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ABSTRACT

Graph Neural Networks (GNNs) are powerful representation learning tools that
have achieved remarkable performance in various downstream tasks. However,
there are still open questions regarding their ability to count and list substructures,
which play a crucial role in biological and social networks. In this work, we fill
this gap and characterize the representation and generalization power of GNNs in
terms of their ability to produce powerful representations that count substructures.
In particular, we study the message-passing operations of GNNs with random node
input in a novel fashion, and show how they can produce equivariant representations
that are associated with high-order statistical moments. Using these representations,
we prove that GNNs can learn how to count cycles, cliques, quasi-cliques, and the
number of connected components in a graph. We also provide new insights into
the generalization capacity of GNNs. Our analysis is constructive and enables the
design of a generic GNN architecture that shows remarkable performance in four
distinct tasks: cycle detection, cycle counting, graph classification, and molecular
property prediction.

1 INTRODUCTION

Graph Neural Networks (GNNs) are deep learning architectures that learn powerful representations
of graphs and graph signals. GNNs have shown remarkable performance across various domains,
such as biology and drug discovery Gainza et al. (2020); Strokach et al. (2020); Jiang et al. (2021),
quantum chemistry Gilmer et al. (2017), robotics Li et al. (2020); Hadou et al. (2022), social networks
and recommender systems Ying et al. (2018). Their success can be attributed to their fundamental
and favorable properties, including permutation invariance-equivariance Maron et al. (2018), stability
to deformations Gama et al. (2020), and transferability Ruiz et al. (2020); Levie et al. (2021).

Since GNNs perform representation learning on graph structures and graph data, a lot of research has
been conducted to answer how expressive GNN representations are. A major line of research studies
the ability of GNNs to perform graph isomorphism. In particular, Morris et al. (2019); Xu et al. (2019)
compare the representation power of GNNs to that of the Weisfeiler-Lehman (WL) test Weisfeiler &
Leman (1968), where Kanatsoulis & Ribeiro (2022) study the expressivity of GNNs from a spectral
perspective. Although graph isomorphism is an important and necessary expressivity test, it is not
sufficient to fully characterize the representation power of these architectures. Consequently, there
has been increased interest in approaching GNN expressivity via counting substructures Arvind et al.
(2020); Chen et al. (2020) or solving graph bi-connectivity Zhang et al. (2023). In this paper, we
revisit the representation power of GNNs in terms of counting important substructures of the graph.
Additionally, we investigate their ability to generalize and transfer structural properties to arbitrary
graph families. Our work is motivated by the following research question:

Problem Definition 1.1 Given a graph G without additional features; can a message-passing GNN
learn to generate permutation equivariant representations that count and list graph substructures?

Problem 1.1 studies the ability of a message-passing GNN to produce substructure informative
representations when the input X is completely uninformative. This is interesting for two reasons.
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First, it provides a theoretical measure of the representation power of GNNs. Second, it has a strong
practical component, as counting and listing graph substructures, also known as subgraphs, motifs,
and graphlets, is pivotal in a plethora of real-world tasks. In molecular chemistry for instance the
bonds between atoms or functional groups, form cycles (rings) that are indicative of a molecule’s
properties and can be utilized to generate molecular fingerprints Morgan (1965); Alon et al. (2008);
Rahman et al. (2009); O’Boyle & Sayle (2016). Cliques and quasi-cliques, on the other hand,
characterize protein complexes in Protein-Protein Interaction networks and community structure in
social networks Girvan & Newman (2002); Jiang et al. (2010); Fox et al. (2020).

In this work, we give an affirmative answer to the Problem 1.1 and analyze the representation power
of GNNs in terms of their ability to count and list cycles, cliques, quasi-cliques, and connected
components. To this end, we consider a standard GNN architecture, that performs local message-
passing operations, combined with normalization layers. Our analysis employs tools from tensor
algebra and stochastic processes to characterize the output of the GNN, when the input is a random
vector. We show that a suitable choice of activation and normalization functions can generate
equivariant node representations, which capture the statistical moments of the GNN output distribution.
Additionally, we derive a deterministic, closed-form expression for the GNN output and provide a
rigorous proof that accurately lists all the triangles, and counts cycles ranging from size 3 to 8, 4-node
cliques, quasi-cliques, as well as connected components within the graph.

Our results also offer novel insights into the generalization properties of message-passing GNNs.
Specifically, we demonstrate that a GNN can learn to count important substructures, not only within
the family of graphs observed during training but also for any arbitrary graph. This analysis is
constructive and enables the development of a generic architecture that exhibits success across
various tasks. Extensive numerical tests validate the effectiveness of the proposed approach across
four distinct tasks: cycle detection, cycle counting, graph classification, and molecular property
prediction. Our contribution is summarized as follows:

(C1) We characterize the representation and generalization power of message-passing GNNs by
assessing their ability to count and list important graph substructures.

(C2) We propose a novel analysis of GNNs with random node inputs that unlocks the true potential
of message-passing, and enables them to generate powerful equivariant representations that
count or list cycles, quasi-cliques, and connected components within a graph.

(C3) We prove that the substructure counting ability of GNNs is generalizable and can transfer to
arbitrary graphs that were not observed during training.

(C4) Our constructive analysis enables a generic architecture that is effective across different tasks.

Related work: There are three main lines of work that are closely related to our paper. The first
by Xu et al. (2019); Morris et al. (2019); Arvind et al. (2020); Chen et al. (2020) establishes that
message-passing GNNs with degree-related inputs are, at most, as powerful as the WL test, thus
limiting their ability to count simple subgraphs as triangles. The second line of work Abboud et al.
(2021); Sato et al. (2021) addresses these limitations by employing random features as input to the
GNN. This results in enhanced function approximation properties, but at the expense of permutation
equivariance, which is fundamental in graph learning. Finally, Tahmasebi et al. (2020); You et al.
(2021); Bouritsas et al. (2022); Barceló et al. (2021); Bevilacqua et al. (2021); Zhang & Li (2021);
Zhao et al. (2021) directly augment GNNs with structural information to enhance their representation
power. A detailed discussion of prior work with additional references can be found in Appendix A.

2 MESSAGE-PASSING GNNS

To begin our discussion consider a graph G := (V, E), with a set of vertices V = {1, . . . , N}, a set
of edges E = {(v, u)}, and an adjacency matrix S ∈ {0, 1}N×N . The vertices (nodes) of the graph
are often associated with graph signals xv ∈ RD with D features, also known as node attributes.

In this paper, we study standard GNNs that perform local, message-passing operations. A message-
passing GNN is a cascade of layers and is usually defined by the following recursive formula:

x(l)
v = g(l−1)

(
x(l−1)
v , f (l−1)

({
x(l−1)
u : u ∈ N (v)

}))
, (1)
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where N (v) is the neighborhood of vertex v, i.e., u ∈ N (v) if and only if (u, v) ∈ E . The function
f (l) aggregates information from the multiset of neighboring signals, whereas g(l) combines the
signal of each vertex with the aggregated one from the neighboring vertices. Common choices for
f (l), g(l) are the multi-layer perceptron (MLP), the linear function, and the summation function.
When f (l) is the summation function, and g(l) is the multivariate linear function for l = 1, . . .K − 1
and the MLP followed by normalization for l = K, the output of the K−th layer is equivalent to the
following expression (as shown in Appendix B):

Y = ρ
[
X(K)

]
= ρ

[
σ

(
K∑

k=0

SkXHk

)]
, (2)

where X = X(0) ∈ RN×D represents the signals of all vertices, Hk ∈ RD×F are the trainable
parameters, σ is a point-wise nonlinear activation function, and ρ is a normalization function, e.g.,
batch normalization or softmax. Note that the K-th layer is not necessarily the final one, i.e., Y can
be used as an input to other layers defined in 1. Unless noted otherwise the term GNN will refer to
local, message-passing GNNs.

3 STUDYING GNNS WITH RANDOM INPUT

Throughout the rest of this paper, we will utilize tensor algebra, specifically the tensor mode product,
the canonical polyadic decomposition (CPD) model, and the Tucker model. For a brief introduction,
please refer to Appendix C, and for a more comprehensive understanding of tensors, we recommend
consulting Sidiropoulos et al. (2017); Kolda & Bader (2009).

The goal of our paper is to answer the research question in 1.1 and characterize the expressive power
of message-passing GNNs in terms of counting important substructures of the graph. To do that we
study Equation 2, when the node input is a random vector x ∈ RN . Our work focuses on the ability
of message-passing GNN operations to generate expressive features, therefore the input x should be
completely uninformative, i.e., structure and identity agnostic. To ensure that x = [x1, x2, . . . , xN ]

T

is agnostic with respect to the structure of the graph, we assume that xi, i = 1, . . . , N are independent
random variables. To ensure that xi, i = 1, . . . , N are identity agnostic, we assume that they are
identically distributed and satisfy E [xi] = 0, E [xp

i ] = 1, for i = 1, . . . , N , and p ≥ 2 ∈ Z. Overall,
the elements of x are independent and identically distributed (i.i.d.), with joint characteristic function
ϕx (t1, . . . , tN ) =

∏N
i=1

(
ejti − jti

)
, and the moments of the joint distribution of x satisfy:

E [x] = 0, E
[
xxT

]
= I, E [x ◦ x ◦ x] = I, E [x ◦ x ◦ · · · ◦ x] = I, (3)

where ◦ is the outer product and I denotes a super-diagonal tensor with all-one values, i.e.,
I[i1, i2, . . . , iq] = 1 if i1 = i2 = · · · = iq and I[i1, i2, . . . , iq] = 0 otherwise. Note that E [x] = 0
is an 1-dimensional tensor (vector), E

[
xxT

]
= E [x ◦ x] = I is a 2-dimensional tensor (matrix),

and E [x ◦ x ◦ x] = I, E [x ◦ x ◦ · · · ◦ x] = I are 3- and multi-dimensional tensors respectively.

We process the input vector x using 2, i.e., Y = ρ
[
σ
(∑K

k=0 S
kxhT

k

)]
, where hk ∈ RF represents

a set of F graph filters of the form:

z =

K∑
k=0

hkS
kx = H (S)x, y = ρ [σ (z)] , (4)

where H (S) =
∑K

k=0 hkS
k. To produce equivariant, deterministic node features we choose σ, ρ

such that they can instantiate moments of the distribution of z. As we see in the next section, the
moments of z can count some very important graph substructures.

4 COUNTING GRAPH SUBSTRUCTURES WITH GNNS

In this section, show that appropriate choices of σ, ρ in 4 generate equivariant node features that are
associated with the moments of the distribution of z. We then analyze these moments and prove that
they count cycles, quasi-cliques, and connected components in a graph. The proofs can be found in
Appendices D to I. Results for counting cycles at the node level can be found in Appendix K.
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4.1 SECOND ORDER MOMENT

First, we study 4 when σ is the elementwise square function and ρ is the expectation operator. This
architecture computes deterministic equivariant node features that measure the variance of z, i.e.,
y = ρ [σ (z)] = E

[
z2
]
. Note that E [z] = 0, since E [x] = 0 and x, z are linearly related. To

analyze the output y we instantiate the covariance of z that takes the form:

E
[
zzT

]
= E

[
K∑

k=0

hkS
kxxT

K∑
m=0

hmSmT

]
=

K∑
k=0

hkS
kE
[
xxT

] K∑
m=0

hmSm = H (S)H (S) ,

where the last equality comes from the fact that H (S) =
∑K

k=0 hkS
k and E

[
xxT

]
= I . Then:

y = ρ [σ (z)] = E
[
z2
]
= diag

(
E
[
zzT

])
= (H (S)⊙H (S))1, (5)

where diag(A) ∈ RN is the vector with the diagonal of A ∈ RN×N , ⊙ denotes the Hadamard (ele-
mentwise) product operation, and the last equality comes from the following property, diag (AB) =
(A⊙B)1, for square matrices A, B. Expanding 5 yields the following expression:

y =

(
K∑

k=0

hkS
k ⊙

K∑
m=0

hmSm

)
1 =

K∑
k=0

K∑
m=0

hkhm

(
Sk ⊙ Sm

)
1 =

∑
k,m

hk,m

(
Sk ⊙ Sm

)
1.

