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Abstract

Neural networks achieve remarkable performance through superposition—encoding multi-
ple features as overlapping directions in activation space rather than dedicating individual
neurons to each feature. This phenomenon fundamentally challenges interpretability: when
neurons respond to multiple unrelated concepts, understanding network behavior becomes
intractable. Yet despite its central importance, we lack principled methods to measure su-
perposition. We present an information-theoretic framework that measures the effective
number of features through the exponential of Shannon entropy applied to sparse autoen-
coder activations. This threshold-free metric, grounded in rate-distortion theory and analogy
to quantum entanglement, provides the first universal measure of superposition applicable
to any neural network. Our approach demonstrates strong empirical validation: correlation
with ground truth exceeds 0.94 in toy models, accurately detects minimal superposition
in algorithmic tasks (feature count approximately equals neuron count), and reveals sys-
tematic feature reduction under capacity constraints (up to 50% reduction with dropout).
Layer-wise analysis of Pythia-70M reveals feature counts peak in early-middle layers at 20
times the number of neurons before declining—mirroring patterns observed in intrinsic di-
mensionality studies. The metric also captures developmental dynamics, detecting sharp
reorganization during grokking phase transitions where models shift from superposed mem-
orization to compact algorithmic solutions. Surprisingly, adversarial training can increase
feature counts by up to 4× while improving robustness, contradicting the hypothesis that
superposition causes vulnerability. The effect depends on task complexity and network ca-
pacity: simple tasks and ample capacity enable feature expansion, while complex tasks or
limited capacity force feature reduction. By providing a principled, threshold-free measure
of superposition, this work enables quantitative study of neural information organization.

1 Introduction

Interpretability and adversarial robustness could be two sides of the same coin (Räuker et al., 2023). Adver-
sarially trained models learn more interpretable features (Engstrom et al., 2019; Ilyas et al., 2019), develop
representations that transfer better (Salman et al., 2020), and align more closely with human perception
(Santurkar et al., 2019). Conversely, interpretability-enhancing techniques improve robustness: input gradi-
ent regularization (Ross & Doshi-Velez, 2017; Boopathy et al., 2020), attribution smoothing (Etmann et al.,
2019), and feature disentanglement (Augustin et al., 2020) all defend against adversarial attacks. Even archi-
tectural choices that promote interpretability—lateral inhibition (Eigen & Sadovnik, 2021) and second-order
optimization (Tsiligkaridis & Roberts, 2020)—yield more robust models. This pervasive duality demands a
mechanistic explanation.

The superposition hypothesis provides one. Elhage et al. (2022) showed that neural networks compress infor-
mation through superposition: encoding multiple features as overlapping activation patterns. When features
share dimensions, their interference creates attack surfaces that adversaries could exploit. Superposition
causing vulnerability explains several phenomena: adversarial transferability emerges from shared feature
correlations across models (Liu et al., 2017), the robustness-accuracy trade-off reflects models sacrificing
representational capacity for orthogonality (Tsipras et al., 2019), and adversarially trained models become
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Figure 1: Defining superposition for a neural network layer. (a) Observed network showing compressed
representation with multiple features sharing neuronal dimensions. (b) Hypothetical larger model with fully
disentangled features where each feature has its own dedicated neuron (Elhage et al., 2022). (c) Superposition
measure ψ = # features

# neurons quantifies effective features per neuron, with ψ = 2 indicating twice as many features
as neurons. Parts adapted from (Bereska & Gavves, 2024).

more interpretable precisely because they reduce feature entanglement (Engstrom et al., 2019). Also, if
superposition causes vulnerability, adversarial training should reduce superposition.

Testing this requires measuring superposition in real networks. While Elhage et al. (2022) used weight
matrix Frobenius norms, this approach requires ground truth features—available only in toy models. We
lack principled methods to quantify superposition in practice.

We solve this through information theory applied to sparse autoencoders (SAEs). SAEs extract interpretable
features from neural activations (Cunningham et al., 2024; Bricken et al., 2023), decomposing them into
sparse dictionary elements. We show that the exponential of Shannon entropy applied to these activations
measures an effective feature count (Section 3). In quantum mechanics, eS(ρ) quantifies effective pure states
in entanglement, where S(ρ) is von Neumann entropy of the density matrix. By analogy, our measure eH(p)

counts effective neural features, where H(p) is Shannon entropy of the SAE feature activation distribution.
This inherits entropy’s useful properties: no arbitrary thresholds, automatic importance weighting, and
bounded outputs.

We find the relationship between adversarial robustness and superposition to be nuanced: Rather than
simply reducing superposition, adversarial training’s effect depends the ratio between task complexity and
network capacity (Section 6.4). Simple tasks with ample capacity allow feature expansion—robust models
develop richer representations by adding defensive variants to existing features. Complex tasks with limited
capacity force reduction, in accordance with the original hypothesis.

Beyond adversarial robustness, our framework reveals general principles of neural organization (Section 6.3).
Pythia-70M’s feature counts peak in early MLP layers before declining, matching intrinsic dimensionality
(Ansuini et al., 2019). Algorithmic tasks resist superposition, maintaining feature counts near neuron counts
likely due to lack of input sparsity (Section 5.2). During grokking, we capture the moment of algorithmic
discovery through sharp feature consolidation at the generalization transition (Section 6.2).

This work makes superposition measurable. By grounding neural compression in information theory, we
enable quantitative study of how networks organize knowledge under constraints, potentially enabling sys-
tematic engineering of interpretable architectures.

2 Related Work

Superposition and polysemanticity. Neural networks employ distributed representations, encoding
information across multiple units rather than in isolated neurons (Hinton, 1984; Olah, 2023). The discovery
that semantic relationships manifest as directions in embedding space—exemplified by vector arithmetic like
“king - man + woman = queen” (Mikolov et al., 2013)—established the linear representation hypothesis (Park
et al., 2023). Building on this geometric insight, Elhage et al. (2022) formulated the superposition hypothesis:
networks encode more features than dimensions by representing features as nearly orthogonal directions.
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Their toy models revealed phase transitions between monosemantic neurons (one feature per neuron) and
polysemantic neurons (multiple features per neuron), governed by feature sparsity. This mechanistically
explains polysemanticity—neurons responding to multiple unrelated concepts—as a consequence of feature
compression.

Scherlis et al. (2023) formalized superposition as capacity allocation under constraints: features compete for
neurons based on marginal utility, with important features receiving dedicated dimensions while others share
through superposition. Incidentally, polysemanticity emerges even without capacity constraints—Marshall &
Kirchner (2024) and Lecomte et al. (2023) demonstrated that dropout and L1 regularization induce polyse-
manticity by forcing redundant representations (as we show in Section 6.1, this is not true for superposition).
Recent theoretical work proves networks can compute accurately despite superposition (Vaintrob et al., 2024;
Hänni et al., 2024), establishing that F Boolean features require only O(

√
F logF ) neurons.

