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ABSTRACT

In this paper, we study the generalization risk of ridge and ridgeless linear regres-
sion. We assume that the data features follow a multivariate normal distribution
and that the spectrum of the covariance matrix consists of a given set of eigenval-
ues of proportionally growing multiplicity. We characterize the limiting bias and
variance when the dimension and the number of training samples tend to infinity
proportionally. Exact formulae for the bias and variance are derived using the ran-
dom matrix theory and convex Gaussian min-max theorem. Based on these formu-
lae, we study the sample-wise multiple descent phenomenon of the generalization
risk curve, i.e., with more data, the generalization risk can be non-monotone, and
specifically, can increase and then decrease multiple times with more training data
samples. We prove that sample-wise multiple descent occurs when the spectrum
of the covariance matrix is highly ill-conditioned. We also present numerical re-
sults to confirm the values of the bias and variance predicted by our theory and
illustrate the multiple descent of the generalization risk curve. Moreover, we the-
oretically show that the ridge estimator with optimal regularization can result in a
monotone generalization risk curve and thereby eliminate multiple descent under
some assumptions.

1 INTRODUCTION

The double/multiple descent phenomenon attracted recent research attention due to ( ,
). This line of work focuses on the parameter-wise double/multiple descent phenomenon of
the risk curve ( s ; , : ; ;

, ; s ; s ; s ; , ). The
classical learning theory shows that when the number of parameters (which reflects the model com-
plexity) increases, the test error (generalization risk) first decreases due to more fitting power, and
then increases due to overfitting. The generalization risk attains a peak at the interpolation threshold
(the number of parameters equals the number of data points so that the model interpolates the data).
This results in a U-shaped risk curve if we plot the test error versus the number of parameters. The
double descent risk curve posits that the risk will decrease (again) if one further increases the model
complexity beyond the interpolation threshold ( , ). Thus there is a second descent
in addition to the first one in the U-shaped stage of the curve. ( ) presented empiri-
cal results and showed the existence of such double descent behavior in the random Fourier features
model, the fully connected neural network, and the random forest model. Prior to ( s

), earlier studies of the shape and features of the risk curve in a number of contexts include
( ; ; , ; , ; ) ; )

; s ; s ). ( ) presented a prehistory of the
double descent phenomenon. ( ) proved the double descent curve in the Gaussian
model and the Fourier series model. ( ) theoretically established the double
descent curve of the random features regression. ( ); ( )
characterized the conditions for ridgeless and ridge linear regression problems, respectively, under
which the minimum-norm interpolants achieve near-optimal generalization risk. ( )
showed that the test error of the minimum-norm interpolator of data in reproducing kernel Hilbert
space is upper bounded by a multiple descent curve as the model complexity increases. They also
presented a numerical result supporting that the test error itself exhibits a multiple descent curve.
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( ) proved that the multiple descent curve does exist for the minimum-norm inter-
polator in linear regression and that the curve can be even designed.

F0110W1ng the parameter-wise double descent research interest extended to epoch wise and sample-
wise double descent (

( ) observed from their numer1cal result that the generahzatron risk ex-
perlences a double descent as one keeps the model size fixed and increases the training time. They
called this observation epoch-wise double descent. ( ) also noted sample-wise
non-monotonicity, which means that more data can hurt generalization. ( )
proved that for isotropic features, optimally regularized ridge regression yields a monotonic gener-
alization risk curve with more samples. ( ) also showed that if the features are
formed by projecting high-dimensional isotropic data to a random low-dimensional space (say, d-
dimensional), the optimally regularized ridge regression has a monotonic generalization risk curve
with increasing d (the model size). Sample-wise non-monotonicity and double descent was also
observed in ( s ; s ) in adversarlally trained models. C ompared to
( ; ; R ), in what
follows, we hrghhght our contrrbutlons and the differences from them First, our major contribu-
tion is providing a rigorous proof for the existence of sample wise (test error vs. the number of
training samples) double and multiple descent in linear regression. However, ( )
only mentioned parameter-wise double descent (test error vs. model capacity) in their related work.
( , ) only mentioned epoch-wise (test error vs. training time) double descent
in Appendix A.2. Neither ( , ) nor ( , ) mentioned multiple
descent. Second, we made and theoretically proved the observation that an ill-conditioned covari-
ance matrix is a sufficient condition for the existence of sample-wise multiple descent. To the best
of our knowledge, our work is the first paper that pointed this out. Third, we solved the Stieltjes
transform explicitly and derived explicit formulae for the risk and variance in our setup. In addition,
we also provided rigorous treatment to the ridgeless setting and also obtained explicit formulae for
it. Fourth, there is another difference between our paper and the papers that the reviewer mentioned.
( ; ; ; s ) assumed
a pr10r on the true linear model and takes expectation over the prior. In our paper, we do not assume
a prior on the true linear model and our risk does not take the expectation over a random true linear
model.

In the setting of generally anisotropic features, this paper gives an asymptotic characterization of the
generalization risk curve with more samples. The asymptotic regime is an approximation for large
n, d and can also shed light on practical machine learning problems. We first introduce our problem
setup.

1.1 PROBLEM SETUP

Data Distribution Let ¥ € R%¥¢ be a positive semi-definite matrix which is termed the covari-

ance matrix, and let 0* € R®. The eigenvalues of X are Ay, ..., A, with multiplicity dy, ..., d,,
respectively. We have d = Z;’;l d;. Assume that A\, ..., \,, are fixed, distinct, all positive, and
do not depend on d (i.e., for all d, the eigenvalue of 3 are always Aq,...,\,,). We assume the

following data distribution D for (x,y) € R x R:
r~ N0, y=x'6"+e€,

where z and € are independent and € ~ A(0,02). In practice, there are natural random variables
z that satisfy our assumption. For example, assume that we want to use machine A to measure the
length of several objects and use machine B to measure their temperature. The measured lengths
and temperatures follow an i.i.d. Gaussian distribution. However, the variance of measurement of
machine A is different from that of machine B. Then we consider the random vector formed by the
measurements © = (I1,...,l,,t1,...,t,), where [; and ¢; are the length and temperature of object ¢,
respectively. This results in a block-structured covariance matrix. When we measure more objects,
the size of the covariance matrix tends to infinity. Second, the motivation came from (

, ). ( , ) observed empirically in their Figure 2 that when the covariance
matrix has a block structure (specifically, there are only two fixed different eigenvalues 10 and 1),
the expected excess risk exhibits multiple descent. We quantitatively studied this observation and
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obtained the related formulae. The excess risk of an estimator § € R? is given by
2 ) 2
R(0) =E; yup {(y —2'0)" = (y—=2"6") } .

Assume that the training data {(z;,;)}"; € R? x R is drawn i.i.d. from D. Write
T

T Y1
X=| : |er™, y=| : |[er". (1)
.%‘I Yn

We have y = X0* + €, where € ~ N'(0,0%1,).

Ridge Estimator and Minimum-Norm Estimator

Definition 1 (Ridge estimator). The ridge estimator é)\,n,d € R? (A > 0) solves the following
minimization problem

min — || X6 — +A|9|5 -

min X0 — |3+ A1)
Definition 2 (Minimum-norm estlmator). The minimum-norm estimator (also known as the ridge-
less estimator) 8 5, q € R< solves the following minimization problem

min [0 such that X0 — = min || X0 — .
min 6] 16—y, = i X0~ v,

We are interested in the expected excess risk of 6 \,n,d» Which is given by

Rang=E [R (ém,d)} .

The expectation is taken over the randomness of the training data {(x;, y;)}.,

Asymptotic Regime Let II; € R%*? be the orthogonal projection to the eigenspace of ;. This
paper focuses on the asymptotic behavior of the expected excess risk of 0 ,, ¢ where n, d; — 400,
d;/n — z; (2 is a fixed positive constant), and ||II;6*||, — 7;. In other words, we are interested in
lim R An,d -
n,d; —+o0o

di/n—z;
ITL:6% [, —ms

1.2  OUR CONTRIBUTIONS
Our contributions are summarized as follows.

1. We obtain the formulae for the limiting bias and variance, and thereby the limiting risk.
We use two methods to obtain these formulae. Specifically, we obtain the limiting bias and
variance by solving the Stieltjes transform and computing its derivatives and antideriva-
tives. We also use convex Gaussian min-max theorem (CGMT) (

) to compute the limiting variance. The advantage of the CGMT method is that it is
more mathematically tractable for the ridgeless estimator. Through the CGMT approach,
we obtain a closed-form formula for the variance in the underparameterized regime and
simplify the formula for the variance in the overparameterized regime. Moreover, based on
the simplified formula, we deduce a closed-form expression for the variance if the covari-
ance matrix of the data distribution has two different eigenvalues.

2. We find and theoretically prove that sample-wise multiple descent happens when the co-
variance matrix has eigenvalues of very different orders of magnitude (thus the covariance
matrix is highly ill-conditioned).

3. We show that if the true linear model 6* satisfies ||I1;0%||, = /%, optimal regulariza-

tion (i.e., pick A that minimizes the generalization risk of HA,\’n,d) results in a monotone
generalization risk curve—in other words, with optimal regularization, more data samples
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always improve generalization. Thus there is no sample-wise double or multiple descent.
This provides a theoretical proof of a phenomenon observed in ( , ) that
optimal regularization can mitigate double descent for anisotropic data. Note that without
regularization, there will be a blow-up in expected excess risk when n = d (the linear
model exactly interpolates the data) and therefore, there is no samplewise descent across
the under- and over-parameterized regimes.