(6)

We leverage the expression in 6 to prove the following theorems.

Theorem 4.1 (Number of connected components) Given a set of graphs {Gi}Mi=1, there exists a
GNN defined in 1 or 2 that counts the number of connected components of all {Gi}Mi=1.

Theorem 4.2 (Cycles) There exists a GNN defined in 1 or 2 that counts the number of cycles with 3
to 5 nodes, of any graph.

Note that in Theorem 4.1 we prove that a GNN is able to learn how to count the connected components
of graphs that were observed during training. Theorem 4.2, one the other hand, proves that a GNN is
able to learn how to count the 3-,4-,5-node cycles of any graph. As a result, Theorem 4.2 is stronger
and also provides novel insights into the generalization ability of GNNs.

4.2 THIRD-ORDER MOMENT

Next, we study 4 when σ is the elementwise cubic function and ρ is the expectation operator. This
architecture computes deterministic equivariant node features that measure the skewness of z, i.e.,
y1 = ρ [σ (z)] = E

[
z3
]
. To analyze the output y we instantiate the third-order moment of z, which

is a super-symmetric third-order tensor and is defined as follows:

E [z ◦ z ◦ z] = E [x ◦ x ◦ x]×1 H (S)×2 H (S)×3 H (S) , (7)

where “×1,×2,×3” denote the tensor mode products and multiply each column, row, and fiber of
E [x ◦ x ◦ x] with H (S) respectively. Since E [x ◦ x ◦ x] = I , 7 takes the form:

E [z ◦ z ◦ z] = I ×1 H (S)×2 H (S)×3 H (S) = JH (S),H (S),H (S)K , (8)

where JH (S),H (S),H (S)K =
∑N

n=1 H (S) [:, n] ◦H (S) [:, n] ◦H (S) [:, n] denotes the CPD
model of E [z ◦ z ◦ z] with factor matrices H (S). Then y1 takes the form:

y1 = ρ [σ (z)] = E
[
z3
]
= superdiag (E [z ◦ z ◦ z]) = (H (S)⊙H (S)⊙H (S))1, (9)

where superdiag (·) ∈ RN is the superdiagonal of the tensor and the last equality comes from the
definition of the CPD model. Interestingly, 9 can be cast as follows:

y1 =

(
K∑

k=0

hkS
k ⊙

K∑
l=0

hlS
l ⊙

K∑
m=0

hmSm

)
1 =

K∑
k,l,m=0

hk,l,m

(
Sk ⊙ Sl ⊙ Sm

)
1. (10)

Using the expression in 10 we prove in the Appendix the following theorems:
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Theorem 4.3 (6-node Cycles) There exists a GNN defined in 1 or 2 that counts the number of 6-node
cycles of any graph.

Theorem 4.4 (Quasi-cliques) There exists a GNN defined in 1 or 2 that counts the number of 4-node
and 5-node quasi-cliques (chordal cycles) of any graph.

Theorems 4.3 and 4.4 indicate that y1 = E
[
z3
]

is crucial in counting 6-node cycles and 4,5-node
quasi-cliques. We can also linearly derive additional equivariant features, from the third moment
tensor E [z ◦ z ◦ z], that produce rich information about the graph. In particular, we can compute the
following equivariant feature vector, which is essential in our proofs for 7-node cycles.

y2 = diag
(
E [z ◦ z ◦ z]×3 1

T
)
= diag

(
E
[
z ◦ z ◦ 1Tz

])
= E

[
z2
(
1Tz

)]
. (11)

The expression in 11 can be derived from 4 when σ is the elementwise square function, and ρ (·) =
E
[
(·)⊙

(
1Tz

)]
. In that case, ρ defines a normalization layer that multiplies each datum in z2 by

1Tz and measures the average of all data. After some algebraic manipulations that can be found in
the Appendix the expression in 11 takes the form:

y2 =

(
K∑

k=0

hkS
k ⊙

K∑
l=0

hlS
l

)
K∑

m=0

hmSm1 =

K∑
k,l,m=0

hk,l,m

(
Sk ⊙ Sl

)
Sm1. (12)

4.3 FOURTH-ORDER MOMENT

Following the idea of the previous subsections, if σ is the elementwise quartic function and ρ is the
expectation, we can compute deterministic equivariant node features that measure the kurtosis of z.

y = E
[
z4
]
=

K∑
k,l,m,n=0

hk,l,m,n

(
Sk ⊙ Sl ⊙ Sm ⊙ Sn

)
1. (13)

Using 6 , 12, 13 we can derive the following theorem:

Theorem 4.5 (7-node Cycles) There exists a GNN defined in 1 or 2 that counts the number of 7-node
cycles of any graph.

Remark 4.6 Theorems 4.2, 4.3, 4.4, and 4.5 prove the ability of a GNN to learn how to count the
substructures of any graph. This brings new insights into the generalization ability of GNNs.

5 HIGHER-ORDER MOMENTS AND MULTIPLE-LAYER ANALYSIS

In this section, we generalize our analysis and study a multi-layer message-passing GNN that
computes higher-order moments. To this end, we present the following proposition.

Proposition 5.1 Consider a message-passing GNN with L layers, where the output of each layer
is defined by 2. Let the input to the GNN be a random vector with moments as in 3, and σ be the
elementwise m−th power, i.e., σl (·) = (·)ml for l = 1, . . . , Q. Also let ρ (·) = 1 (·) be the identity

function in the first L− 1 layers, and ρ (·) = E
[
(·)⊙

(
1Tz

)im] only in the L−th layer. Then the

output Y = [y1, . . . ,yF ] ∈ RN×FL of this GNN, has a closed-form expression, defined by 14.

yf =

K∑
i1,...,in=0

hi1,...,in

(
Si1 ⊙ · · · ⊙ Sik

)
· · ·
(
Sil ⊙ · · · ⊙ Sim

)︸ ︷︷ ︸
L times

(
Sim+11⊙ · · · ⊙ Sin1

)
(14)

The number of multiplications L in 14 is equal to the number of layers, the term
(
Si1 ⊙ · · · ⊙ Sik

)
reflects the effect of the activation σ(·), and

(
Sim+11⊙ · · · ⊙ Sin1

)
is affected by the choice of

normalization ρ in the final layer. A schematic illustration of the considered architecture is presented
in Fig. 1. The module 1a consists of proper message-passing operations, whereas the module 1b
consists of Hadamard products between adjacency powers and sparse matrix-vector multiplications.
The computational complexity of our approach is analyzed in Appendix L.

5



Published as a conference paper at ICLR 2024

1-st message-passing block L-th message-passing block

x ∼ ϕx
f
(
xv,

∑
u∈N (v)

xu

)
· · · f

(
x′
v,

∑
u∈N (v)

x′
u

)
σ
[
·
]

· · · f
(
x(L−1)
v ,

∑
u∈N (v)

x(L−1)
u

)
· · · f

(
x(L−1)′

v ,
∑

u∈N (v)

x(L−1)′

u

)
ρ
[
σ
[
·
] ]

yf

(a) Message-passing module with random input

Equivalent Block

x = 1

K−1∑
i1,...,im=0

hi1,...,im

(
Si1 ⊙ · · · ⊙ Sik

)
· · ·
(
Sil ⊙ · · · ⊙ Sim

) (
Sim+1x⊙ · · · ⊙ Sinx

)
y

(b) Equivalent module

Figure 1: Moment-GNN modules

Remark 5.1 Modules 1a and 1b are equivalent and can be used interchangeably. Furthermore,
Layer L in Proposition 5.1 or Fig. 1 need not need to be the final layer of the GNN architecture, can
be followed by classical message-passing layers as defined in 1.

The previous analysis can also be used to characterize the expressive power of the GNNs defined in 1
or 2 with respect to that of the folklore-Weisfeiler-Lehman (FWL) test Cai et al. (1992); Morris et al.
(2019); Huang & Villar (2021).

Proposition 5.2 (Expressive Power) A GNN defined by Proposition 5.1 followed by layers described
in 1 is strictly more powerful than the 1-FWL test, when f, g are injective functions.

6 LISTING AND COUNTING STRUCTURES BEYOND 2-FWL

In this section, we show how a message-passing GNN can generate equivariant features that list all
the triangles of a graph, count the number of 4−node cliques, 8−node cycles, and therefore break the
expressivity limits of the 2-FWL test. In particular, we consider again the GNN described in 2, which
we study with an uninformative input as described in Section 3, to derive the following theorem.

Theorem 6.1 (Listing Triangles) There exists a message-passing GNN defined in 15:

T = ReLU (E [z ◦ z ◦ z]) ∈ {0, 1}N×N×N , z =

K∑
k=0

hkS
kx, (15)

with an uninformative input x ∈ RN as described in Section 3 such that T [i, j, k] = 1 if vertices
i, j, k form a triangle and T [i, j, k] = 0 otherwise.

In Theorem 6.1 we start with i.i.d. random node inputs, as in the previous analysis, and perform linear
message-passing operations to compute informative node representations z. Instead of applying a
pointwise nonlinearity to z, we compute the three-way outer product z ◦ z ◦ z, and process it via the
expectation and ReLU. This enables the computation of tensor T , which encodes relations of node
triplets and can list all the triangles in the graph. After learning tensor T we can use it to generate a
random vector xt with the following statistical moments:

E [xt] = 0, E [xt ◦ xt ◦ xt] = T . (16)
We can then perform a similar analysis as the one in Section 4 and derive the following theorems.

Theorem 6.2 (4-node cliques) There exists a GNN defined in 1 or 2 with random input xt defined
in 16, that counts the number of 4-node cliques of any graph.

Theorem 6.3 (8-node Cycles) There exists a GNN defined in 1 or 2 with random input xt defined
in 16, that counts the number of 8-node cycles of any graph.

The details of the analysis can be found in Appendix J. Theorems 6.2, 6.3 also prove that:

Proposition 6.1 (Expressive Power) There exist substructure families with O (1), such that 2-FWL
is no stronger than the GNN described in Theorems 6.2, 6.3.

