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ABSTRACT

In this paper, we investigate a problem of actively learning threshold in latent
space, where the unknown reward g(γ, v) depends on the proposed threshold γ
and latent value v and it can be achieved only if the threshold is lower than or
equal to the unknown latent value. This problem has broad applications in practical
scenarios, e.g., reserve price optimization in online auctions, online task assign-
ments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize
the query complexity of learning a threshold with the expected reward at most ε
smaller than the optimum and prove that the number of queries needed can be in-
finitely large even when g(γ, v) is monotone with respect to both γ and v. On the
positive side, we provide a tight query complexity Θ̃(1/ε3) when g is monotone
and the CDF of value distribution is Lipschitz. Moreover, we show that a tight
Θ̃(1/ε3) query complexity can be achieved as long as g satisfies right Lipschitz-
ness, which provides a complete characterization for this problem. Finally, we
extend this model to an online learning setting and demonstrate a tight Θ(T 2/3)
regret bound using the aforementioned query complexity results.

1 INTRODUCTION

The thresholding strategy is widely used in practice, e.g., setting bars in the hiring process, setting
reserve prices in online auctions, and setting requirements for online tasks in crowdsourcing, due to
its intrinsic simplicity and transparency. In addition, in the practical scenarios mentioned above, the
threshold can be only set in a latent space, which makes the problem more challenging:

• In hiring, the recruiter wants to set a recruiting bar that maximizes the quality of the hires without
knowing the true qualifications of each candidate.

• In online auctions, the seller wants to set a reserve price that maximizes their revenue. However,
the seller does not know the true value of the item being auctioned.

• In crowdsourcing, the taskmaster wants to set a requirement (e.g., the number of questions that
need to be answered) for each task so that the tasks can be assigned to qualified workers who have
a strong willingness to complete the task, but has no access to the willingness of each worker. The
target of the taskmaster is to collect high-quality data as much as possible.

Although the latent value cannot be observed, it will affect the reward jointly with the threshold. In
the examples above, the reward is the quality of the hire, revenue from the auction, or the quality of
the collected data. In some cases, the reward only depends on the latent value as long as the value is
larger than the threshold, e.g., the quality of the hire may only depend on the intrinsic qualification
and skill level of the candidate as long as she passes the recruiting bar, the revenue in second price
auction only depends on the value since the bidders will report truthfully regardless of the reserve
price. However, the threshold does play an important role in other settings, e.g., the winning bid in
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the first price auction relies on and increases with the reserve price in general (Krishna, 2010) thus
the revenue highly depends on both reserve price and latent value. Similarly, in crowdsourcing, the
requirements of the tasks directly affect the quality of data collected by the taskmaster. In this work,
we consider a general framework where the reward can depend on both threshold and latent value.

Another difficulty in setting a proper threshold is to balance the per-entry reward and capability. For
example, in hiring, setting a higher recruiting bar can guarantee the qualification of each candidate
and thus the return to the company. However, a too-high bar may reject all candidates and cannot fit
the position needs. To balance this tradeoff, the threshold needs to be set appropriately.

1.1 OUR MODEL AND CONTRIBUTION

An informal version of our model In this work, we propose a general active learning abstraction
for the aforementioned thresholding problem. We first provide some notations of the model con-
sidered in this paper to facilitate the presentation. Let g(γ, v) be the reward function that maps the
threshold γ ∈ [0, 1] and latent value v ∈ [0, 1] to the reward, where g(γ, v) can be observed if and
only if γ ≤ v. We assume that the latent value follows an unknown distribution and we can only
observe the reward (as long as γ ≤ v) but not the value itself. We investigate the query complexity
of learning the optimal threshold in the latent space: the number of queries that are needed to learn
a threshold with an expected reward at most ε smaller than the optimum.

Our contributions The first contribution in this work is an impossibility result for this active
learning problem. We prove that the query complexity can be infinitely large even when the reward
function is monotone with respect to the threshold and the value. Our technique is built upon the
idea of “needle in the haystack”. Intuitively, a higher threshold γ gives a higher reward g(γ, v)
because of the monotonicity but decreases the probability of getting a reward which can only be
achieved if γ ≤ v. This tradeoff allows us to construct an interval that has an equal expected utility.
We find that if the reward function has a discontinuous bump at some point in the interval and the
value distribution has a mass exactly at the same point, then the expected utility at this point will
be constantly higher than the equal expected utility. Therefore we can hide the unique maximum
(“needle”) in an equal utility interval (“haystack”), which makes the learner need infinite queries to
learn the optimal threshold.

Our second contribution is a series of positive results with tight query complexity up to logarithmic
factors. We consider two special cases with common and minor assumptions: (1) the reward function
is monotone and the CDF of value distribution is Lipschitz and (2) the reward function is right-
Lipschitz. With each of the two assumptions, we can apply a discretization technique to prove an
Õ( 1

ε3 ) upper bound on the query complexity of the threshold learning problem. We also give a
matching lower bound, which is technically more challenging: at least Ω( 1

ε3 ) queries are needed
to find an ε-optimal threshold, even if the reward function is both monotone and Lipschitz and
the value distribution CDF is Lipschitz. Previous papers like Kleinberg & Leighton (2003); Leme
et al. (2023b) do not require the value distribution to be Lipschitz, which makes it much easier to
construct a value distribution with point mass to prove lower bounds. To prove our lower bound
with strong constraints on the reward function and distribution, we provide a novel construction of
value distribution by careful perturbation of a smooth distribution. We summarize our main results
in Table 1.

Finally, we extend the threshold learning problem to an online learning setting. Relating this problem
to continuous-armed Lipschitz bandit, and using the aforementioned query complexity lower bound,
we show a tight Θ(T 2/3) regret bound for the online learning problem.

1.2 RELATED WORKS

The most related work is the pricing query complexity of revenue maximization by Leme et al.
(2023b;a). They consider the problem of how many queries are required to find an approximately
optimal reserve price in the posted pricing mechanism, which is a strictly special case of our model
by assuming g(γ, v) = γ. Our work also relates to previous work about reserve price optimization
in online learning settings, e.g., Cesa-Bianchi et al. (2014); Feng et al. (2021), who consider revenue
maximization in the online learning setting, where the learner can control the reserve price at each
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Table 1: Our results on the query complexity of learning optimal threshold. Rows correspond to
reward functions and columns to value distribution. Õ(·) ignores poly-logarithmic factors.

Reward / Value
Lipschitz General

lower bound upper bound lower bound upper bound

Monotone Ω( 1
ε3 )

Theorem 4.3

Õ( 1
ε3 )

Theorem 4.1, 4.2

Infinite

Theorem 3.1

Right-Lipschitz
Ω( 1

ε3 )

Theorem 4.3

Õ( 1
ε3 )

Theorem 4.2

round. Our work is loosely related to the sample complexity of revenue maximization (e.g., (Cole &
Roughgarden, 2014; Morgenstern & Roughgarden, 2015; Gonczarowski & Nisan, 2017; Guo et al.,
2019; Brustle et al., 2020)). They focus on learning near-optimal mechanisms, which lies in the
PAC learning style framework. Whereas, our work characterizes the query complexity in the active
learning scenario.