2 PRELIMINARIES

Notation Write [m] for {1,2,...,m}. Let i denote the imaginary unit. If z € R” and ¥ € R™*"
is a positive semidefinite matrix, write ||z||s, £ V2T Y. For a vector z, let ||-||, and ||-||, denote
the ¢! and ¢2 norm, respectively. Let ® denote the Hadamard (entry-wise) product between vectors.
Write || - ||2 and || - || » for the spectral matrix norm and Frobenius matrix norm, respectively. Let
=< denotes the Loewner order. For two square matrices A and B of the same size, write A < B
if B — A is positive semidefinite. Define spec (A) as the set of all eigenvalues of A. Let O(d) =
{AeR™d| AAT = ATA = I;} denote the set of d x d orthogonal matrices. Define S¢~!(r) £

{x € R?| ||z||2 = r}. Denote almost sure convergence by “3, and convergence in probability plim
P
and —.

Ridge Estimator and Minimum-Norm Estimator We begin with the equivalent characteriza-
tions of the ridge and minimum-norm estimator. An equivalent characterization of the ridge estima-

tor 6 \n.d 1S

brma= (XX +2nl) " XTy=XT (L, +XX") 'y @)
The second equality in Equation (2) is because of the Sherman—Morrison—-Woodbury formula. A
proof of Equation (2) can be found in ( , ).

An equivalent definition of the minimum-norm estimator éo,n,d is that é(),n,d solves the following
minimization problem

min |||, suchthat X'X0=X'y.
OeRd

Thus we have A N N

Oona=(X"X) XTy=X"(XX") y=X"y,
where AT denotes the pseudo-inverse of A. The second and third equalities are because of the
identity X = (X TX) TXT=XT (XX T)Jr. The minimum-norm estimator is the limit of the

ridge estimator 6 ,, g as A — 07

é(),n,d = /\E%{r é)\,n,d~
This  is  because  of  the  identity  limy_o+ (XX + Anly) “txT =
limy_or X7 (AnL, + XXT) 7" = X,

Bias-Variance Decomposition of Expected Excess Risk We first show that the excess risk of an
estimator 6 equals the norm of § — 6*:

R(0) =Egeyyon [(y—2760) = (y=270")| =B, [(=7 (6" - 0))’]
—E (0"~ 0) S(0" - 0)| =E [0 — 03]
For the ridge estimator, the expected excess risk is
Raan =E[[|0" — X T (A, + XX ) H(X0" +€)[3]
=E [|(ls — X" (nAL, + XX ") 7' X)0* — X" (nA, + XX ") e 3]
=E [||(Is — X " (nAL, + XX )71 X)0% %] + E “\XT(nMn + XXT)_leH;}
=E [|(lg — X" (nAL, + XX ") X)0* (]3] + o’Etr [XEX T (nAL, + XX )77
£Byan + Vadn - 3)
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For the minimum-norm estimator, the expected excess risk is
Rogn =E[)|0" — XT(X0" + )| 3]

=E[[(Ls— X*X) 0" - X*e3]
—E[[[ (1= X*X) 0°|[3] + E [ X *e]

—E [ (1s— X" X) 6"

o] +oEu [(x) T ox 7]

£ Bo.an + Vo.dn - 4

We call B) 4., and By 4, the bias term, and call V) 4, and Vj 4, the variance term. The bias and
variance for the minimum-norm estimator are the limit of their counterpart for the ridge estimator
as A — 0T, ie, limy ,o+ Bxrdn = Bo,an and limy o+ Vi 4, = Vp4,n (this can be shown by
Lebesgue’s dominated convergence theorem, see our proof in Lemma 5 and Lemma 6, respectively).

3 MAIN RESULTS

3.1 LIMITING RISK AND SAMPLE-WISE MULTIPLE DESCENT

We study the limiting bias and variance for a linear regression problem in which the data distribution
follows a multivariate normal distribution, the spectrum of the covariance matrix exhibits a block
structure and tends to a discrete distribution. Thanks to the random matrix theory, we obtain the
formulae (presented in Theorem 1) for the limiting bias and variance, and thereby the total risk.

We use two methods to obtain these formulae. The first method is through the Stlelt_]es transform
of the matrix 1 XX T. The central quantity for computing the limiting bias and variance through
the first method is the solutlon p* to the optimization problem Equation (5) in Item 1 of Theorem 1.

Item 1 guarantees the existence of a solution and determines its optimality condition Equation (6).

Item 2 computes the Jacobian matrix of p* with respect to A; and provides a closed-form formula
to compute the Jacobian matrix. Equation (9) and Equation (10) in Item 4 give the formulae for
the limiting bias obtained by the first method. Equation (11) and Equation (12) give the limiting
variance.

The second method is through the convex Gaussian min-max theorem (CGMT) (

, ). The central quantity is the solution r* to the minimax optimization problem Equa-
tion (8) in Item 3. We use CGMT to obtain the formulae for the variance term. They are presented
in Equation (13) and Equation (14) in Item 4.

Theorem 1. The following statements hold:

1. There exists a minimizer p € R that solves

inf |log )\+Z)\Jp] +Z< — 2 logijrl)) . (5)

PERT Zj

The minimizer p* satisfies
Ai 2
— = +1—-—=0, Vie[m]. (6)
A+ Zj:l Ajﬂj Pi

2. Let p* € R™ be a minimizer of Equation (5) and J = % € R™*™ be the Jacobian

. 9
matrix Jij = 55

J = (diag (A) + A+ XTp") In — (z— p")AT) " ((2— ") p*T — ding (p"))
and the matrix (diag (X) + (A + X7 p*) I, — (z — p*) A7) is always invertible.

3. Definer = (r1,...,7m), A= (A1,..., A\p), and

I(re, v, A) = 21y /1+Zr 72rtz\/2rl+2—r - . @)
i€[m)] 1€[m] i€[m)]
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For any K; > % and K, > w we have

max min_ J(ry,r,A\) = min max_ ¢(ry, r,A\) = max min ¢(ry, r, A) = min maxd(rs, r, A)
0<r, <K; 0<r; <K, 0<r; <K, 0<r <K, 7,20 7;>0 7:>0 r; >0
®)
and the above optimization problem has a solution.
4. Letr* = (r},...,r},) solve Equation (8). Define q = (n3/z1,... ,nfn/zm)—r and view
A=Ay, )\m)‘r as a column vector. The limiting bias is given by
lim  Byan=q (AOp"+JA?), 9)
n,d; —+oo
di/n—z;
ITL: 6% || ,—ms
lim  Bygn,= lim q"(A®p* + JA®?). (10)
n,d;—+00 A—0+
di/n—z;
ITL: 0% || ,—ms

The limiting variance is given by

AQ2T (p* + JT )

li Viadn =02 11
p i o YA = O R ST e 1D
di/n—z;

AO2T (p* + JTX)

li n=021li 12
D Vo,dn =0 Jim, DA (12)
di/n—>zi

1 n =02 *2 1
plim Vg =%y ri?, (13)
di /n—z;

li Vodm =02 1 *2 14
Vo = iy S 19
d /n—>z1

Figure 1 illustrates the theoretical and numerical values of the bias, variance, and total risk. We
observe a triple descent in Figure 1a where the covariance matrix has three blocks, and a quadruple
descent in Figure 1b where the covariance has four blocks. In the three-block example, we set A3 >
Ao > A1 (A1 = 1, A2 = 100, A3 = 1000). In the four-block example, we set Ay > Az > Ay > A\g
M\ =1, A2 = 100, A5 = 10%, A4 = 107). For the values of other parameters, please refer to the
caption of Figure 1 Our findings provide an explanation for the occurrence of sample-wise multiple
descent: it occurs when the covariance matrix is highly ill-conditioned. Moreover, we find that the
generalization risk curve is continuous in ridge regression (A > 0) while it blows up at n = d
in ridgeless regression (A = 0). We can see the singularity (at n = d = 200) of the ridgeless
generalization risk curve in Figure 2a.

Following Theorem 1, we focus on the variance in the ridgeless case (A = 0) and further study
the expressions in Equation (13) and Equation (14). We find that the variance exhibits sharply
different behaviors in the underparameterized and overparameterized regimes. Recall that we will
letn,d; — +oo and keep d;/n — z;. Thend/n — 32,1, 2 flimd/n = 37,002 > 1, we
are in the underparameterized regime. In this regime, the bias vanishes and therefore the risk equals
the variance. If lim d/n < 1, we are in the overparameterized regime.