Sparse autoencoders for feature extraction. Sparse autoencoders (SAEs) tackle the challenge of ex-
tracting interpretable features from polysemantic representations by recasting it as sparse dictionary learning
(Sharkey et al., 2022; Cunningham et al., 2024). SAEs decompose neural activations into sparse combina-
tions of learned dictionary elements, effectively reversing the superposition process. Recent architectural
innovations improved performance: gated SAEs solve systematic underestimation of feature magnitudes
(Rajamanoharan et al., 2024), TopK variants eliminate sensitive hyperparameter tuning (Gao et al., 2024;
Bussmann et al., 2024), and Matryoshka SAEs enable multi-scale feature analysis (Bussmann et al., 2025).

SAEs are scalable to state-of-the-art models: Anthropic extracted millions of interpretable features from
Claude 3 Sonnet (Templeton et al., 2024), while OpenAI achieved similar results with GPT-4 (Gao et al.,
2024). Crucially, these features are causally relevant—activation steering produces predictable behavioral
changes (Marks et al., 2024). Applications now span attention mechanism analysis (Kissane et al., 2024),
reward model interpretation (Marks et al., 2023), and automated feature labeling (Paulo et al., 2024),
establishing SAEs as a foundational tool for mechanistic interpretability (Bereska & Gavves, 2024).

Information theory and neural measurement. Information-theoretic principles provide rigorous foun-
dations for understanding neural representations. The information bottleneck principle (Tishby et al., 2000),
when applied to deep learning (Shwartz-Ziv & Tishby, 2017), reveals how networks balance compression
with prediction. Each neural layer acts as a bandwidth-limited channel, forcing networks to develop efficient
codes—including superposition—to transmit information forward (Goldfeld et al., 2019). This perspective
recasts superposition as an optimal solution to rate-distortion constraints.

Most pertinent to our work, Ayonrinde et al. (2024) connected SAEs to minimum description length (MDL).
By viewing SAE features as compression codes for neural activations, they showed that optimal SAEs
balance reconstruction fidelity against description complexity. Our entropy-based framework extends this
information-theoretic perspective, providing a principled measure of the effective “alphabet size” networks
use for internal communication.

Quantifying feature entanglement. Despite superposition’s theoretical importance, measuring it re-
mains unexplored. Elhage et al. (2022)’s Frobenius norm approach requires ground truth features and lacks
scale invariance, limiting its applicability beyond toy models. Traditional disentanglement metrics from rep-
resentation learning (Carbonneau et al., 2022; Eastwood & Williams, 2018) assess statistical independence
rather than the representational compression that characterizes superposition.

Entropy-based measures have proven effective across disciplines facing similar measurement challenges. Neu-
roscience employs participation ratios to quantify how many neurons contribute to population dynamics (Gao
et al., 2017); economics uses entropy to quantify portfolio concentration (Fontanari et al., 2021). Quantum
physics uses the von Neumann entropy to measure entanglement, counting effective pure states in superpo-
sition (Nielsen & Chuang, 2011). Recent work bridges these domains, applying entropy measures to neural
network analysis (Lee et al., 2023; Shin et al., 2024). Across scientific fields, entropy naturally captures how
information distributes across components—precisely the quantity superposition measurement requires.
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(d) Feature counting

Figure 2: From toy model to practical superposition measurement. (a) Toy model compresses high-
dimensional features f through bottleneck x with varying importance (color gradient) before ReLU re-
construction to f ′. (b) Increasing sparsity S enables near-orthogonal feature arrangement in 2D activation
space, with correlation matrices W T

toyWtoy showing increasing interference as superposition measure ψ grows
from 1 to 2.5. (c) Sparse autoencoders map neural activations x through encoder weights Wsae to sparse
representations z, then reconstruct via tied decoder weights with ℓ1 regularization. (d) Feature counting
proceeds in three steps: 1. extract activation matrix Z from SAE, 2. derive probability distribution p from
feature activations, 3. compute effective feature count F = eH(p) through exponential of Shannon entropy.

3 Theoretical Background

3.1 Toy Model of Superposition

To understand how neural networks can represent more features than they have dimensions, Elhage et al.
(2022) introduced a minimal toy model that demonstrates superposition under controlled conditions. This
model captures three essential properties of real neural networks: feature sparsity, overcomplete representa-
tion (more features than dimensions), and varying feature importance.

The model implements a simple autoencoder architecture (Figure 2a) compressing a feature vector f ∈ RF

through a bottleneck x ∈ RN where F > N :

x = Wtoyf ,

f ′ = ReLU(W T
toyx + b) (1)

Here F counts input features (by construction in this toy model), N counts bottleneck neurons, and Wtoy ∈
RN×F maps between them. The model must somehow represent F features using only N dimensions—an
impossible task unless features can share neuronal resources.

Each input feature fi samples uniformly from [0, 1] with sparsity S (probability of being zero) and importance
weight ωi. Training minimizes importance-weighted reconstruction error:

L(f) =
F∑

i=1
ωi∥fi − f ′

i∥2 (2)

As sparsity increases, the model packs multiple features into the same dimensions by arranging them as
nearly orthogonal directions (Figure 2b). The correlation matrices W T

toyWtoy reveal this geometric solu-
tion—features interfere minimally despite sharing space.

To quantify superposition in this controlled setting, Elhage et al. (2022) proposed measuring the total “weight
mass”:

ψElhage = ∥Wtoy∥2
Frob

N
(3)
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where ∥Wtoy∥2
Frob =

∑
i,j W

2
ij and N the number of neurons. When features occupy orthogonal dimensions,

ψElhage ≈ 1. As superposition increases—features increasingly sharing dimensions—this measure grows
accordingly.

Yet this approach faces two fundamental limitations. First, it lacks scale invariance: multiplying weights
by any constant arbitrarily changes the measure. Second, and more critically, it requires knowing the true
features—unavailable in real networks.

3.2 Sparse Autoencoders for Feature Extraction

Real networks don’t reveal their features directly. Instead, we must untangle them from distributed neu-
ral activations. Sparse autoencoders (SAEs) decompose activations into sparse combinations of learned
dictionary elements, effectively reverse-engineering the toy model’s feature representation.

Given layer activations x ∈ RN , an SAE learns a higher-dimensional sparse code z ∈ RD where D > N
(Figure 2c):

z = ReLU(Wencx + b) (4)

The reconstruction combines these sparse features:

x′ = Wdecz =
D∑

i=1
zidi (5)

where columns di of Wdec form the learned dictionary.

Training balances two objectives—faithful reconstruction and sparse activation:

L(x, z) = ∥x − x′∥2
2 + α∥z∥1 (6)

where the ℓ1 penalty with strength α encourages each input to activate only a small subset of features,
revealing the network’s sparse code. For stability, we tie encoder and decoder weights:

Wsae := Wdec = W T
enc (7)

If networks truly employ superposition—encoding features as directions in activation space—then SAEs
should recover these as dictionary elements. Recent validation shows SAE features causally affect network
behavior (Marks et al., 2024), suggesting they capture genuine computational structure.