Technically, our work is inspired by a high-level idea called “the needle in the haystack”, which was
first proposed by Auer et al. (1995) and also occurred in recent works such as online learning about
bilateral trade (Cesa-Bianchi et al., 2021; 2023a), first-price auction (Cesa-Bianchi et al., 2023b),
and graph feedback (Eldowa et al., 2023). Nevertheless, this idea is only high-level. As we will
show in the proofs, adopting this idea to prove our impossibility results and lower bounds is not
straightforward and requires careful constructions.

Additionally, our work is related to works on censored/truncated data and the Lipschitz bandit prob-
lem. We leave them to the Appendix A.

2 MODEL

We first define some notations. For an integer n, [n] denotes the set {1, 2, ..., n}. 1(·) is the indi-
cator function. We slightly abuse notation to use F to denote both a distribution and its cumulative
distribution function (CDF).

We study the query complexity of learning thresholds with latent values between a learner and an
agent. The latent value v represents the agent’s private value and is drawn from an unknown distri-
bution F supported on [0, 1]. In each query, the learner is allowed to choose a threshold γ ∈ [0, 1];
then with a fresh sample v ∼ F , the learner gets reward feedback b determined by the threshold γ
and the value v:

b(γ, v) =

{
g(γ, v) if v ≥ γ

0 if v < γ
(1)

where g : [0, 1]2 → [0, 1] is an unknown reward function. The notation b(γ) = b(γ, v) denotes
a random reward with randomness v ∼ F . The learner’s goal is to learn an optimal threshold
γ∗ ∈ [0, 1] that maximizes its expected reward/utility U(γ) defined as

U(γ) ≜ Ev∼F

[
b(γ, v)

]
= Ev∼F

[
g(γ, v) · 1v≥γ

]
. (2)

Typically, a higher threshold decreases the probability of getting a reward but gives a higher reward if
the value exceeds the threshold. Our model of learning optimal thresholds with latent value captures
many interesting questions, as illustrated by the following examples.
Example 2.1 (reserve price optimization). A seller (learner) repeatedly sells a single item to a set
of n bidders. The seller first sets a reserve price (threshold) γ. Each bidder i then submits a bid
bi. The bidder with the highest bid larger than γ wins the item and pays their bid; if no bidder
bids above γ, the item goes unallocated. Each bidder i has a private valuation vi ∈ [0, 1] for
the item, where each value vi is drawn independently (but not necessarily identically) from some
unknown distribution. If the seller adopts the first-price auction, only the highest bid matters for
both allocation and payment. We denote the maximum value (latent value) v(1) ≜ max vi and v(1)
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is drawn from a unknown distribution. Then we only consider this representative highest bidder
(agent).1 The unknown bidding function (reward function) g and g(γ, v(1)) is the maximum bid
when the reserve price is γ and the maximum value is v(1). If the seller adopts the second-price
auction, only the second-highest value matters for both allocation and payment. We denote the
second highest value (latent value) v(2) and v(2) is drawn from an unknown distribution. Similarly,
we only need to consider the second-highest bidder (agent). Because bidders in the second price
auction bid truthfully, it has a bidding function (reward function) g with g(γ, v(2)) = v(2) for all
γ, v(2) ∈ [0, 1] and v(2) ≥ γ. If the seller faces a single bidder (agent) and adopts a posted price
auction, we have g(γ, v) = γ as the bid when the reserve price is γ and the bidder’s value is v.
Example 2.2 (crowdsourced data collection). Data crowdsourcing platforms typically allow users
(agent) to sign up and complete tasks in exchange for compensation. These tasks might involve
answering questions, providing feedback, or rating products. The taskmasters (learner) need to
decide how many questions should be included in each task or how detailed the feedback should be.
We denote such difficulties (threshold) of the task γ. The users have individual willingness (latent
value) v to complete the task. The willingness follows a specific probability distribution, which is
unknown to the taskmasters or platform. Typically, a more difficult task decreases the probability
of getting feedback from the users but gives a higher reward if the users are willing to complete
the tasks because more detailed information can be included when using a more difficult task. We
use the notation g(γ, v) to represent the reward when the difficulty of the task is γ and the user’s
willingness is v.
Example 2.3 (hiring bar). A company (learner) sets a predefined bar (threshold) γ for candidate
admission. These candidates (agents) have individual measurements (latent value) v, which reflects
their inherent ability. They will apply to the company if and only if they think of themselves as
qualified, namely, v ≥ γ. The measurements follow a specific probability distribution, which is
unknown to the company. A candidate with a measurement v admitted with a hiring bar γ produces
an output (reward) g(γ, v) to the company.

We assume that the value distribution F belongs to some class C, and the reward function g belongs
to some class G. The classes C and G are known to the learner. The learner makes m queries
adaptively and then outputs a threshold γ̂ ∈ [0, 1] according to some algorithm A, namely, γt =
A(γ1, b1, . . . , γt−1, bt−1), bt = b(γt, vt), ∀t ∈ [m], and γ̂ = A(γ1, b1, . . . , γm, bm).
Definition 2.1 ((ε, δ)-estimator). An (ε, δ)-estimator (for C and G) is an algorithm A that, for any
F ∈ C, g ∈ G, can output a γ̂ satisfying U(γ̂) ≥ U(γ∗)− ε with probability at least 1− δ using m
queries (where the randomness is from v1, . . . , vm ∼ F and the internal randomness of A).
Definition 2.2 (query complexity). Given C, G, for any ε > 0 and δ ∈ (0, 1), the query complexity
QCC,G(ε, δ) is the minimum integer m for which there exists an (ε, δ)-estimator.

The query complexity depends on both the value distribution class C and the reward function class
G. In this work, we will consider two natural classes of value distributions: (1) CALL, the set of all
distributions supported on [0, 1]; (2) CLIP, the set of distributions on [0, 1] whose CDF F is Lipschitz
continuous. And we consider two types of reward functions: monotone and right-Lipschitz (with
respect to γ). Specifically, for any fixed v ∈ [0, 1], define projection gv ≜ g(·, v), which is a one
dimensional function of γ ∈ [0, v]. Let GMONO be the set of reward functions g whose projection gv
is weekly increasing (w.r.t.γ) for all v ∈ [0, 1]. For the Lipschitzness, we define:
Definition 2.3 (Lipschitzness). A one dimensional function f is

• (L-)left-Lipschitz, if for all x, y ∈ dom(f) with x ≤ y, f(y)− f(x) ≥ −L(y − x).
• (L-)right-Lipschitz, if for all x, y ∈ dom(f) with x ≤ y, f(y)− f(x) ≤ L(y − x).
• one-sided (L-)Lipschitz, if it is either (L-)left-Lipschitz or (L-)right-Lipshitz.
• (L-)Lipschitz, if it is both left- and right-Lipshitz.