Theorem 2. Ifd/n — >,z > Landr™ = (r1,...,1},) solves

1
in;% /\—rf subject to Z r?4+1= Z NEE

Tigm) Tt i€[m] i€[m]

then we have an optimality condition for r*:

i,j € [m], 15)
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(a) Sample-wise Triple Descent  (b) Sample-wise quadruple de-
scent

Figure 1: Figure 1a and Figure 1b illustrate sample-wise triple and quadruple descent, respectively.
We specify the parameters that we used as follows. Figure 1a: There are 3 blocks. We set d; = 60,
dg = d3 = 40, )\1 = 1, )\2 = 100, )\3 = 1000, HH16*||2 = ||H30*||2 = 0.1 and ||H20*||2 = 1. The
three descents occur at n = 36, 80, 136, respectively. Figure 1b: There are 4 blocks. We set d; =
dg = d3 = d4 = 40, )\1 = 1, )\2 = 100, )\3 = 104, /\4 = 107, and HH19*||2 = 0.01(i S [4]) The
four descents occur at around n = 1, 37, 80, 120, 150, respectively. In the legend, the items starting
with “T.” are theoretical values predicted by Theorem 1. Items starting with “N.” are numerical
values. We plot two curves for the variance in Figure la. “T. Varl” is obtained by Equation (11) of
Theorem 1. “T. Var2” is obtained by Equation (13).

where A* =, /Zie[m] r¥2 + 1. Moreover, we have limy, 4, +o0 Vo,a,n = 02 limy o+ Y1y 772

Ifd/n— 3 cpn 2 < L, then we have

lim Vo4, = o0? 7215[@ i

n,d; —+oo 1-— Zie[m] Z '
di/n—)zi

Corollary 1. Ifm = 1and d/n — z > 1, we have lim,, 4,400 Vo,a.n = o?
dl/n%z7

1
2171'

Proof. In the case m = 1, we have r] solves min,, > )\ilrf subject to /77 +1 = /z1r1. The

equality constraint gives 752 = 7171 Then by Theorem 2, the limiting variance is o272 = o Z1£1 .

O

In Theorem 2, we find that in the underparameterized regime, r* solves an equality-constrained

minimization problem. In the proof of Theorem 2, we see that the equality constraint is feasible

in the underparameterized regime but infeasible in the overparameterized regime. Moreover, we

present an optimality condition for r*, which will be used in Theorem 3 to study the two-block

(m = 2) case. If the data distribution is isotropic (which means that the covariance matrix is a scalar

matrix), Collorary 1 shows that the limiting variance is anl%, which agrees with ( ,
, Theorem 1).

In the overparameterized regime, however, we find that the limiting variance does not depend on the
spectrum {1, ..., Ay, }of the covariance matrix and only depends on the noise intensity o and the
ratios z; = lim d; /n. This agrees with ( , , Proposition 2).

In Theorem 3, we study the case m = 2 and present a concrete closed-form formula for the limiting

variance in the overparameterized regime. Recall that the limiting variance in the underparameter-

9 2icim] %
i

- for general m, as shown in Theorem 2.

ized regime has a closed-form o =
i€[m] %i

Theorem 3. Ifm = 2 and d/n — z1 + 22 > 1, we have

2
lim  Vogn = o? ¢+l
ndi—foo 04T q2(z1 — 1)+ 2q/Z122 + 20 — 1~

di/n—>zi
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N}
a1

-o- T.Var A\ =0)
——N. Var (A =0)

B = N}
1) o ]

Expected Variance

5

o

0 100 200 300 400
Number of Samples

(a)

Figure 2: Figure 2a: We illustrate sample-wise triple descent of the variance term in ridgeless
regression (A = 0). There are 2 blocks. We set d; = 80, do = 120, Ay = 1 and A\s = 100.
The two descents occur at around n = 125,200, respectively. In the legend, “T. Var” denotes
the theoretical values predicted by Theorem 3. “N. Var” denotes the numerical values. Figure 2b:
Function f(¢) defined in Equation (17) with o = 1.

where

A (Zl — 1) + Ao (1 — 2’2) + \/(/\1 (Z1 — 1) + Ao (1 — 2’2)) 2 4N Aoz 20
2)\2«/2’122 ’

We illustrate the theoretical values predicted by Theorem 3 (overparameterized regime) and Theo-
rem 2 (underparameterized regime) in Figure 2a and compare it to the numerical values.

q= (16)

Corollary 2 (Triple descent in the two-block case). Assume m = 2, z1 = z3, d/n — ( = 2z, and
Ao/A1 = . Define f,(¢) = limy, 4,400 Vo,d,n. We have

di/n—z;
0'2ﬁ (<1,
FO2 im0 =0 (a2 -1) 1<(<2. (17)
’ 022 ¢>2

There exists C1,Ca,(3,Ca and oo such that for all o > oo, we have f,(C1) < 0, f,(¢2) > 0,
J4(C3) <0, and f,(Cs) <O.

Proof. The case ¢ < 1 is already given in Theorem 2. In the sequel, assume { > 1. Define ¢ as in
Equation (16). We have

:C+\/<2(9+1)2—4C(9—1)2+4(9—1)2—(4—2)9—2'

! 2C0
Recall Theorem 3, we get
2 2
Fol€) = B o Vo = +21)(3 —;1(212 +1) C("io); 2
di/n—z; q?+1
Direct calculation yields
02& (<1,
Jim £,(0) = 0—2(é+2%<—1) 1<¢<2,
024272 ¢>2.
02(4_% (<1,
9(O) & lim fi(Q) =0 @ty 1<¢<2,
o? (4:3)2 ¢>2.
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The function g(¢) > 0if ¢ € (v/2,2) and we have g(¢) < 0if { < v2or¢ > 2. Pick (; > 2 >

(2 > V2 > (3 > 1> (4. Then we have g(¢1) < 0, g(¢2) > 0, g(¢3) < 0, and g(¢4) > 0. There
exists oo such that for all ¢ > o, we have f,(¢1) <0, f,(¢2) >0, f,(¢3) < 0,and f}(¢4) < 0. O

Collorary 2 theoretically proves that there exists triple descent when m = 2 and Ay > A;. Note
that a larger ¢ = limd/n reflects a relatively smaller n. If f,(¢) < 0, then f,(¢) decreases on
a neighborhood of ¢ and therefore the limiting variance increases with a relatively larger n. As n
becomes relatively larger, we see an increasing stage, a decreasing stage, and finally an increasing
stage in order in the overparameterized regime (n < d). When we further increase n and enter
the underparameterized regime, we observe a decreasing stage. We illustrate f(¢) in Figure 2b. In
Figure 2b, we observe two singularities at ( = 1 and { = 2.

3.2 OPTIMAL REGULARIZATION MONOTONIZES GENERALIZATION RISK CURVE

Recall the definition of the ridge estimator in Definition 1. Since this subsection concerns sample-
wise monotonicity, we add a subscript n to X and y (they are defined by Equation (1) in Section 1.1)
to emphasize that they consist of n data items. Therefore we write

A 1
9)\,n,d £ arg;nln E ||Yn - Xn9||§ +A ”0'@ :

In this subsection, under an assumption, we show that optimal regularization (i.e., pick A that min-

imizes the generalization risk of 8} ,, 4) results in a monotone generalization risk curve—in other
words, with optimal regularization, more data always reduces the generalization risk. The assump-

tion is that ||TI;6*||, = /%, i.e., the squared norm of the projection of §* onto each eigenspace of
the covariance matrix is proportional to the dimension of that eigenspace. ( , )
showed by numerical results that optimal regularization can mitigate double descent for anisotropic

data distribution. We give a partial theoretical proof of their observed phenomenon.

To ease the notation, we use v; = limn /d; rather than z; £ limd,; /n in Theorem 4 because a larger
~ reflects a relatively larger n (in the limit). Theorem 4 shows that with the optimal regularization,
the limiting risk is an increasing function of 1, ..., V.

. d;
Loy =4/ (s)

then there exists a function g(v1, ... ,Ym) such that g(y1, . . ., Vm) is increasing in every ~y; and

Theorem 4 (Optimal regularization). If

2

é)x,n - 0" - = g('Yh---v'Ym)'

lim inf Ex
n,d;—o00 A>0 mn
’I’L/di*)’yi

4 CONCLUSION

We studied the generalization risk (test error) versus the number of training samples in ridgeless
regression. Under the assumption that the data distribution is Gaussian and the spectrum distribu-
tion of its covariance matrix converges to a discrete distribution, we obtained the exact formulae
for the limiting bias and variance terms using the random matrix theory when the dimension and
the number of training samples go to infinity in a proportional manner. Using these formulae, we
proved the sample-wise multiple descent phenomenon of the generalization risk curve.Moreover, we
theoretically showed that the ridge estimator with optimal regularization can result in a monotone
generalization risk curve and thereby eliminate multiple descent under some assumptions.
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Notation Comments

> = PAPT R¥¥d | Covariance matrix of data

P O(d)

A :diag(/\lldl,...,/\m[dm) RdXd

0/ é PTQ* Rd

X =ZTAYV2PT = (@y,...,2,) | R | 2, ~ N(0,5)

Z=(Z1,..., Zm)" Réxn | 7, € R"*di_ Each entry follows A(0,1).

Table 1: Notation

A EIGENDECOMPOSITION AND MORE NOTATION

Write ¥ = PAPT, where P is an orthogonal matrix and A = diag (A1 14, ..., Anla,, ) € R¥*4is
a diagonal matrix. Write A = min;cp,,) A; and Ay = max;c[,,) A;. We can generate x1, ..., 7,

from standard normal random vector z; ~ N (0, ;) by setting z; = PA'/?z;. Therefore, if Z =
(21 ... zp ) €R>" we get
XT=(ay ... m, ):PAl/Q( 21 ... Zn ):PAl/QZ.

Take the transpose gives X = Z'A/2PT. Note that every entry of Z € R**" follows i.i.d.