6
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Table 1: Cycle detection accuracy for different GNN models

Cycle length 4 6 8

Graph size 12 20 28 36 20 31 42 56 28 50 66 72

Neural-MP 98.5 93.2 91.8 86.7 98.7 95.5 92.9 88.0 98.0 96.3 92.5 89.1
GIN 98.3 97.1 95.0 93.0 99.5 97.2 95.1 92.7 98.5 98.8 90.8 92.5

GIN + degree 99.3 98.2 97.3 96.7 99.2 97.1 97.1 94.5 99.3 98.7 95.4
GIN + rand id 99.0 96.2 94.9 88.3 99.0 97.8 95.1 96.1 98.6 98.0 97.2 95.3

RP 100 99.9 99.7 97.7 99.0 97.4 92.1 84.1 99.2 97.1 92.8 80
PPGN 100 100 100 99.8 98.3 99.4 93.8 87.1 99.9 98.7 84.4 76.5

Ring-GNN 100 99.9 99.9 99.9 100 100 100 100 99.1 99.8 74.4 71.4
SMP 100 100 100 100 100 100 100 100 100 100 100 99.9

Moment-GNN 100 99.9 100 99.9 100 100 100 100 100 100 100 100

Table 2: Cycle detection for in- and out-of-distribution graphs

Setting In-distribution Out-of-distribution

Cycle length 4 6 8 4 6 8
Graph size 20 31 50 36 56 72

GIN 93.9 99.7 98.8 81.1 85.8 88.8
PPGN 99.9 99.5 98.7 50.0 50.0 50.0

Ring-GNN 100 100 99.9 50.0 50.0 o.o.m.
SMP 100 99.8 99.5 99.8 87.8 79.5

Moment-GNN 100 100 99.1 100 100 100

7 EXPERIMENTS

7.1 ARCHITECTURE

To implement the proposed approach, which we denote as Moment-GNN1, we use the equivalent
model, shown in Fig. 1b and Equation 14. The architecture consists of a single Moment-GNN
layer followed by 2− 6 message-passing GIN layers Xu et al. (2019), defined by 1, where f is the
summation function and g is an MLP. The Moment-GNN uses the closed-form expression in 14 (or
more specifically in 65) to compute the individual moments E [zm], for m = 2, 3, 4, 5. We use a set of
Fm filters for the m-th moment, which outputs a feature representation Y ∈ RN×(F2+F3+F4+F5) the
is used as an input to the GIN layers. The maximum m and the number of layers are hyperparameters.

7.2 CYCLE DETECTION

In the first set of experiments, we test the ability of the proposed approach to detect cycles of lengths 4,
6, and 8 in graphs of different sizes, which is a binary graph classification task. The baselines used for
comparison are: Neural message-passing network (Neural-MP) Gilmer et al. (2017), GIN Xu et al.
(2019), relational pooling GNN (RP) Murphy et al. (2019), provably powerful GNN (PPGN) Maron
et al. (2019), Ring-GNN Chen et al. (2019), and structural message-passing GNN (SMP) Vignac
et al. (2020). Note that RP, PPGN, Ring-GNN, and SMP have significantly higher computational
and memory complexity compared to Neural-MP, GIN, and Moment-GNN. We also consider two
variants of GIN, namely GIN + degree and GIN + rand id. The input of GIN + degree
is the one-hot encoding of the degree of each node, and the input of GIN + rand id is a random
vector that works as a unique identifier of each node Abboud et al. (2021); Sato et al. (2021). The
latter increases the expressiveness of GIN at the expense of permutation equivariance.

We use the dataset and procedure described in Vignac et al. (2020)2. Each model is trained with
10,000 graphs for each cycle length. Testing is performed on a separate set of 10,000 graphs. The
classification accuracy of the competing GNNs for different cycle lengths and graph sizes is presented
in Table 1. The results for the baselines are taken from Vignac et al. (2020).

1https://github.com/MomentGNN
2https://github.com/cvignac/SMP
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Table 3: Moment-GNN Performance in ZINC

(a) Regression MAE for counting cycles in ZINC

Pentagon Hexagon

Training Testing Training Testing

0.0012 0.0021 0.0057 0.0059

(b) Classification accuracy cycle detection in ZINC

Nonagon Decagon

Training Testing Training Testing

100 99.8 99.9 99.4

We observe that Moment-GNN and SMP manage to perfectly detect the cycles of the graphs, whereas
Neural-MP, RP, PPGN, Ring-GNN show weaker performance in larger graphs. It is no-
table that Moment-GNN is a message-passing GNN with lower complexity than RP, PPGN,
RING-GNN, yet it yields enhanced performance. Furthermore, Moment-GNN markedly outper-
forms GIN + rand id, despite the initial resemblance in their utilization of random input for
feeding a message-passing GNN. This can be attributed to the fact that GIN + rand id gener-
ates random realizations that serve as distinct identifiers, thus negating permutation equivariance.
On the contrary, Moment-GNN employs a stochastic approach of the random input and maintains
permutation equivariance, which is a crucial property for this task.

In the second set of experiments, we examine the generalization and transferability of the different
GNN models. In particular, we train the GNN architectures to detect the cycles of small graphs and
test detection performance with larger graphs. The classification accuracy for in-distribution and
out-of-distribution graphs are presented in Table 2 (o.o.m stands for out of memory). We observe
that Moment-GNN is able to perfectly detect the cycles in all settings. In particular, it achieves 20%
improved accuracy compared to SMP in detecting out-of-distribution cycles of length 8 and 12%
improvement in detecting out-of-distribution cycles of length 6. It is also 50% better than PPGN
and Ring-GNN. The result becomes even more impressive if we consider that SMP, PPGN and
Ring-GNN have higher computational and memory complexity compared to Moment-GNN.

7.3 CYCLE COUNTING

We further test the ability of Moment-GNN to count and detect cycles. To this end, we consider the
ZINC dataset, which consists of 12, 000 molecular graphs of different chemical compounds Irwin et al.
(2012); Dwivedi et al. (2023). The cycle statistics of ZINC graphs are presented in Fig. 2. We observe
that the prevailing substructure is the hexagon (cyclohexane), which is expected since cyclohexanes
are the most common rings in molecular conformations. There are also several pentagons and
some single nonagons and decagons. The number of the remaining cycles is insignificant and it
is unlikely that a learning method will be able to count them. Following these observations we
train Moment-GNN for 4 different tasks: i) count the number of pentagons, ii) count the number of
hexagons, iii) detect a nonagon, iv) detect a decagon. The first two are formulated as regression tasks
with L1 loss, and the last two as binary classification with logistic loss. The ground-truth number of
cycles was computed using the subgraph isomorphism algorithm VF2 Cordella et al. (2004). For the
detection tasks, we train and test with a subset of the available graphs to ensure balanced classes.

The training and testing results for counting pentagons and hexagons are presented in Table 3a.
We observe that Moment-GNN is able to count these cycles with very high accuracy, as the mean
absolute error (MAE) for both tasks is in the order of 10−3. The results for nonagon and decagon
detection are presented in Table 3b. Moment-GNN is able to achieve almost perfect training and
testing classification accuracy for both cycle types, even though our theory does not guarantee that
the proposed framework will be able to do so. Baseline comparisons can be found in Appendix M.

7.4 LOGP PREDICTION

Next, we consider the task of predicting the penalized water-octanol partition coefficient-logP for
molecules in the ZINC dataset. We use 10,000 of them for training, 1,000 for validation and
1,000 for testing. We use a 5-layer message-passing GNN, where the first layer is a Moment-GNN
and the remaining are traditional message-passing layers with skip connections followed by batch-
normalization layers. We use 2 different implementations; one that does not process edge features
and one that does. The feature dimension is set to 128. To assess the performance of our approach
we use the MAE between the estimated and the ground-truth logP of the testing set. We perform 10
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Table 4: logP Prediction in ZINC

GNN Model MAE MAE (EF)
GraphSage 0.410± 0.005 −

GAT 0.463± 0.002 −
MoNet 0.407± 0.007 −

GatedGCN 0.422± 0.006 0.363± 0.009
PNA 0.320± 0.032 0.188± 0.004
DGN 0.219± 0.0102 0.168± 0.003

GNNML 0.161± 0.006 −
HIMP − 0.151± 0.006
SMP 0.219± 0.138±

GIN + rand id 0.322± 0.026 0.279± 0.023
GCN 0.469± 0.002 −
GIN 0.254± 0.014 0.209± 0.018

GSN with cycles 0.140± 0.006 0.115± 0.012
Moment-GNN 0.140± 0.004 0.110± 0.005

Table 5: Graph classification on REDDIT

Method REDDIT-B REDDIT-M
WLkernel 81.0± 3.1 52.5± 2.1

- − −
- − −
- − −

WEGL 92.9± 1.9 55.4± 1.6
AWL 87.9± 2.5 50.5± 1.9
DGK 78.0± 0.4 41.3± 0.2

PATCHYSAN 86.3± 1.6 49.1± 0.7
RetGK 90.8± 0.2 54.2± 0.3

GIN + rand id 91.8± 1.6 57.0± 2.1
GCN 50.0± 0.0 20.0± 0.0
GIN 91.8± 1.1 56.9± 2.1

GSN with cliques 91.1± 1.8 56.2± 1.8
Moment-GNN 92.0± 1.8 58.1± 1.6

different runs and report the mean and standard deviation of the MAE of the model that showed the
best validation accuracy. We compare against various state-of-art baselines and report the results in
Table 4. We observe that Moment-GNN achieves state-of-the-art performance in predicting logP
for molecular graphs, whereas GSN with cycle features is the second best. The performance of
Moment-GNN is achieved by message-passing operations without additional knowledge. This is
contrary to GSN which precomputes substructure counts and fine tunes according to them.

7.5 GRAPH CLASSIFICATION

We also test the performance of Moment-GNN in classifying the graphs of REDDIT-B (2000 graphs,
2 classes, 429.6 Avg# nodes) and REDDIT-M (5000 graphs,5 classes, 508.5 Avg# nodes) datasets.
Note that the majority of powerful GNNs cannot operate on these datasets due to their large size.
For example, GSN is only able to compute a small number of structural features. To train the GNN
models, the graphs are divided into 50-50 training testing splits and 10 different folds. Once again, we
use a 5-layer GNN as before but without skip-connections. The feature dimension is set to 64. Table
5 presents the mean and standard deviation of the classification accuracy over 10 folds. We report the
epoch that provided the best results among 350 epochs, which is the standard for this dataset.

From Table 6 we see that Moment-GNN achieves state-of-the-art performance for one more task.
Note that Moment-GNN is a generic architecture and there is no need to predefine the structure type
(e.g., cycle vs clique, induced vs non-induced) required for a specific task. Moment-GNN will decide
the appropriate substructure type according to the data and the task.

In summary, our findings highlight the remarkable performance of Moment-GNN across 4 different
tasks. Tables 1, 3a show that Moment-GNN can count and detect important substructures, Table 2
that it can transfer to out-of-distribution and larger datasets, and Tables 4, 5 that it is effective in down-
stream tasks. Overall, the results provide concrete evidence of the generic nature of Moment-GNN,
which overcomes the need for fine-tuning based on the most pivotal subgraph type for each specific
task. Further experiments on the full ZINC dataset, along with additional baseline comparisons and
discussions can be found in Appendix M.

8 CONCLUSION

In this paper, we analyzed the representation power of local, message-passing GNNs with respect
to their ability to generate representations that count certain important graph substructures. To do
so we studied GNNs with random node inputs and showed that proper choices of activation and
normalization functions enable the generation of powerful equivariant representations in the output.
These representations are provably capable of counting cycles with 3 to 8 nodes, cliques with 3 to 4
nodes, several quasi-cliques, and connected components within a graph. They can also generalize to
arbitrary out-of-distribution graphs. Our analysis is constructive and designed a generic architecture
that demonstrated remarkable performance in the tasks of subgraph detection, subgraph counting,
graph classification and logP prediction.
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A RELATED WORK

The expressive power of Graph Neural Networks (GNNs) was initially explored by Xu et al. (2019);
Morris et al. (2019). These studied the expressive power of GNNs in terms of performing the graph
isomorphism test, i.e., distinguishing different graphs. They identified a connection between the
Weisfeiler-Lehman (WL) test Weisfeiler & Leman (1968) and the message-passing operations in
GNNs. Using this connection they proved that GNNs with degree-related inputs are, at most, as
powerful as the WL test. Arvind et al. (2020); Chen et al. (2020) extended these results to the task
of substructure counting, and showed that GNNs with degree-related inputs cannot count important
substructures such as triangles.