Let GRIGHT-LIP (GLIP) be the set of reward functions g whose projection gv is right-Lipschitz (Lips-
chitz) for all v ∈ [0, 1]. Monotonicity and right Lipschitzness are natural assumptions of the reward
functions. In the above examples, the rewards (quality of the hire, revenue, and the quality of col-
lected data) are all weakly increasing with respect to the thresholds (hiring bar, reserve price, and
the difficulty of the requirement). For right-Lipschitz functions, one can see Duetting et al. (2023)
for some practical examples.

1This reduction is proved to be without loss of generality in Feng et al. (2021).
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3 IMPOSSIBILITY RESULT: MONOTONE REWARD FUNCTION AND GENERAL
VALUE DISTRIBUTION

In this section, we investigate the query complexity of learning the optimal threshold for general
value distributions. We show that even when the reward function g is monotone with respect to
both the threshold γ and the latent value v, an (ε, δ)-estimator cannot be learned with finitely many
queries, even for a constant ε = 1

8 .

Theorem 3.1. For any δ ∈ (0, 1) and ε ≤ 1
8 , the query complexity QCGMONO,CALL

(ε, δ) is infinite.

High-Level Ideas To prove the theorem, we carefully construct a set of pairs of monotone reward
function and value distribution (gα, Fα) ∈ GMONO ×CALL, parameterized by α ∈ ( 12 ,

9
16 ), such that

that the utility function U(γ) has a unique maximum point at γ∗ = α and U(γ) < U(α) − ε for
any γ ̸= α. To learn an ε-approximately optimal threshold, the learner must find the point γ∗ = α.
But there are infinitely many possible values for α ∈ ( 12 ,

9
16 ), and our construction ensures that the

learner cannot determine the exact value of α from the feedback of finitely many queries.

Proof. Fix any α ∈ ( 12 ,
9
16 ). We define value distribution Fα with the following CDF:

Fα(v) =


0 v ∈ [0, 1

2 )
1
2 − 3

16v v ∈ [ 12 , α)
1
2 v ∈ [α, 1)

1 v = 1.

More specifically, Fα consists of the following four parts: (1) A point mass at 1
2 : P(v = 1

2 ) =
1
8 ; (2)

Continuous CDF over the interval ( 12 , α): Fα(x) =
1
2−

3
16x ; (3) A point mass at α: P(v = α) = 3

16α ;
(4) A point mass at 1: P(v = 1) = 1

2 . Then we define a reward function gα that is monotone with
respect to both the threshold γ and the latent value v:

gα(γ, v) =


γ γ ∈ [0, α), v ∈ [0, 15

16 )

v − 3
8 γ ∈ [0, α), v ∈ [ 1516 , 1]

γ γ ∈ [α, 1], v ∈ [0, 15
16 )

v γ ∈ [α, 1], v ∈ [ 1516 , 1].

Now we can compute the expected utility Uα(γ) when the learner chooses the threshold γ ∈ [0, 1]
for the reward function gα and value distribution Fα. We have

• when γ ∈ [0, 1
2 ], the utility is Uα(γ) =

1
2γ + 5

16 < 9
16 ;

• when γ ∈ ( 12 , α), the utility is Uα(γ) = (F (α)− F (γ))γ + 5
16 = 1

2 ;
• when γ = α, the utility is Uα(γ) = α · P[v = α] + 1

2 = 11
16 ;

• when γ ∈ (α, 1], the utility is Uα(γ) =
1
2 .

Therefore, Uα(γ) is maximized at γ∗ = α, and for any γ ̸= α, it holds that Uα(α) − Uα(γ) >
1
8 .

To approximate the optimal utility within ε = 1
8 error, the learner must learn the exact value of α.

However, the following claim shows that when a learner chooses any threshold γ ∈ [0, 1], it only
observes censored feedback in {γ, 5

8 , 1, 0}.

Claim 3.1. When the learner chooses γ ∈ [0, 1], it observes feedback in {0, γ, 5
8 , 1}.

Proof. We consider two cases. If the learner chooses a threshold γ < α, the learner only receives
feedback in { 5

8 , γ, 0} depending on the latent value v: (1) if v ≥ 15
16 , the learner receives gα(γ, v) =

v − 3
8 = 1− 3

8 = 5
8 ; (2) if γ ≤ vt <

15
16 , the learner receives gα(γ, v) = γ; (3) if v < γ, the learner

receives 0. Similarly, if the learner chooses a threshold γ ≥ α, the learner only receives feedback
in {0, 1, γ}: (1) if v ≥ 15

16 , the learner receives gα(γ, v) = v = 1; (2) if γ ≤ v < 15
16 , the learner

receives gα(γ, v) = γ; (3) if v < γ, the learner receives 0. This proves the claim.

Note that the above results holds for all α ∈ ( 12 ,
9
16 ). By properties of Uα(γ) and Claim 3.1, a learner

is not able to output the exact value of α using finite queries with feedback only in {0, γ, 5
8 , 1} against

infinitely many pairs of (Fα, gα) for α ∈ ( 12 ,
9
16 ).
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4 TIGHT QUERY COMPLEXITY FOR THE LIPSCHITZ CASES

4.1 MONOTONE REWARD FUNCTION AND LIPSCHITZ VALUE DISTRIBUTION

The negative result in Section 3 implies that we need more assumptions on the reward function
g or the value distribution F for the learner to learn the optimal threshold in finite queries. In
this subsection, we keep assuming that G is the class of monotone functions w.r.t. γ and further
assume that C is the class of Lipschitz distributions. We argue that the monotonicity of g and the
Lipschitzness of F guarantee that the gap between the expected utility of two thresholds can be
bounded by the gap between their CDFs.
Lemma 4.1. With g ∈ GMONO and F ∈ CLIP, the expected utility function U satisfies that U(γ2)−
U(γ1) ≥ −(F (γ2)− F (γ1)) for any 0 ≤ γ1 ≤ γ2 ≤ 1.

Then we show that Õ( 1
ε3 ) queries are enough to learn the optimal threshold. And this can be

achieved even if the learner does not know the Lipschitz constant L of the value distribution F .
Theorem 4.1. For GMONO and CLIP, we have

QCGMONO,CLIP
(ε, δ) ≤ O

(
1

ε3
log

L

ε
log

log L
ε

εδ

)
.

Proof. If the learner chooses a threshold γ and makes m queries with the same threshold γ, it will
observe m i.i.d. samples b1(γ), b2(γ), . . . , bm(γ). Here we use bi(γ) to denote the random variable
b(γ, vi) where vi ∼ F . Let Gγ be the CDF of the distribution of bi(γ). Let Ĝγ be the CDF of
the empirical distribution: Ĝγ(x) =

∑m
i=1 1bi(γ)≤x. By the DKW inequality (Lemma B.1), if the

number of queries m reaches O( 1
ε2 log

1
δ′ ), then with probability at least 1− δ′ we have∣∣∣Gγ(x)− Ĝγ(x)

∣∣∣ ≤ ε, ∀x ∈ R.

By Tonelli’s theorem, U(γ) = Eb(γ)∼Gγ
[b(γ)] =

∫ 1

0
P[b(γ) > t]dt =

∫ 1

0

(
1−Gγ(t)

)
dt.