4 Measuring Superposition with Sparse Autoencoders

With features extracted by SAEs, we can quantify superposition. We define it simply as the ratio of features
to neurons:

ψ = F

N
(8)

Counting neurons N is trivial; counting features F requires more thought. Our solution draws from infor-
mation theory: we measure not raw feature quantity but information capacity.

In communication systems, Shannon entropy’s exponential measures effective alphabet size—how many sym-
bols a channel can distinguish. We apply this principle to neural networks, viewing each layer as a bandwidth-
limited channel encoding feature information. Given a probability distribution p over features, Shannon
entropy H(p) = −

∑
i pi log pi quantifies average information content. Its exponential:
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Figure 3: Validation of entropy-based superposition metrics. (a) Our measure maintains high correlation
whether applied to toy weights (r = 0.99) or SAE activations (r = 0.94), while Elhage’s metric fails on SAE
weights. (b) Performance remains stable across ℓ1 regularization, model scale, and dictionary size variations.
Shaded regions show 95% confidence intervals across 100 model-SAE pairs.

F (p) = eH(p) = exp
(

−
∑

i

pi log pi

)
(9)

yields the distribution’s perplexity—equivalently, the number of equally probable features producing identical
entropy. This captures the layer’s effective information capacity.

To construct our feature probability distribution, we aggregate SAE activations across S samples. Given
neural activations X ∈ RN×S , the SAE produces sparse latent codes Z = ReLU(WsaeX) ∈ RD×S . We
compute each feature’s probability as its share of total activation magnitude:

pi = ∥Zi,:∥1∑D
j=1 ∥Zj,:∥1

(10)

where ∥Zi,:∥1 =
∑S

s=1 |zi,s| aggregates feature i across all samples. The SAE’s ℓ1 regularization ensures
these magnitudes reflect each feature’s contribution to reconstruction quality—features that activate more
frequently or more strongly consume more of the network’s representational budget (Appendix A.2). This
activation1 distribution therefore captures each feature’s participation in the network’s resource economy,
combining both usage frequency and activation magnitude. In practice, we use sufficient samples until
convergence (see convergence analysis in Section 6.3). The steps of the process are visualized in Figure 2d.

Our measure inherits desirable properties from entropy. For any D-component distribution, 1 ≤ F (p) ≤ D,
bounded by single-feature dominance and uniform distribution. Unlike threshold-based counting, features
contribute according to their information content—rare features matter less than common ones, weak features
less than strong ones.

5 Validation of the Measurement Framework

5.1 Toy Model of Superposition

We validate our entropy-based measure using the toy model of superposition (Elhage et al., 2022), where
ground truth features provide an objective benchmark. This controlled setting tests whether sparse autoen-
coders can recover accurate feature counts from superposed representations.

Following Elhage et al. (2022), we generate 100 toy models with sparsity S ∈ [0.001, 0.999]. Each model
compresses 20 features through a 5-neuron bottleneck, with importance weights decaying as ωi = 0.7i.

1Why not use weight-based measurement? One might compute probabilities from SAE weights: pi = ∥wi∥1/
∑

j
∥wj∥1.

This geometric view, however, misses that features existing in weights may never activate—“dead features” that consume
capacity without contributing to computation. Empirically, a weight-based metric succeeds only in the toy model (Figure 3a,
ψOurs(Wsae)); but small toy transformer models already require our functional, activation-based approach (e.g. Section 5.2).
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(c) Task: sequence sorting

Figure 4: Algorithmic tasks under compression. (a) Compression architecture projects activations through
ReLU(W ⊤W x) to force features into fewer dimensions. (b) Sequence reversal maintains constant feature
count ( 12) despite 10× compression, with sharp failure when dimensions drop below requirements. (c)
Sequence sorting also tracks the F = N bound: Both tasks show minimal superposition likely due to lack of
input sparsity.

After training to convergence, we extract 10,000 activation samples and train SAEs with 40-dimensional
dictionaries (8× expansion) and ℓ1 coefficient 0.1. This two-stage process mimics real-world measurement
where ground truth remains unknown.

Ground truth correlation. Our entropy-based measure achieves near-perfect correlation with Elhage’s
metric when applied to toy model weights (r = 0.99±0.01), validating the theoretical framework (Figure 3a).
Yet Elhage’s metric catastrophically fails on SAE weights—the Frobenius norm produces nonlinear relation-
ships and incorrect scales (0.1–0.7 versus expected 1–4). The ℓ1 regularization fundamentally alters weight
statistics, breaking the original measure.

Our activation-based approach sidesteps this failure. By measuring feature utilization rather than weight
magnitude, we maintain strong correlation (r = 0.94 ± 0.02) with ground truth even through the SAE
bottleneck. This robustness enables practical application to real networks.

Hyperparameter stability. We test sensitivity across three axes: ℓ1 strength (10−3 to 100), model scale
(8–32 input dimensions), and dictionary expansion (2× to 32×). Figure 3b shows stable performance except
at extremes—excessive regularization (ℓ1 = 1.0) or insufficient dictionary capacity (fewer elements than
features). This stability confirms we capture intrinsic superposition properties rather than measurement
artifacts.

5.2 Compression Does Not Imply Superposition

Tracr compiles human-readable programs into transformer weights with known computational structure
(Lindner et al., 2023). Compiled models use highly interpretable weights and activations consisting primarily
of 0s and 1s, providing a form of ground truth for mechanistic analysis. We examine sequence reversal (“123”
→ “321”) and sorting (“213” → “123”), comparing original compiled models against compressed variants
and models trained from scratch with the same transformer architecture and residual stream dimension.

Following Lindner et al. (2023), we compress models by projecting residual stream activations through learned
compression matrices. Our compression scheme (Figure 4a) applies ReLU(W ⊤W x) where W ∈ RN ′×N ,
compressing from originally N ′ dimensions to N , (N ′ > N). The ReLU activation—absent in the original
Tracr compression—allows small interference terms to cancel out, following the toy model rationale (Elhage
et al., 2022). We train compression matrices using the original loss functions and hyperparameters, vary
compression factors from 1× to 10×, and analyze residual stream activations through SAEs with 100-feature
dictionaries, expecting superposition as capacity tightens.

Minimal superposition despite compression. Surprisingly, both compressed Tracr models and trans-
formers trained from scratch learn feature counts closely tracking the residual stream dimension F ≈ N

7
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(b) Dropout reduces features and performance.
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(c) Dropout effect on features

Figure 5: Measurements on multi-task sparse parity dataset. (a) Dictionary scaling plateaus with proper
regularization, validating intrinsic structure measurement. (b) Dropout reduces features and accuracy, (c)
and distinguishes polysemanticity (neurons encoding multiple features) from superposition (multiple features
per neuron) by creating to more polysemantic neurons while reducing the number of features.

(Figure 4b, 4c). Notably, these feature counts remain far below the original compiled dimensions—e.g. re-
versal models use only 12 features2 despite originally having 45 dimensions, revealing substantial redundancy
in Tracr’s compilation process rather than genuine superposition. When dimensions drop below intrinsic task
requirements, performance collapses (× markers).