N(0,1). Write Z in a row-partitioned form

zy

Z = :
ZT

where Z; € R"*9, Write P in a column-partitioned form

P=(P ... Py)

9

where P; € R9*4: Recall that II; € R%*? denotes the orthogonal projection to the eigenspace of
Ai. We have IT; = P;P,". Define @ £ PT6* and write it in a row-partitioned form
P, o* 0]
0" = : =1 1, (19)
P o o,
where 6 € R%. Then ||6}||, = ||P,"6"
notation above in Table 1.

= ||P.P 6|, = |ITL;6*||,. We summarize part of the

I, I,

B BIAS AND VARIANCE UNDER EIGENDECOMPOSITION

Lemma 1 characterizes the smallest and largest eigenvalue of LdZ (ifn/d - ~v < 1)and an Gf
n/d — v > 1). Recall that we study the asymptotic regime d; /n — z;. Therefore v = > L

jelm) %

Lemma 1 (( s , Theorem 2)). Let Z € R*™ pe a random matrix whose entries are
i.i.d. N(0,1) random variables. As n,d — 400, n/d — v € (0,1), we have

T T
lin A (ZZ) — (1= A, T (zz) — (143

almost surely. If v € (1,00), asn,d — 400, n/d — =, we have

1im Amin (ZnZT> = (1 - M)Q . lim Ay <ZZT) = (1+ W)Q

n

almost surely.

12
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Lemma 2 (Corollary 5.35 ( , ). Let A be an N X n matrix whose entries are in-
dependent standard normal random variables. Then for every t > 0, with probability at least
1 — 2exp (—t*/2) one has

\/N_ \/ﬁ_t S Smin(A) S Smax(A) S \/N"' \/E_Ftv
where $min(A) and smax(A) are the smallest and largest singular value of A.

Lemma 3. Let Z € RY*"™ be a random matrix whose entries are i.i.d. N'(0,1) random variables,

n

where d = d(n) satisfies lim,, _, o oy = There exists universal positive constants C1,Cy, N
such that for all n > N, we have

min

1
0<Ci< - shl(2) <

Proof. Since d(n) < n, with loss of generality, we assume n/d — v € (0,1). Take ¢ = ¢14/n in

Lemma 2, where ¢; = 3 (% - 1) > 0. With probability at least 1 — 2¢=¢I"/2, we have

\/E_ \/’E_Cl\/ﬁ S Smin(Z) S Smax(Z) S \/(;—F \/?L_FCI\/H'

Therefore, we deduce

2 2
d 1 1 d
( - _1_Cl> < 781211in(Z) < 7s?nax(Z) < <\/7+1+Cl> .
n n n n

2 2
Define C; = % (% — 1) > 0and Cy = (\% + 1> . Then there exists a universal constant Ny

such that for all n > N, with probability at least 1 — 2e—cin/ 2, we have

1
0<Cy < ﬁsfmn(Z) < —s2..(2) < Cy.

S|

Define event E,, = {C) < 152, (7) < 1s2 (Z) < Cy}°. Then we have Pr {E, } < 2¢~¢i"/2,

Since > o, Pr{E,} < > -, 2¢7¢i"/2 < o0, then the probability that infinitely many of E,
occuris 0, i.e.,

Pr {limsupEn} =0.

Therefore, there exists a universal constant N such that for all n > Ns, E,, does not happen, in
other words,

min S?nax(Z) < 02

holds. O

1
0<C1<ﬁs2 (2) <

Lemma 4. Let Z € R¥™ be a random matrix whose entries are i.i.d. N'(0,1) random variables,
and let p be a fixed positive integer which is viewed as a constant and hidden in <. If n < d, we

have Etr (ZZT) =< n2 EBtr (Z227)° < n3, and B | Z||} < nP/2.

Proof. We have
Etr(ZZ") =E|Z|7= > Ezj=nd=<n’.

i€[d],5€[n]
2
Write Z = : |, where z; € R™ and z; ~ N(0,I,,). We have E (zjzz)z = IEHZ,H;1 =
T
Zd

n(n + 2). For i # j, we deduce E (z;'—zj)2 =E (|lzill5 12, uTv)2 where u,v ~ Unif (S*~1)
and |||, , [|2jl5 , u, v are independent. Then we get

2 2 2 2 1
E ([lzill 1251 s, 55)" = Ellzall3 25115 (s 55) " = n*Euf = n® - —=n.

13
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As a result, we have

Etr (227) =E|2Z27|p = . E(:%)" =dn(n+2) + (d&® — d)n = n®.
i.3€ld]

By ( R ), there exists a universal constant C' > 0 such that for any ¢ > 0,
]P’{HZH2 >C (\/ﬁ—i— \/g—i—t)} < 2¢~". Define K = C <\/ﬁ+ \/&) Then we have

P{|Z], > K +t} <27/ (20)
Recall T'(z) = [, #* e *dx. Setting t = C'y/u in the equation below yields

/ e /1y < / e tu? 'du=T (2) =1.
0 0 2

Then we can bound the following integral
|1zl = ot
K
= [ Bzl = K Ry
0

< / e/ (4 KPPt

~ 0
</ e/ (=1 KPTY) dt
0

o0 2 2 o0 2 2
:/ e t/C tp_ldt+Kp_1/ et/ qt
0 0

p—1

<n"3
where the first inequality is because of Equation (20). We are in a position to bound E || Z ||}
E|Z]3

=/ P{1ZI} > u} du

0

- / {12, > t} pt7Ldt
0

K %)

- / P Zll, > t} ptP~tdt + / B{|1Zll, > t} pt7~tdt
0 K

<pP/? 4 pP—1/2

<np/27

where the first inequality is because

K K
/ P{||Z|, zt}ptpfldtg/ ptP~dt = KP <nP/?,
0

0
O
Lemma 5. The following equation for the bias term B g4, (defined in Equation (3)) holds
Byan =E [||A1/2 (Id —AV2Z (nAI, + ZTAZ) ZTAl/Q) 9’||§} Q1)
—1

1
=E l||A1/2 (Id + /\A1/2ZZTA1/2> 0'|%] . (22)

n

Moreover, we have | B q.n| < ||9*||§ and limy_,o+ Bx.4,n, = Bo,d,n- For all sufficiently large n and

d such that n/d — ~ € (0,1), we have 0 < 4B} 4, < H9*||§ Therefore, { By q,n} is uniformly
bounded and uniformly equicontinuous with respect to X € (0, 00).

14
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Proof. Introduce the shorthand notation M = AY/2ZZTAY? € R¥*4 A = I, + LM € R4,
N=nM,+Z"AZ e R"" and Q = I, — AY2ZN—1ZTAY2 ¢ R4%d Because

XT(nAL + XXT) X = PAY2Z (Al + 27AZ) " ZTAVEPT
we have
Bran =B [|(la = PAV2Z (n\L+ 27A2) ™ ZTAV2PT)0" 2
=E {HAI/Q (Id — AYV2Z (n), + ZTAz)*l ZTAl/z) 9/”%}
—E[IAY2Q8')3)] -

Using the Sherman—Morrison-Woodbury formula yields

—1
ot 1 S Z T A2 (1+ 1A1/2ZZTA1/2> AY2Z
n (nA) n
1

—1
:7 ([n—ZTA1/2 (n)\ld+A1/QZZTA1/2) A1/2Z)
n
1 _
=— (L= ZTAY2 (nAda + M) T AY2Z)) (23)
It follows that
Q=I4— N'?ZN7'1ZTAY?
1 _
=l - —AV?Z (1 = ZTAY2 (nAL+ M) AV2Z) ZT AV
n
M _
=l - — (Id — (nAy+ M) M)
M _
~li—— (Id — (Mg + M) (nA + M — n)\Id))

=I;— M (nXg+ M)™!

1 -1
=(I;+—M
(d+n>\ )

=A"1,
Therefore, we deduce
1 -1
Byan=E lIIA”Q (Id + MM) o3| =E [Ia2a-0')3]

Because HA1/2||2 <1 and H (Id + n—l/\AlﬂZZTAl/z)_lH < 1, we have
2
IAY2AZN 5 S 1601 = 1013 -
Therefore | By 4| < ||0* ||§ Moreover, by the dominated convergence theorem,

lim B)\,d,n = BO,d,n .
A—0t

We compute the derivative of A1

dA—1 JdA ., MA™2
d\ =4 KA T a2

. 1/2 TAL/2 . .. . . . .

The matrix % = % € R9*4 js positive semidefinite and its d — n smallest eigenvalues
. . T

are zeros. Its non-zero eigenvalues are the same as the non-zero eigenvalues of ZinAZ Because all

. T . . .
eigenvalues of ZTAZ are positive almost surely, the spectrum of % consists of d — n zeros and the

15
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Z'AZ
n

T T T
spectrum of ZTAZ We study the range of the spectrum of % Because A_ % =<

-
A 22 we deduce
+n

T T
win (232) 23 e (£2) 1 (1= VIR (4)

<

n
ZTAZ VANA
Amax< - ) < A+Amax( ) = (14 VIR ) (25)
Define Ly = A_Ann (%) and Ly = Afdmax (%) We get limy g yqo0 L1 =
n/d—vy<1

A (1= \/1/7)2, lim o0 Lo = Ay (14 \/1/7)2 and

n/d—vy<1
ZTAZ
spec C Ly, L] .
n

We bound HMA_3H2

1M AT, =n

)
I+ —
n A

S
=n max

S‘GSpeC( ) (1 + S/)\)

S
=N max

SG{O}UspeC(ZTnAZ ) (1 + 3/)\)3
S

=N max

sespeC(ZTnAZ') (1 + S//\)3

S
<n max

s€lL1,La] (14 s/\)°
We compute -&||[AT/2A~1¢'||3:

d _
S IA2ATI

1 _ _ o 4
=30 (ATTAMAT 4 MAPAATY ¢
L )T Ahat e aran) (a)
Next, we bound | £ [[AY/2A=10|3):
d
‘dAB)\dn

HMA 2AATT 4 ATIAMAT?| 05
SW [MA=2AAY|, 102
2
=5 [[MATPANATY, 0]

- - 2
<z 1A (AN AT, 16711
s
<= max —[|¢|;,
L T
where the last inequality is because HAAA 1||2 IAll, < A4 < 1. Define f(s) = m

Because f'(s) = ’\(ii‘rs)%f), the function f is increasing on [0, /2] and decreasing on [A/2, +c0).