Define Û(γ) =
∫ 1

0

(
1− Ĝγ(t)

)
dt. Then we have∣∣∣U(γ)− Û(γ)

∣∣∣ = ∣∣∣∣∫ 1

0

(
Gγ(t)− Ĝγ(t)

)
dt

∣∣∣∣ ≤ ε. (3)

This means that, after O( 1
ε2 log

1
δ′ ) queries at the same point γ, we can learn the expected utility of

threshold γ in ε additive error with probability at least 1− δ′.

Next, we will adaptively build a discretization set ΓA ⊂ [0, 1] without knowing the Lipschitz constant
L such that (1) ΓA = {x1, x2, · · · , x|ΓA|} where 0 = x1 < x2 < · · · < x|ΓA| = 1 and |ΓA| =
Θ( 1ε ); (2) ε

3 < F (xi+1)− F (xi) < ε for i = 1, 2, · · · , |ΓA| − 1.

By Chernoff bound, we know that O( 1
ε2 log

1
δ ) queries are sufficient to learn F (x) with ε

9 ad-
ditive error for any x ∈ [0, 1]. At step 1, let ΓA = {0}. At step n > 1, assuming ΓA =

{x1, x2, ..., xn−1} and the estimations of corresponding CDF F̂ (x1), F̂ (x2), ..., F̂ (xn−1) are com-
puted. Let xn−1 = maxΓA. Then we use binary search to find the next element xn satisfy-
ing 2ε

3 − ε
9 < F̂ (xn) − F̂ (xn−1) < 2ε

3 + ε
9 and hence ε

3 < F (xn) − F (xn−1) < ε. The
binary search works because the empirical CDF function F̂ is monotone. Note that we can al-
ways find such xn within O(log L

ε ) points because of the Lipschitzness. Overall, to build ΓA,
we need to estimate n = O(log L

ε · |ΓA|) = O( 1ε log
L
ε ) points of the value distribution. By

union bound, to successfully build ΓA with probability 1 − δ
2 , the total query complexity is

O(n · 1
ε2 log

n
δ ) = O( 1

ε3 log
L
ε log

log L
ε

εδ ).

Once ΓA is built, we make O( 1
ε2 log

2|ΓA|
δ ) for each threshold γ ∈ ΓA. By the union bound, we

have with probability at least 1−|ΓA| · δ
2|ΓA| = 1− δ

2 , the estimate Û(γ) satisfies |Û(γ)−U(γ)| ≤ ε

for every threshold γ ∈ ΓA. Since |ΓA| = O( 1ε ), we need |ΓA| · O( 1
ε2 log

|ΓA|
δ ) = O( 1

ε3 log
1
εδ )
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queries in total. Then, let γ∗ = argmaxγ∈[0,1] U(γ) be the optimal threshold in [0, 1] for U(γ) and
let γ̂∗ = argmaxγ∈ΓA

Û(γ) be the optimal threshold in ΓA for Û(γ). And let γr ∈ ΓA such that
γr−1 < γ∗ ≤ γr, so 0 ≤ F (γr)− F (γ∗) < ε. Then, we have the following chain of inequalities:

U(γ̂∗)
Eq. (3)
≥ Û(γ̂∗)− ε

Definition of γ̂∗

≥ Û(γr)− ε
Eq. (3)
≥ U(γr)− 2ε

Lemma 4.1
≥ (U(γ∗)− ε)− 2ε ≥ U(γ∗)− 3ε.

We conclude that γ̂∗ is a 3ε-optimal threshold with probability 1− δ.

4.2 RIGHT-LIPSCHITZ REWARD FUNCTION AND GENERAL VALUE DISTRIBUTION

In this section, we first show that the expected utility function is right-Lipschitz when G is the class
of right-Lipschitz continuous reward function and C is the class of general distribution.
Lemma 4.2. Suppose reward function g ∈ GRIGHT-LIP, then the expected reward function U is right-
Lipschitz continuous.

Then assuming that we know the Lipschitz constant L, we can apply similar discretization method
in Theorem 4.1 to provide an upper bound.
Theorem 4.2. For the class of right-Lipschitz reward functions GRIGHT-LIP and general distributions
CALL, ε > 0, δ ∈ [0, 1], we have

QCGLIP,CLIP
(ε, δ) ≤ QCGRIGHT-LIP,CALL

(ε, δ) ≤ O

(
L

ε3
log

L

εδ

)
.

4.3 LOWER BOUND

In this section, we prove that even if G is the class of reward functions that are both Lipschitz and
monotone w.r.t. γ and C is the class of Lipschitz distributions, Ω( 1

ε3 ) queries are needed to learn the
optimal utility within ε error. This is a uniformly matching lower bound for all the upper bounds in
this paper.
Theorem 4.3. For G = GLIP ∩ GMONO, CLIP, we have

QCG,CLIP
(ε, δ) ≥ Ω

(
1

ε3
+

1

ε2
log

1

δ

)
.

High-level ideas To prove the theorem, we construct a Lipschitz value distribution and carefully
perturb it on a O(ε) interval. The base value distribution leads to any γ ∈ [ 13 ,

1
2 ] being the optimal

threshold. However, the perturbed distribution leads to a unique optimal threshold γ∗ ∈ [ 13 ,
1
2 ]. To

learn an ε-approximately optimal threshold, the learner needs to distinguish the base distribution and
O( 1ε ) perturbed distributions. It can be proved that Ω( 1

ε2 log
1
δ ) queries are needed to distinguish the

base distribution and one perturbed distribution, which leads to our desired lower bound. This idea
is significantly different from previous works that constructed discrete distributions (e.g., Kleinberg
& Leighton (2003); Leme et al. (2023b)).

Proof. Let g(γ, v) = γ for any γ, v ∈ [0, 1] such that v ≥ γ. It is not difficult to verify that g is
Lipschitz continuous and monotone w.r.t. γ. In this case, the expected utility can be written in a
simple form U(γ) = γ(1− F (γ)).

Consider the following Lipschitz continuous distribution F0:

F0(v) =


3
4v v ∈ [0, 1

3 )

1− 1
4v v ∈ [ 13 ,

1
2 ]

v v ∈ ( 12 , 1].

This distribution leads to the following expected utility function:

U0(γ) =


γ(1− 3

4γ) γ ∈ [0, 1
3 )

γ(1− (1− 1
4γ )) =

1
4 γ ∈ [ 13 ,

1
2 ]

γ(1− γ) γ ∈ ( 12 , 1].
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Figure 1: Left: The base distribution F (black, dotted) and the perturbed distribution Fw,γ (red
solid), which moves one unit of mass from interval [w − 3ε, w] to interval [w,w + 3ε]. Right: The
corresponding qualitative plots of γ 7→ U(γ) (black, dotted) and γ 7→ Uw,γ(γ) (red, solid).

Because γ(1 − 3
4γ) is increasing on interval [0, 1

3 ) and γ(1 − γ) is decreasing on interval ( 12 , 1],
U0(γ) < U0(

1
3 ) =

1
4 when γ ∈ [0, 1

3 ) and U0(γ) < U0(
1
2 ) =

1
4 when γ ∈ ( 12 , 1]. In other words,

the expected utility function reaches maximum value if and only if γ ∈ [ 13 ,
1
2 ]. There is a ”plateau”

on the utility curve. (See Figure 1.)