Expanding on these findings, several works Maron et al. (2018); Murphy et al. (2019); Azizian et al.
(2020); Morris et al. (2020); Geerts & Reutter (2021); Giusti et al. (2022) introduced high-order GNN
models that utilize tensor representations and capture k-tuple and k-subgraph information. These
high-order GNNs offer improved counting capabilities but come with increased computational and
memory complexity. Maron et al. (2019); Chen et al. (2019) reduce the computational complexity of
high-order GNNs by working directly with matrix or tensor multiplications while maintaining high
levels of representation power.

Another research direction, addressing the limitations identified by Xu et al. (2019); Morris et al.
(2019), focuses on accurately counting substructures by providing GNNs with unique node identi-
fiers Loukas (2019); Abboud et al. (2021); Sato et al. (2021). Notably, Abboud et al. (2021); Sato
et al. (2021) employ random features as input to GNNs, resulting in enhanced function approxima-
tion. However, this approach sacrifices the essential property of permutation equivariance, which is
fundamental in graph learning. Alternatively, Vignac et al. (2020) incorporate global graph infor-
mation at the node level, leading to improved substructure counting capabilities but with increased
computational and memory requirements.

Tahmasebi et al. (2020); You et al. (2021); Bouritsas et al. (2022); Barceló et al. (2021); Bevilacqua
et al. (2021); Zhang & Li (2021); Zhao et al. (2021); Bodnar et al. (2021) directly augment GNNs
with structural information to enhance their representation power. Some of them, as Tahmasebi
et al. (2020); You et al. (2021); Bouritsas et al. (2022) directly augment GNNs with structural
or spectral Lim et al. (2022) information, that learn from non-message-passing mechanisms, to
enhance their representation power and empirical performance. Others as Zhang & Li (2021); Zhao
et al. (2021); Bodnar et al. (2021) first identify important subgraphs and then they design message-
passing mechanisms that operate according to these subgraphs. This way, they learn local subgraph
representations that are used to extract global graph embeddings. Transformer GNN architectures
have been proposed Veličković et al. (2018); Rampášek et al. (2022) with increased expressive power.
Finally, the statistical guarantees GNNs in link prediction are studied in Chung et al. (2024).

B MESSAGE-PASSING GRAPH NEURAL NETWORKS

The most typical Graph Neural Network (GNN) architecture is the message-passing GNN (MPGNN)
(Kipf & Welling, 2016; Gilmer et al., 2017; Xu et al., 2019), which is usually defined as follows:

x(l)
v = g(l−1)

(
x(l−1)
v , f (l−1)

({
x(l−1)
u : u ∈ N (v)

}))
, (17)

where N (v) is the neighborhood of vertex v, i.e., u ∈ N (v) if and only if (u, v) ∈ E . The function
f (l) aggregates information from the multiset of neighboring signals, whereas g(l) combines the
signal of each vertex with the aggregated one from the neighboring vertices.
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B.1 FROM MESSAGE-PASSING TO GRAPH CONVOLUTION

When f is the summation function and g is concatenation followed by multivariate linear function,
17 becomes:

x(l)
v = A(l−1)x(l−1)

v +B(l−1)
∑

u∈N (v)

x(l−1)
u , (18)

which we can write in matrix form as:

X(l) = X(l−1)A(l−1)T + SX(l−1)B(l−1)T , (19)

where S ∈ {0, 1}N×N is the graph adjacency and the v−th row of X(l−1) is X(l−1)[v, :] = x
(l−1)T

v .

For 2 MPNN the recursive formula gives:

X(1) =XA(0)T + SXB(0)T (20)

X(2) =X(1)A(1)T + SX(1)B(1)T (21)

=XA(0)TA(1)T + SX
(
B(0)TA(1)T +A(0)TB(1)T

)
+ S2XB(0)TB(1)T (22)

=XH0 + SXH1 + S2XH2, (23)

where X = X(0). Following the previous analysis K MPNN layers yield:

Z = X(K) =

K∑
k=0

SXHk. (24)

After the K−th layer we can also add a pointwise activation function σ (·) and a normalization layer
ρ [·] which are the norm in deep learning. Then

Y = ρ [σ (Z)] = ρ

[
σ

(
K∑

k=0

SXHk

)]
. (25)

Overall, the above expression is an MPNN defined in 17, where f (l) is the summation function, and
g(l) is the linear function for l = 1, . . .K − 1 and the MLP followed by a normalization layer for
l = K.

B.2 THE LOCAL GNN ARCHITECTURE

In this paper, we study a cascade of MPNN layers defined in 25, i.e.,

X(l+1) = ρ [σ (Z)] = ρ

[
σ

(
K∑

k=0

SX(l)Hk

)]
. (26)

The type of pointwise nonlinearities that we study are the Rectified Linear Unit (ReLU), and
elementwise powers σ (·) = (·)m. We also consider the following types of normalization layers:

ρ [·] = E
[
(·)⊙

(
1Tz

)m]
(27)

ρ [·] = E
[
(·)⊙

(
1Tzm

)]
(28)

ρ [·] = (·)⊙ E [zm] (29)

where E is the expectation operator, ⊙ is the Hadamard (elementwise) product, and all the powers
are also elementwise.

C TENSOR ALGEBRA PRELIMINARIES

To facilitate our analysis, we briefly present some tensor algebra preliminaries and refer the reader to
Sidiropoulos et al. (2017); Kolda & Bader (2009) for further details.
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A N -order tensor X ∈ RI1×I2×···×IN is an N -way array indexed by i1, i2, . . . , iN with
elements X(i1, i2, . . . , iN ). It consists of N types of modes: X(:, i2, . . . , iN ), X(i1, :
, . . . , iN ), . . . ,X(i1, i2, . . . , :).

A rank-one tensor Z ∈ RI1×I2×···×IN is the outer product of N vectors defined as:
Z = a1 ◦ a2 ◦ · · · ◦ aN , (30)

where a1 ∈ RI1 , a2 ∈ RI2 , . . . , aN ∈ RIN and ◦ denotes the outer product. The elementwise
formula of the above expression is:

Z(i1, i2, . . . , iN ) = a1(i1)a2(i2) · · ·aN (iN ), ∀i1, i2, . . . , iN , (31)
Any tensor can be realized as a sum of N -way outer products (rank one tensors), i.e.

X =

F∑
f=1

af
1 ◦ af

2 ◦ · · · ◦ af
N . (32)

The above expression represents the canonical polyadic decomposition (CPD) or parallel factor
analysis (PARAFAC) Harshman & Lundy (1994) of a tensor. The CPD elementwise representation
is:

X(i, j, k) =

F∑
f=1

A1(i1, f)A2(i2, f) · · ·AN (iN , f), (33)

where An = [a1
n,a

2
n, . . . ,a

F
n ] ∈ RIn×F , n = 1, . . . , N are called the low rank factors of the tensor.

A tensor can be fully characterized by its latent factors, so we can represent a tensor by its CPD
model as:

X = JA1,A2, . . . ,AN K . (34)
A tensor can be also represented as a set of matrices, by fixing all the modes but two as:

X [:, :, i3, . . . , iN ] = A1 (Diag (A3 (i3, :))⊙ · · · ⊙ Diag (AN (iN , :)))AT
2 , (35)

where Diag (An (in, :)) is the diagonal matrix with diagonal equal to AN (in, :).

An important operation in tensor analytics is the mode product which multiplies a matrix or a vector
to a tensor in a single mode. A joint mode-1, mode-2,. . . , mode-N product of a tensor is represented
as follows:

X̃ = X ×1 P1 ×2 P2 · · · ×N PN (36)
where “×1” denotes the operation that multiplies each column of X with P1, “×2” denotes multi-
plying each row of X with P2, and “×N” denotes multiplying each N−mode of X with PN . The
mode product is reflected in the CPD model of the tensor, i.e., the outcome of 36 results in a tensor
X̃ with CPD:

X̃ = JP1A1,P2A2, . . . ,PNAN K,

D STUDYING GNNS WITH RANDOM INPUT

To analyze the representation power of GNNs we study them with a random input x =

[x1, x2, . . . , xN ]
T
inRN that is characterized by the following moments:

E [x] = 0, E
[
xxT

]
= I, E [x ◦ x ◦ x] = I, E [x ◦ x ◦ · · · ◦ x] = I. (37)

The characteristic function of xi takes the form:

ϕxi
(t) = E

[
ejxit

]
= E

[ ∞∑
l=0

(jxit)
l

l!

]
=

∞∑
l=0

jl E
[
(xit)

l
]

l!
= 1 +

∞∑
l=2

jl
(
tl
)

l!
(38)

=

∞∑
l=0

(j t)
l

l!
− jt =

(
ejt − jt

)
= ej t − jt (39)

As a result the joint characteristic function of x is ϕx (t1, . . . , tN ) =
∏N

i=1

(
ejti − jti

)
.

As mentioned in the main body of the paper, the first layer of a GNN with random input consists of
an F set of graph filters that are followed by point-wise activation functions and normalization layers.

z =

K∑
k=0

hkS
kx = H (S)x, y = ρ [σ (z)] , (40)
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D.1 SECOND ORDER MOMENT

Since x is a random vector, so is z with covariance matrix:

E
[
zzT

]
= E

[
K∑

k=0

hkS
kxxT

K∑
m=0

hmSmT

]
=

K∑
k=0

hkS
kE
[
xxT

] K∑
m=0

hmSm (41)

=

K∑
k=0

hkS
k

K∑
m=0

hmSm = H (S)H (S) =

K∑
k=0

K∑
m=0

hkhmSkSm (42)

=

K∑
k,m=0

hk,mSk+m =

2K∑
k=0

h̃kS
k = H̃ (S) . (43)

So the covariance of z is a graph filter with 2K + 1 parameters that have K + 1 degrees of freedom.
The parameters of this graph filter are derived from h̃ = h ∗ h, where ∗ is the convolution operation.

From the covariance of z we can linearly derive two permutation equivariant features for each vertex.
In fact, if we sum up all the rows of E

[
zzT

]
we get:

E
[
zzT

]
1 = H̃ (S)1 =

K∑
k,m=0

hk,mSk+m1 =

2K∑
k=0

h̃kS
k1, (44)

which is a linear combination of the k−hop degrees of S. To derive this feature according to 40 we
choose σ to be the identity function and ρ (·) = E

[
(·)⊙

(
1Tz

)]
. For these choices, we get:

y = ρ [σ (z)] = E
[
z
(
1Tz

)]
= E

[
zzT

]
1 = H̃ (S)1 =

K∑
k,m=0

hk,mSk+m1. (45)

The second equivariant feature is the diagonal of the covariance matrix, i.e., the variance of z. If we
choose σ to be the elementwise square function and ρ to be the expectation operator we compute:

y = ρ [σ (z)] = E
[
z2
]
= diag

(
E
[
zzT

])
= diag (H (S)H (S)) = (H (S)⊙H (S))1, (46)

where diag(A) ∈ RN is the vector with the diagonal of A ∈ RN×N , ⊙ denotes the Hadamard
(elementwise) product operation, and the last equality comes from the following property:

diag (AB) = (A⊙B)1, (47)

for square matrices A, B. Expanding 46 yields the following expression:

y =
∑
k,m

hk,mdiag
(
Sk+m

)
=
∑
k,m

hk,m

(
Sk ⊙ Sm

)
1, (48)

that computes the number of k +m closed paths in the graph with adjacency matrix S.

