=
∥∥L
ℓ=1

(
sPℓWℓP

⊤
ℓ−1 ∥ sPℓbℓ

)
+
∥∥L
ℓ=1

(
s′PℓW

′
ℓP

⊤
ℓ−1 ∥ s′Pℓb

′
ℓ

)
(8)

= s
∥∥L
ℓ=1

(
PℓWℓP

⊤
ℓ−1 ∥ Pℓbℓ

)
+ s′

∥∥L
ℓ=1

(
PℓW

′
ℓP

⊤
ℓ−1 ∥ Pℓb

′
ℓ

)
(9)

= sπ(θ) + s′π(θ′), (10)

which indicates that the permutation π is a linear function.

Then, we prove that there exists permutations π′
1, π

′
2, . . . , π

′
n−1 such that we have

g

∑
i∈[n]

siπi(θi)

 = g

 ∑
i∈[n−1]

siπ
′
i(θi) + snθn

 (11)
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From the linearity of permutations and the invariance of g with respect to permutations, we have

g

∑
i∈[n]

siπi(θi)

 = g

πn ◦ π−1
n

∑
i∈[n]

siπi(θi)

 = g

πn

∑
i∈[n]

siπ
−1
n ◦ πi(θi)

 = g

∑
i∈[n]

siπ
−1
n ◦ πi(θi)

 .

(12)

Thus, the permutations π′
1 = π−1

n ◦ π1, π
′
2 = π−1

n ◦ π2, . . . , π
′
n−1 = π−1

n ◦ πn−1 satisfy Equation (11). In addition, the
permutations π′

1, . . . , π
′
n are independent of the function g.

D.2. Proof of Equation (6)

We prove the following theorem.

Theorem D.2. Let z be a Rademacher random vector, θ be parameters of an NN model, and H be the Hessian matrix of
the loss function at the model θ. Then, we have

tr(H ⊙ θθ⊤) = Ez(z diag(θ))⊤H(z diag(θ)). (13)

Proof. With the Huchinson trace estimator (Hutchinson, 1990), we have

tr(H ⊙ (θθ⊤)) = tr(H diag(θ) diag(θ)) = tr(diag(θ)H diag(θ)) (14)

= Ezz
⊤ diag(θ)H diag(θ)z = Ez(diag(θ)z)

⊤H(z diag(θ)). (15)
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