Next, we perturb the distribution F0 to obtain another distribution Fω,ε, whose expected utility
function will only have one maximum point rather than the interval [ 13 ,

1
2 ]. So to estimate the optimal

utility, the learner must distinguish F0 and a class of perturbed distributions. However, by carefully
designing the perturbation, the difference between F0 and perturbed distributions is small enough to
lead to the desired lower bound.

Let Ξ = {(w, ε) ∈ [0, 1]2, w − 3ε ≥ 1
3 , w + 3ε ≤ 1

2}. For any (w, ε) ∈ Ξ, let hw,ε(v) =
1v∈(w,w+3ε] − 1v∈[w−3ε,w). Notice that F0 has the following probability distribution function f0:

f0(v) =


3
4 v ∈ [0, 1

3 )
1

4v2 v ∈ [ 13 ,
1
2 ]

1 v ∈ ( 12 , 1].

So f0(v) ≥ 1 when v ∈ [ 13 ,
1
2 ]. Define fw,ε(v) = f0(v) + hw,ε(v), then we have fw,ε(v) ≥ 0 for

any v ∈ [0, 1]. And
∫ 1

v=0
fw,ε(v) = 1, so fw,ε is a valid probability density function. Let Fw,ε be

the corresponding cumulative distribution function. Note that Fw,ε is L-Lipschitz for any constant
L ≥ 13

4 . By definition, Fw,ε(v) =
∫ v

0
fω,ε(t)dt =

∫ v

0

(
f0(t)+hw,ε(t)

)
dt = F0(v)+

∫ v

0
hw,ε(t)dt.

Claim 4.1. (See proof in Appendix C.4) The CDF function Fw,ε is

Fw,ε(v) =


F0(v)− (v − w + 3ε) v ∈ [w − 3ε, w)

F0(v)− (w + 3ε− v) v ∈ [w,w + 3ε]

F0(v) otherwise.

Claim 4.1 means that Fw,ε and F0 are nearly the same except on the 6ε-long interval [w−3ε, w+3ε].

Let Uw,ε(γ) be the expected utility function when the agent’s value distribution is Fw,ε.

Uw,ε(γ)− U0(γ) = γ
(
F0(γ)− Fw,ε(γ)

)
=


γ(γ − (w − 3ε)) γ ∈ [w − 3ε, w)

γ(w + 3ε− γ) γ ∈ [w,w + 3ε]

0 otherwise.

Uw,ε has a unique maximum point at γ = w, with Uw,ε(w) = U0(w) + wε = 1
4 + 3wε > 1

4 + ε,
because γ(γ− (w−3ε)) is increasing in [w−3ε, w) and γ(w+3ε−γ) is decreasing in [w,w+3ε].

Let wi =
1
3 + 3(2i − 1)ε, i ∈ {1, 2, ..., n = ⌊ 1

36ε⌋}. Note that (wi, ε) ∈ Ξ for all i ∈ [n]. It can
be proved that distinguishing distributions F0 and Fwi,ε requires Ω( 1

ε2 log
1
δ ) queries in the interval

[wi − 3ε, wi + 3ε] (see Appendix C.5). Queries not in [wi − 3ε, wi + 3ε] do not help to distinguish
F0 and Fwi,ε because their CDFs are the same outside of the range [wi − 3ε, wi + 3ε].
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Lemma 4.3. For any i ∈ [n], Ω( 1
ε2 log

1
δ ) queries in interval [wi − 3ε, wi + 3ε] are needed to

distinguish F0 and Fwi,ε.

Now consider a setting where the underlying value distribution is Fwi,ε for i uniformly drawn from
{1, 2, . . . , n}. Finding out the optimal utility and the corresponding threshold is equivalent to finding
out the underlying value distribution. On one side, fixing δ, for each i ∈ [n] we need Ω( 1

ε2 ) queries
to distinguish Fwi,ε and F0 and all these queries must lie in the interval Ii = [wi − 3ε, wi + 3ε].
Since these intervals {Ii}i∈[n] are disjoint, and the learner must make Ω( 1

ε2 ) queries in each interval
Ii, this leads to n ·Ω( 1

ε2 ) = Ω( 1
ε3 ) queries in total. On the other side, for any δ ∈ (0, 1), Ω( 1

ε2 log
1
δ )

are needed to distinguish the underlying value distribution and other distributions with probability
at least 1− δ. Combining these two lower bounds, Ω( 1

ε3 + 1
ε2 log

1
δ ) queries are needed to learn the

optimal threshold in ε additive error with probability at least 1− δ.

Corollary 4.1. QCGLIP,CLIP
(ε, δ) ≥ Ω( 1

ε3 + 1
ε2 log

1
δ ), QCGMONO,CLIP

(ε, δ) ≥ Ω( 1
ε3 + 1

ε2 log
1
δ ).

5 ONLINE LEARNING

Previous sections studied the threshold learning problem in an offline query complexity model. In
this section, we consider an (adversarial) online learning model and show that the threshold learning
problem in this setting can be solved with a tight Θ(T 2/3) regret in the Lipschitz case.

Adversarial online threshold learning The learner and the agent interact for T rounds. At each
round t ∈ [T ], the learner selects a threshold γt ∈ [0, 1] and the agent realizes a value vt ∼ Ft ∈ C.
The learner then observes reward bt = bt(γt, vt) = gt(γt, vt)1vt≥γt

as in Eq. (1), which depends
on the unknown reward function gt ∈ G and the value vt. Unlike the query complexity model where
the learner only cares about the quality of the final output threshold γ̂, here, the learner cares about
the total reward gained during the T rounds:

∑T
t=1 bt(γt, vt). We compare this total reward against

the best total reward the learner could have obtained using some fixed threshold in hindsight. In
other words, we measure the performance of the learner’s algorithm A by its regret:

RegC,GT (A) = sup
γ∈[0,1]

E

[
T∑

t=1

bt(γ, vt)−
T∑

t=1

bt(γt, vt)

]
. (4)

Unlike the query complexity model where the value distribution F and reward function g are fixed,
in this online learning model we allow them to change over time. Moreover, they can be controlled
by an adaptive adversary who, given classes C and G, at each round t can arbitrarily choose an
Ft ∈ C and a gt ∈ G based on the history (γ1, v1, . . . , γt−1, vt−1).

We have shown in Section 3 that learning an ε-optimal threshold is impossible for monotone reward
functions GMONO and general distributions CALL. Similarly, it is impossible to obtain o(1) regret
in this case. So, we focus on the two cases with finite query complexity: S1 = (GRIGHT-LIP, CALL),
S2 = (GMONO, CLIP). The following theorem shows that, for those two cases, there exists a learning
algorithm that achieves Θ(T 2/3) regret, and this bound is tight.
Theorem 5.1. For the adversarial online threshold learning problem, there exists an algorithm A
that, for both cases S1 = (GRIGHT-LIP, CALL) and S2 = (GMONO, CLIP), achieves regret

RegSi

T (A) ≤ O(T 2/3L1/3).

