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Abstract

Neural networks achieve remarkable performance through superposition: encoding multiple
features as overlapping directions in activation space rather than dedicating individual neu-
rons to each feature. This phenomenon challenges interpretability: when neurons respond
to multiple unrelated concepts, understanding network behavior becomes difficult. Yet de-
spite its importance, we lack principled methods to measure superposition. We present
an information-theoretic framework measuring a neural representation’s effective degrees of
freedom. We apply the Shannon entropy to sparse autoencoder activations to compute the
number of effective features as the minimum number of neurons needed for interference-free
encoding. Equivalently, this measures how many “virtual neurons” the network simulates
through superposition. When networks encode more effective features than they have actual
neurons, they must accept interference as the price of compression. Our metric strongly cor-
relates with ground truth in toy models, detects minimal superposition in algorithmic tasks
(effective features approximately equal neurons), and reveals systematic reduction under
dropout. Layer-wise patterns of effective features mirror studies of intrinsic dimensionality
on Pythia-70M. The metric also captures developmental dynamics, detecting sharp feature
consolidation during the grokking phase transition. Surprisingly, adversarial training can
increase effective features while improving robustness, contradicting the hypothesis that su-
perposition causes vulnerability. Instead, the effect of adversarial training on superposition
depends on task complexity and network capacity: simple tasks with ample capacity allow
feature expansion (abundance regime), while complex tasks or limited capacity force feature
reduction (scarcity regime). By defining superposition as lossy compression, this work en-
ables principled, practical measurement of how neural networks organize information under
computational constraints, in particular, connecting superposition to adversarial robustness.

1 Introduction

Interpretability and adversarial robustness could be two sides of the same coin (Riuker et al., 2023). Adver-
sarially trained models learn more interpretable features (Engstrom et al., 2019; Ilyas et al., 2019), develop
representations that transfer better (Salman et al.; 2020), and align more closely with human perception
(Santurkar et al.; 2019). Conversely, interpretability-enhancing techniques improve robustness: input gradi-
ent regularization (Ross & Doshi-Velez, 2017; Boopathy et al., 2020), attribution smoothing (Etmann et al.,
2019), and feature disentanglement (Augustin et al., 2020) all defend against adversarial attacks. Even
architectural choices that promote interpretability, such as lateral inhibition (Eigen & Sadovnik, 2021) and
second-order optimization (Tsiligkaridis & Roberts, 2020), yield more robust models. This pervasive duality
demands mechanistic explanation.
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neurons superposition measure

(a) Observed network (b) Hypothetical disentangled model (c) Superposition as features per neuron

Figure 1: Defining superposition for a neural network layer. (a) Observed network with compressed repre-
sentation where multiple features share neuronal dimensions. (b) Hypothetical disentangled model where
each effective feature occupies its own neuron without interference (Elhage et al., 2022b). (c¢) Superposition
measure 1 quantifies effective features per neuron. Here, the network simulates twice as many effective
features as it has neurons. Figure adapted from (Bereska & Gavves, 2024).

The superposition hypothesis offers a potential mechanism. Elhage et al. (2022b) showed that neural net-
works compress information through superposition: encoding multiple features as overlapping activation
patterns. When features share dimensions, their interference creates attack surfaces that adversaries might
exploit. If, by this mechanism, superposition caused adversarial vulnerability, this would explain ¢.) adver-
sarial transferability as shared feature correlations (Liu et al., 2017), 4.) the robustness-accuracy trade-off
as models sacrificing representational capacity for orthogonality (Tsipras et al., 2019), and #i.) robust
models becoming more interpretable by reducing feature entanglement (Engstrom et al., 2019). Also, this
superposition-vulnerability hypothesis predicts that adversarial training should reduce superposition.

Testing this prediction requires measuring superposition in real networks. While Elhage et al. (2022b) used
weight matrix Frobenius norms, this approach requires ground truth features; available only in toy models.
We need principled methods to quantify superposition without knowing the true features.

We solve this through information theory applied to sparse autoencoders (SAEs). SAEs extract interpretable
features from neural activations (Cunningham et al., 2024; Bricken et al., 2023), decomposing them into
sparse dictionary elements. We measure each feature’s share of the network’s representational budget through
its activation magnitude across samples.

The exponential of the Shannon entropy quantifies how many interference-free channels would transmit
this feature distribution, the network’s effective degrees of freedom. We call this count effective features
F (Figure |b): the minimum neurons needed to encode the observed features without interference. We
interpret this as F' “virtual neurons”: the network simulates this many independent channels through its
N physical neurons (Figure |b). The feature distribution compresses losslessly down to exactly F' neurons;
compress further and interference becomes unavoidable.

We measure superposition as ¥ = F//N (Figure |c), counting virtual neurons per physical neuron. At ¢ = 1,
the network operates at its interference-free limit (no superposition). At ¢ = 2, it simulates twice as many
channels as it has neurons, achieving 2x lossy compression. Thus, we define superposition as compression
beyond the lossless limit.

Our findings contradict the simple superposition-vulnerability hypothesis. Adversarial training does not uni-
versally reduce superposition; its effect depends on task complexity relative to network capacity (Section 7).
Simple tasks with ample capacity permit abundance: networks expand features for robustness. Complex
tasks under constraints force scarcity: networks compress further, reducing features. This bifurcation holds
across architectures (MLPs, CNNs, ResNet-18) and datasets (MNIST, Fashion-MNIST, CIFAR-10).

We validate the framework where superposition is observable. Toy models achieve r = 0.94 correlation
through the SAE extraction pipeline (Section 5.1), and under SAE dictionary scaling the measure con-
verges with appropriate regularization (Section 5.2). Beyond adversarial training, systematic measurement
across contexts generates hypotheses about neural organization: dropout seems to act as capacity constraint,
reducing superposition (Section .1), compressing networks trained on algorithmic tasks seems to not cre-
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ate superposition (¢ < 1) likely due to lack of input sparsity (Section .2), during grokking, we capture
the moment of algorithmic discovery through sharp drop in superposition at the generalization transition
(Section 6.3), and Pythia-7T0M’s layer-wise compression peaks in early MLPs before declining (Section 6.1);
mirroring intrinsic dimensionality studies (Ansuini et al., 2019).

This work makes superposition measurable. By grounding neural compression in information theory, we en-
able quantitative study of how networks encode information under capacity constraints, potentially enabling
systematic engineering of interpretable architectures.

2 Related Work

Superposition and polysemanticity. Neural networks employ distributed representations, encoding
information across multiple units rather than in isolated neurons (Hinton, 1984; Olah, 2023). The discovery
that semantic relationships manifest as directions in embedding space, exemplified by vector arithmetic like
“king - man + woman = queen” (Mikolov et al., 2013), established the linear representation hypothesis
(Park et al., 2023). Building on this geometric insight, Elhage et al. (2022h) formulated the superposition
hypothesis: networks encode more features than dimensions by representing features as nearly orthogonal
directions. Their toy models revealed phase transitions between monosemantic neurons (one feature per
neuron) and polysemantic neurons (multiple features per neuron), governed by feature sparsity. Recent
theoretical work proves networks can compute accurately despite the interference inherent in superposition
(Vaintrob et al., 2024; Hénni et al., 2024).

While superposition (more effective features than neurons) inevitably creates polysemantic neurons through
feature interference, polysemanticity (multiple features sharing a neuron) also emerges by other means:

rotation of features relative to the neuron basis, incidentally (Lecomte et al., 2023) (e.g. via regularization),
or forced by noise (such as dropout) as redundant encoding (Marshall & Kirchner, 2024) (as we show in
Section 6.1, dropout shows the opposite effect on superposition). Scherlis et al. (2023) analyzed how features

compete for limited neuronal capacity, showing that importance-weighted feature allocation can explain
which features become polysemantic under resource constraints.

Sparse autoencoders for feature extraction. Sparse autoencoders (SAEs) tackle the challenge of ex-
tracting interpretable features from polysemantic representations by recasting it as sparse dictionary learning
(Sharkey et al., 2022; Cunningham et al., 2024). SAEs decompose neural activations into sparse combina-
tions of learned dictionary elements, effectively reversing the superposition process. Recent architectural
innovations such as gated SAEs (Rajamanoharan et al., 2024), TopK variants (Gao et al., 2024; Bussmann
et al., 2024), and Matryoshka SAEs (Bussmann et al., 2025) improve feature recovery. While our experiments
employ vanilla SAEs for conceptual clarity, our entropy-based framework remains architecture-agnostic: im-
proved feature extraction yields more accurate measurements without invalidating the theoretical foundation.