16
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If A < 2L, we have

S Ll
max 3 = 3.
s€[L1,La2] (14 s/A) (1+Li/X)
It follows that
1 Ly L L 1
VR 3 3 < max ————5 5 ——.
AL+ Ly/N)° (A+Ly)° T Ael2la] (A + Ly)° T In

If A > 2L, we get
1 S 1 Lg LQA
i max ——— = . —————= < max —— =
A% s€lLi,La] (14 s/X)° A% (14 La/A)° ~ A€2L2,00) (A + Lo)
If 2L < A < 2L, we obtain

N

1 1
— < —.
Ly, = Iy

1 s 1 1
— max —— S — < —.
A2 selLnLa] (14 s/X)° ~ A~ Ly
In all three cases, we show that 5 maXge(L,,Lo] m < L% It follows that
2 2
16”112 167115

A Amin (z;z) = Amin (z;z) '

By Lemma 3, there exists a universal constant ng such that for all n > ng, one has ﬁ <1

n

d
A2 a3

1 2
< 2102 =

Thus we conclude that

d _ 2
SINZAT ] <

We can exchange differentiation and expectation and get

d _ d o \1/2 4—1p2
5B =E | LIN A0S
and
d o d /2 A=1pgr12|| < 119112
i Bran| =B || Siaao]| < 1o

Lemma 6. The following equation for the variance term holds
-1
Vadn =02E||AV/> ()\nId + Al/QZZTA1/2) AV2Z)2
=0E||AZ (AnI, + ZTAZ) |2,

Moreover, for all sufficiently large n and d such that n/d — ~v # 1, we have limy g+ Vi g4.n =
Vo,dn [Vadnl S 1and |%V)\,d,n| S 1. Therefore, {V a,n} is uniformly bounded and uniformly
equicontinuous with respect to A € (0, 00).

Proof. Asin the proof of Lemma 5, define M = AY2ZZTAY? ¢ R4 and N = n\I,,+Z "AZ €
R™*" Recalling ¥ = PAP" and X = ZTA'/2PT, we have

Vadan =0Etr [XEX T (nA, + XX )72
=0’Etr [ZTA’ZN 2]
=0’Etr [N~'ZTA?ZN ']
—o?E|[AZN[3. .

17
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Recalling Equation (23) yields
1 -
AZNT! =—AZ (1 — ZTAY2 (M + M) A1/2Z)
n

:%\Alﬂ (B = M AL+ M) ™) AV2Z
=AY2 (n\Iy+ M) AY2Z
Define R = AY/2Z € R¥*". We get
(Ml + M) "' AY2Z = (nAI;+ RRT) ' R.
Notice that if 0 < a < b, then al; + RR" < bI; + RR". We deduce
(bls+ RRT) = (al;+ RRT) = (* —a®) I+ 2(b—a) RR" 0.
2

Thus (bl4 + RRT)? = (aly+ RRT)?, which implies (bl + RRT) > < (als+ RRT) % We
get

RT (bly+ RRT) °R< R" (als+ RRT) R,
tr (RT (bla+ RRT) " R) < tr (RT (ala+ RRT) " R)

Let A () denote the smallest non-zero eigenvalue of a positive semidefinite matrix. We bound the
Frobenius norm

2
| AL+ 20y~ a2z
—tr (R (nAa+ RRT) ' R)
( im R (nAq+ RRT) R)
=tr (RT
—tr (Z27A2)"
< (272)".
It follows that
|AZN=1 5 = A2 (AL + )7 Al/QZHi < | maa+ )™ A1/2ZHi < (z72) =w(zz7)"

If n/d — 7 < 1, the matrix Z T Z is full-rank almost surely. Then, using the formula for the mean
of inverse Wishart distribution, we have E tr (ZTZ)+ =trE (ZTZ) R = tr < ) = 1. If

d— n 1
n/d — v > 1, the matrix ZZ T is full-rank almost surely. Similarly, we have E tr (Z A T)+ =
trE (ZZ T)fl = 1. By the dominated convergence theorem, we have limy_,o+ Vi an = Vo.d.n-
Moreover, V3 4, S E ||AZN*1H§7 <1.

~

Next we bound &V (6). Because ‘“(\17;1 =-N"1EN-1 = —nN~2, we deduce

HAZN P = itr( NT'ZTA’ZN™Y) = —2ntr (ZTA’ZN?) <0.
On the other hand, we have
tr (ZTA*ZN7?)
—tr ( 3/2ZTA2ZN*3/2)
tr (N 3/QZTAZJV—W‘Z)
tr (ZTAZN?)

>

s€spec(ZTAZ) (/\’I?, + S)

2N

18
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Because the number of non-zero eigenvalues of Z ' AZ equals rank (ZTAZ) = n A d < n, we get

2 s s
| X ntr (ZTAQZN_3) <n? max —— = max

‘d [AZN~ (A+5)°
X\ sespec(ZTAZ) ()\n + S) sEspec(ZTn#)\{o} (/\ + 8)

If v < 1, the matrix Z

is full-rank almost surely. By Equation (24) and Equation (25) in the
proof of Lemma 5, there exists universal positive constants C; and Cs such that spec (ZTAZ) -
[Cy, C’g] for all sufficiently large n and d such thatn/d — v < 1. If v > 1, the non-zero eigenvalues
of Z7AZ AZ and 2 are the same. The matrix 2 is full-rank almost surely. Thus spec (%) \{0} =

spec( ) Because y Aty <yTy,

\ M ' 2T Al/?zZTAl/?m . yT Z{y . yT ZiTy \ Al
n|— | =min———— =min————— 2 Ml ————— = Apin [ —— | .
e 240 xTx v£0 YT A—ly ~yz0  yly min

Similarly, we get

T
/\max (M> S )\max (ZZ ) .
n n

Therefore, there exists universal positive constants C; and C' such that

T r T T 7
spec (Z22) o0y € [ (£2) conmn (£2)]

Thus in both cases, we have shown that there exists universal positive constants C; and Cs such that
ZTAZ [ AN ZTZ\]
spec ( ) \ {0} € |C1 Amin ( - ) CoAmax ( - )

Define L1 = C1 Amin (%) and Ly = CyA\pax (%) As aresult, we get

|AZN | ’< max

‘d)\ selLiLa] (A + 5)°

Define f(s) = ﬁ Because f'(s) = (/\+S)4, the function f is increasing on [0, A\/2] and

decreasing on [\/2, +00). If A > 2Ls or A < 2L, we get
L L 1
max < 1L v 2 <

s€lLilo) A+ 8)° = A+ L) (A+Ly)* ~ L7
If2L; < A < 2Ls, we get

s 1 1
max —— < — < — .
s€[L1,La] (N + 5)3 YAz L%
As aresult, for all sufficiently large n, we have
gl = e S el Loy
d\ 2 s€[L1,Ls] ()\ + s) Ll )‘?nin (ZTZ>

where the final inequality is because of Lemma 3. We can exchange the expectation and differenti-
ation and obtain

d d 12
d}\VAdn:chEa [AZN7Y]
and J J
aVAdn SUQE‘CD\HAZN_
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C LEMMAS ON STIELTJES TRANSFORM

Definition 3 (Stieltjes transform). The Stieltjes transform of a distribution with cumulative distri-
bution function F' is defined by

1
sF(z):/A_ZdF()\) (zeH2{zcC|S2>0}).
Lemma 7 (Theorem 4.3 ( , )). Suppose that the entries of X,, € C"*P are
complex random variables that are independent for each n and identically distributed for all n

and satisfy E ||x11 — Exnﬂ = 1. Also, assume that T,, = diag(m,...,7,), 7 is real, and the

empirical distribution function of {71, ..., T,} converges almost surely to a probability distribution
function H as n — oo. The entries of both X,, and T,, may depend on n, which is suppressed for
brevity. Set B,, = A, + %XnTnX;, where X is the conjugate transpose of X,,, A, is Hermitian,
n x n satisfying F4» — F4 almost surely, where F is a distribution function (possibly defective)
on the real line. Assume also that X, T,, and A,, are independent. When p = p(n) with p/n —
y > 0asn — oo, then, almost surely, FBr, the empirical spectral distribution of the eigenvalues
of By, converges vaguely, as n — oo, to a (nonrandom) distribution function F, where for any
z € Ct ={z € C| Sz > 0}, its Stieltjes transform s = s(z) is the unique solution in C* 1o the

equation
I / TdH (1)
— o4 Y] 1575 )

where s 4 is the Stieltjes transform of F4.