And for any algorithm A, there exists a fixed reward function g ∈ GLIP ∩ GMONO and a fixed
distribution F ∈ CLIP for which the regret of A is at least Regg,FT (A) ≥ Ω(T 2/3).

The proof idea is as follows. The lower bound Ω(T 2/3) follows from the Ω( 1
ε3 ) query complex-

ity lower bound in Theorem 4.3 by a standard online-to-batch conversion. To prove the upper
bound O(T 2/3L1/3), we note that under the two environments S1,S2, the expected reward func-
tion Ut(γ) = Evt∼Ft

[b(γ, vt)] is one-sided Lipschitz in γ. Therefore, we can treat the problem as
a continuous-arm one-sided Lipschitz bandit problem, where each threshold γ ∈ [0, 1] is an arm.
This problem can be solved by discretizing the arm set and running a no-regret bandit algorithm for
a finite arm set, e.g., Poly INF (Audibert & Bubeck, 2010). See details in Appendix D.
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A ADDITIONAL RELATED WORKS

For the online setting, our work is most related to the Lipschitz bandit problem, which was first
studied by Agrawal (1995). Once we have Lipschitzness, there is a standard discretization method
to get the desired upper bound and it is widely used in online settings. See Magureanu et al. (2014);
Kleinberg et al. (2019); Haghtalab et al. (2022). The upper bound of our online results follows this
standard method, but the lower bound relies on our offline results and is different from previous
continuous-armed Lipschitz bandit problems. Several recent works study multi-armed bandit prob-
lems with censored feedback. For example, Abernethy et al. (2016) study a bandit problem where
the learner obtains a reward of 1 if the realized sample associated with the pulled arm is larger than
an exogenously given threshold. Verma et al. (2019) study a resource allocation problem where the
learner obtains reward only if the resources allocated to an arm exceed a certain threshold. In Guinet
et al. (2022), the reward of each arm is missing with some probability at every pull. These models
are significantly different from ours, hence the results are not comparable.

Censored/Truncated data are also widely studied in statistical analysis. For example, a classical
problem is truncated linear regression, which has remained a challenge since the early works of
Tobin (1958); Amemiya (1973); Breen (1996). Recently, Daskalakis et al. (2019) provided a com-
putationally and statistically efficient solution to this problem. Statistics problems with known or
unknown truncated sets have received much attention recently (e.g. (Daskalakis et al., 2018; Kon-
tonis et al., 2019)). For more knowledge of this field, the reader can turn to the textbook of Little &
Rubin (2020). While this line of work studies passive learning settings where the censored dataset is
given to the data analyst exogenously, we consider an active learning setting where the learner can
choose how to censor each data point, and how to do that optimally.

B BASIC MATH

B.1 DKW INEQUALITY

The following well-known concentration inequality will be used in our proofs.

Lemma B.1 (Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky et al., 1956; Massart,
1990)). Let X1, X2, . . . , Xn be n real-valued i.i.d random variables with cumulative distribution
function F . Let Fn =

∑n
i=1 1Xi≤x be the associated empirical distribution function. Then for all

ε > 0,

P
[
sup
x∈R

(
Fn(x)− F (x)

)
> ε

]
< 2e−2nε2 .

B.2 PROPERTIES OF HELLINGER DISTANCE

Then we review some useful properties of the Hellinger distance and total variation distance. First,
the Hellinger distance gives upper bounds on the total variation distance:

Fact B.1. Let D1, D2 be two distribution on X . Their total variance distance and Hellinger distance
are dTV(D1, D2) and dH(D1, D2) respectively. We have

1− d2TV(D1, D2) ≥ (1− d2H(D1, D2))
2.

The total variation distance has the following well-known property that upper bounds the difference
between the expected values of a function on two distributions:

Fact B.2. For any function h : X → [0, 1], |Ex∼D1 [h(x)]− Ex∼D2 [h(x)]| ≤ dTV(D1, D2).

Second, we use the following lemma to upper bound the squared Hellinger distance between two
distributions that are close to each other. We use D to specifically denote discrete distributions. We
slightly abuse the notation by using D to denote of PDF of distribution D.

Lemma B.2. Let D1, D2 be two distribution on X satisfying 1− ε ≤ D2(x)
D1(x)

≤ 1+ ε for all x ∈ X .
Then d2H(D1, D2) ≤ 1

2ε
2.
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Proof. By definition,

d2H(D1, D2) =
1

2

∑
x∈X

(
√
D1(x)−

√
D2(x))

2 =
1

2

∑
x∈X

D1(x)

(
1−

√
D2(x)

D1(x)

)
.

If D2(x) < D1(x), then we have 1 −
√

D2(x)
D1(x)

≤ (1 −
√
1− ε)2 ≤

(
1 − (1 − ε)

)2
= ε2. If

D2(x) ≥ D1(x), we have 1−
√

D2(x)
D1(x)

≤ (
√
1 + ε− 1)2 ≤

(
(1 + ε− 1)

)2
= ε2. Combining these

two cases, we have

d2H(D1, D2) ≤
1

2

∑
x∈X

D1(x)ε
2 =

1

2
ε2.

Finally, let D
⊗

m denote the empirical distribution of T i.i.d samples from D, namely, the product
of m independent D distributions. We have the following lemma relates d2H(D

⊗
m

1 , D
⊗

m
2 ) with

d2H(D1, D2).

Lemma B.3. (Lee (2020)) d2H(D
⊗

m
1 , D

⊗
m

2 ) = 1− (1− d2H(D1,D2)
)
m ≤ m · d2H(D1, D2).

B.3 DISTINGUISHING DISTRIBUTIONS

Let D1, D2 be two distributions over a discrete space X . A distribution Di is chosen uniformly
from the set {D1, D2}. Then we are given m samples from Di and want to distinguish whether the
distribution is D1 or D2. It is known that at least m = Ω( 1

d2
H(D1,D2)

log 1
δ ) samples are needed to

guess correctly with probability at least 1− δ, no matter how we guess. Formally we have

Lemma B.4. Let j ∈ {1, 2} be the index of the distribution we guess based on the samples. The
probability of making a mistake when distinguishing D1 and D2 using m samples, namely Pr[j ̸=
i] = 1

2 Pr[j = 2|i = 1] + 1
2 Pr[j = 1|i = 2], is at least

Pr[j ̸= i] ≥ 1

4

(
1− d2H(D1, D2)

)2m ≥ 1

4
e−4md2

H(D1,D2),

if d2H(D1, D2) ≤ 1
2 . The inequality implies that, in order to achieve Pr[j ̸= i] ≤ δ, we must have

m ≥ 1
4d2

H(D1,D2)
log 1

4δ .

Proof. The draw of m samples from D1 or D2 is equivalent to the draw of one sample from D
⊗

m
1

or D
⊗

m
2 . Given one sample from D

⊗
m

1 or D
⊗

m
2 , the probability of making one mistake when

guessing the distribution is at least

Pr[j ̸= i] =
1

2
Pr[j = 2|i = 1] +

1

2
Pr[j = 1|i = 2]

=
1

2

(
1− Pr[j = 1|i = 1] +

1

2
Pr[j = 1|i = 2]

)
=

1

2
− 1

2
(Pr[j = 1|i = 2]− Pr[j = 1]|i = 1])

=
1

2
− 1

2

(
E
D

⊗
m

1
[1j=1]− E

D
⊗

m
2

[1j=1]
)

byFact B.2 ≥ 1

2
− 1

2
dTV

(
D

⊗
m

1 , D
⊗

m
2

)
.