D.2 THIRD-ORDER MOMENT

If we choose σ to be the elementwise cubic function and ρ to be the expectation operator we can
compute deterministic equivariant node features that measure the skewness of z.

y1 = ρ [σ (z)] = E
[
z3
]
= superdiag (E [z ◦ z ◦ z]) = (H (S)⊙H (S)⊙H (S))1. (49)

where superdiag (·) ∈ RN is the superdiagonal of the tensor. In particular,

E [z ◦ z ◦ z] (i, j, k) =
N∑

n=1

H (S) (i, n)H (S) (j, n)H (S) (k, n) (50)
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and

superdiag (E [z ◦ z ◦ z]) (i) = E [z ◦ z ◦ z] (i, i, i)

=

N∑
n=1

H (S) (i, n)H (S) (i, n)H (S) (i, n) = (H (S) (i, :)⊙H (S) (i, :)⊙H (S) (i, :))1

(51)

As a result, 9 can be cast as follows:

y1 =

(
K∑

k=0

hkS
k ⊙

K∑
l=0

hlS
l ⊙

K∑
m=0

hmSm

)
1 =

K∑
k,l,m=0

hk,l,m

(
Sk ⊙ Sl ⊙ Sm

)
1. (52)

The expression in 11 can be derived from 4 when σ is the elementwise square function, and ρ (·) =
E
[
(·)⊙

(
1Tz

)]
.

E [z ◦ z ◦ z]×3 1
T =

q
H (S) ,H (S) ,1TH (S)

y
= H (S)Diag

(
1TH (S)

)
H (S) (53)

diag
(
E [z ◦ z ◦ z]×3 1

T
)
= diag

(
H (S)Diag

(
1TH (S)

)
H (S)

)
= (H (S)⊙H (S))H (S)1,

(54)

where diag (A) ∈ RN is the vector that contains the diagonal of A ∈ RN×N and is different than
Diag(·). The last equality comes from the following property that is being used a lot in this paper:

diag
(
ADiag (C)BT

)
= (A⊙B) diag (C) , (55)

Overall, 11 takes the form:

y2 =

(
K∑

k=0

hkS
k ⊙

K∑
l=0

hlS
l

)
K∑

m=0

hmSm1 =

K∑
k,l,m=0

hk,l,m

(
Sk ⊙ Sl

)
Sm1. (56)

D.3 FOURTH-ORDER MOMENT

The fourth-order moment is defined as follows:

E [z ◦ z ◦ z ◦ z] = JH (S),H (S),H (S),H (S)K =
K∑

k,l,m,n=0

hk,l,m,n

q
Sk,Sl,Sm,Sn

y
(57)

We can compute the superdiagonal as:

y = E
[
z4
]
= superdiag (E [z ◦ z ◦ z ◦ z]) = (H (S)⊙H (S)⊙H (S)⊙H (S))1 (58)

However, E
[
z4
]

is not the only equivariant feature we can derive from the fourth moment tensor
E [z ◦ z ◦ z ◦ z]. In particular, we can compute:

E
[
z2
(
1Tz

)2]
= diag

(
E [z ◦ z ◦ z ◦ z]×3 1

T ×4 1
T
)

= diag (JH (S),H (S),H (S),H (S)K ×3 1×4 1)

= diag
(
H (S)

(
Diag

(
1TH (S)

)
Diag

(
1TH (S)

))
H (S)

)
= diag

(q
H (S),H (S),1TH (S),1TH (S)

y)
= diag

(
H (S)

(
Diag

(
1TH (S)

)
Diag

(
1TH (S)

))
H (S)

)
= (H (S)⊙H (S)) (H (S)1⊙H (S)1)

=

K∑
k,l,m,n=0

hk,l,m,n

(
Sk ⊙ Sl

)
(Sm1⊙ Sn1) , (59)

18



Published as a conference paper at ICLR 2024

which can be implemented when σ is the elementwise square function and ρ (·) = E
[
(·)⊙

(
1Tz

)2]
.

We can also compute:

E
[
z3
(
1Tz

)]
= superdiag

(
E [z ◦ z ◦ z ◦ z]×4 1

T
)

= superdiag
(
JH (S),H (S),H (S),H (S)K ×4 1

T
)

= superdiag
(q
H (S),H (S),H (S),1TH (S)

y)
= (H (S)⊙H (S)⊙H (S))H (S)1

= (H (S)⊙H (S)) (H (S)1⊙H (S)1)

=

K∑
k,l,m,n=0

hk,l,m,n

(
Sk ⊙ Sl ⊙ Sm

)
Sn1, (60)

which can be implemented when σ is the elementwise cubic function and ρ (·) = E
[
(·)⊙

(
1Tz

)]
.

Finally, we can compute E
[
z2
(
1Tz2

)]
= E

[
z2 ◦ z2

]
1. To derive the exact expression we analyze

the following

E
[
z2 ◦ z2

]
[i, j] = E [z ◦ z ◦ z ◦ z] [i, i, j, j]

=

K∑
k,l,m,n=0

hk,l,m,n

q
Sk,Sl,Sm,Sn

y
[i, i, j, j]

=

K∑
k,l,m,n=0

hk,l,m,n

N∑
n=1

Sk [i, n]Sl [i, n]Sm [j, n]Sn [j, n]

=

K∑
k,l,m,n=0

hk,l,m,n

N∑
n=1

(
Sk ⊙ Sl

)
[i, n] (Sm ⊙ Sn) [j, n] (61)

As a result:

E
[
z2 ◦ z2

]
=

K∑
k,l,m,n=0

hk,l,m,n

(
Sk ⊙ Sl

)
(Sm ⊙ Sn) (62)

and we compute:

E
[
z2
(
1Tz2

)]
= E

[
z2 ◦ z2

]
1 =

K∑
k,l,m,n=0

hk,l,m,n

(
Sk ⊙ Sl

)
(Sm ⊙ Sn)1, (63)

which can be implemented when σ is the elementwise square function and ρ (·) = E
[
(·)⊙

(
1Tz2

)]
.

D.4 HIGHER-ORDER MOMENTS

When σ is the m-th moment of z is an m-th-order tensor and takes the form:

E [z ◦ · · · ◦ z] = JH (S), . . . ,H (S)K =
K∑

i1,...,im=0

hi1,...,im

q
Si1 , . . . ,Sim

y
, (64)

from which we can extract the equivariant individual moment:

E [zm] = (H (S)⊙ · · · ⊙H (S))1 =

K∑
i1,...,im=0

hi1,...,im

(
Si1 ⊙ · · · ⊙ Sim

)
1, (65)

which can be derived by 2 when σ is the elementwise m-th power and ρ is the expectation operator.
We can also extract other equivariant node features by considering multiple GNN layers of 2 type,
summing up certain modes of the tensor and applying diagonal or super-diagonal operators.
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Overall a single layer GNN (which corresponds to K MPNN layers, as defined in 26, can compute
the following outputs:

y =

K∑
i1,...,im=0

hi1,...,im

(
Si1 ⊙ · · · ⊙ Sik

) (
Sik+1 ⊙ · · · ⊙ Sim

)
1 (66)

y =

K∑
i1,...,im=0

hi1,...,im

(
Si1 ⊙ · · · ⊙ Sik

) (
Sik+11⊙ · · · ⊙ Sim1

)
, (67)

which are derived by the m−th moment of z. The expression in using σ (·) = zm we can compute
the

Proposition D.1 Consider the GNN module in Fig. 1a with input x being a random vector with
moments as in 3. The output of thes] GNN block in Fig. 1a, defined by 25, has a closed-form solution
and is equivalent to 66, when σ (·) = zk and ρ (·) = E

[
(·)⊙

(
1Tzm−k

)]
, and equivalent to 67,

when σ (z) = zk and ρ (·) = E
[
(·)⊙

(
1Tz

)m−k
]
.

We study the normalization function ρ [·] = (·)⊙ E [zm] in the following section.

E MULTIPLE LAYER ANALYSIS

In the previous sections, we analyzed a single layer of 26, corresponding to multiple layers of 1.
The type of outputs we get from this analysis are presented in 66 and 67, which are deterministic
and can be given as input to other layers defined by either 1 or 26. In our analysis, the expectation
operator enables a deterministic output that maintains permutation equivariance and is applied in the
normalization layer following the first layer.

However, it can also be the case that E [·] is applied after multiple layers. To understand the effect of
multiple layers we study the following cases:

E.1 TWO-LAYER GNN WITH σ (·) = (·)2

We consider a two GNN layers defined by 26, where σ (·) = (·)k, ρ is equal to identity after the first
layer and ρ [·] = E [·] after the second layer. Then the output of the first layer is:

x(1) = z2 =

(
K∑

k=0

h
(1)
k Skx

)2

(68)

and the output of the second layer is:

x(2) = E
[
w2
]
=

(
K∑

k=0

h
(2)
k Skz2

)2

(69)

To derive an expression for x(2) we study:

E
[
wwT

]
= E

 K∑
i=0

h
(2)
i Siz2z2T

K∑
j=0

h
(2)
j Sj

 =

K∑
i=0

h
(2)
i SiE

[
z2z2T

] K∑
j=0

h
(2)
j Sj . (70)

To compute E
[
z2z2T

]
we use the expression in 62.

E
[
wwT

]
=

K∑
i=0

h
(2)
i Si

K∑
k,l,m,n=0

hk,l,m,n

(
Sk ⊙ Sl

)
(Sm ⊙ Sn)

K∑
j=0

h
(2)
j Sj

=

K∑
k,l,m,n,i,j=0

hk,l,m,n,i,jS
i
(
Sk ⊙ Sl

)
(Sm ⊙ Sn)Sj , (71)
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and therefore:

x(2) =

K∑
k,l,m,n,i,j=0

hk,l,m,n,i,jdiag
(
Si
(
Sk ⊙ Sl

)
(Sm ⊙ Sn)Sj

)
, (72)

E.2 TWO-LAYER GNN WITH ρ [·] = (·)⊙ E
[
z2
]

IN THE FIRST LAYER

Finally, we study a two-layer GNN defined by 26, where σ is the identity in the first layer, σ (·) = (·)2
in the second layer, ρ [·] = (·) ⊙ E

[
z2
]

after the first layer and ρ [·] = E [·] after the second layer.
Then the output of the first layer is:

x(1) = z ⊙ E
[
z2
]
=

K∑
k=0

h
(1)
k Skx⊙ E

( K∑
k=0

h
(1)
k Skx

)2
 =

K∑
k=0

h
(1)
k Skx⊙

K∑
k=0

h̃
(1)
k diag

(
Sk
)

=

K∑
k=0

2K∑
m=0

h
(1)
k h̃

(1)
k Skx⊙ (Sm ⊙ I) =

K∑
k=0

2K∑
m=0

h
(1)
k h̃

(1)
k (Sm ⊙ I)Skx (73)

The covariance of x(1) takes the form:

E
[
x(1)x(1)T

]
= E

[
K∑

k=0

2K∑
m=0

h
(1)
k h̃

(1)
k (Sm ⊙ I)Skx

K∑
k=0

2K∑
m=0

h
(1)
k h̃

(1)
k xTSk (Sm ⊙ I)

]

=

K∑
k=0

2K∑
m=0

h
(1)
k h̃

(1)
k (Sm ⊙ I)SkE

[
xxT

] K∑
k=0

2K∑
m=0

h
(1)
k h̃

(1)
k Sk (Sm ⊙ I)

=
∑
k,l,m

h′
k,l,m

(
Sk ⊙ I

)
Sl (Sm ⊙ I) (74)

and the output of the second layer is:

x(2) = E
[
w2
]
=

(
K∑

k=0

h
(2)
k Skx(1)

)2

(75)

To derive an expression for x(2) we study:

E
[
wwT

]
= E

 K∑
i=0

h
(2)
i Six(1)x(1)T

K∑
j=0

h
(2)
j Sj

 =

K∑
i=0

h
(2)
i SiE

[
x(1)x(1)T

] K∑
j=0

h
(2)
j Sj

=

K∑
k,l,m,i,j=0

hk,l,m,i,jS
i
(
Sk ⊙ I

)
Sl (Sm ⊙ I)Sj . (76)

As a result:

x(2) =

K∑
k,l,m,i,j=0

hk,l,m,i,jdiag
(
Si
(
Sk ⊙ I

)
Sl (Sm ⊙ I)Sj

)
. (77)

We also study a two-layer GNN defined by 26, where σ is the identity in the first layer and the second
layer, ρ [·] = (·) ⊙ E

[
z2
]

after the first layer and ρ (·) = E
[
(·)⊙

(
1Tz

)]
after the second layer.