Lemma 8. If the functions fo, go : I — R satisfy fo(x) — go(x) — O uniformly as « — +o0, then
limg— 400 (infzer f(x) — infrer g(x)) = 0.

Proof. Because f,(x) — go(x) — 0 uniformly as « — +o00, we have for Ve > 0, there exists IV (¢)
such that for Vo > N(e) and Vz € I, it holds that | f,(z) — ga(z)| < €. Therefore, we get

ga(x) — € < fo(x) < galx) + €.

Thus we obtain
inf fo(2) < fo() < ga(z) + €
xecl
inf o) — € < ga(r) — € < fa(2),
which in turn implies
. <
inf fo(2) < inf ga(2) + e
i —e<i .
a0 o= g felo)

It follows that |inf,c; fo(z) — infrer go(x)] < €. In other words, we proved

A (g 70 - pato)) =o.
O
Lemma 9. Define N = Anl,, + Z " AZ. Then we have
d Di
. —1y . e . )
A ) =g g s (e 30 )+ 30 (o (e 1) )
Cli/’n*)Z1 ZE[’I’TL] 16[771]
(26)

; 1 N ; Pi
n,d}ligoo ﬁlogdet o _plernlgil log | A+ Z Aipi | + Z (pi —z (Ingi + 1)) . (27

d; /n—z; i€[m] i€[m]
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Proof. Proof of Equation (26). We apply Lemma 7 with A, = 0, x,, X, = Z' € R**4,

T, = A, and B, = 1ZTAZ The distribution function of 0, converges to 1;<o and

its Stieltjes transform is sa(z) = [ P Zdl A<0 = f%. The empirical distribution function

of {\,...; A1, s Am - .,)\m} is Hyq,(t) = Zie[m] %L,S)\i. Recall d;/n — z;. Thus
—— ——

dy dm
di/d = z/K, where d/n — y = 3
H(t) = Zie[m] 214<x,. Then the empirical spectral distribution of the eigenvalues of VAN VA
converges vaguely to a nonrandom distribution function F’ and its Stieltjes transform is

z;. The empirical distribution function converges to

-1
1 1 —
s=s(z)= lim —tr <ZTAZ - zIn> = lim tr (ZTAZ — znly)
n

n,d;—+oo N n,d; —4oo
di/n=z; di/n=z,
(this is because of ( , , Theorem B.9)). By Lemma 7, s(z) is the unique solution

in CT to the equation
TdH(T) 1
S<Z):SA (Z_y/ ) = - iz )
L+7s 2= Y ieim) THoes)

/\izi
— =1,
s(2) | = _;} W
We want to prove Equation (26) first. The lefthand side of Equation (26) equals
lim  tr (Anl, +ZTAZ) " = s(=)).

n,d; —+00
di/n=z;

which gives

Because the matrix %Z TAZ is positive semidefinite and thereby all of its eigenvalues are non-
negative, its limiting spectral distribution is supported on [0, c0). The Stieltjes transform s(z) of
the limiting spectral distribution can be continuously extended to (—oo, 0). Therefore, for VA > 0,
s(—A) is the unique solution to the following equation

i % B
<A+Zl+>\s >_1. (28)

We will verify that

d .
o pler]kfi" log | A+ Z Ajpj | + Z <p3 log + 1))

satisfies Equation (28). Take a minimizer p* of Equatlon (5). Using the envelope theorem yields

d m m p 1
— inf |1 A Aipj i —2zj(log™L +1 = 29
ax pgﬂw og JFZ 3P3 +Z (PJ zj(log y + )> )\_’_Z;n:1 Nt (29)

j=1 j=1

Plugging the righthand side of Equation (29) into Equation (28), we get

-t — (XA + =1.
“ZJ—MJPJ( z—:ll“wlm>

Rewriting the above equation yields

\i%; T,
ZlJrA - _Z)\ipi'

i=1 /\+E'" Aip i=1

It suffices to show that each summand on the lefthand side equals its counterpart on the righthand
side

AiZi

o1
L+ X syt

= \ip; -
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‘We need to show

Zi 1
*,Lk =1+N —n V>
Pi >\+2j:1)\jpj

which is equivalent to Equation (6) and therefore holds. Hence we have proved Equation (26).
Proof of Equation (27). We use « to denote the indices n, d;. Define

m m
h(A) = inf (log [ A+ Z Ajpi | + Z (pj — zj(logZ—j + 1)>

ER™
PR i=1 i=1

First, we want to show that limy,_, y o (R(Ag) —log Ag) = 0. Define

) =log (1453 250 | + 3 (=5 (1082 1) ).
j=1 j=1 J

alp) = Zm:l (Pj —z (logZ +1>> :

The Hessian matrix of ¢(p) is diag (;—%, ceey Z:z: ), which is positive definite since z;, p; > 0. There-
fore, q(p) is convex and the minimum of ¢(p) on R is attained at p = z, where z = (21, .. ., Zm) |
The minimum is infyery q(p) = g(z) = 0. Because limy,), 100 lr,(p) = +o0, there ex-

ists a universal constant 1 > ||z]|, > 0 such that [y (p) > [),(z) for all ||p||, > K;. De-
fine E = {peR7||plly, <Ki}. Wehave z € E , inf,cply,(p) = infperye Ix, (), and
inf,ep q(p) = inf,erm q(p) = 0. Therefore, we get

h(ho) —log Ao = inf Ix,(p) = inf Iy, (p) — inf q(p). 30
(o) —log o = 1nf, 1ro(p) = Inf Dr(p) = il () (30)

On E, there exists a universal constant K5 > 0 such that jelml Ajp; < Ka. Thus on F, we
deduce

1 & K
0 < blp) —alp) =log [ 1+ 3=> Apj | <log (1 + AOQ) .
j=1
The right-hand side log (1 + If—;) — 0as A\g = +o00. Thus limy,— 100 (In,(p) —q(p)) = 0
uniformly for p € E. By Lemma 8, we get
li inf — inf =0.
i (fag o)~ nf o)) =0

Recalling Equation (30) yields
lim (h(Ag) —logAg) =0. 31)

Ao——+oo
Define f,(A) = Llogdet &. Second, we want to show lim, fo(A) = h(A), where lim, means
limy, 4, 5 +o0o. We have fo (A) — fo(Xo) = f::) fl(x)dx for VA, Ao > 0. It follows that
di/n:zi
[fa(A) = h(N)] < [fa(A) = h(A) + h(Ao) = fa(Xo) + fa(Ao) —log Ag + log Ag — h(Ao)|
< |fa(A) = h(A) + h(Ao) = fa(Xo)| + [fa(Ao) —log Ao| + [log Ao — A (o)
+ | fa(Ao) —log Ao| + [log Ao — h(Ao)] -

A
A fo(@)dz — (h(X) = h(Xo))

Taking lim sup,, on both sides gives

limsup |fo(A) — A(A)] < limsup

A
A fo(@)dx — (h(X) = h(Xo))

+limsup [ fa(Ao) — log Ao[+[log Ag — h(Xo)] .
(32)
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Recall f/(\) = trN~! and lim, f/(\) = R/(\) (this is exactly Equation (26)). Because
|tr N _1| =trN~1 < % and f /\’\0 %dw < 400, by the dominated convergence theorem, we have

A A
lim [ fl(2)dx = /}\ h'(z)dx = h(\) — h(Xo) .

a Mo
It follows that
A A
lim sup fh(z)dz — (R(A) — h(Xo))| = lim fr(x)dz — (h(A) —h(Xo))| =0. (33)
« Ao o Ao
Since

1 1 1 1
fa(Mo)—log Ao = flog det ()\ofn + ZTAZ>—10g det (Aol,) = — logdet (I + /\ZTAZ)
n 0

and the matrix - Z TAZ is positive semidefinite, we have

fa()\O) —log Ao > 0.

We have
f(x(>\0) - log )\0

1
=— log det (I + ZTAZ)
n )\0

1 At
<—logdet (I +ZTZ>
n /\0

T
<log (1 + )\—Jr)\max <ZZ>>
)\0 n

YANA
<2 ( ) :
n

Ao
Then taking lim sup,,, we get

. . As 777
limsup | fo.(Ao) — log Ag| = limsup (fo(Ao) —log Ag) < ™ lim sup Amax = <

1
0 )\0 ’
(34)

2
where the last inequality is because lim sup,, Amax (%) = (1 +4/7V %) = 1 by Lemma 1.

Using Equation (32), Equation (33) and Equation (34) gives
limsup [ fo(A) = h(A)| S N llog Ao — h(Ao)]| -
Then taking lim,_, 4. and recalling Equation (3 l) ylelds
lim [ fo(A) = A(A)| = limsup [ fa(A) — R(A)[ = 0.