SAEs scale to state-of-the-art models: Anthropic extracted millions of interpretable features from Claude
3 Sonnet (Templeton et al.; 2024), while OpenAl achieved similar results with GPT-4 (Gao et al., 2024).
Crucially, these features are causally relevant: activation steering produces predictable behavioral changes
(Marks et al., 2024). Applications span attention mechanism analysis (Kissane et al., 2024), reward model
interpretation (Marks et al., 2023), and automated feature labeling (Paulo et al.; 2024), establishing SAEs
as foundational for mechanistic interpretability (Bereska & Gavves, 2024).

Information theory and neural measurement. Information-theoretic principles provide rigorous foun-
dations for understanding neural representations. The information bottleneck principle (Tishby et al., 2000),
when applied to deep learning (Shwartz-Ziv & Tishby, 2017), reveals how networks balance compression with
prediction. Each neural layer acts as a bandwidth-limited channel, forcing networks to develop efficient codes
(i.e. superposition) to transmit information forward (Goldfeld et al., 2019). This perspective recasts super-
position as an optimal solution to rate-distortion constraints.

Most pertinent to our work, Ayonrinde et al. (2024) connected SAEs to minimum description length (MDL).
By viewing SAE features as compression codes for neural activations, they showed that optimal SAEs
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Figure 2: From toy model to practical superposition measurement. (a) Toy model bottlenecks features f
through fewer neurons x, with importance gradient determining allocation. (b) Sparsity enables interference-
based compression: matrices W5 Wi,y show off-diagonal terms growing as ¢ increases from 1 to 2.5. (c)
Sparse autoencoders learn sparse codes z reconstructing activations . (d) Measurement: extract activations

Z, derive probabilities p, compute F = e ) measure ¢ = F/N.

balance reconstruction fidelity against description complexity. Our entropy-based framework extends this
perspective, measuring the effective “alphabet size” networks use for internal communication.

Quantifying feature entanglement. Despite its theoretical importance, measuring superposition re-
mains unexplored. Elhage et al. (2022b) proposed a dimensions per feature metric for analyzing uniform
importance settings in toy models, which when inverted could measure features per dimension. But this
approach requires knowing the ground truth feature-to-neuron mapping matrix, limiting its applicability to
controlled settings. Traditional disentanglement metrics from representation learning (Carbonneau et al.,
2022; Eastwood & Williams, 2018) assess statistical independence rather than the representational compres-
sion characterizing superposition. Other dimensionality measures like effective rank (Roy & Vetterli; 2007)
and participation ratio (Gao et al., 2017) quantify the number of significant dimensions in a representation
but do not directly measure feature-to-neuron compression ratios.

Entropy-based measures have proven effective across disciplines facing similar measurement challenges. Neu-
roscience employs participation ratios (form of entropy, see Appendix for connection to Hill numbers) to
quantify how many neurons contribute to population dynamics (Gao et al., 2017). Economics uses entropy
to quantify portfolio concentration (Fontanari et al., 2021). Quantum physics applies von Neumann entropy
to count effective pure states in entangled systems (Nielsen & Chuang, 2011). Recent work applies entropy
measures to neural network analysis (Lee et al., 2023; Shin et al.; 2024). Across fields, entropy naturally
captures how information distributes across components: exactly what we need for measuring superposition.

3 Background on Superposition and Sparse Autoencoders

Neural networks must transmit information through layers with fixed dimensions. When neurons must encode
information about many more features than available dimensions, networks employ superposition—packing
multiple features into shared dimensions through interference. This compression mechanism enables repre-
senting more features than available neurons at the cost of introducing crosstalk between them. Superposition
is compression beyond the lossless limit.

We examine toy models where superposition emerges under controlled bandwidth constraints, making inter-
ference patterns directly observable (Section 3.1). For real networks where ground truth remains unknown,
we extract features through sparse autoencoders before measurement becomes possible (Section 3.2).

3.1 Observing Superposition in Toy Models

To understand how neural networks represent more features than they have dimensions, Flhage et al. (2022h)
introduced minimal models demonstrating superposition under controlled conditions. The toy model com-
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presses a feature vector f € RM through a bottleneck © € RY where M > N (Figure 2):

T = Wtoyfv

T
F' = ReLU(W,, x + b) (1)
Here M counts input features, N counts bottleneck neurons, and Wi,, € RY*M maps between them.
The model must represent M features using only N dimensions; impossible unless features share neuronal
resources.

Each input feature f; samples uniformly from [0, 1] with sparsity S (probability of being zero) and importance
weight w;. Training minimizes importance-weighted reconstruction error L(f) = Zf\il wi|fi = f1]1?, revealing

how networks optimally allocate limited bandwidth.

As sparsity increases, the model packs features into shared dimensions through nearly-orthogonal arrange-
ments (Figure 1). The interference matrix W5, Wi, reveals this geometric solution: at low compression,
strong diagonal with minimal off-diagonal terms; at high compression, substantial off-diagonal interference as
features share space. These interference terms quantify the distortion networks accept for increased capacity.
The ReLU nonlinearity proves essential, suppressing small interference to maintain reconstruction despite

feature overlap.

Elhage et al. (2022b) proposed measuring “dimensions per feature” as D* = N/||Wioy |3, for analyzing
uniform importance settings, where the Frobenius norm ||[Wioy |21, = ZZ j ij aggregates weight magni-
tudes. While this metric was not intended for general superposition measurement, we nevertheless adopt
its inverse as a baseline, as it provides the only existing weight-based comparison point for our toy model

validation: ,
_ || Wtoy ||Frob

wFrob - T (2)

This weight-based approach requires knowing the true feature-to-neuron mapping (unavailable in real net-
works) and lacks scale invariance (multiplying weights by any constant arbitrarily changes the measure). We
need a principled framework quantifying compression without ground truth features.

3.2 Extracting Features Through Sparse Autoencoders

Real networks do not reveal their features directly. Instead, we must untangle them from distributed neural
activations. Sparse autoencoders (SAEs) decompose activations into sparse combinations of learned dic-
tionary elements, effectively reverse-engineering the toy model’s feature representation (Cunningham et al.,
2024; Bricken et al., 2023).
Given layer activations & € R, an SAE learns a higher-dimensional sparse code z € R” where D > N
(Figure 2¢):

z = ReLU(Wepcx + b) (3)

The reconstruction combines these sparse features:

D
T = Wyeez = Z zid; (4)

i=1
where columns d; of Wy form the learned dictionary.

Training balances faithful reconstruction against sparse activation:

L(x,z) = |z — 2'|[5 + Al|z[h (5)

The ¢; penalty creates explicit competition: the bound on total activation ), |z;| forces features to justify
their magnitude by contributing to reconstruction. This implements resource allocation where larger |z;|
indicates greater consumption of the network’s limited representational budget (see Appendix for rate-
distortion derivation).
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SAE design choices. We tie encoder and decoder weights (Wye. = WL ) to enforce features as directions
in activation space, maintaining conceptual clarity at potential cost to reconstruction (Bricken et al.; 2023).
Weight tying can also prevent feature absorption artifacts (Chanin et al., 2024a). We omit decoder bias
following Cunningham et al. (2024) for a transparent baseline, accepting slight performance degradation.
The ¢; regularization provides clean budget semantics, though alternatives like TopK (Gao et al.; 2024)

could work within our framework.

If networks truly employ superposition, SAEs should recover the underlying features enabling measurement.
Recent work shows SAE features causally affect network behavior (Marks et al., 2024), suggesting they cap-
ture genuine computational structure. Our measurement framework remains architecture-agnostic: improved
SAE variants enhance accuracy without invalidating the theoretical foundation.