Then the output of the second layer is:

x(2) = E
[
w
(
1Tw

)]
= E

[
wwT

]
1 (78)

As a result:

x(2) =

K∑
k,l,m,i,j=0

hk,l,m,i,jS
i (Sm ⊙ I)Sl (Sm ⊙ I)Sj1. (79)
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F COUNTING CONNECTED COMPONENTS: PROOF OF THEOREM 4.1

To prove Theorem 4.1, consider the GNN definition in 4, where we use the Laplacian of a graph as
the graph operator S. Then the spectral decomposition of S is:

S = UΛUT =
∑
n

λnunu
T
n , (80)

where λn is an eigenvalue of S with corresponding eigenvector un. The graph convolution in 4 can
be cast as:

z =

K∑
k=0

hkS
kx =

K∑
k=0

hkUΛkUTx =

K∑
k=0

hk

∑
n

λn
kunu

T
nx

=
∑
n

K∑
k=0

hkλ
k
nunu

T
nx =

∑
n

h̄ (λn)unu
T
nx, (81)

where

h̄ (λn) =

K∑
k=0

hkλ
k
n, (82)

is the frequency representation of the graph filter. Now let {µ1, . . . , µq} be the set of the distinct
eigenvalues of a set of Laplacians {Si}Ii=1 corresponding to a set of graphs {Gi}Ii=1. Then we can
write the following linear system of equations:

h̄ (µ1)
h̄ (µ2)

...
h̄ (µq)

 =


1 µ1 µ

2
1 . . . µ

K−1
1

1 µ2 µ
2
2 . . . µ

K−1
2

...
1 µq µ

2
q . . . µ

K
q




h0

h1

...
hK−1

 = Wh (83)

W is a Vandermonde matrix and when K = q − 1 the determinant of W takes the form:

det (W ) = Π1≤i<j≤q (µi − µj) (84)

Since the values µi are distinct, W has full column rank and there exists a graph filter with unique
parameters h that passes only one eigenvalue (the k-th eigenvalue), i.e.,

h̄ (µi) =

{
1, if i = k
0, if i ̸= k

(85)

The number of connected components in a graph is equal to the multiplicity of the zero eigenvalue of
the Laplacian matrix. We can design a graph filter to isolate the 0 eigenvalue i.e.,

h̄ (λ) =

{
1, if λ = 0
0, if λ ̸= 0

(86)

If we use the graph filter in 86, in the definition of graph convolution in 81 we get:

z = U0U
T
0 x, (87)

where U0 is the eigenspace corresponding to the zero eigenvalue of the Laplacian. Then we feed 87
with a random input x ∈ RN with characteristic function ϕx (t1, . . . , tN ) =

∏N
i=1

(
ejti − jti

)
and

moments defined in 3. If σ is the elementwise square function and ρ is the expectation operator, the
output in 87 takes the yields:

y = E
[
z2
]
= diag

(
E
[
zzT

])
= diag

(
K−1∑
k=0

hkS
kE
[
xxT

]K−1∑
m=0

hmSm

)

= diag

(
K−1∑
k=0

hkS
k
K−1∑
m=0

hmSm

)
= diag

(
U0U

T
0 U0U

T
0

)
= diag

(
U0U

T
0

)
. (88)
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Therefore the output y is the diagonal of a matrix with a rank equal to the number of connected
components r. The eigenvalues of U0U

T
0 are λ = 1 with multiplicity equal to the number of

connected components r and λ = 0 with multiplicity N − r. Then 1Ty takes the form:

1Ty = trace
(
U0U

T
0

)
=
∑
n

λn = r. (89)

and a single layer GNN, defined in 87 can count the number of connected components of graphs
{Gi}Ii=1.

G COUNTING CYCLES

To prove that the considered message-passing GNNs can count cycles, we use the formulas in
Perepechko & Voropaev (2009) that associate the number of cycles in a graph with the graph
adjacency.

G.1 PROOF OF THEOREM 4.2:

The number of triangles within a graph is defined as follows:

c3 =
1

6
1T
(
S2 ⊙ S

)
1 (90)

This can be computed by the expression in 6. The number of tetragons and pentagons within a graph
is defined as follows:

c4 =
1

8
1T
((
S2 ⊙ S2

)
1+

(
S2 ⊙ I

)
1− 2S

(
S2 ⊙ I

)
1
)

(91)

c5 =
1

10
1T
((
S3 ⊙ S2

)
1+ 5

(
S2 ⊙ S

)
1− 5S

(
S2 ⊙ S

)
1
)

(92)

All terms in c4, c5 can be computed by 6, apart from S
(
S2 ⊙ I

)
and S

(
S2 ⊙ S

)
. To compute

these terms we just need to pass 6 through one more MPNN layer.

G.2 PROOF OF THEOREM 4.3:

c6 =
1

12
1T

((
S3 ⊙ S3

)
1− 3

(
S3 ⊙ S3 ⊙ I

)
1+ 9

(
S2 ⊙ S2 ⊙ S

)
1− 6S

(
S2 ⊙ S2

)
1

+ 6
(
S2 ⊙ S2

)
1− 4

(
S2 ⊙ S

)
1+ 4S

(
S2 ⊙ S2 ⊙ I

)
1+ 3S2

(
S2 ⊙ I

)
1

− 12S
(
S2 ⊙ I

)
1+ 4

(
S2 ⊙ I

)
1

)
(93)

We observe 5 types of terms in c6: (
Sk ⊙ Sl

)
1 (94)

S
(
Sk ⊙ Sl

)
1 (95)

S2
(
Sk ⊙ Sl

)
1 (96)(

Sk ⊙ Sl ⊙ Sm
)
1 (97)

S
(
Sk ⊙ Sl ⊙ Sm

)
1 (98)

The term in 94 can be computed by 6, whereas 95 and 96 are computed by passing 6 through one or
two more MPNN layers respectivelly. Similarly the term in 97 can be computed by 10, whereas 98
by passing 10 through one more MPNN layer.
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G.3 PROOF OF THEOREM 4.5:

c7 =
1

14
1T

((
S4 ⊙ S3

)
1− 7

(
S4 ⊙ S3 ⊙ I

)
1+ 7

(
S2 ⊙ S2 ⊙ S2 ⊙ S

)
1

− 7
(
S5 ⊙ S2 ⊙ I

)
1+ 21

(
S3 ⊙ S2 ⊙ S

)
1− 28

(
S2 ⊙ S2 ⊙ S

)
1

+ 14
(
S3 ⊙ S2 ⊙ S2 ⊙ I

)
1+ 7

(
S3 ⊙ S2

)
1+ 7S2

(
S2 ⊙ S

)
1

+ 7S
(
S2 ⊙ S

)
S1− 77

(
S2 ⊙ S3 ⊙ I

)
1+ 56

(
S2 ⊙ S

)
1

)
(99)

We observe 5 types of terms in c7: (
Sk ⊙ Sl

)
1 (100)

S2
(
Sk ⊙ Sl

)
1 (101)

S
(
Sk ⊙ Sl

)
S1 (102)(

Sk ⊙ Sl ⊙ Sm
)
1 (103)(

Sk ⊙ Sl ⊙ Sm ⊙ Sn
)
1 (104)

The terms in 100, 103, and 104 can be computed by 6, 10, and 13 respectively. The term in 101 can
be computed by passing 6 through 2 MPNN layers, whereas the term in 102 can be computed by
passing 12 through 1 MPNN layer.

H COUNTING QUASI-CLIQUES

To prove that the considered message-passing GNNs can count quasi-cliques, we use the formulas in
Barik & Reddy (2023) that associate the number of certain substructures in a graph with the graph
adjacency.

H.1 PROOF OF THEOREM 4.4

The authors in Barik & Reddy (2023) derive the following equations:

Q4 =
1

8
1T
(
S2 ⊙ S2

)
1− 1

8
1T
(
S2 ⊙ S2I

)
1+

1

8
1T
(
S2 ⊙ I⊙

)
1− 1

8
1TS21 (105)

Q5 =
1

2
1T
(
S3 ⊙ S2 ⊙ S

)
1+

1

2
1T
(
S2 ⊙ S

)
1− 1TS

(
S2 ⊙ S

)
1− 4Q4, (106)

which can be computed by 6, and 10 followed by a classical message-passing layer.

I PROOF OF PROPOSITION 5.2

The proposed architecture is more powerful, for certain problem classes, than the 1-FWL test (1-WL
and 2-WL) since it can count graph structures that 1-FWL cannot. It is strictly more powerful since it
can produce exactly the same outputs as 1-FWL when f, g are injective.

J PROOF OF THEOREMS 6.1, 6.2, 6.3

J.1 LISTING ALL THE TRIANGLES WITHIN A GRAPH

Now let T denote the triangle tensor, i.e.,

T [i, j, k] = S [i, j] S [j, k] S [i, k] . (107)

T [i, j, k] = 1 if nodes i, j, k form a triangle and T [i, j, k] = 0 otherwise. Unfortunately, T does not
admit an obvious tensor model with factor matrices the adjacency powers.
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Instead, we will consider a different type of tensor G such that:

G[i, j, k] = S [i, k] S [j, k] + S [i, j] S [j, k] + S [i, k] S [i, j] , (108)

which is a simplician complex tensor that measures relationships between node triplets. In particular
G[i, j, k] = 3 when (i, j, k), is a triangle, G[i, j, k] = 1 when there are two edges between i, j, k
or when i = j and (i, k) ∈ E . G[i, j, k] = 1 also when i = k and (i, j) ∈ E or when j = k and
(i, k) ∈ E . G[i, j, k] = 0 in any other case. It is therefore clear that:

T = mod3 [G] = ReLU [G− 2] (109)

Interestingly G can be written using the following CPD models:

G = JS,S, IK + JS, I,SK + JI,S,SK (110)

From equation 8 we get that:

E [z ◦ z ◦ z] = JH (S),H (S),H (S)K =
K∑

i1,...,i3=0

hi1,i2,i3

q
Si1 ,Si2 ,Si3

y
, (111)

which concludes our proof.