Algorithmic tasks lack input sparsity. This resistance to superposition likely stems from algorithmic
tasks violating the sparsity assumption: The toy model of superposition (Elhage et al., 2022) requires
features to activate sparsely across inputs—most features remain inactive on most samples, enabling near-
orthogonal packing with minimal interference. Algorithmic tasks break this assumption: sequence operations
require consistent activation patterns across inputs. Without sparsity, interference that enables efficient
superposition becomes destructive.

5.3 Dictionary Scaling Convergence

Measuring a natural coastline with a finer ruler yields a longer measurement—potentially without bound
(Mandelbrot, 1967). As SAE dictionaries grow, might we discover arbitrarily many features at finer scales?

We test convergence using multi-task sparse parity (Michaud et al., 2023)—3 tasks, 4 bits each—where
ground truth bounds meaningful features. Networks with 64 hidden neurons trained across dictionary scales
(0.5× to 16× hidden dimension) and ℓ1 strengths (0.01 to 10.0).

Figure 5a reveals two regimes. With appropriate regularization (ℓ1 ≥ 0.1), feature counts plateau despite
dictionary expansion—we measure intrinsic structure, not artifacts. But weak regularization (ℓ1 = 0.01)
shows unbounded growth, decomposing features into ever-finer components. While practical measurement
requires standardized SAE training, convergence under proper regularization validates our approach captures
genuine representational properties.

6 Applications and Findings

Our entropy-based superposition measure enables systematic investigation of neural information organization
across diverse contexts. We demonstrate four key applications: capacity-constrained feature allocation
(Section 6.1), developmental dynamics during learning transitions (Section 6.2), layer-wise representational
organization in language models (Section 6.3), and the counterintuitive relationship between superposition
and adversarial robustness (Section 6.4).

2While we generally recommend comparative interpretation due to measurement limitations (Section 7), the systematic
F = N tracking and performance decline when trespassing this boundary suggest our measure can provide meaningful absolute
feature counts in sufficiently constrained computational settings, extending interpretation as absolute count beyond our toy
model validation from Section 5.1.
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(b) Grokking dynamics

Figure 6: (a) Non-monotonic feature organization across Pythia-70M. MLP layer 1 peaks at 10,000 features
(20× neurons). Convergence analysis shows saturation after 2 × 104 samples. (b) Feature dynamics during
grokking. Sharp consolidation at generalization transition (checkpoint 60) concurs with (smoother) LLC
decay. Strong correlation r ≈ 0.9 with LLC suggests feature count can function as measure of model
complexity.

6.1 Dropout acts as Capacity Constraint

Neural networks face capacity constraints that force feature reduction. We investigate how dropout affects
feature organization using multi-task sparse parity (3 tasks, 4 bits each) with simple MLPs across hidden
dimensions h ∈ {16, 32, 64, 128} and dropout rates [0.0, 0.1, ..., 0.9] ( Appendix B.2 for details).

Marshall & Kirchner (2024) showed dropout induces polysemanticity through redundancy—features must
distribute across neurons to survive random deactivation. One might expect this to increase measured
features. Instead, dropout monotonically reduces feature count by up to 50% (Figure 5b).

Polysemanticity (neurons encoding multiple features) differs from superposition (multiple features per avail-
able capacity). Dropout forces each feature to occupy multiple neurons for robustness, but this redundant
encoding consumes capacity—fewer total features fit within the same dimensional budget. Networks respond
by pruning less essential features, aligning with Scherlis et al. (2023)’s competitive framework.

The capacity dependence validates this interpretation—larger networks show reduced dropout sensitivity
while narrow networks exhibit sharp feature reduction, confirming that capacity constraints drive the ob-
served dynamics.

6.2 Capturing Grokking Phase Transition

Grokking—sudden perfect generalization after extended training on algorithmic tasks—provides an ideal
testbed for developmental measurement (Power et al., 2022). We investigate whether feature count dynamics
can detect this phase transition and how they relate to the Local Learning Coefficient (LLC) from singular
learning theory (Hoogland et al., 2024).

We train a two-path MLP on modular arithmetic (a+b) mod 53 (Appendix B.3 for details). Figure 6b reveals
distinct dynamics: while LLC shows initial proliferation followed by smooth decay throughout training, our
feature count exhibits sharp consolidation precisely at the generalization transition (checkpoint 60).

This pattern suggests the measures capture different aspects of complexity evolution. During memorization,
the model employs numerous superposed features to store input-output mappings. The sharp consolidation
likely coincides with algorithmic discovery, where the model reorganizes from distributed lookup tables into
compact representations that capture the modular arithmetic rule (Nanda et al., 2023). Strong correlation
(r = 0.908, p < 0.001) between feature count and LLC suggests feature count can function as a measure of
model complexity.

6.3 Layer-wise Pattern Mirrors Intrinsic Dimensionality

We analyze Pythia-70M using pretrained SAEs from Marks et al. (2024), measuring feature counts across
all layers and components (Appendix B.4 for details). Convergence analysis (Figure 6a) shows saturation
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(b) 3-layer MLP on (Fashion-)MNIST

Figure 7: Task complexity modulates adversarial training’s effect on superposition. Each panel shows
results varying dataset (MNIST top, Fashion-MNIST bottom) and number of classes (2, 3, 10). (a) CNNs
show clear complexity-dependent transitions: simple tasks enable feature expansion while complex tasks (10
classes) force reduction below baseline. (b) MLPs exhibit similar patterns with more pronounced layer-
wise variation. Fashion-MNIST consistently amplifies the reduction effect compared to MNIST, suggesting
that representational complexity drives defensive strategies beyond mere class count. Dashed lines: clean
data; solid lines: adversarial examples. Feature count ratios normalized to ϵ = 0 baseline. Error bars show
standard error across 3 seeds.

after 2 × 104 samples, suggesting that we captured the "true" feature count. Feature importance follows
power-law distributions (not shown), explaining why naive counting (e.g. 21K nonzero features for MLP 1)
vastly overestimates our entropy-based measure (5.6K effective features for MLP 1).

MLPs store the most features, followed by residual streams, with attention maintaining minimal counts,
showing MLPs as knowledge stores and attention as routing mechanisms (Geva et al., 2021). Feature grow
in early layers (10,000 features — 20× more features than neurons — at peak MLP layer 1), compress
through middle layers, then re-expand before final consolidation (Figure 6a). This trajectory parallels intrin-
sic dimensionality studies (Ansuini et al., 2019): Both reveal non-monotonic “hunchback” patterns despite
measuring complementary aspects of neural activations: intrinsic dimensionality captures compression (min-
imal dimensions needed), while we measure expansion (features encoded).