Therefore, we conclude lim,, f,(\) = h(\).
O
Lemma 10. Define N = Anl, +Z"AZ = \nl, + Zie[m] N Z;Z". The following equation holds

. ) N1 @
n,d}fin[aA = o ol [log | A > A | + Z (pz_ (log“)) ’
di/n—z; - i€[m]
(35)
lim E o 1 detg_ o inf [log [ A+ ) A +Z lo —+1
ndioo DN ON DD OX;0N; peim |8 ipi &
d;/n—z; N 1€[m]
(36)
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Proof. Proof of Equation (35). We use « to denote the indices n,d; and use lim, to denote
limy, g, —+c0. Define fo(X;) = E [Llogdet X, f7(\;) = %E [Llogdet 2], and

h(A;) = inf [l A Aipi -—1-1—1
(M) pletﬂlw og —i—Z p +Z< z(og +)>
i€[m] i€[m]
We have
AN 1 Ay
logdet‘ — log det ()\In+)\+ > = log A + — log det (I —s—)\ZTZ)

By Lemma 3, there exists a universal constant C' > 0 such that for all sufficiently large n,

1
— logdet | I, —&-)\ 7277 <log 1+g .
n nA A

Therefore, we get

1 N
logdet’ <log(A+C) .
n n

By the dominated convergence theorem and Lemma 9 (specifically, Equation (27)), we obtain

hin fa(Ai) = h(N) . (37)

Because

1 _ 1
= —tr (z]N'Z;) < Tt (2] Z;)

8)\
and E [ﬁ tr (ZZT ZZ)} < +00, we can interchange the differentiation and the expectation and get

0 1 N 01 N
! S ) = —_ — = —_ —_
FL() a)\iE [n log det n} E {3)\1' - log det n} . (38)

Thus we deduce

4 [ logdetN} ’E[ 4 NHSE 0 logdetN’<E{1tr(Z;Zi)}.

o\ o\ n o\ n An?

By Lemma 4, Etr (Z; Z;) < n? and therefore E [11; tr (Z; Z;)] < +. The function sequence
{f.} is uniformly bounded.

Then we want to show that {f/} is uniformly equicontinuous by showing that {7} is uniformly
bounded. Because
‘ 0?1

1 AV
n logdet‘ ftr(ZTN 1Z) < ——tr <H>

n2 n

T .
and E [nf\g tr (%) } < 400, we can interchange the differentiation and the expectation and

get
0? 1 N 0 0 N 0% 1 N
6}\21}3{ log det ] B E{@)\ log det ] E[a/\z logdet] .
Therefore, we deduce

0? N 0% 1 Z; Z;
- <7
‘ )\2 [ log det H ]ET‘ )\2 — log det — ‘ Etr ( >

< 3z Therefore {f} is

~

Again, by Lemma 4, tr (Z Zi ) = n. It follows that — 1 sEtr (Z Zi )
uniformly equicontinuous.

We want to show lim,, f/ (\;) = A’ (/\ ) by contradiction. If it is not true, there exists € > 0 and
a subsequence {f,, } such that ’f’ — RN )| > e Let E = [a,b] 5 A\ (b > a > 0) be
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a closed interval that contains \;. The subsequence {f/,, } is uniformly bounded and uniformly

equicontinuous. By the Arzela-Ascoli theorem, there exists a subsequence { fh 5 } that converges

uniformly on \; € E. Recall lim,, fo(A\;) = h(\;) (Equation (37)). Thus lim; fak (i) = h(\p).
By ( s , Theorem 7.17), for A\; € E, we have

lim f7, (X)) =h'(Ni).
j J
This is a contradiction. Hence, we have shown that lim,, f ' (A\;) = W' (\;), which is exactly Equa-
tion (35) (recall f,(\;) = 22 E [ logdet ¥] =E [ Llogdet &¥'| in Equation (38)).

Proof of Equation (36). Define go(\;) = 55-E[%logdet ] = E [%%bg det %} Then
gL(Aj) = #ZMIE [Llogdet X = %]E [ S L Jog det N] We have

N
—lo gdet—

32
’6)\ OXin

1 _ _
=—tr (22 N'Z;Z]N71)

1 _ -
=—tr (2] N1 2,2 N"' Z;)

1 _ 2
S R

1
< IZiNZG N

1 2 2
S22 1Z; 115 11 Zill5 -
where the last inequality is because || N~ Hi < HTlnIanv = 53.. If i # j, by Lemma 4, we have

1
B IZIEIZ0E = 5B ZIE EIZIE S 55

If i = j, by Lemma 4, we have

2 1
A2n2 a2
As a result, we get
0% 1 1 1 1
logdet —| < = .p2. — = —
’axjml 08 e ’Nn "N TN

Thus we can interexchange % and expectation, and get ¢/, (\;) = E v 2/\ Liogdet ¥ } Be-

cause g, (N\;)] < E ‘ o3 ON; 1 L]og det & ’ 1z the function sequence {g/,} is uniformly bounded
for )\j.
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Define L = Z/ N™'Z;and W = Z] N~'Z;. We have

1
— st (2N (%,2]) N 2)

_ﬁ 12,2 N~ 2,

—)\nz N 1252711, 12405

<sa3 1227 I 12112

1 4 2
a5 1Zil3 1 Z:13

where the first inequality is because W < 1 L, TZ and the third inequality is because N ~* 1 wn

and then || N~ 1HF |1 HF < 55 By Lemma 4, we have E || Z; H2 <n?andE|Z; ||2 Sn If
i # j, then Z; and Z; are independent, and we deduce

1
4 2
w213 1205 S 55

If i = j, we have
1

)\ = 5ENZillz 1Zill5 = Pl K2 Iy < B

As aresult, we deduce E [a)\;a)\ Liogdet N} = %E {d/\ oY log det N} = gl/(A;). Moreover,

we have
3

0
8)\28)\

N
lgh(M\) <E 1ogdet F

Therefore {g,} is uniformly equicontinuous.

Define

0 i
w(A;) = ﬁplenf log | A+ Z Aipi | + Z <pl — 2 (logg+1)>

i1€[m]

We want to show by contradiction that lim,, g/,(A;) = w’()\;). Assume that it is not true. Then

there exists e > 0 and a subsequence {g/, } such that |g}, (\;) —w'(\;)| > €. Since {g}, } is
uniformly bounded and uniformly equicontinuous, by the Arzela Ascoli theorem, there is a subse-

quence { G, } that converges uniformly on a closed interval E containing \;. Equation (35) shows

that limg, go (Aj) = w(A;). It follows that lim, ga, (A;) = w(A;). By ( , , Theorem
7.17), for A\; € E, we have

lim g, () = w' (X)),

which is a contradiction. Therefore, we have shown that lim,, g/, (\;) = w’(};), which is exactly
Equation (36).

O
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D PROOF OF THEOREM 1

D.1 PROOF OF ITEM 1

Define g(p) = log ()\ +30 )\jpj) + > (pj — zj(log 22 + 1)) The func-
tion g(p) is continuously differentiable on R The boundary of R} is ORT =
{p e R™| (Vi e [m],p; >0)A(Jie[m]p =0)} Because limpms,poconr 9(p) =

limgy 5,00 g(p) = 400, there exists a minimizer p* € RY" of g(p).
Taking the derivative with respect to p; gives

m

log | A+ > Xjp;j | + (p'—zl(log3+1)> =—m——— +1-—.
ap; ; 3 Pj ]2: j J 25 )\+Zj=1)\jpj i

1

Setting it to zero gives Equation (6).

D.2 PROOF OF ITEM 2

Recall Equation (6)
)\i Z

A+ 35 AP P
Rewriting the above equation gives

(zi — p}) <A+ZAWZ> =Xip; , Vi€ [m].

k=1

Rewriting it in the linear algebraic form yields
(z—p ) (A+ATp") =r@p".
Applying 8% to both sides and using the implicit function theorem, we get
(z—p*) (P T +ATT) =T (A + ATp*) = diag (A) J + diag (p*) .
Arranging the above equation yields
(diag (A) + (A + /\Tp*) I, — (z—p") /\T) J=(z—p*)p*" —diag (p*) .

Define a = A + AT p*, A = diag (A) + (A + ATp*) I, = diag (X) + al,, and B = diag (\) +
A+ AXTp*) Iy, — (2= p*) AT = A— (z— p*) A" The matrix determinant lemma gives

det (B) = (1—ATA ! (z—p*)) det (A) .

Recall Equation (6) again and we have

Ai+a= Zz:l .
We have
a— Y Xip; (1-p}/z)
i€[m]
=X+ D0 Nior | = D2 o (1= pj /)
i1€[m] 1€[m]
=2+ > A .
2
i€[m)]
It follows that

Dicm Aipy (1= pi /i)
a

<1.
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Then we compute AT A~ (z — p*):

Ai (20 — py)

i€[m)] Pi
 Diepmy Aipi (L= p /i)
a

Thus we get 1 — AT A~ (z — p*) > 0. Therefore, det B # 0 and the matrix B is invertible.

<1.