J.2 COUNTING CLIQUES

The tensor of 4-th order cliques is:

Q
4
[i, j, k, l] = S [i, j] S [j, k] S [i, k]S [i, l] S [j, l] S [k, l] . (112)

Q
4
[i, j, k, l] = 1 if nodes i, j, k, l form a clique and Q

4
[i, j, k, l] = 0 otherwise. Unfortunately Q

4
does not admit an obvious tensor model with factor matrices the adjacency powers. The number of
4-node cliques in a graph is given by:

q4 =
∑
i,j,k,l

S [i, j] S [j, k] S [i, k]S [i, l] S [j, l] S [k, l] , (113)

which is equal to:
q4 =

∑
i,j,k,l

T [i, j, k]S [i, l] S [j, l] S [k, l] . (114)

By rearranging the summations we get:

q4 =
∑
l

∑
i,j,k

T [i, j, k]S [i, l] S [j, l] S [k, l] . (115)

The inner summation corresponds to the diagonal element of a third-order tensor with Tucker model:

JT ,S,S,SK , (116)

where T is the core tensor and S are the factor matrices. To compute the number of 4-node cliques
we nee to sum the superdiagonal of the tensor above, i.e.,

q4 = 1T superdiag (JT ,S,S,SK) . (117)

When the input to the GNN is xt as described in Section 6 then

E
[
z3
]
= superdiag (JT ,H (S),H (S),H (S)K)

=

K∑
i1,...,i3=0

hi1,i2,i3superdiag
(q
T ,Si1 ,Si2 ,Si3

y)
, (118)

which concludes our proof.
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J.3 COUNTING 8-NODE CYCLES

To count the number of 8-node cycles in a graph using message-passing operations we use Lemma 7
in Barik & Reddy (2023). All the terms in this formula can be computed using Hadamard product
operations, as discussed in other sections. The only terms that cannot be computed with Hadamard
products are those of the following form:

Q
4
[i, j, k, l] = S [i, j] S [j, k] S [i, k]Si1 [i, l] Si2 [j, l] Si3 [k, l] . (119)

This term can be computed by the procedure discussed in Section 6 and J.2, i.e., by equation 118.
This concludes our proof.

K COUNTING CYCLES AT THE NODE LEVEL

In this section, we study the ability of GNNs defined in 1 or 26 to produce permutation equivariant
node representations that can count the number of cycles each node is involved in. To this end, we
derive the following theorem.

Theorem K.1 (Node-level Cycles) There exists a GNN defined in 1 or 26 that generates permutation
equivariant node representations that count the number of k−size cycles each node participates, for
any graph and k ≤ 7.

K.1 PROOF OF THEOREM K.1

To prove Theorem K.1 we use the expressions in Perepechko & Voropaev (2009) that instantiate the
matrices of k−paths Pk. To be more precise Pk (i, j) counts the number of paths k−paths between
nodes i and j.

K.2 MATRICES OF k−PATHS FOR UNDIRECTED GRAPHS

Starting from the definition of k−path matrices, as presented in Perepechko & Voropaev (2009), we
can compute k−path matrices Pk for undirected graphs. After some algebraic manipulations Pk for
3 ≤ k ≤ 6 can be cast as:

P3 = S3 −
(
S2 ⊙ I

)
S − S

(
S2 ⊙ I

)
+ S (120)

P4 =S4 −
(
S3 ⊙ I

)
S − S

(
S3 ⊙ I

)
−
(
S2 ⊙ I

)
S2 − S2

(
S2 ⊙ I

)
− S

(
S2 ⊙ I

)
S + 3

(
S ⊙ S2

)
+ 2S2 (121)

P5 =S5 −
(
S4 ⊙ I

)
S − S

(
S4 ⊙ I

)
−
(
S3 ⊙ I

)
S2 − S2

(
S3 ⊙ I

)
−
(
S2 ⊙ I

)
S3 − S3

(
S2 ⊙ I

)
+ 3

(
S3 ⊙ S

)
− S

(
S3 ⊙ I

)
S

+ 2
(
S2 ⊙ S2 ⊙ I

)
S + 2S

(
S2 ⊙ S2 ⊙ I

)
+ 3

(
S2 ⊙ S2 ⊙ S

)
+
(
S2 ⊙ I

)
S
(
S2 ⊙ I

)
− S

(
S2 ⊙ I

)
S2

− S2
(
S2 ⊙ I

)
S + 3

(
S2 ⊙ S

)
S + 3S

(
S2 ⊙ S

)
+
((
S
(
S2 ⊙ I

)
S
)
⊙ I

)
S + S

((
S
(
S2 ⊙ I

)
S
)
⊙ I

)
− 4

(
S ⊙ S2

)
− 6

(
I ⊙ S2

)
S − 6S

(
I ⊙ S2

)
+ 3S3 + 4S (122)

The number of terms in P6 is large enough and therefore we split them in 4 terms, i.e., P6 =
P 1

6 + P 2
6 + P 3

6 + P 4
6 .
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P 1
6 =S6 −

(
S5 ⊙ I

)
S − S

(
S5 ⊙ I

)
−
(
S2 ⊙ I

)
S4 − S4

(
S2 ⊙ I

)
−
(
S4 ⊙ I

)
S2 − S2

(
S4 ⊙ I

)
− S

(
S4 ⊙ I

)
S + 2

(
S4 ⊙ S

)
−
(
S3 ⊙ I

)
S3 − S3

(
S3 ⊙ I

)
− S

(
S2 ⊙ I

)
S3 − S3

(
S2 ⊙ I

)
S

− S
(
S3 ⊙ I

)
S2 − S2

(
S3 ⊙ I

)
S + 4

(
S3 ⊙ S2 ⊙ I

)
S + 4S

(
S3 ⊙ S2 ⊙ I

)
+ 6

(
S3 ⊙ S2 ⊙ S

)
+
(
S2 ⊙ I

)
S
(
S3 ⊙ I

)
+
(
S3 ⊙ I

)
S
(
S2 ⊙ I

)
+ 2

(
S3 ⊙ S

)
S + 2S

(
S3 ⊙ S

)
+
((
S
(
S3 ⊙ I

)
S
)
⊙ I

)
S + S

((
S
(
S3 ⊙ I

)
S
)
⊙ I

)
− S2

(
S2 ⊙ I

)
S2 + 2

(
S2 ⊙ S2 ⊙ I

)
S2 + 2S2

(
S2 ⊙ S2 ⊙ I

)
+
(
S2 ⊙ S2 ⊙ S2

)
+
(
S2 ⊙ I

)
S2
(
S2 ⊙ I

)
(123)

P 2
6 =2

(
S2 ⊙ S

)
S2 + 2S2

(
S2 ⊙ S

)
+
((
S
(
S2 ⊙ I

)
S
)
⊙ I

)
S2 + S2

((
S
(
S2 ⊙ I

)
S
)
⊙ I

)
+
(
S2 ⊙ I

)
S
(
S2 ⊙ I

)
S + S

(
S2 ⊙ I

)
S
(
S2 ⊙ I

)
+
((
S
(
S2 ⊙ I

)
S2
)
⊙ I

)
S + S

((
S2
(
S2 ⊙ I

)
S
)
⊙ I

)
+ 2

(
S ⊙ S2 ⊙ S2

)
S + 2S

(
S ⊙ S2 ⊙ S2

)
+
((
S2
(
S2 ⊙ I

)
S
)
⊙ I

)
S + S

((
S
(
S2 ⊙ I

)
S2
)
⊙ I

)
− 8

(
S2 ⊙ I

) (
S2 ⊙ S

)
− 8

(
S2 ⊙ S

) (
S2 ⊙ I

)
+ 2S

(
S2 ⊙ S2 ⊙ I

)
S +

(
S2 ⊙ S2 ⊙ S

)
S + S

(
S2 ⊙ S2 ⊙ S

)
− 3

(
S2 ⊙ S2

)
− 3S ⊙

(
S
(
S2 ⊙ S

))
− 3S ⊙

((
S2 ⊙ S

)
S
)
− 2S ⊙

(
S
(
S2 ⊙ I

)
S
)
− 3S ⊙

(
S
(
S ⊙ S2

))
(124)

P 3
6 =− 3S ⊙

((
S ⊙ S2

)
S
)
+ S

((
S
(
S2 ⊙ I

)
S
)
⊙ I

)
S

− 3
(
S ⊙ S2

)
S − 3S

(
S ⊙ S2

)
+ S ⊙ S4 + 4S4

+
(
S ⊙ S3

)
S + S

(
S ⊙ S3

)
− 4

(
I ⊙ S3

)
S − 4S

(
I ⊙ S3

)
+
(
S ⊙ S2

)
S2 + S2

(
S ⊙ S2

)
− 4

(
I ⊙ S2

) (
S ⊙ S2

)
− 4

(
S ⊙ S2

) (
I ⊙ S2

)
+ 3S

(
S ⊙ S2

)
S − 4

((
S
(
S2 ⊙ S

))
⊙ I

)
S − 4S

((
S
(
S2 ⊙ S

))
⊙ I

)
− 2S ⊙

(
S
(
S ⊙ S2

))
− 2S ⊙

((
S ⊙ S2

)
S
)

(125)

P 4
6 =− 4

(
S2 ⊙ I

)
S2 − 4S2

(
S2 ⊙ I

)
− 8S

(
S2 ⊙ I

)
S − S2

(
S2 ⊙ I

)
−
(
S2 ⊙ I

)
S2

− 4
(((

S2 ⊙ S
)
S
)
⊙ I

)
S − 4S

((
S
(
S2 ⊙ S

))
⊙ I

)
− S ⊙

(
S
(
S2 ⊙ I

)
S
)

−
(
S3 ⊙ I

)
S − S

(
S3 ⊙ I

)
− 2

(
S2 ⊙ I

)
S2 − 2S2

(
S2 ⊙ I

)
− S2 ⊙ S2 − 2S

(
S2 ⊙ I

)
S

−
(
S2 ⊙ S

)
S − S

(
S2 ⊙ S

)
+ 44S2 ⊙ S + 12S2 (126)

K.3 NODE LEVEL CYCLES FOR k ≤ 6

For k ≤ 6 the number of node level cycles can be computed as 1
2 (Pk ⊙ I)1. The following

expressions are derived after some algebraic manipulations.

(P3 ⊙ I)1 =
(
S3 ⊙ I

)
1 =

(
S2 ⊙ S

)
1 (127)
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(P4 ⊙ I)1 =
(
S2 ⊙ S2

)
1− 2

(
S2 ⊙ I

)
S1− S

(
S2 ⊙ I

)
1+ 2S1 (128)

(P5 ⊙ I)1 =
(
S5 ⊙ I

)
1− 4

(
S3 ⊙ I

)
S1− S

(
S3 ⊙ I

)
1− 2

(
S2 ⊙ S

)
S1

+ 6
(
S2 ⊙ S

)
1− 4

(
S ⊙ S2 ⊙ I

)
1+ 3

(
S3 ⊙ I

)
1 (129)

The terms involved in the expressions for (P3 ⊙ I)1, (P4 ⊙ I)1, (P5 ⊙ I)1 can all be computed
by a GNN defined by 1 or 26, as shown in Appendix D.

(
P 1

6 ⊙ I
)
1 =

(
S6 ⊙ I

)
1− 2

(
S4 ⊙ I

)
S1

− 2
(
S2 ⊙ S4 ⊙ I

)
1− S

(
S4 ⊙ I

)
1

− 2
(
S3 ⊙ S3 ⊙ I

)
1− 2

(
S3 ⊙ S

)
S1

− 2
(
S2 ⊙ S

) (
S3 ⊙ I

)
1

+ 4
(
S3 ⊙ S

)
1

−
(
S2 ⊙ S2

)
S1+ 6

(
S2 ⊙ S2 ⊙ S2 ⊙ I

)
1

(130)

(
P 2

6 ⊙ I
)
1 =4

(
S2 ⊙ S2 ⊙ S

)
1

+ 4
(
S2 ⊙ I

)
S21

+ 2S
(
S2 ⊙ S2 ⊙ I

)
1+ 6

(
S2 ⊙ S2 ⊙ S

)
1

− 3
(
S2 ⊙ S2 ⊙ I

)
1, (131)

where we used the following expression.

diag(
(
S2 ⊙ I

)
S
(
S2 ⊙ I

)
S) =

(
S2 ⊙ I

)
S21 (132)

The terms involved in the
(
P 1

6 ⊙ I
)
1,
(
P 2

6 ⊙ I
)
1 can be computed by a GNN defined by 1 or 26,

as shown in Appendix D.