6.4 Adversarial Robustness: Capacity-Constrained Defense Strategies

Testing the superposition-vulnerability hypothesis. Elhage et al. (2022) proposed that superposition
creates vulnerability through feature interference—when features share dimensions, interference becomes an
attack surface. This predicts adversarial training should reduce superposition, trading representational
efficiency for orthogonal, robust features. We test this prediction systematically across architectures, finding
that task complexity and network capacity modulate adversarial training’s effect on superposition.

We employ PGD adversarial training (Madry et al., 2018) across diverse architectures (single-layer and 3-layer
MLPs/CNNs, ResNet-18) and datasets (MNIST, Fashion-MNIST, CIFAR-10). We vary task complexity
through both classification granularity (2, 3, 10 classes) and dataset difficulty (MNIST vs. Fashion-MNIST).
We vary network capacity through hidden dimensions (8 to 512 for MLPs), filter counts (8 to 64 for CNNs),
and width scaling (1×, 1/2×, 1/4× for ResNet-18). For convolutional networks, we measure superposition
across channels rather than spatial locations by reshaping activation tensors to treat each spatial position as
an independent sample, then aggregating SAE activations across spatial dimensions (see Appendix A.7 for
details). SAEs use 4× dictionary expansion with ℓ1 = 0.1. Critically, we measure features on both clean data
and adversarial examples matching the training distribution—models trained with ϵ = 0.2 are measured on
ϵ = 0.2 attacks. All results normalize to baseline (ϵ = 0).
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(a) Widening 1-layer NNs on MNIST
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(b) Narrowing ResNet-18 on CIFAR-10

Figure 8: Network capacity modulates adversarial training responses across architectures. (a) Single-layer
networks on MNIST demonstrate capacity-dependent phase transitions: MLPs with hidden dimensions
h ∈ {8, 32, 128, 512} (top) and CNNs with filter counts c ∈ {8, 16, 32, 64} (bottom) show that narrow
networks reduce features while wide networks maintain expansion across task complexities. (b) ResNet-
18 on CIFAR-10 with width scaling (1×, 1/2×, 1/4×) reveals layer-wise specialization: early layers reduce
features while deeper layers (layer 3-4) expand dramatically, with this pattern dampening as width decreases.
Dashed lines: clean data; solid lines: adversarial examples. Feature count ratios normalized to baseline.

Task complexity determines defensive strategy. Contrary to the hypothesis predicting universal fea-
ture reduction, adversarial training can either expand or reduce feature counts depending on task complexity
(Figure 7). Binary classification consistently expands feature counts—up to 2× baseline—suggesting net-
works develop additional defensive features. Ten-class problems show the opposite: feature counts may
decrease by up to 60%, particularly in early layers. Three-class tasks exhibit intermediate behavior, often
following inverted-U curves where moderate adversarial training (ϵ = 0.1) expands features before stronger
training (ϵ = 0.3) triggers reduction.

Fashion-MNIST amplifies these effects compared to MNIST. While MNIST’s 10-class problems show mild
feature changes, Fashion-MNIST tend more to reduce features—CNN conv2 layers drop to 40% of baseline
features. This more challenging (Xiao et al., 2017) nature of FashionMNIST appears to translate directly to
more aggressive feature reduction, suggesting that representational demands rather than mere classification
count may drive defensive strategy.

Layer-wise analysis reveals architectural differences. In 3-layer MLPs, the first layer typically shows strongest
reduction (down to 30% on Fashion-MNIST 10-class), while middle layers often expand even under complex
tasks. CNNs show an inverted pattern: second convolutional layers reduce most dramatically while first
layers remain relatively stable. Both architectures transition through similar inverted-U curves, suggesting
common underlying dynamics despite different inductive biases.

Network capacity enables defensive elaboration. Network capacity systematically modulates these
complexity-driven effects (Figure 8). Single-layer networks demonstrate clear capacity thresholds: MLPs
with 8 hidden units reduce features across all task complexities, while 512-unit MLPs maintain expansion
even on 10-class problems. The pattern holds identically for CNNs—8 filters appear to force feature reduction
while 64 filters enable consistent expansion.

This capacity dependence likely extends to modern architectures. ResNet-18 on CIFAR-10 reveals dramatic
layer-wise specialization: early layers (conv1, layer1) reduce features by up to 50%, middle layers remain
stable, while deep layers (layer3, layer4) expand up to 4×. Systematically narrowing ResNet-18 (width factors
1/2, 1/4) progressively dampens this pattern—at 1/4 width, late-layer expansion vanishes while early-layer
reduction persists, though less severely.

The layer-wise progression could reflect hierarchical vulnerability. Early layers processing low-level statis-
tics—edges, textures—might be easily exploited by imperceptible perturbations, leading adversarial training
to reduce dependence on these potentially brittle features. Late layers encoding semantic information may
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require meaningful perturbations to fool, possibly allowing safe feature expansion. However, ResNet’s default
layer widths (64→128→256→512 channels) could also contribute to this pattern beyond pure depth effects.

Specialized processing for adversarial examples. Our dual measurement approach—comparing fea-
ture counts on clean versus adversarial inputs—reveals potential specialized computational pathways. For
simple tasks with ample capacity, adversarial examples consistently activate more features than clean inputs,
which might suggest networks develop adversarial-specific defensive mechanisms while maintaining efficient
clean processing. Complex tasks show the reverse pattern: adversarial examples appear to trigger simplified
representations with fewer features.

This clean-adversarial divergence varies systematically. MLPs show larger gaps than CNNs, early layers
exceed late layers, and simpler architectures seem to rely more heavily on specialized pathways. The diver-
gence is particularly pronounced with FGSM attacks, which show similar overall patterns but more extreme
pathway specialization than PGD.

Reconciling with the original hypothesis. Our findings suggest a more nuanced relationship between
superposition and adversarial vulnerability than originally theorized. Rather than universally reducing
superposition, adversarial training appears to operate in two regimes:

Abundance regime: When task complexity is low relative to network capacity, adversarial training may
expand the feature repertoire. Networks could maintain original capabilities while adding defensive vari-
ants—potentially achieving robustness through redundancy rather than orthogonalization.

Scarcity regime: When task demands approach capacity limits, networks appear to economize. They
reduce to fewer features—possibly approaching the orthogonal ideal predicted by the vulnerability hypothesis.

This framework might explain why robust models often appear more interpretable (Engstrom et al., 2019):
not necessarily because they have fewer features universally, but potentially because resource constraints
force more organized, essential representations in the scarcity regime.

The bidirectional relationship between robustness and superposition suggests that achieving robustness with-
out capability loss may require ensuring sufficient capacity for defensive elaboration. While our experiments
demonstrate that increased robustness can coincide with either increased or decreased superposition depend-
ing on the regime, establishing the exact causal connection between superposition and robustness remains
an important direction for future work.