4 Measuring Superposition Through Information Theory

We quantify superposition by determining how many neurons would be required to transmit the ob-
served feature distribution without interference. Information theory provides a precise answer: Shannon’s
source coding theorem establishes that any distribution with entropy H(p) can be losslessly compressed to
e () yniformly-allocated channels. This represents the minimum bandwidth for interference-free transmis-
sion—the network’s effective degrees of freedom.

We formalize superposition as the compression ratio ¥ = F/N, where N counts physical neurons and
F = ") measures effective degrees of freedom extracted from SAE activation statistics (Figure 21)'. When
1) = 1, the network operates at the lossless boundary. When 1 > 1, features necessarily share dimensions
through interference. For instance, in Figure 2h, 5 features represented in 2 neurons yields ¢ = 2.5.

Feature probabilities from resource allocation. Consider a layer with N neurons whose activations
have been processed by an SAE with dictionary size D. Across S samples, the SAE produces sparse codes
Z = ReLU(W,,. X) € RP*% where X € RV*9 contains the original activations. Each feature’s probability
reflects its share of total activation magnitude”:

Zle |2 5] _ budget allocated to feature i
Zf: 35 |z;¢|  total representational budget

(6)

Di =

The SAE’s /1 regularization ensures these allocations reflect computational importance. Features activating
more frequently or strongly consume more capacity, with optimal |z;| proportional to marginal contribution
to reconstruction quality (derivation in Appendix ).

Effective features as lossless compression limit. Shannon entropy quantifies the information content
of this distribution: H(p) = —3, p; logp;. Its exponential:

F =¢l®) (7)

measures effective degrees of freedom, the minimum neurons needed to encode p without interference. This
is the network’s lossless compression limit: the feature distribution could be transmitted through F' neurons
with no information loss. Using fewer than F' neurons guarantees interference as features must share dimen-
sions; using exactly F achieves the interference-free boundary; the actual layer width N determines whether
compression remains lossless (N > F') or becomes lossy (N < F'). The ratio

F
QP:N (8)

1In toy models where the input dimension M is known, F' ranges from N to M depending on sparsity; in real networks M
is undefined and we estimate F' directly.

2Why not measure SAE weights instead of activations? Weight magnitude ||w;|| indicates potential representation but misses
actual usage: “dead features” may exist in the dictionary without ever activating. Empirically, a weight-based measure succeeds
only in toy models (Figure 32); and small toy transformer models already require our activation-based approach (Section 6.2).
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Figure 3: Validation of superposition metrics. (a) Our measure maintains high correlation whether applied
to toy weights (r = 0.99) or SAE activations (r = 0.94), while the Frobenius norm fails on SAE weights.
(b) Performance remains stable across ¢ regularization, model scale, and dictionary size variations. Shaded
regions show 95% confidence intervals across 100 model-SAE pairs.

then measures superposition as lossy compression.

While the SAE extracts D interpretable features, semantic concepts humans might recognize, our measure
quantifies F' effective features, the interference-free channel capacity required for their activation distribution.
A network might use D = 1000 interpretable features but need only F' = 50 effective features if most activate
rarely.

Our measure inherits desirable properties from entropy. i.) For any D-component distribution, the output
stays bounded 1 < F(p) < D, bounded by single-feature dominance and uniform distribution. ¢.) Unlike
threshold-based counting, features contribute according to their information content: rare features matter
less than common ones, weak features less than strong ones. This enables the interpretation as effective
degrees of freedom, beyond “counting features”.

In practice, we use sufficient samples until convergence (see convergence analysis in Section (.4). For convo-
lutional layers, we treat spatial positions as independent samples, measuring superposition across the channel
dimension (Appendix ). While, in general, the data distribution for extracting SAE activations should
reflect the training distribution, for studying adversarial training’s effect, we evaluate on both clean inputs
and adversarially perturbed inputs for contrast.

This framework enables quantifying superposition without ground truth by measuring each layer’s compres-
sion ratio; how many virtual neurons it simulates relative to its physical dimension.

5 Validation of the Measurement Framework

5.1 Toy Model of Superposition

We validate our measure using the toy model of superposition (Elhage et al., 2022b), where interference
patterns are directly observable. This controlled setting tests whether sparse autoencoders can recover
accurate feature counts from superposed representations.

Following Elhage et al. (2022b), we generate 100 toy models with sparsity S € [0.001,0.999]. Each model
compresses 20 features through a 5-neuron bottleneck, with importance weights decaying as w; = 0.7°.
After training to convergence, we extract 10,000 activation samples and train SAEs with 40-dimensional
dictionaries (8x expansion) and ¢; coefficient 0.1. This two-stage process mimics real-world measurement
where ground truth remains unknown.

Validation strategy. Our validation proceeds in two steps. First, we establish reference values by mea-
suring superposition directly from Wiy, where the interference matrix WtEthoy reveals compression lev-
els: diagonal dominance indicates orthogonal features; off-diagonal terms show interference (Figure 2D).
Both our entropy-based measure and the Frobenius norm baseline (Eq. 2) achieve near-perfect correlation
(r = 0.99 &+ 0.01) when applied to toy model weights, confirming both track these observable patterns

(Figure 34).
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Figure 4: Measurements on multi-task sparse parity dataset. (a) Dictionary scaling plateaus with proper
regularization (¢; > 0.1), validating intrinsic structure measurement. Weak regularization (¢, = 0.01) shows
unbounded growth through arbitrary subdivision. (b) Dropout monotonically reduces effective features and
accuracy. (c) Capacity-dependent response: larger networks show reduced sensitivity while narrow networks
exhibit sharp feature reduction, distinguishing polysemanticity (neurons encoding multiple features) from
superposition (compression beyond lossless limit).

Second, we test whether each metric recovers these reference values when given only SAE outputs, the
realistic scenario for measuring real networks. Here the Frobenius norm fails catastrophically on SAE weights,
producing nonlinear relationships and incorrect scales (0.1-0.7 versus expected 1-4); the ¢; regularization
fundamentally alters weight statistics. Our activation-based approach maintains strong correlation (r =
0.94 £ 0.02) with the reference values even through the SAE bottleneck.

Hyperparameter stability. We test sensitivity across three axes: ¢; strength (1072 to 10'), model scale
(8-32 input dimensions), and dictionary expansion (2x to 32x). Figure 3b shows stable performance across
most configurations. Correlation degrades when extreme regularization (¢; = 10) suppresses features, when
dictionaries lack capacity to represent the feature set, when toy models are too small or too large to train
reliably, or when very large dictionaries enable feature splitting (see Section 5.2). These failure modes reflect
limitations of the toy model or SAE training rather than the measure itself.

5.2 Dictionary Scaling Convergence

Measuring a natural coastline with a finer ruler yields a longer measurement; potentially without bound
(Mandelbrot, 1967). As SAE dictionaries grow, might we discover arbitrarily many features at finer scales?

We test convergence using multi-task sparse parity (Michaud et al., 2023) (3 tasks, 4 bits each) where ground
truth bounds meaningful features. Networks with 64 hidden neurons trained across dictionary scales (0.5x
to 16x hidden dimension) and ¢; strengths (0.01 to 10.0).

Figure reveals two regimes. With appropriate regularization (¢; > 0.1), feature counts plateau despite
dictionary expansion, indicating we measure the network’s representational structure and not arbitrary
decomposition (i.e. feature splitting (Chanin et al., 2024b)). Weak regularization (¢; = 0.01) permits
continued growth across all tested scales—this reflects feature splitting rather than genuine superposition,
where the SAE decomposes single computational features into spurious fine-grained components. Excessive
regularization (£, = 10.0) suppresses features entirely.

The dependence on dictionary size means absolute counts vary with SAE architecture, but comparative
measurements remain valid: networks analyzed under identical configurations yield meaningful relative dif-
ferences, even as changing those configurations shifts all measurements systematically.

6 Applications and Findings

We measure superposition across four neural compression phenomena: capacity constraint under dropout
(Section 6.1), algorithmic tasks that resist superposition despite compression (Section (.2), developmental
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Figure 5: Algorithmic tasks under compression. (a) Compression architecture projects activations through
ReLU(W TWz) to force features into fewer dimensions. (b) Sequence reversal: progressive compression from
native 45D increases superposition from ¥ a 0.3 toward ¥ = 1 (leftmost to rightmost points approaching
F=N line). Once reaching the F=N boundary, further compression causes performance degradation and
then collapse (x markers) rather than superposition beyond ¢ = 1. (c) Sorting exhibits identical dynamics
with F' =~ N throughout compression. Both tasks resist genuine superposition (¢» > 1), operating at the
lossless limit where each neuron encodes one effective feature, likely due to lack of input sparsity for sequence
operations.

dynamics during learning transitions (Section 6.3), and layer-wise representational organization in language

models (Section 6.1).