(
P 3

6 ⊙ I
)
1 =S31− 6

(
S ⊙ S2

)
1+ 6

(
S2 ⊙ S2

)
1+ 2

(
S2 ⊙ S ⊙ S2

)
1

+ 3diag(S
(
S ⊙ S2

)
S) (133)

The last term can be computed by a two-layer GNN defined by 26, where σ (·) = (·)k, ρ is equal to
identity after the first layer and ρ [·] = E [·] after the second layer. Thorough analysis is presented in
Appendix E.

(
P 4

6 ⊙ I
)
1 = −15

(
S2 ⊙ I

)
S1− 10S21− 2

(
S2 ⊙ S

)
1+ 12S1 (134)

The terms involved in the
(
P 3

6 ⊙ I
)
1,
(
P 4

6 ⊙ I
)
1 can be computed by a GNN defined by 1 or 26,

as shown in Appendix D, and Appendix E.

K.4 NODE LEVEL CYCLES FOR k = 7

For k = 7 the number of node level cycles can be computed as 1
2 (P6 ⊙ S)1 or 1

2diag (SP6). The
following expressions are derived after some algebraic manipulations.
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(
P 1

6 ⊙ S
)
1 =

(
S4 ⊙ S3

)
1

− 2
(
S5 ⊙ S2 ⊙ I

)
1− S

(
S3 ⊙ S2

)
1− S

(
S4 ⊙ S

)
S1

− 2
(
S2 ⊙ S

) (
S4 ⊙ I

)
1− 2

(
S4 ⊙ S3 ⊙ I

)
1+

(
S4 ⊙ S

)
1

− 2
(
S3 ⊙ S

) (
S3 ⊙ I

)
1− 2

(
S3 ⊙ S2

)
S1−

(
S4 ⊙ S

)
S1

−
(
S2 ⊙ S2

) (
S3 ⊙ I

)
1

+ 4S
(
S3 ⊙ S2 ⊙ I

)
1+ 6

(
S3 ⊙ S2 ⊙ S2 ⊙ I

)
1+ 8

(
S3 ⊙ S2 ⊙ S

)
1

+ diag
(
S
(
S2 ⊙ I

)
S
(
S3 ⊙ I

))
+
(
S3 ⊙ I

)
S21

+ 2 diag
(
S
(
S3 ⊙ S

)
S
)

+ S2
(
S3 ⊙ I

)
1+

(
S2 ⊙ I

)
S
(
S3 ⊙ I

)
1

+ 2
(
S2 ⊙ S

) (
S2 ⊙ S2 ⊙ I

)
1

+
(
S2 ⊙ S2 ⊙ S2 ⊙ S
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where we have used the following identities:
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The terms involved in the
(
P 1

6 ⊙ S
)
1 can be computed by a GNN defined by 1 or 26, as shown in

Appendix D, and Appendix E.
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Figure 2: Histogram of cycles that appear in the ZINC dataset. The x axis indicated the number of
cycles in each graph and the y axis shows the number of times each of the cycle counts appears.
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All the terms involved in the (P6 ⊙ S)1 can be computed by a GNN defined by 1 or 26, as shown in
Appendix D, and Appendix E.

L COMPUTATIONAL AND MEMORY COMPLEXITY

There are two different ways to implement the proposed Moment-GNN. The first is to feed it with
random vectors and compute the empirical moments, and the second is to work directly with the
equivalent model. In the first scenario, the complexity of Moment-GNN is exactly the same as the
complexity of a message-passing GNN. For instance, the memory complexity of the forward pass of
GIN is Θ(|V|F ), where F is the number of graph filters (hidden dimension, or width) in each layer,
and the computational complexity is Θ

(
|V|F 2 + |E|F

)
. If we use the equivalent model. We need to

perform the following type of operations, before training or testing.(
Si1 ⊙ · · · ⊙ Sik

) (
Sik+1 ⊙ · · · ⊙ Sim

)
1

As a result, the forward pass memory, and computational complexity of Moment-GNN is Θ(|V|F ),
and Θ

(
|V|F 2 + |E|F

)
respectively. However, there is an additional preprocessing memory com-

plexity of Θ
(
nnz

(
Smax(ik)

))
and computational complexity of Θ(|V||E|), nnz counts the number

of nonzeros in a matrix. Note that, if the sparsity of the matrices is very high specialized sparse
matrix multiplication algorithms can be employed to further reduce the computational complexity.
Additionally, since max (ik) is usually small (in our proofs it is less than or equal to 5) the memory
complexity is in the order of |E|.

M EXPERIMENTS

In this section, we discuss the implementation details of the experiments presented in Section 7. We
also present baseline comparisons in detecting the presence of 9−node and 10−node cycles in the
ZINC dataset. The statistics of ZINC are illustrated in Fig. 2.
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Table 6: Classification accuracy for cycle detection in ZINC

Algorithm Nonagon Decagon

Training Testing Training Testing

Moment-GNN 100 99.8 99.9 99.4
SMP 100 99.6 99.8 98.2

GIN + rand id 92.4 89.8 88.5 77.0
Ring-GNN 98.3 98.3 88.5 87.9

PPGN 93.9 91.1 88.0 87.1

M.1 IMPLEMENTATION DETAILS

The experiments are conducted on a Linux server with NVIDIA RTX 3080 GPU. The code of the
proposed architecture with all the experiments can be found in this repository3.

To perform cycle detection (graph classification) we use the specifications in https://github.
com/cvignac/SMP In particular, the Moment-GNN layer is followed by a 6-layer GIN with,
which we train with stochastic gradient descent optimizer, initial learning rate equal to 10−3, batch
size equal to 16 and a dropout ratio equal to 0.5. For the synthetic data experiment, we use 300
epochs to train whereas for the ZINC data experiment, we use 1000 epochs. The hidden dimension
for the GNN layers is 32 and for the output (classification layer) 128.

To perform cycle counting (graph regression) we use the specifications in https://github.
com/gbouritsas/GSN. The Moment-GNN layer is followed by 2 MPNN layers, which are
trained with Adam for 1000 epochs, initial learning rate equal to 10−2, and batch size equal to 16.
Each layer is followed by a 3-layer MLP with ReLU activation function and a batch normalization
layer. The hidden dimension for the GNN layers is 128. In this set of experiments, we use CPU
implementation.

M.2 BASELINE COMPARISONS

Following the discussion in Section 7.3, we compare the performance of the proposed Moment-GNN
in the last two tasks, i.e., detect a nonagon or a decagon in the ZINC dataset. As mentioned in Section
7.3, we train and test with a subset of the available graphs to ensure balanced classes. We use 70% of
the graphs for training 20% for testing and 10% for validation. The baselines used for comparison
are GIN with random input GIN + rand id Xu et al. (2019); Abboud et al. (2021); Sato et al.
(2021), PPGN (Maron et al., 2019), Ring-GNN Chen et al. (2019), and SMP (Vignac et al., 2020).

The training and testing results for detecting nonagons and decagons are presented in Table 6.
We observe that detecting a decagon is a more challenging task in this dataset. Moment-GNN
achieves the best testing performance, whereas SMP demonstrates a similar performance. Compared
to the remaining baselines, Moment-GNN is at least 11.5% percent better in detecting decagons,
1.5% better than Ring-GNN and at least 8% better than GIN + rand id and PPGN in detecting
nonagons. It is notable that although both Moment-GNN and GIN + rand id use random input,
Moment-GNN is markedly better in both tasks. This is due to the fact that our proposed framework
is able to maintain the pivotal property of permutation equivariance, contrary to GIN + rand id.

In logP prediction and graph classification we use the following baselines:

logP prediction Baselines: GCN Kipf & Welling (2016), GIN Xu et al. (2019), GraphSage
Hamilton et al. (2017), GAT Veličković et al. (2018), MoNet Gilmer et al. (2017), GatedGCN
Bresson & Laurent (2017), GIN + rand id PNA Corso et al. (2020), DGN Beaini et al. (2021),
GNNML Balcilar et al. (2021), HIMP Fey et al. (2020), SMP Vignac et al. (2020), and GSN with
cycles Bouritsas et al. (2022), CIN Bodnar et al. (2021), CIN-small Bodnar et al. (2021),
GraphSage+sub Barceló et al. (2021), GAT+sub Barceló et al. (2021), MoNet+sub Barceló
et al. (2021), GatedGCN+sub Barceló et al. (2021), GCN+sub Barceló et al. (2021).

3https://github.com/MomentGNN/Counting
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Table 7: logP Prediction in ZINC

GNN Model MAE MAE (EF)
GraphSage 0.410± 0.005 −

GraphSage+sub 0.24± 0.01 −
GAT 0.463± 0.002 −

GAT+sub 0.22± 0.010 −
MoNet 0.407± 0.007 −

MoNet+sub 0.16± 0.01 −
GatedGCN 0.422± 0.006 0.363± 0.009

GatedGCN+sub 0.135± 0.01 −
PNA 0.320± 0.032 0.188± 0.004
DGN 0.219± 0.0102 0.168± 0.003

GNNML 0.161± 0.006 −
HIMP − 0.151± 0.006
SMP 0.219± 0.138±

GIN + rand id 0.322± 0.026 0.279± 0.023
GCN 0.469± 0.002 −

GCN+sub 0.20± 0.01 −
GIN 0.254± 0.014 0.209± 0.018

GSN with cycles 0.140± 0.006 0.115± 0.012
Moment-GNN 0.140± 0.004 0.110± 0.005

Table 8: logP Prediction in ZINC-full

Method MAE
HIMP 0.036± 0.002

CIN-small 0.044± 0.003
GIN 0.088± 0.002

Moment-GNN 0.041± 0.001

Graph Classification Baselines: GCN Kipf & Welling (2016), GIN Xu et al. (2019), Bresson
& Laurent (2017), GIN + rand id, GSN with cliques Bouritsas et al. (2022), AWL Ivanov &
Burnaev (2018), DGK Yanardag & Vishwanathan (2015), PATCHYSAN Niepert et al. (2016) RetGK
Zhang et al. (2018), WLkernel Shervashidze et al. (2011), and WEGL Kolouri et al. (2020).

We also compare against some extra baselines in Barceló et al. (2021). The new comparisons can be
found in Table 7.

M.3 ZINC-FULL

We also test the performance of the proposed Moment-GNN in the task of logP prediction using the
full version of the ZINC dataset. ZINC-full contains about 250,000 molecular graphs with up to 38
heavy atoms. Without adjusting any hyperparameter of the architecture used for the small ZINC
dataset that contains 12,000 graphs, we are able to achieve MAE between the true and predicted logP
value in the order of 10−2. We compare against GIN and HIMP which are generic architectures as
Moment-GNN, and CIN which is a specific architecture for molecular graph processing. The results
are reported in Table 8. Note that in the table we report the small version of CIN that uses a similar
number of parameters as our architecture for fair comparisons. The full version of CIN achieves
MAE 0.022± 0.002.
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