7 Limitations

Our superposition measurement framework is limited by its dependence on sparse autoencoder quality,
theoretical assumptions about neural feature representation, and should be interpreted as proxy for repre-
sentational complexity rather than literal feature count:

Sparse autoencoder quality. Our approach inherently depends on sparse autoencoder feature extrac-
tion quality. While recent architectural advances—gated SAEs (Rajamanoharan et al., 2024), TopK variants
(Gao et al., 2024), and end-to-end training (Braun et al., 2024)—have substantially improved feature re-
covery, fundamental challenges remain. SAE training exhibits sensitivity to hyperparameters, particularly
ℓ1 regularization strength and dictionary size, with different initialization or training procedures potentially
yielding different feature counts for identical networks. Ghost features—SAE artifacts without computa-
tional relevance (Gao et al., 2024)—can artificially inflate measurements, while poor reconstruction quality
may deflate them.

Assumptions on feature representation. Our framework rests on several assumptions that real net-
works systematically violate. The linear representation assumption—that features correspond to directions
in activation space—has been challenged by recent discoveries of circular feature organization for tempo-
ral concepts (Engels et al., 2024) and complex geometric structures beyond simple directions (Black et al.,
2022). Our entropy calculation assumes features contribute independently to representation, but neural
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networks exhibit extensive feature correlations, synergistic information where feature combinations provide
more information than individual contributions, and gating mechanisms where some features control others’
activation. The approximation that sparse linear encoding captures true computational structure breaks
down in hierarchical representations where low-level and high-level features are not substitutable, and in
networks with substantial nonlinear feature interactions that cannot be decomposed additively.

Comparative rather than absolute count. Our measure quantifies effective representational diversity
under specific assumptions rather than providing literal feature counts. This creates several interpretational
limitations. The measure exhibits sensitivity to the activation distribution used for measurement—SAE
training distributions must match the network’s operational regime to avoid systematic bias. Feature granu-
larity remains fundamentally ambiguous: broader features may decompose into specific ones in wider SAEs,
creating uncertainty about whether we’re discovering or creating features. Our single-layer analysis poten-
tially misses features distributed across layers through residual connections or attention mechanisms. Most
critically, we measure the effective alphabet size of the network’s internal communication channel rather
than counting distinct computational primitives, making comparative rather than absolute interpretation
most appropriate.

The limitations largely reflect active research areas in sparse dictionary learning and mechanistic inter-
pretability. Each advance in SAE architectures, training procedures, or theoretical understanding directly
benefits measurement quality. Within its scope—comparative analysis of representational complexity un-
der sparse linear encoding assumptions—the measure enables systematic investigation of neural information
structure previously impossible.

8 Conclusion

We introduced an information-theoretic framework to measure superposition in neural networks through
sparse autoencoder activations. The entropy-based measure F = eH(p) quantifies effective feature counts
without requiring ground truth, enabling systematic study of representational organization.

Our key empirical finding contradicts theoretical prediction: adversarial training often increases rather than
decreases feature counts while improving robustness. This suggests robust models expand their feature
repertoires rather than orthogonalizing them, challenging the superposition-vulnerability hypothesis. In
interpretability research, the tools are only as good as the assumptions they force us to abandon.

The measurement framework reveals general principles of neural organization. Language models show non-
monotonic feature patterns across layers, algorithmic tasks resist superposition entirely, and grokking exhibits
sharp representational transitions. While our approach depends on SAE quality and assumes linear feature
combination, it provides the first principled method for quantifying superposition at scale. This enables
comparative analysis across architectures and training regimes.
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A Theoretical Foundations

A.1 Networks as Resource-Constrained Communication Channels

Neural networks must transmit information through layers with limited dimensions. Each layer acts as a
communication bottleneck where multiple features compete for neuronal bandwidth. When a network needs
to represent F features using only N < F dimensions, it uses lossy compression—superposition.

This resource scarcity creates a natural analogy to communication theory. Just as telecommunications sys-
tems multiplex multiple signals through shared channels, neural networks multiplex multiple features through
shared dimensions. Our measurement framework formalizes this intuition by quantifying how efficiently net-
works allocate their limited representational budget across competing features.

A.2 L1 Norm as Optimal Budget Allocation

The sparse autoencoder’s ℓ1 regularization creates an explicit budget constraint on feature activations:

LSAE = ∥h − W T
saez∥2

2 + λ∥z∥1 (11)

The penalty term λ∥z∥1 = λ
∑

i |zi| enforces that the total activation budget
∑

i |zi| remains bounded. This
creates competition where features must justify their budget allocation by contributing to reconstruction
quality.

From the first-order optimality conditions of SAE training, the magnitude |zi| for any active feature satisfies:

|zi| = 1
λ

|wT
i (h − W T

−iz−i)| (12)

where W−i excludes feature i. This reveals that |zi| measures the marginal contribution of feature i to re-
construction quality—exactly the budget allocation that optimally balances reconstruction accuracy against
sparsity. Our probability distribution therefore has meaning as “relative feature strength”:

pi = E[|zi|]∑
j E[|zj |] = expected budget allocation to feature i

total representational budget (13)

This fraction represents how much of the network’s limited representational resources are optimally allocated
to feature i under the SAE’s constraints. Alternative norms fail to preserve this budget interpretation. The
ℓ2 norm E[z2

i ] overweights outliers and breaks the linear connection to reconstruction contributions through
squaring. The ℓ∞ norm captures only peak activation while ignoring frequency of use. The ℓ0 norm provides
binary active/inactive information but loses the magnitude data essential for measuring resource allocation
intensity.

A.3 Shannon Entropy as Information Capacity Measure

Given the budget allocation distribution p, the exponential of Shannon entropy provides the theoretically
optimal feature count. The exponential of Shannon entropy, exp(H), is formally known as perplexity in
information theory and the Hill number (order-1 diversity index) in ecology (Hill, 1973; Jost, 2006):

PP(p) = exp
(

−
∑

i

pi log pi

)
=

n∏
i=1

p−pi

i (14)

This quantifies the effective number of outcomes in a probability distribution—how many equally likely
outcomes would yield identical uncertainty. In information theory, it represents the effective alphabet size
of a communication system (Jelinek et al., 1977). In ecology, it quantifies the effective number of species in
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an ecosystem (Jost, 2006). In statistical physics, it relates to the number of accessible states in a system
(Jaynes, 1957). In quantum mechanics, it corresponds to the effective number of pure quantum states in a
mixed state (Schrödinger, 1935).

Shannon entropy uniquely satisfies the mathematical properties required for principled feature counting
(Anand et al., 2011). The measure exhibits coding optimality, equaling the minimum expected code length
for optimal compression. It satisfies additivity for independent feature sets through H(p⊗q) = H(p)+H(q).
Small changes in feature importance yield small changes in measured count through continuity. Uniform
distributions where all features are equally important maximize the count. Adding features with positive
probability monotonically increases the count. These axioms uniquely characterize Shannon entropy up
to a multiplicative constant, making exp(H(p)) the theoretically principled choice for aggregating feature
importance into an effective count.