Each finding here is a preliminary, exploratory analysis on specific architectures and tasks. Our primary con-
tribution remains the measurement tool itself. These findings illustrate its potential utility while generating
testable hypotheses for future systematic investigation across broader experimental conditions.

6.1 Dropout Reduces Features Through Redundant Encoding

We investigate how dropout affects feature organization using multi-task sparse parity (3 tasks, 4 bits each)
with simple MLPs across hidden dimensions h € {16, 32,64, 128} and dropout rates [0.0, 0.1, ..., 0.9].

Marshall & Kirchner (2024) showed dropout induces polysemanticity through redundancy: features must
distribute across neurons to survive random deactivation. One might expect this redundancy to increase
measured superposition. Instead, dropout monotonically reduces effective features by up to 50% (Figure 4b).

We propose this reflects the distinction between polysemanticity and superposition (Figure Ac). If dropout
forces each feature to occupy multiple neurons for robustness, this redundant encoding would consume
capacity, leaving room for fewer total features within the same dimensional budget. Under this interpretation,
networks respond by pruning less essential features, consistent with Scherlis et al. (2023)’s competitive
resource allocation framework.

The capacity dependence supports this account: larger networks show reduced dropout sensitivity while
narrow networks exhibit sharp feature reduction, suggesting capacity constraints mediate the effect.

6.2 Algorithmic Tasks Resist Superposition Despite Compression

Tracr compiles human-readable programs into transformer weights with known computational structure
(Lindner et al., 2023). We examine sequence reversal (“123” — “321”) and sorting (“213” — “123”), com-
paring compiled models at their original dimensionality (compression factor 1x) against compressed variants
and transformers trained from scratch with matching architectures.

Following Lindner et al. (2023), we compress models by projecting residual stream activations through
learned compression matrices. Our compression scheme (Figure 5:) applies ReLU(W T Wx) where W €
RNXM - compressing from originally M dimensions to N. The ReLU activation, absent in the original Tracr
compression, allows small interference terms to cancel out following the toy model rationale (Elhage et al.,
2022h).
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Figure 6: (a) Non-monotonic feature organization across Pythia-70M. MLP layer 1 peaks at 10,000 features
(20x neurons). Convergence analysis shows saturation after 2 x 10* samples. (b) Feature dynamics during
grokking on modular arithmetic. Sharp consolidation at generalization transition (epoch 60) follows smoother
LLC decay. Strong correlation (r = 0.908, p < 0.001) with LLC suggests feature count functions as a measure
of model complexity.

The compression dynamics reveal limits on superposition in these algorithmic tasks (Figure 5b, 5¢). Both
compiled Tracr models and transformers trained from scratch converge to 12 features for reversal and 10 for
sorting’—far below their original compiled dimensions (45D for reversal), revealing substantial dimensional
redundancy in Tracr’s compilation.

As compression reduces dimensions from 45D toward the task-intrinsic boundary, superposition increases
from ¢ =~ 0.3 toward ¢p = 1. However, compression stops increasing superposition once models reach
the F = N diagonal: further dimensional reduction causes linear drop in effective features and eventually
performance collapse (x markers) rather than superposition beyond ¢ = 1, resisting genuine superposition
(¢ > 1) entirely.

This resistance likely stems from algorithmic tasks violating the sparsity assumption required for lossy com-
pression (Elhage et al., 2022b). The toy model of superposition requires features to activate sparsely across
inputs: most features remain inactive on most samples, keeping interference managable. Algorithmic tasks
break this assumption; sequence operations require consistent activation patterns across inputs. Without
sparsity, interference becomes destructive rather than enabling compression. While we originally anticipated
this setting would enable controlled validation across superposition levels, the systematic F' ~ N tracking,
coupled with performance collapse when dimensions drop below this boundary, instead provides indirect
evidence that our measure captures genuine capacity constraints, detecting minimal superposition as the
sparsity prerequisite fails.

6.3 Capturing Grokking Phase Transition

Grokking (sudden perfect generalization after extended training on algorithmic tasks) provides an ideal
testbed for developmental measurement (Power et al., 2022). We investigate whether feature count dynamics
can detect this phase transition and how they relate to the Local Learning Coefficient (LLC) from singular
learning theory (Hoogland et al., 2024).

We train a two-path MLP on modular arithmetic (a4 ) mod 53. Figure 6 reveals distinct dynamics: while
LLC shows initial proliferation followed by smooth decay throughout training, our feature count exhibits
sharp consolidation precisely at the generalization transition.

This pattern suggests the measures capture different aspects of complexity evolution. During memorization,
the model employs numerous superposed features to store input-output mappings. The sharp consolida-
tion coincides with algorithmic discovery, where the model reorganizes from distributed lookup tables into
compact representations that capture the modular arithmetic rule (Nanda et al., 2023). Strong correlation

3While we generally recommend comparative interpretation due to measurement limitations (Section 8), the systematic
F = N boundary tracking and performance decline when violated suggest our measure may provide meaningful absolute
effective feature counts in sufficiently constrained computational settings.
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Figure 7: Higher task complexity shifts adversarial training’s effect from feature expansion toward reduction.
Each panel shows results varying dataset (MNIST top, Fashion-MNIST bottom) and number of classes (2,
3, 10). (a) CNNs show clear complexity-dependent transitions: simple tasks enable feature expansion
while complex tasks (10 classes) force reduction below baseline. (b) MLPs exhibit similar patterns with
more pronounced layer-wise variation. Fashion-MNIST consistently amplifies the reduction effect compared
to MNIST, suggesting that representational demands drive defensive strategies beyond mere class count.
Dashed lines: clean data; solid lines: adversarial examples. Feature count ratios normalized to ¢ = 0
baseline. Error bars show standard error across 3 seeds.

(r = 0.908, p < 0.001) between feature count and LLC positions superposition measurement as a develop-
mental tool for detecting emergent capabilities through their information-theoretic signatures.

6.4 Layer-wise Organization in Language Models

We analyze Pythia-70M using pretrained SAEs from Marks et al. (2024), measuring feature counts across all
layers and components. Convergence analysis (Figure (1) shows saturation after 2 x 10* samples. Feature
importance follows power-law distributions: while 21,000 SAE features activate for MLP 1, our entropy-based
measure yields 5,600 effective features, automatically downweighting rare activations.

MLPs store the most features, followed by residual streams, with attention maintaining minimal counts,
consistent with MLPs as knowledge stores and attention as routing (Geva et al., 2021). Features grow in
early layers (MLP 1 achieves 20x compression), compress through middle layers, then re-expand before final
consolidation.

This non-monotonic trajectory parallels intrinsic dimensionality studies (Ansuini et al., 2019): both reveal
“hunchback” patterns peaking in early-middle layers. Intrinsic dimensionality measures geometric mani-
fold complexity (minimal dimensions describing activation structure), while we count effective information
channels (minimal dimensions for lossless encoding), both measuring aspects of representational complexity.

7 Connection between Superposition and Adversarial Robustness

Testing the superposition-vulnerability hypothesis. The superposition-vulnerability hypothesis pro-
posed by Elhage et al. (2022b) predicts that adversarial training should universally reduce superposition, as
networks trade representational efficiency for orthogonal, robust features. We test this prediction systemat-
ically across diverse architectures and conditions, finding that the direction of the effect—expansion versus
reduction—depends on task complexity and network capacity.