(5)

Then we upper bound dTV(D
⊗

m
1 , D

⊗
m

2 ) to prove the lemma. According to Fact B.1 and
Lemma B.3, we have

1− d2TV

(
D

⊗
m

1 , D
⊗

m
2

)
≥
(
1− d2H

(
D

⊗
m

1 , D
⊗

m
2

)2)
=
(
1− d2H(D1, D2)

)2m
.
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Since

1− d2TV

(
D

⊗
m

1 , D
⊗

m
2

)
=
(
1 + dTV

(
D

⊗
m

1 , D
⊗

m
2

))(
1− dTV

(
D

⊗
m

1 , D
⊗

m
2

))
≤ 2
(
1− dTV

(
D

⊗
m

1 , D
⊗

m
2

))
,

we have
1− dTV

(
D

⊗
m

1 , D
⊗

m
2

)
≥ 1

2

(
1− d2H(D1, D2)

)2m
.

Plugging into Eq. (5), we have

Pr[j ̸= i] ≥ 1

4

(
1− d2H(D1, D2)

)2m
.

When d2H(D1, D2) <
1
2 , the inequality 1− x ≥ e−2x for all x ∈ (0, 1

2 ) concludes that

Pr[j ̸= i] ≥ 1

4
e−4md2

H(D1,D2).

C MISSING PROOFS FROM SECTION 4

C.1 PROOF OF LEMMA 4.1

Proof. The distribution F is weakly differentiable because it is Lipschitz. Let f be the weak deriva-
tive of F . We have f(v) ≤ L for all v ∈ [0, 1] because of Lipschitzness. We rewrite the expected
utility U(γ) = Ev∼F

[
g(γ, v) · 1v≥γ

]
as
∫ 1

v=γ
g(γ, v)f(v)dv. Then for any 0 ≤ γ1 ≤ γ2 ≤ 1,

U(γ2)− U(γ1) =

∫ 1

v=γ2

g(γ2, v)f(v)dv −
∫ 1

v=γ1

g(γ1, v)f(v)dv

=

∫ 1

v=γ2

(
g(γ2, v)− g(γ1, v)

)
f(v)dv −

∫ γ2

v=γ1

g(γ1, v)f(v)dv

≥ 0 −
∫ γ2

v=γ1

g(γ1, v)f(v)dv ≥ − (F (γ2)− F (γ1))

where the first inequality holds because g is monotone in γ, the second inequality holds because
g(γ, v) ≤ 1.

C.2 PROOF OF LEMMA 4.2

Proof. For any 0 ≤ γ1 ≤ γ2 ≤ 1,

U(γ2)− U(γ1) = Ev∼F [g(γ2, v) · 1v≥γ2
]− Ev∼F [g(γ1, v) · 1v≥γ1

]

= Ev∼F [
(
g(γ2, v)− g(γ1, v)

)
· 1v≥γ2

]− Ev∼F [g(γ1, v) · 1γ1≤v<γ2
]

≤ Ev∼F [
(
g(γ2, v)− g(γ1, v)

)
· 1v≥γ2

] ≤ L(γ2 − γ1)

where the first inequality holds because g(γ, v) ≥ 0, the second inequality holds because the pro-
jection gv is right-Lipschitz continuous and the expectation Ev∼F [1v≥γ2 ] ≤ 1.

C.3 PROOF OF THEOREM 4.2

Proof. Because CLIP ⊂ CALL, we have QCGLIP,CLIP
(ε, δ) ≤ QCGLIP,CALL

(ε, δ) for all ε > 0, δ ∈
(0, 1). For any ε > 0, let’s consider all the multiples of ε

L in [0, 1], Γ ≜ {kε
L : k ∈ N, k ≤ L

ε }.
We make O( 1

ε2 log
|Γ|
δ ) queries for each threshold γ = kε

L in Γ. By a union bound, we have with
probability at least 1 − |Γ| · δ

|Γ| = 1 − δ, the estimate Û(γ) satisfies |Û(γ) − U(γ)| ≤ ε for every

threshold in Γ. Since |Γ| = O(Lε ), this uses |Γ| ·O( 1
ε2 log

|Γ|
δ ) = O( L

ε3 log
L
εδ ) queries in total.
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Let γ∗ ∈ argmaxγ∈[0,1] U(γ) be an optimal threshold. And let γ̂∗ ∈ argmaxγ∈Γ be the optimal
threshold on the discretized set. And let γl = ε

L⌊
Lγ∗

ε ⌋ respectively be the multiples of ε
L closest

to the left. Then we have γl ∈ Γ and 0 < γ∗ − γl < ε. Since the reward function g is right-L-
Lipschitz-continuous,

U(γ̂∗) ≥ Û(γ̂∗)− ε ≥ Û(γl)− ε

≥ U(γl)− 2ε

≥ U(γ∗)− 2ε− L(γ∗ − γl)

≥ U(γ∗)− 3ε

where the first and third inequality holds because Eq. (3), the second inequality holds because the
selection of γ̂∗, the fourth inequality holds because of Lemma 4.2.

C.4 PROOF OF CLAIM 4.1

Proof. For v < w− 3ε and v > w+3ε,
∫ v

t=0
hw,ε(t)dt = 0 because hw,ε(t) = 0 when t < w− 3ε

or t > w + 3ε and
∫ w+3ε

t=w−3ε
hw,ε(t)dt = 3ε− 3ε = 0. Therefore, for v < w − 3ε and v > w + 3ε,

Fw,ε(v) = F0(v). For any v ∈ [w − 3ε, w),

Fw,ε(v)− F0(v) =

∫ v

t=w−3ε

hw,ε(t)dt = −(v − w + 3ε).

And for any v ∈ [w,w + 3ε],

Fw,ε(v)− F0(v) =

∫ v

w−3ε

hw,ε(t)dt =

∫ w+3ε

w−3ε

hw,ε(t)dt−
∫ w+3ε

v

hw,ε(t)dt = −(w + 3ε− v).

C.5 PROOF OF LEMMA 4.3

Proof. When the learner sets different thresholds γ and the value distribution is F0, the samples
come from different distributions Gγ . Similarly, when the learner sets different thresholds γ and the
value distribution is Fw,ε, assume that the samples come from different distributions Gw,ε

γ .

In order to distinguish F0 and Fw,ε, the learner must at least find a threshold γ that it is able to
distinguish Gγ and Gw,ε

γ .

Given g(γ, v) = γ · 1v≥γ , Gγ is a Bernoulli distribution that for all X ∼ Gγ , Pr[X = 0] = F0(γ)
and Pr[X = γ] = 1 − F0(γ). And Gw,ε

γ is also a Bernoulli distribution that for all Y ∼ Gw,ε
γ ,

Pr[Y = 0] = Fw,ε(γ) and Pr[Y = γ] = 1− Fw,ε(γ).