In quantum systems, von Neumann entropy S(ρ) = −Tr(ρ log ρ) measures entanglement, with eS(ρ) rep-
resenting effective pure states participating in a mixed quantum state (Nielsen & Chuang, 2011). Neural
superposition exhibits parallel structure: just as quantum entanglement creates non-separable correlations
that cannot be decomposed into independent subsystem states, neural superposition creates feature repre-
sentations that cannot be cleanly separated into individual neuronal components. Both phenomena involve
compressed encoding of information—quantum entanglement distributes correlations across subsystems re-
sisting local description, while neural superposition distributes features across neurons resisting individual
interpretation. Our measure eH(p) captures this compression by quantifying the effective number of fea-
tures participating in the neural representation, analogous to how eS(ρ) quantifies effective pure states in an
entangled quantum mixture.

Higher-order Hill numbers provide different sensitivities to rare versus common features:

qD =
(

n∑
i=1

pq
i

)1/(1−q)

(15)

where q = 1 gives our exponential entropy measure (via L’Hôpital’s rule), q = 0 counts non-zero components,
and q = 2 gives the inverse Simpson concentration index (participation ratio in statistical mechanics).

A.4 Rate-Distortion Theoretical Foundation

Our measurement framework emerges from two nested rate-distortion problems that formalize the intuitive
resource allocation perspective. The neural network layer itself solves:

RNN(D) = min
p(h|x):E[d(y,f(h))]≤D

I(X; H) (16)

where the layer width N constrains the mutual information I(X; H) that can be transmitted, while D
represents acceptable task performance degradation. When the optimal solution requires representing F > N
features, superposition emerges naturally as the rate-optimal encoding strategy.

The sparse autoencoder solves a complementary problem:

RSAE(D) = min
p(z|h):E[∥h−ĥ∥2

2]≤D
E[∥z∥1] (17)

where sparsity ∥z∥1 acts as the rate constraint and reconstruction error as distortion. This dual struc-
ture justifies SAE-based measurement: we quantify the effective rate required to represent the network’s
compressed internal information under sparsity constraints.

The SAE optimization can be viewed as an information bottleneck problem balancing information preser-
vation E[∥h − g(z)∥2

2] against information cost λE[∥z∥1]. Under this interpretation, E[|zi|] represents the
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information cost of including feature i in the compressed representation, making our probability distribution
a natural measure of information allocation across features.

A.5 Critical Assumptions and Failure Modes

Our method measures effective representational diversity under sparse linear encoding, which approximates
but does not exactly equal the number of distinct computational features. We must carefully assess the
conditions under which this approximation holds.

Feature Correspondence Assumption. We assume SAE dictionary elements correspond one-to-one
with genuine computational features. This assumption fails through feature splitting where one computa-
tional feature decomposes into multiple SAE features, artificially inflating counts. Feature merging combines
multiple computational features into one SAE feature, deflating counts. Ghost features represent SAE ar-
tifacts without computational relevance (Gao et al., 2024). Incomplete coverage occurs when SAEs miss
computationally relevant features entirely.

Linear Representation Assumption. We assume features combine primarily through linear superpo-
sition in activation space. Real networks violate this through hierarchical structure where low-level and
high-level features aren’t interchangeable. Gating mechanisms allow some features to control whether oth-
ers activate (Elhage et al., 2022). Combinatorial interactions emerge when meaning comes from feature
combinations rather than individual contributions (Black et al., 2022).

Magnitude-Importance Correspondence. We assume |zi| reflects feature i’s computational impor-
tance. This breaks when SAE reconstruction preserves irrelevant details while missing computational es-
sentials, when features interact nonlinearly in downstream processing (Engels et al., 2024), or when feature
importance depends heavily on context rather than magnitude.

Independent Information Assumption. We assume Shannon entropy correctly aggregates information
across features. This fails when correlated features don’t contribute independent information, when synergis-
tic information means feature pairs provide more information together than separately, or when redundant
encoding has multiple features encoding identical computational factors.

The approximation captures genuine signal about representational complexity under specific conditions. The
measure works best when features combine primarily through linear superposition, activation patterns are
sparse with balanced importance, SAEs achieve high reconstruction quality on computationally relevant
information, and representational structure is relatively flat rather than hierarchical. The approximation
degrades with highly hierarchical representations, dense activation patterns with complex feature interac-
tions, poor SAE reconstruction quality, or extreme feature importance skew. Despite these limitations, the
measure provides principled approximation rather than exact counting, with primary value in comparative
analysis across networks and training regimes.

A.6 Why Eigenvalue Decomposition Fails for SAE Analysis

Following the quantum entanglement analogy, one might consider eigenvalue decomposition of the covariance
matrix:

Σ = 1
n

AAT (18)

where A represents the activation matrix. Eigenvalues {λ1, λ2, . . . , λn} represent explained variance along
principal components, normalized to form a probability distribution:

pi = λi∑n
i=1 λi

(19)
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This approach faces fundamental rank deficiency when applied to SAEs. Expanding from lower dimension
(N neurons) to higher dimension (D > N dictionary elements) yields covariance matrices with rank at most
N , making detection of more than N features impossible regardless of SAE capacity.

Our activation-based approach circumvents this limitation by directly measuring feature utilization through
activation magnitude distributions rather than intrinsic dimensionality. This enables superposition quantifi-
cation with overcomplete SAE dictionaries.

A.7 Adaptation to Convolutional Networks

Convolutional neural networks organize features across channels rather than spatial locations. For CNN
layers with activations X ∈ RB×C×H×W , we measure superposition across the channel dimension while
accounting for spatial structure.

We extract features from each spatial location’s channel vector independently, then aggregate when comput-
ing feature probabilities:

pi =
∑

b,h,w |zb,i,h,w|∑D
j=1

∑
b,h,w |zb,j,h,w|

(20)

where zb,i,h,w represents feature i’s activation at spatial position (h,w) in sample b.

This aggregation treats the same semantic feature activating at different spatial locations (e.g., edge detectors
firing everywhere) as evidence for a single feature’s importance rather than separate features.

B Experimental Details

B.1 Tracr Compression

We compile RASP programs using Tracr’s standard pipeline with vocabulary {1, 2, 3, 4, 5} and maximum
sequence length 5. The sequence reversal program uses position-based indexing, while sorting employs Tracr’s
built-in sorting primitive with these parameters.

Following Lindner et al. (2023), we train compression matrices using a dual objective that ensures compressed
models maintain both computational equivalence and representational fidelity:

L = λoutLout + λlayerLlayer (21)
Lout = KL(softmax(yc), softmax(yo)) (22)

Llayer = 1
L

L∑
i=1

∥h(o)
i − h(c)

i ∥2
2 (23)

where yc and yo denote compressed and original logits, and h(o)
i , h(c)

i represent original and compressed
activations at layer i.

Hyperparameters: λout = 0.01, λlayer = 1.0, learning rate 10−3, temperature τ = 1.0, maximum 500 epochs
with early stopping at 100% accuracy. We use Adam optimization and train separate compression matrices
for each trial. For each compressed model achieving perfect accuracy, we extract activations from all residual
stream positions across 5 trials. SAEs use fixed dictionary size 100, L1 coefficient 0.1, learning rate 10−3,
training for 300 epochs with batch size 128. We analyze the final layer activations (post-MLP) for consistency
across compression factors.