We employ PGD adversarial training (Madry et al., 2018) across architectures ranging from single-layer to
deep networks (MLPs, CNNs, ResNet-18) on multiple datasets (MNIST, Fashion-MNIST, CIFAR-10). Task
complexity varies through both classification granularity (2, 3, 5, 10 classes) and dataset difficulty. Network
capacity varies through hidden dimensions (8-512 for MLPs), filter counts (864 for CNNs), and width
scaling (1/4x-2x for ResNet-18). For convolutional networks, we measure superposition across channels

11
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Figure 8: Higher network capacity shifts adversarial training’s effect from feature reduction toward expan-
sion. (a) Single-layer networks on MNIST demonstrate capacity-dependent transitions: MLPs with hidden
dimensions h € {8,32,128,512} (top) and CNNs with filter counts ¢ € {8,16,32,64} (bottom) show that
narrow networks reduce features while wide networks expand them across task complexities. (b) ResNet-18
on CIFAR-10 with width scaling (1x, 1/2x, 1/4x) reveals layer-wise specialization: early layers reduce fea-
tures while deeper layers (layer 3-4) expand dramatically, with this pattern dampening as width decreases.
Dashed lines: clean data; solid lines: adversarial examples. Feature count ratios normalized to baseline.

by reshaping activation tensors to treat spatial positions as independent samples (see Appendix for
details). All SAEs use 4x dictionary expansion with ¢; = 0.1. Measurements on adversarial examples match
the training distribution; models trained with ¢ = 0.2 are evaluated on ¢ = 0.2 attacks.

Statistical methodology. To quantify adversarial training effects, we extract normalized slopes repre-
senting how feature counts change per unit increase in adversarial training strength (e € {0.0,0.1,0.2,0.3}).
Positive slopes indicate adversarial training increases features; negative slopes indicate reduction. For each
experimental condition, we fit linear regressions to feature counts across epsilon values, pooling clean and
adversarial observations to increase statistical power. These slopes are normalized by baseline (e = 0) feature
counts, making effects comparable across layers with different absolute scales.

Since networks contain multiple layers, we aggregate layer-wise measurements using parameter-weighted aver-
aging, where layers with more parameters receive proportionally higher weight. This reflects the assumption
that computationally intensive layers better represent overall network behavior. For simple architectures, pa-
rameter counts include all weights and biases; for ResNet-18, we implement detailed counting that accounts
for convolutions, batch normalization, and skip connections.

Testing Adversarial Training Effects on Superposition

We test three formal hypotheses:

e H1 (Universal Reduction): Adversarial training uniformly reduces superposition across
all conditions, directly testing Elhage et al. (2022b)’s original prediction.

« H2 (Complexity |): Higher task complexity shifts adversarial training’s effect from fea-
ture expansion toward reduction. We encode complexity ordinally (2-class=1, 3-class=2,
5-class=3, 10-class=4) and test for negative linear trends in the adversarial training slope.

o H3 (Capacity 71): Higher network capacity shifts adversarial training’s effect from feature
reduction toward expansion. We test for positive log-linear relationships between capacity
measures and adversarial training slopes.

All statistical tests use inverse-variance weighting to account for measurement uncertainty, with random-
effects meta-analysis when significant heterogeneity exists across conditions.
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Figure 9: Statistical analysis of adversarial training effects on superposition. Normalized slopes quantify fea-
ture count changes per unit adversarial strength €; positive slopes indicate adversarial training increases fea-
tures, negative slopes indicate reduction. (a) Task complexity (number of classes + dataset difficulty) shows
consistent negative relationship with slopes: higher complexity yields more negative slopes. Fashion-MNIST
(green) produces systematically lower slopes than MNIST (yellow), consistent with its greater difficulty. (b)
Single-layer networks on MNIST show capacity-dependent transitions: narrow networks (8-32 units) have
negative slopes regardless of task complexity, while wide networks (128-512 units) have positive slopes. (c)
ResNet-18 on CIFAR-10 demonstrates log-linear scaling: wider networks show dramatically more positive
slopes. Error bars show standard errors.

Complexity shifts adversarial training toward feature reduction (H2 supported). Contrary to
H1’s prediction of universal reduction, adversarial training produces bidirectional effects whose direction
depends systematically on task complexity (Figures 7 and 92). Our meta-analysis reveals significant het-
erogeneity across conditions (Q = 8.047, df = 3, p = 0.045), necessitating random-effects modeling. The
combined effect confirms H2: a negative relationship between task complexity and the adversarial training
slope (slope = —0.745 + 0.122, z = —6.14, p < 0.001), meaning higher complexity shifts the effect from
expansion toward reduction.

Binary classification consistently yields positive slopes, with feature counts expanding up to 2x baseline.
Networks appear to develop additional defensive features when task demands are simple. Ten-class problems
show negative slopes, with feature counts decreasing by up to 60%, particularly in early layers. Three-class
tasks exhibit intermediate behavior with inverted-U curves: moderate adversarial training (e = 0.1) initially
expands features before stronger training (e = 0.3) triggers reduction.

Dataset difficulty amplifies these effects. Fashion-MNIST produces systematically more negative slopes than
MNIST (mean difference = —1.467 &+ 0.156, t(7) = —2.405, p = 0.047, Cohen’s d = —0.85), consistent with
its design as a more challenging benchmark (Xiao et al., 2017). This suggests that representational demands,
beyond mere class count, drive defensive strategies.

Layer-wise patterns differ between architectures: MLP first layers reduce most while CNN second layers
reduce most. We lack a mechanistic explanation for this divergence.

Capacity shifts adversarial training toward feature expansion (H3 supported). Network capacity
exhibits a positive relationship with the adversarial training slope, strongly supporting H3 (Figures &, b,
and 9c). Single-layer networks demonstrate clear capacity thresholds (meta-analytic slope = 0.220 + 0.037,
z =5.90, p < 0.001). Networks with minimal capacity (8 hidden units for MLPs, 8 filters for CNNs) show
negative slopes—reducing features across all task complexities—while high-capacity networks (512 units/64
filters) show positive slopes, expanding features even for 10-class problems.

This capacity dependence scales dramatically in deep architectures. ResNet-18 on CIFAR-10 exhibits a
strong log-linear relationship between width multiplier and adversarial training slopes (slope = 31.0 & 2.0
per log(width), #(2) = 15.7, p = 0.004, R? = 0.929). An 8-fold width increase (0.25x to 2x) produces a
65-unit change in normalized slope. At minimal width (0.25x), adversarial training barely affects feature
counts; at double width, networks show massive feature expansion with slopes approaching 80.
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The layer-wise progression in ResNet-18 reveals hierarchical specialization: early layers (convl, layerl) reduce
features by up to 50%, middle layers remain stable, while deep layers (layer3, layerd) expand up to 4x.
Systematically narrowing the network dampens this pattern: at 1/4 width, late-layer expansion vanishes
while early-layer reduction persists but weakens. This could reflect vulnerability hierarchies, where early
layers processing low-level statistics are easily exploited by imperceptible perturbations, necessitating feature
reduction, while late layers encoding semantic information can safely expand their representational repertoire.

Two regimes of adversarial response. Our findings reveal a more nuanced relationship between su-
perposition and adversarial vulnerability than originally theorized. Rather than universal feature reduction,
adversarial training operates in two distinct regimes determined by the ratio of task demands to network
capacity.

Adversarial training’s effect on superposition depends on the ratio of task demands to network ca-
pacity:

e Abundance regime (low complexity / high capacity): Adversarial training increases effective
features. Networks add defensive features, achieving robustness through elaboration.

e Scarcity regime (high complexity / low capacity): Adversarial training decreases effective
features. Networks prune to fewer, potentially more orthogonal features, as predicted by the
superposition-vulnerability hypothesis.

Unexplained patterns. Several patterns in our data remain unexplained. We observe non-monotonic
inverted-U curves where moderate adversarial training (e = 0.1) expands features while stronger training (e =
0.3) reduces them below baseline. The gap between clean and adversarial feature counts varies unpredictably;
sometimes negligible, sometimes substantial. Some results contradict our complexity hypothesis, with 2-class
MLPs occasionally showing lower feature counts than 3-class. CNN experiments consistently yield stronger
statistical significance (p < 0.02) than equivalent MLP experiments (p =~ 0.09) for unknown reasons.

Implications for interpretability. Our findings complicate simple accounts of why robust models often
appear more interpretable (Engstrom et al.; 2019). If interpretability benefits arose purely from reduced
representational complexity, we would expect universal feature reduction under adversarial training. The
existence of an abundance regime where feature counts increase suggests alternative mechanisms: perhaps
non-interpretable shortcut features are replaced by richer, more human-aligned representations, or perhaps
interpretability benefits are confined to the scarcity regime. Resolving this requires interpretability metrics
beyond the scope of our current framework.