Recall that

Fw,ε(v) =


F0(v)− (v − w + 3ε) v ∈ [w − 3ε, w)

F0(v)− (w + 3ε− v) v ∈ [w,w + 3ε]

F0(v) otherwise

When γ < w − 3ε or γ > w + 3ε, Gγ and Gw,ε
γ are the same Bernoulli distribution. The learner

can’t distinguish them. When γ ∈ [w − 3ε, w + 3ε], we have F0(γ) ≥ Fw,ε(γ) ≥ F0(γ)− 3ε and
F0(

1
2 ) ≥ F0(γ) ≥ F0(

1
3 ). Recall F0(

1
3 ) =

1
4 and F0(

1
2 ) =

1
2 .Then we get

1 ≥ Pr[Y = 0]

Pr[X = 0]
=

Fw,ε(γ)

F0(γ)
≥ F0(γ)− 3ε

F0(γ)
= 1− 3ε

F0(γ)
≥ 1− 3ε

F0(
1
3 )

= 1− 12ε.

and

1 ≤ Pr[Y = γ]

Pr[X = γ]
=

1− Fw,ε(γ)

1− F0(γ)
≤ 1− F0(γ) + 3ε

1− F0(γ)
= 1+

3ε

1− F0(γ)
≤ 1+

3ε

1− F0(
1
2 )

= 1+6ε.
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According to Lemma B.2, we have d2H(Gγ , G
w,ε
γ ) ≤ 1

2 (12ε)
2 ≤ 72ε2. Then we know from

Lemma B.4 that Ω( 1
ε2 log

1
δ ) samples are needed to distinguish Gγ and Gw,ε

γ with probability at
least 1− δ.

In other words, the learner must at least find a threshold γ ∈ [w − 3ε, w + 3ε] and do at least
Ω( 1

ε2 log
1
δ ) queries at the same threshold γ to distinguish F0 and Fw,ε with probability at least

1− δ.

D PROOF OF THEOREM 5.1

Proof. First, because vt ∼ Ft is independent of γt, we have Evt∼Ft
[bt(γt, vt)] = Ut(γt), and we

can rewrite the regret as

sup
γ∈[0,1]

E

[
T∑

t=1

bt(γ, vt)−
T∑

t=1

bt(γt, vt)

]
= sup

γ∈[0,1]

{
E
[ T∑

t=1

Ut(γ)
]
− E

[ T∑
t=1

Ut(γt)
]}

,

where the expectation on the right-hand-side is only over the randomness of algorithm A but not vt.

We treat the online learning problem as a continuous-arm adversarial bandit problem, where each
threshold γ ∈ [0, 1] is an arm. According to Lemma 4.1 and Lemma 4.2, in all the three environ-
ments S1,S2,S3 in the theorem the expected utility function Ut(γ) = Evt∼Ft

[bt(γ, vt)] is one-sided
Lipschitz in γ. W.l.o.g, assume that Ut is right-Lipschitz. Let’s discretize the arm space [0, 1] uni-
formly with interval length ε

L , obtaining a finite set of arms Γ = {0, ε
L ,

2ε
L , ...} with |Γ| ≤ L

ε +1. Let
γ∗ ∈ argmaxγ∈[0,1] E

[∑T
t=1 Ut(γ)

]
be an optimal threshold in the interval [0, 1] (for the expected

sum of utility functions). And let γ̂∗ ∈ argmaxγ∈Γ E
[∑T

t=1 Ut(γ)
]

be an optimal threshold in
the discretized set Γ. And let γ̂l ∈ Γ be the largest multiple of ε that does not exceed γ∗. Clearly,
γ∗ − γ̂l ≤ ε

L . Because every Ut is right-Lipschitz, we have

E
[ T∑

t=1

Ut(γ
∗)
]
− E

[ T∑
t=1

Ut(γ̂l)
]
≤

T∑
t=1

L(γ∗ − γ̂l) ≤ Tε.

This implies that the optimal threshold γ̂∗ in Γ satisfies

E
[ T∑

t=1

Ut(γ̂
∗)
]
≥ E

[ T∑
t=1

Ut(γ̂l)
]
≥ E

[ T∑
t=1

Ut(γ
∗)
]
− Tε.

Recall that the Poly INF algorithm (Theorem 11 of (Audibert & Bubeck, 2010)) is an adversarial
multi-armed bandit algorithm with O(

√
TK) regret when running on an arm set of size K. If we

run that algorithm on the arm set Γ, and let ε = (LT )
1/3, then we get a total expected utility of at

least

E
[ T∑

t=1

Ut(γt)
]
≥ E

[ T∑
t=1

Ut(γ̂
∗)
]
−O(

√
T |Γ|)

≥ E
[ T∑

t=1

Ut(γ
∗)
]
− Tε−O(

√
T L

ε )

= E
[ T∑

t=1

Ut(γ
∗)
]
−O(T 2/3L1/3).

So, the regret is at most O(T 2/3L1/3).

E EXPERIMENTAL RESULTS

In this section, we provide some simple experiments to verify our theoretical results.
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E.1 UPPER BOUND

We consider two toy examples. The first example is g(γ, v) = γ if γ < 1
3 otherwise g(γ, v) = v

and the value distribution is the uniform distribution on [0, 1], which corresponds to the monotone
reward function and Lipschitz value distribution. The second example is g(γ, v) = γ and the value
distribution is a point distribution that all the mass is on v = 1

3 , which corresponds to the Lipschitz
reward function and general distribution case (Theorem 4.2). In our experiment, we first fix the
number of queries to be K3 where K = 100 + 3i for all integer 1 ≤ i ≤ 33, i.e. we choose K
from [100, 200]. Therefore, the algorithm for the upper bound should output errors smaller than the
predetermined loss 1

K . The following figure shows the relationship between the loss and the number
of queries. The empirical loss curve is under the predetermined loss curve, which verifies our upper
bound results.

Figure 2: Loss curves under different examples. The orange line: the predetermined loss curve. The
blue line: the empirical loss curve. All variables are in logarithmic form.

E.2 LOWER BOUND

In this section, we provide experimental results to verify our lower bound result (Theorem 4.3). We
consider the example we provided in the proof of Theorem 4.3 where g(γ, v) = γ and the value
distribution is a “hard distribution” (see the left part of Fig. 3). For ε ∈ { 1

400 ,
1

500 ,
1

600}, we run the
algorithm in Theorem 4.1 to determine the minimum number n of queries that are necessary to learn
the optimal threshold with ε additive error. Due to randomness, we repeat 10 times for each ε. At
each round, we compute lnn

ln 1
ε

and find it converging to 3, which verifies our lower bound result.

𝜀

ln(𝑛)

ln
1
𝜀

Figure 3: Left: The blue curve is the probability distribution function. The orange part is the
frequency of realized samples. Right: The box plot when ε ∈ { 1

400 ,
1

500 ,
1

600}. The horizontal axe
represents ε. The vertical axe represents the logarithmic ratio lnn

ln 1
ε

.
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