B.2 Multi-Task Sparse Parity Experiments

Dataset Construction. We use the multi-task sparse parity dataset from Michaud et al. (2023) with 3
tasks and 4 bits per task. Each input consists of a 3-dimensional one-hot control vector concatenated with
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12 data bits (total dimension 15). For each sample, the control vector specifies which task is active, and
the label is computed as the parity (sum modulo 2) of the 4 bits corresponding to that task. This creates a
dataset where ground truth bounds the number of meaningful features while maintaining task complexity.

Model Architecture. Simple MLPs with architecture Input(15) → Linear(h) → ReLU → Linear(1),
where h ∈ {16, 32, 64, 128, 256} for capacity experiments. We apply interventions (dropout) to hidden
activations before the ReLU nonlinearity. Training uses Adam optimizer (lr=0.001), batch size 64, for 300
epochs with BCEWithLogitsLoss. Dataset split: 80% train, 20% test with stratification by task and label.

Intervention Protocols. Dropout experiments: Applied to hidden activations with rates [0.0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. Dictionary scaling: Expansion factors [0.5, 1.0, 2.0, 4.0, 8.0, 16.0]
relative to hidden dimension, with L1 coefficients [0.01, 0.1, 1.0, 10.0], maximum dictionary size capped at
1024. Each configuration tested across 5 random seeds with 3 SAE instances per configuration for stability
measurement.

SAE Architecture and Training. Standard autoencoder with tied weights: z = ReLU(Wencx + b),
x′ = Wdecz where Wdec = WT

enc. Dictionary size typically 4× layer width unless specified otherwise.

Loss function: L = ||x − x′||22 + λ||z||1 with L1 coefficient λ = 0.1 (unless testing λ sensitivity). Adam
optimizer (lr=0.001), batch size 128, 300 epochs. For stability analysis, we train 3-5 SAE instances per
configuration with different random seeds and report mean ± standard deviation.

B.3 Grokking

Task and Architecture. Modular arithmetic task: (a+ b) mod 53 using sparse training data (40% of all
possible pairs, 60% held out for testing). Model architecture: two-path MLP with shared embeddings.

ea = Embedding(a,dim = 12) (24)
eb = Embedding(b,dim = 12) (25)
h = GELU(W1ea + W2eb) (26)

logits = W3h (27)

where W1,W2 ∈ R48×12 and W3 ∈ R53×48.

Training Configuration. 25,000 training steps, learning rate 0.005, batch size 128, weight decay 0.0002.
Model checkpoints saved every 250 steps (100 total checkpoints). Random seed 0 for reproducibility.

LLC Estimation Protocol. Local Learning Coefficient estimated using Stochastic Gradient Langevin
Dynamics (SGLD) with hyperparameters: learning rate 3 × 10−3, localization parameter γ = 5.0, effective
inverse temperature nβ = 2.0, 500 MCMC samples across 2 independent chains. Hyperparameters selected
via 5 × 5 grid search over epsilon range [3 × 10−5, 3 × 10−1] ensuring ε > 0.001 for stability and nβ < 100
for β-independence.

B.4 Pythia-70M Analysis

Data Sampling and Preprocessing. 20,000 samples from Pile dataset (Gao et al., 2020), shuffled
with seeds [42, 123, 456] for reproducibility. Text preprocessing: truncate to 512 characters before tok-
enization to prevent memory issues. Tokenization using model’s native tokenizer with max_length=512,
truncation=True, no padding. Samples with empty text or tokenization failures excluded.

Model and SAE Configuration. Pythia-70M model with layer specifications: embedding layer, and
{attn_out,mlp_out, resid_out} for layers 0–5. Pretrained SAEs from Marks et al. (2024) with dictionary
size 64 × 512 = 32, 768 features per layer. SAE weights loaded from subdirectories following pattern:
layer_type/10_32768/ae.pt.
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Activation Processing. Activations extracted using nnsight tracing with error handling for failed for-
ward passes. Feature activations accumulated across all token positions and samples: feature_sumi =∑

samples,positions |zi|. Feature count computed from accumulated sums using entropy-based measure. Mem-
ory management: explicit cleanup of activation tensors and CUDA cache clearing between seeds.

B.5 Adversarial Robustness

B.5.1 Model Architectures

Simple Models (Single Hidden Layer)

• SimpleMLP: Input(784) → Linear(h) → ReLU → Linear(output)

– Hidden dimensions h ∈ 8, 32, 128, 512

• SimpleCNN: Input → Conv2d(h, 5×5) → ReLU → MaxPool(2) → Linear(output)

– Filter counts h ∈ 8, 16, 32, 64

Standard Models

• StandardMLP: Input(784) → Linear(4h) → ReLU → Linear(2h) → ReLU → Linear(h) → ReLU
→ Linear(output)

– Base dimension h = 32, yielding layer widths [128, 64, 32]

• StandardCNN: LeNet-style architecture

– Conv2d(1, h, 3×3) → ReLU → MaxPool(2)
– Conv2d(h, 2h, 3×3) → ReLU → MaxPool(2)
– Linear(4h) → ReLU → Linear(output)
– Base dimension h = 16

CIFAR-10 Models

• CIFAR10CNN: Three-block CNN with batch normalization

– Conv2d(3, h, 3×3) → BN → ReLU → MaxPool(2)
– Conv2d(h, 2h, 3×3) → BN → ReLU → MaxPool(2)
– Conv2d(2h, 4h, 3×3) → BN → ReLU → MaxPool(2)
– Dropout(0.2) → Linear(output)
– Base dimension h = 32

• ResNet-18: Modified for CIFAR-10

– Initial: Conv2d(3, 64, 3×3, stride=1, padding=1)
– MaxPool replaced with Identity
– Standard ResNet-18 blocks [2, 2, 2, 2]

• WideResNet: ResNet-18 with variable width

– Width factors: 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8
– Initial channels: 16 × width factor
– Block channels: 16, 32, 64, 128 × width factor
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B.5.2 Training Protocols

MNIST/Fashion-MNIST:

• Optimizer: SGD with momentum 0.9

• Learning rate: 0.01, MultiStep decay at epochs [50, 75]

• Weight decay: 10−4

• Epochs: 100

• Batch size: 128

• PGD: 40 steps, step size α = 0.01

• FGSM: Single step, α = ϵ

CIFAR-10:

• Optimizer: SGD with momentum 0.9

• Learning rate: 0.1, MultiStep decay at epochs [100, 150]

• Weight decay: 5 × 10−4

• Epochs: 200

• Batch size: 128

• PGD: 10 steps, step size α = 2/255

• FGSM: Single step, α = ϵ

B.6 SAE Configuration

• Dictionary size: 4N (4× layer width)

• L1 coefficient: 0.1

• Optimizer: Adam, learning rate 10−3

• Training: 800 epochs with early stopping (patience 50)

• Activation collection: 10,000 samples from test set

• Separate SAEs trained per layer
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