The bidirectional relationship between robustness and superposition suggests that achieving robustness with-
out capability loss may require ensuring sufficient capacity for defensive elaboration. While our experiments
demonstrate that increased robustness can coincide with either increased or decreased superposition depend-
ing on the regime, establishing the exact causal connection between superposition and robustness remains
an important direction for future work.

8 Limitations
Our superposition measurement framework is limited by its dependence on sparse autoencoder quality,
theoretical assumptions about neural feature representation, and should be interpreted as proxy for repre-

sentational complexity rather than literal feature count:

Sparse autoencoder quality. Our approach inherently depends on sparse autoencoder feature extrac-
tion quality. While recent architectural advances (gated SAEs (Rajamanoharan et al., 2024), TopK variants
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(Gao et al., 2024), and end-to-end training (Braun et al., 2024)) have substantially improved feature recov-
ery, fundamental challenges remain. SAE training exhibits sensitivity to hyperparameters, particularly ¢,
regularization strength and dictionary size, with different initialization or training procedures potentially
yielding different feature counts for identical networks. Ghost features, i.e. SAE artifacts without computa-
tional relevance (Gao et al., 2024), can artificially inflate measurements, while poor reconstruction quality
may deflate them.

Assumptions on feature representation. Our framework rests on several assumptions that real net-
works systematically violate. The linear representation assumption (that features correspond to directions
in activation space) has been challenged by recent discoveries of circular feature organization for tempo-
ral concepts (Engels et al., 2024) and complex geometric structures beyond simple directions (Black et al.,
2022). Our entropy calculation assumes features contribute independently to representation, but neural
networks exhibit extensive feature correlations, synergistic information where feature combinations provide
more information than individual contributions, and gating mechanisms where some features control others’
activation. The approximation that sparse linear encoding captures true computational structure breaks
down in hierarchical representations where low-level and high-level features are not substitutable, and in
networks with substantial nonlinear feature interactions that cannot be decomposed additively.

Comparative rather than absolute count. Our measure quantifies effective representational diversity
under specific assumptions rather than providing literal feature counts. This creates several interpretational
limitations. The measure exhibits sensitivity to the activation distribution used for measurement. SAE
training distributions must match the network’s operational regime to avoid systematic bias. Feature granu-
larity remains fundamentally ambiguous: broader features may decompose into specific ones in wider SAEs,
creating uncertainty about whether we’re discovering or creating features. Our single-layer analysis poten-
tially misses features distributed across layers through residual connections or attention mechanisms. Most
critically, we measure the effective alphabet size of the network’s internal communication channel rather
than counting distinct computational primitives, making comparative rather than absolute interpretation
most appropriate.

The limitations largely reflect active research areas in sparse dictionary learning and mechanistic inter-
pretability. Each advance in SAE architectures, training procedures, or theoretical understanding directly
benefits measurement quality. Within its scope—comparative analysis of representational complexity un-
der sparse linear encoding assumptions—the measure enables systematic investigation of neural information
structure previously impossible.

9 Future Work

Cross-model feature alignment. Following Anthropic’s crosscoder approach (Templeton et al., 2024),
training joint SAEs across clean and adversarially-trained models would enable direct feature comparison.
This could reveal whether the abundance regime involves feature elaboration (creating defensive variants)
versus feature replacement (substituting vulnerable features with robust ones).

Multi-scale and cross-layer measurement. Current layer-wise analysis may miss features distributed
across layers through residual connections. Matryoshka SAEs (Bussmann et al., 2025) already capture fea-
ture hierarchies at different granularities within single layers; extending this to cross-layer analysis could
reveal how abstract features decompose into concrete features through network depth. Applying our en-
tropy measure at each scale and depth would quantify information organization across both dimensions.
Implementation requires developing new SAE architectures that span multiple layers.

Feature co-occurrence and splitting. Our independence assumption breaks when features consistently
co-activate, yet this structure may be crucial for resolving feature splitting across dictionary scales. As
we expand SAE dictionaries, single computational features can decompose into multiple SAE features -
artificially inflating our count. Features that always co-occur likely represent such spurious decomposi-
tions rather than genuinely independent components. We initially attempted eigenvalue decomposition of

15



Published in Transactions on Machine Learning Research (12/2025)

feature co-occurrence matrices to identify such dependencies, but this approach faces a fundamental rank
constraint: covariance matrices have rank at most N (the neuron count), making it impossible to detect
superposition beyond the physical dimension. Alternative approaches include mutual information networks
between features or hierarchical clustering of co-occurrence patterns. Combining these with Matryoshka
SAEs’ multi-scale dictionaries could reveal which features remain coupled across granularities (likely repre-
senting single computational primitives) versus those that split independently (likely representing distinct
features). This would provide a principled solution to the dictionary scaling problem: count only features
that disentangle across scales.

Causal intervention experiments. While we demonstrate correlation between adversarial training and
superposition changes, establishing causality requires targeted interventions: i.) artificially constraining
superposition via architectural modifications (e.g., softmax linear units (Elhage et al., 2022a)) then measuring
robustness changes; ii.) directly manipulating feature sparsity in synthetic tasks; #4.) using mechanistic
interpretability tools to trace how specific features contribute to adversarial vulnerability.

Validation at scale. Testing our framework on contemporary architectures (billion-parameter LLMs,
Vision Transformers, diffusion models) would reveal whether findings generalize. Scale might expose new
phenomena in adversarial training: very large models may escape capacity constraints entirely, or scaling
laws might reveal limits on compression efficiency while maintaining robustness. If validated, our metric
could guide architecture search for interpretable models by incorporating superposition measurement into
training objectives or architecture design.

Connection to model compression. Our lossy compression perspective parallels findings in model com-
pression research (Pavlitska et al., 2023). Both superposition (internal compression) and model compression
(parameter reduction) force networks to optimize information encoding under constraints. Formalizing this
connection through rate-distortion theory could yield theoretical bounds on the robustness-compression
tradeoff, explaining when compression helps versus hurts.

10 Conclusion

This work provides a precise, measurable definition of superposition. Previous accounts characterized su-
perposition qualitatively, as networks encoding “more features than neurons”, we formalize it as lossy com-
pression: encoding beyond the interference-free limit. Applying Shannon entropy to sparse autoencoder
activations yields the effective degrees of freedom: the minimum neurons required for lossless transmission of
the observed feature distribution. Superposition occurs when this count exceeds the layer’s actual dimension.

The framework enables testing previously untestable hypotheses. The superposition-vulnerability hypoth-
esis (Elhage et al., 2022b) predicts that adversarial training should universally reduce superposition as
networks trade representational efficiency for orthogonality. We find instead that the effect depends on the
ratio of task demands to network capacity: an abundance regime where simple tasks permit feature expan-
sion, and a scarcity regime where complexity forces reduction. By grounding superposition in information
theory, this work makes quantitative what was previously only demonstrable in toy settings.
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A Theoretical Foundations

A.1 Networks as Resource-Constrained Communication Channels

Neural networks must transmit information through layers with limited dimensions. Each layer acts as a
communication bottleneck where multiple features compete for neuronal bandwidth. When a network needs
to represent F features using only N < F' dimensions, it uses lossy compression (:= superposition).

This resource scarcity creates a natural analogy to communication theory. Just as telecommunications sys-
tems multiplex multiple signals through shared channels, neural networks multiplex multiple features through
shared dimensions. Our measurement framework formalizes this intuition by quantifying how efficiently net-
works allocate their limited representational budget across competing features.

A.2 L1 Norm as Optimal Budget Allocation

The sparse autoencoder’s £; regularization creates an explicit budget constraint on feature activations:

ESAE = Hh_WSEez”%—’—)\HZ”l (9)

The penalty term A||z|[1 = A )", |2;| enforces that the total activation budget ), |2;| remains bounded. This
creates competition where features must justify their budget allocation by contributing to reconstruction
quality.

From the first-order optimality conditions of SAE training, the magnitude |z;| for any active feature satisfies:

1
|zi] = Slw! (h = Wiz_y)| (10)

where W_; excludes feature i. This reveals that |z;| measures the marginal contribution of feature i to re-
construction quality—exactly the budget allocation that optimally balances reconstruction accuracy against
sparsity. Our probability distribution therefore has meaning as “relative feature strength”:

- E[|zf]  expected budget allocation to feature i
b= > Elll] B total representational budget

(11)

This fraction represents how much of the network’s limited representational resources are optimally allocated
to feature i under the SAE’s constraints. Alternative norms fail to preserve this budget interpretation. The
{5 norm E[z2] overweights outliers and breaks the linear connection to reconstruction contributions through
squaring. The /., norm captures only peak activation while ignoring frequency of use. The £y norm provides
binary active/inactive information but loses the magnitude data essential for measuring resource allocation
intensity.

A.3 Shannon Entropy as Information Capacity Measure

Given the budget allocation distribution p, the exponential of Shannon entropy provides the theoretically
optimal feature count. The exponential of Shannon entropy, exp(H), is formally known as perplexity in
information theory and the Hill number (order-1 diversity index) in ecology (Hill, 1973; Jost, 2006):

PP(p) = exp (— Zpi logpi> = Hpi—pi (12)

This quantifies the effective number of outcomes in a probability distribution: how many equally likely
outcomes would yield identical uncertainty. In information theory, it represents the effective alphabet size
of a communication system (Jelinek et al.,; 1977). In ecology, it quantifies the effective number of species in
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an ecosystem (Jost, 2006). In statistical physics, it relates to the number of accessible states in a system
(Jaynes, 1957). In quantum mechanics, it corresponds to the effective number of pure quantum states in a
mixed state (Schrodinger, 1935).

Shannon entropy uniquely satisfies the mathematical properties required for principled feature counting
(Anand et al.; 2011). The measure exhibits coding optimality, equaling the minimum expected code length
for optimal compression. It satisfies additivity for independent feature sets through H(p®q) = H(p)+ H(q).
Small changes in feature importance yield small changes in measured count through continuity. Uniform
distributions where all features are equally important maximize the count. Adding features with positive
probability monotonically increases the count. These axioms uniquely characterize Shannon entropy up
to a multiplicative constant, making exp(H (p)) the theoretically principled choice for aggregating feature
importance into an effective count.

In quantum systems, von Neumann entropy S(p) = —Tr(plogp) measures entanglement, with eS(P) rep-
resenting effective pure states participating in a mixed quantum state (Nielsen & Chuang, 2011). Neural
superposition exhibits parallel structure: just as quantum entanglement creates non-separable correlations
that cannot be decomposed into independent subsystem states, neural superposition creates feature repre-
sentations that cannot be cleanly separated into individual neuronal components. Both phenomena involve
compressed encoding of information: quantum entanglement distributes correlations across subsystems re-
sisting local description, while neural superposition distributes features across neurons resisting individual
interpretation. Our measure e”(?) captures this compression by quantifying the effective number of fea-
tures participating in the neural representation, analogous to how %) quantifies effective pure states in an
entangled quantum mixture.

Higher-order Hill numbers provide different sensitivities to rare versus common features:

n 1/(1—q)
iD= (zp3> (13)
=1

where ¢ = 1 gives our exponential entropy measure (via L’Hépital’s rule), ¢ = 0 counts non-zero components,
and ¢ = 2 gives the inverse Simpson concentration index (participation ratio in statistical mechanics).

A.4 Rate-Distortion Theoretical Foundation

Our measurement framework emerges from two nested rate-distortion problems that formalize the intuitive
resource allocation perspective. The neural network layer itself solves:

R D) = min
(D) p(hla)E[d(y, f(h))]<D

I(X;H) (14)

where the layer width N constrains the mutual information I(X; H) that can be transmitted, while D
represents acceptable task performance degradation. When the optimal solution requires representing F' > N
features, superposition emerges naturally as the rate-optimal encoding strategy.

The sparse autoencoder solves a complementary problem:

Rsan(D) = min_ - E[f|z]] (15)
p(z|h):E[|h—h||3]<D

where sparsity ||z||1 acts as the rate constraint and reconstruction error as distortion. This dual struc-
ture justifies SAE-based measurement: we quantify the effective rate required to represent the network’s
compressed internal information under sparsity constraints.

The SAE optimization can be viewed as an information bottleneck problem balancing information preser-
vation E[||h — g(2)||3] against information cost AE[||z||1]. Under this interpretation, E[|z;|] represents the
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information cost of including feature 4 in the compressed representation, making our probability distribution
a natural measure of information allocation across features.

A.5 Critical Assumptions and Failure Modes

Our method measures effective representational diversity under sparse linear encoding, which approximates
but does not exactly equal the number of distinct computational features. We must carefully assess the
conditions under which this approximation holds.

Feature Correspondence Assumption. We assume SAE dictionary elements correspond one-to-one
with genuine computational features. This assumption fails through feature splitting where one computa-
tional feature decomposes into multiple SAE features, artificially inflating counts. Feature merging combines
multiple computational features into one SAE feature, deflating counts. Ghost features represent SAE ar-
tifacts without computational relevance (Gao et al., 2024). Incomplete coverage occurs when SAEs miss
computationally relevant features entirely.

Linear Representation Assumption. We assume features combine primarily through linear superpo-
sition in activation space. Real networks violate this through hierarchical structure where low-level and
high-level features aren’t interchangeable. Gating mechanisms allow some features to control whether oth-
ers activate (Elhage et al., 2022b). Combinatorial interactions emerge when meaning comes from feature
combinations rather than individual contributions (Black et al., 2022).

Magnitude-Importance Correspondence. We assume |z;| reflects feature i’s computational impor-
tance. This breaks when SAE reconstruction preserves irrelevant details while missing computational es-
sentials, when features interact nonlinearly in downstream processing (Engels et al.; 2024), or when feature
importance depends heavily on context rather than magnitude.

Independent Information Assumption. We assume Shannon entropy correctly aggregates information
across features. This fails when correlated features don’t contribute independent information, when synergis-
tic information means feature pairs provide more information together than separately, or when redundant
encoding has multiple features encoding identical computational factors.

The approximation captures genuine signal about representational complexity under specific conditions. The
measure works best when features combine primarily through linear superposition, activation patterns are
sparse with balanced importance, SAEs achieve high reconstruction quality on computationally relevant
information, and representational structure is relatively flat rather than hierarchical. The approximation
degrades with highly hierarchical representations, dense activation patterns with complex feature interac-
tions, poor SAE reconstruction quality, or extreme feature importance skew. Despite these limitations, the
measure provides principled approximation rather than exact counting, with primary value in comparative
analysis across networks and training regimes.

A.6 Why Eigenvalue Decomposition Fails for SAE Analysis

Following the quantum entanglement analogy, one might consider eigenvalue decomposition of the covariance
matrix:

1
»=-A4A"T (16)
n
where A represents the activation matrix. Eigenvalues {A1, A,..., A, } represent explained variance along

principal components, normalized to form a probability distribution:

Pi= —=mn 17
Zi:l Ai ( )
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This approach faces fundamental rank deficiency when applied to SAEs. Expanding from lower dimension
(N neurons) to higher dimension (D > N dictionary elements) yields covariance matrices with rank at most
N, making detection of more than N features impossible regardless of SAE capacity.

Our activation-based approach circumvents this limitation by directly measuring feature utilization through
activation magnitude distributions rather than intrinsic dimensionality. This enables superposition quantifi-
cation with overcomplete SAE dictionaries.

A.7 Adaptation to Convolutional Networks

Convolutional neural networks organize features across channels rather than spatial locations. For CNN
layers with activations X € REXCXHXW = e measure superposition across the channel dimension while
accounting for spatial structure.

We extract features from each spatial location’s channel vector independently, then aggregate when comput-
ing feature probabilities:

Zb,h,w |Zb,i,h,w|

D
Zj:l Zb,h,w |2b,j,h,w

pi = (18)

where zp, ;5. Tepresents feature i’s activation at spatial position (h,w) in sample b.

This aggregation treats the same semantic feature activating at different spatial locations (e.g., edge detectors
firing everywhere) as evidence for a single feature’s importance rather than separate features.

B Experimental Details

B.1 Tracr Compression

We compile RASP programs using Tracr’s standard pipeline with vocabulary {1,2,3,4,5} and maximum
sequence length 5. The sequence reversal program uses position-based indexing, while sorting employs Tracr’s
built-in sorting primitive with these parameters.

Following Lindner et al. (2023), we train compression matrices using a dual objective that ensures compressed
models maintain both computational equivalence and representational fidelity:

L= Aoutﬁout + )\layerﬁlayer (19)

Louwt = KL(softmax(y.), softmax(y,)) (20)
1 L

Liayer = 7 3, [0 ~ 073 (21)
i=1

where y. and y, denote compressed and original logits, and hz(-o), hgc)

activations at layer i.

represent original and compressed

Hyperparameters: Aout = 0.01, Ajayer = 1.0, learning rate 1073, temperature 7 = 1.0, maximum 500 epochs
with early stopping at 100% accuracy. We use Adam optimization and train separate compression matrices
for each trial. For each compressed model achieving perfect accuracy, we extract activations from all residual
stream positions across 5 trials. SAEs use fixed dictionary size 100, L1 coefficient 0.1, learning rate 1073,
training for 300 epochs with batch size 128. We analyze the final layer activations (post-MLP) for consistency
across compression factors.

B.2 Multi-Task Sparse Parity Experiments

Dataset Construction. We use the multi-task sparse parity dataset from Michaud et al. (2023) with 3
tasks and 4 bits per task. Each input consists of a 3-dimensional one-hot control vector concatenated with
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12 data bits (total dimension 15). For each sample, the control vector specifies which task is active, and
the label is computed as the parity (sum modulo 2) of the 4 bits corresponding to that task. This creates a
dataset where ground truth bounds the number of meaningful features while maintaining task complexity.

Model Architecture. Simple MLPs with architecture Input(15) — Linear(h) — ReLU — Linear(1),
where h € {16,32,64,128,256} for capacity experiments. We apply interventions (dropout) to hidden
activations before the ReLU nonlinearity. Training uses Adam optimizer (Ir=0.001), batch size 64, for 300
epochs with BCEWithLogitsLoss. Dataset split: 80% train, 20% test with stratification by task and label.

Intervention Protocols. Dropout experiments: Applied to hidden activations with rates [0.0, 0.1,
0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9]. Dictionary scaling: Expansion factors [0.5, 1.0, 2.0, 4.0, 8.0, 16.0]
relative to hidden dimension, with L1 coefficients [0.01, 0.1, 1.0, 10.0], maximum dictionary size capped at
1024. Each configuration tested across 5 random seeds with 3 SAE instances per configuration for stability
measurement.

SAE Architecture and Training. Standard autoencoder with tied weights: z = ReLU(Wpcx + b),
x' = W ez where Wy, = WL . Dictionary size typically 4x layer width unless specified otherwise.

Loss function: £ = ||x — x'||3 + A||z||1 with L1 coefficient A = 0.1 (unless testing A sensitivity). Adam
optimizer (Ir=0.001), batch size 128, 300 epochs. For stability analysis, we train 3-5 SAE instances per
configuration with different random seeds and report mean =+ standard deviation.

B.3 Grokking

Task and Architecture. Modular arithmetic task: (a + b) mod 53 using sparse training data (40% of all
possible pairs, 60% held out for testing). Model architecture: two-path MLP with shared embeddings.

e, = Embedding(a, dim = 12)

e, = Embedding(b, dim = 12)

h = GELU(W e, + Waep)
logits = W3h

N DN
W N

N TN N /N
NN
(SIS
~— N N N

where Wi, W5 € R¥®X12 and W5 € R53x48,

Training Configuration. 25,000 training steps, learning rate 0.005, batch size 128, weight decay 0.0002.
Model checkpoints saved every 250 steps (100 total checkpoints). Random seed 0 for reproducibility.

LLC Estimation Protocol. Local Learning Coefficient estimated using Stochastic Gradient Langevin
Dynamics (SGLD) with hyperparameters: learning rate 3 x 1073, localization parameter v = 5.0, effective
inverse temperature ng = 2.0, 500 MCMC samples across 2 independent chains. Hyperparameters selected
via 5 x 5 grid search over epsilon range [3 x 107°,3 x 107!] ensuring € > 0.001 for stability and ng < 100
for B-independence.

B.4 Pythia-70M Analysis

Data Sampling and Preprocessing. 20,000 samples from Pile dataset (Gao et al.; 2020), shuffled
with seeds [42, 123, 456] for reproducibility. Text preprocessing: truncate to 512 characters before tok-
enization to prevent memory issues. Tokenization using model’s native tokenizer with max_length=512,
truncation=True, no padding. Samples with empty text or tokenization failures excluded.

Model and SAE Configuration. Pythia-70M model with layer specifications: embedding layer, and
{attn_out, mlp_ out, resid_out} for layers 0-5. Pretrained SAEs from Marks et al. (2024) with dictionary
size 64 x 512 = 32,768 features per layer. SAE weights loaded from subdirectories following pattern:
layer_type/10_32768/ae.pt.
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Activation Processing. Activations extracted using nnsight tracing with error handling for failed for-
ward passes. Feature activations accumulated across all token positions and samples: feature sum; =
Y samples,positions |%i|- Feature count computed from accumulated sums using entropy-based measure. Mem-
ory management: explicit cleanup of activation tensors and CUDA cache clearing between seeds.

B.5 Adversarial Robustness
B.5.1 Model Architectures
Simple Models (Single Hidden Layer)

o SimpleMLP: Input(784) — Linear(h) — ReLU — Linear(output)
— Hidden dimensions h € 8,32,128,512

o SimpleCNN: Input — Conv2d(h, 5%5) = ReLU — MaxPool(2) — Linear(output)
— Filter counts h € 8,16, 32, 64

Standard Models

o StandardMLP: Input(784) — Linear(4h) — ReLU — Linear(2h) — ReLU — Linear(h) — ReLU
— Linear(output)

— Base dimension h = 32, yielding layer widths [128, 64, 32]

e StandardCNN: LeNet-style architecture

Conv2d(1, h, 3x3) — ReLU — MaxPool(2)
Conv2d(h, 2h, 3x3) — ReLU — MaxPool(2)
Linear(4h) — ReLU — Linear(output)

Base dimension h = 16

CIFAR-10 Models

¢ CIFAR10CNN: Three-block CNN with batch normalization

Conv2d(3, h, 3x3) — BN — ReLU — MaxPool(2)
Conv2d(h, 2h, 3x3) — BN — ReLU — MaxPool(2)
Conv2d(2h, 4h, 3x3) — BN — ReLU — MaxPool(2)
Dropout(0.2) — Linear(output)

Base dimension h = 32

¢ ResNet-18: Modified for CIFAR-10

— Initial: Conv2d(3, 64, 3x3, stride=1, padding=1)
— MaxPool replaced with Identity
— Standard ResNet-18 blocks [2, 2, 2, 2]

¢ WideResNet: ResNet-18 with variable width

— Width factors: 1/16,1/8,1/4,1/2,1,2,4,8
— Initial channels: 16 x width factor
— Block channels: 16,32, 64,128 x width factor
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B.5.2 Training Protocols
MNIST /Fashion-MNIST:

e Optimizer: SGD with momentum 0.9

o Learning rate: 0.01, MultiStep decay at epochs [50, 75]
o Weight decay: 10~*

e Epochs: 100

e Batch size: 128

e PGD: 40 steps, step size a = 0.01

e« FGSM: Single step, a =€
CIFAR-10:

e Optimizer: SGD with momentum 0.9

o Learning rate: 0.1, MultiStep decay at epochs [100, 150]
o Weight decay: 5 x 1074

e Epochs: 200

e Batch size: 128

e PGD: 10 steps, step size a = 2/255

e« FGSM: Single step, a =€

B.6 SAE Configuration
o Dictionary size: 4N (4x layer width)
e L1 coefficient: 0.1
o Optimizer: Adam, learning rate 10~3
« Training: 800 epochs with early stopping (patience 50)
o Activation collection: 10,000 samples from test set

o Separate SAEs trained per layer
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