D.3 PROOF OF ITEM 3

Lemma 11. Define N = \nl,, + ZTAZ, v =

and

1% T = (r1yeeosTm)y A= (A1, .., Am),

i€[m

I(re, T, A) 2rt\/ﬁ2n Z Vziri + Z 77n _
i€[m] i€[m] i€ m]

A
For any Ky > % and K, > M we have

lim trN'= lim EtrN!

n,d;—-+oo n,d; —~4oo
di/n—z; di/n—z;
= max min Y(rsyr,A) = min @ max  9(r,r,A) = max min ¥(r¢, r, A) = min max IH(re, T, A).
0<r, <K; 0<r; <K, 0<r; <K, 0<r <K, 7,20 7,0 >0 1>
(39)
If r* is a solution to the optimization problem in Equation (39), then
2
m
14+ r? = Zr Z+ |, (40)
Jj=1
* T>}< * T’L
Ty ——r“/zi—)\— “4n
\V 1+ E] 1’ ‘
Moreover, we have
r¥2
max min 9(rg, r, A !
o, ey mindlre T, A) = A2

Proof. Let g ~ N (0, I,,) be a multivariate standard normal random vector. We have

tr N1
:EggTNflg

=E, sup (Zg—rt - tTNt)
teR®

—E, sup (2th T ZTAZt — n) ||t\|§)
teR™

=E, sup inf (Qth —2u"AZt +u" Au —n\ Ht||§)
teRn uERC

1 1
= — 2K, inf TAZt—gTt— ~uTAu+ - ;
gtlel]%" sélﬂgd (u t—g't 5 U u—|—2n)\||t|\2

1 1
= — 2K, inf TZt—g"t— Su' At - 5
gtlerﬁw Sélﬂgd <u t—g't 5 U u+ 277,)\H1€||2
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We view

1 1
T T TaA— 2
tlelf]g jélﬂgd (u Jt—g t—iu A 1u+2n/\||t||2> (42)

as the primal optimization (PO) problem in the convex Gaussian min-max theorem (CGMT) (

The KKT conditions for Equation (42) give
ZTw—g+nit=0,
—A'u=0.
Solving the above equations gives
t=N"'g, u=AZN 'g.
With probability at least 1 — 4 exp(—cn) (¢ > 0 is a universal constant), we have ||g|, < 2y/n and

|Z|| < Vd+2y/n < (2 + /7) V. Therefore, we get

1 _ _
Il < [N ||9||27 ~2vn f

2 204 (2+ 7
lully < A4 1211ty < A 2+ vA) V- _ P 24V7),

Wl X\

U1
Write ©v = , where w; € R%. For all K; >
um
mal solutions ¢* and u* to Equation (42) satisfy /n||t*||, < K; and |u;l|, < K, for all
i € [m] with probability at least 1 — 4exp(—cn). Define S; = {t € R" | \/n||t||, < K;} and
Sy = {ue R |lu]| < Ky, Vi € [m]}. We use a to denote the indices n,d; and use lim, to

denote lim,, 4, s +oc. Define event

K. > 2X4 (2+/7)

> X , the opti-

)

NN

1 1
E, = { inf sup <uTZtht ' A+ n)\||t||2> = mf sup (uTZtht §uTA71u+ 2n/\||t§)} .
te

teR™ weRd uGS

Then with probability at least 1 — 4 exp(—cn), we have t* € S; and u* € S,,. Therefore the event
E,, occurs with probability at least 1 — 4 exp(—cn), which yields

P{ES} <4dexp(—cn).

Since ), -, 4exp(—cn) < +o0, by Borel-Cantelli lemma, we have

(&
P {limsup Eg} =P { (liminf Ea> } =0.
Then with probability 1, all but finitely many F, occur. Then almost surely there exists ng such that
for all n > ng, F, occurs.

The auxiliary optimization (AO) problem is

1+, 1 )
it sup (el 07w+ ol Tt =97t = 3T+ Jan o)
u€esS.

teS:
Hg \/Zie[m] rfng Z Hgl || Z 1
0<gl<Kto<§}l<pK \/ﬁ 2 Tt

ze [m]

1

1
—  inf sup 1+ Z 2||93H2 7 Z ngHz B Z )\712 5 :

0<r:<K¢ 0<r; <Ky ieml

where g1 ~ N(0,14), g2 ~ N(0,1,,), and g3 ~ N (0, In).
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Taking n, d; — +o0o with d; /n — z; constant, the strong law of large numbers gives

oyl [
i€[m] 1€[m]

S

||91,J||2 Hgl,gll2 oy
Define
2”93”2 IIgullg 1 Lo
Kot = o oo 52 il vr 3 Wit 5 57 1t

It is a stochastic process on (74, 1) € [0, K] x [0, K,]™. We have

1 1
th (re,r) = X (ry,r) = 1+Zr +7"tz\/>n 2+ M2

2
1€[m] i€[m] ze[m]

almost surely. Since /14 2 is convex and increasing and the function [[r|, is convex,

thus /1 + ||| is convex in r and then =/ 1+ Xieim r?%m = —\/1+]r |2Hfsf”27"

lgaally

. . 1 1 2 . .
is concave in r. Because —3 > o, %7 is concave in roand i} ic(., i s lin-

ear in r, we deduce that X, (r¢,r) is concave in r. By ( Lemma
7.75), supefo, i, | Xa (14,T) — X (re,v)| — 0 almost surely. Then for Ve > 0, there exists

no(e€), do,i(€), do,:(€) such that for all n > ng(e), d; > do(€), |di/n — 2| < do,i(€) and for all
r € [0, K,]™, we have

X (re,r) — € < Xo(r,r) < X (rg,1) + €.
Thus we obtain

X (re,r) —e < Xo(re,r) < sup  Xo(re,r)
ref0,K,]™

Xa(’l"t,r) <X(Ttar)+€g sup X(rtvr)+€7
rel0,K,]™

which in turn implies

sup X (Tta I‘) —€ S sup X (Tta )

ref0,K,]™ ref0, K, |
sup  Xo(ry,r) < sup  X(ryr)+e.
ref0,K,]™ ref0,K, )™

It follows that |sup,.c(o i, jm Xa(Tt,T) — SUPyefo, i, X (74, T)| < €. In other words, we showed

Yo (re) =Y (r¢)| = 0
almost surely, where Y (1) := sup,¢o g, m Xa (7t 1) and Y (1) = sup,¢jo ) X (74, T).

Because X, (74, r) is convex in 74, then Y (r4) = sup,¢(o k) Xao(re, ) is convex in 7. By (
, , Lemma 7.75) again, sup,, ¢jo x,] [Ya (1) — Y (r)| — 0 almost surely. A similar
argument shows that

ety Yo ) = B, Y )

7'1,6[07Kt] I'E[O K. ]m T‘f,E[O,Kf,] I'E[O,Ku]m

almost surely.
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Therefore, we obtain

. 1+ ., 1 )
inf sup ([t 90 u+llully g5t =gt — suT A" u+ SnAllt;
teSy wE Sy, 2 2

llgsll g1l 1 1 1
s, |1 e 3 ke 3 o

0<r <K 0<r; <K, i€[m) i€[m)]

B inf su 1+ i 2T — —ri + )‘7’ 43)
0<r, <K 0<r; EK 7,62171] ' zg‘n] \/7 Zgn] t
=.

Define event

1 1
Ay = { inf sup (uTZt —gt— iuTAflu + §n>\ t||§> — u’ > T} ,

teR™ | cRd

1 1
B, = f TZt—g "t — ZuT A u+ Zn|t)2 ) —
{tlensff:é) (u g t—gu A utondlitly ) —pf>70,

1 _ 1
Cor={|ing sup (Wl bl ot = gt = JuTausk g i) — > 7}

€5t ues,

Recall

1 1
E, = { inf sup <uTZt—th— u' A+ n)\||t||2> = mf sup (uTZt—th— §uTA*1u—|— 2n)\||t§)} .

teER™ | cRd Stues,

We have A, N E, C B,. Equation (43) gives lim, P{C,} = 0 for any 7 > 0 because almost
sure convergence implies convergence in probability. By the convex Gaussian min-max theorem
( , ), we have

P{B,} <2P{C,} .
It follows that
P{AL} < P{Ay N Ea}+P{ES} < P{Bo} +P{EC} < 2P{C,} +P{EC} .

Taking lim sup,, on both sides, because limsup, P{B,} < 2limsup, P{C,} = 0, we get

limsupP{A,} <limsupP{ES} <P {limsup E;} =0
where the second inequality is because of the reverse Fatou’s lemma. Thus

1 1
tle%l us;é)d (uTZt —g't— iuTAflu + 571)\ t||§> ER L.

Therefore, we deduce

Ta-1, R :
g N 'g— -2 inf sup 1+ i il = 7T * )\r
0<r <K 0<r; <K, lez;n] ' 762[7;] \/7 7€[m] t
1
= sup inf 1+ Ty —2r ZiTi + 77&12 —Ary
0<r, <K, 0<ri<Ky \/T t zez[n;] \F Z i t
= sup 1nf ﬂ(rrtv r, A) . (44)

0<r <K, 0<r; <K,

Because |[gT N~1g| < & llgll3 and E<L ||g|l5 = L < oo, by the dominated convergence theorem

for convergence in probability ( , , Proposition 3.1.6), we get
. -1 _ 7 Tar—1.71 _
hin tr N7 = h(in E, [g N g] = 0<I}n1ra<th 0<I7~I,H<nK I(re, T, A). (45)
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Note that 2r;, /1 + Zie[m] r? is convex in r, —2r, Eie[m] \/ZiT; is linear in r, and Zie[m] )\irf
is strongly convex in r. Thus ¢ is strongly convex in r. Note that 2r;,/1 + Zie[m] r? —

27y Zie[m] \/Z;Ti is linear in r; and that f)\rf is strongly concave in r;. Thus 4} is strongly concave
in 7;. Then 9 has a unique saddle point (r},r*) on [0, K;] x [0, K,]™ that satisfies

i I (re, 1) = 9 (7, d(rf,r"), 46
e emin O(mr) = min o omax 9 (r,r) =9 (1) (46)

where the first equality is due to Sion’s minimax theorem.
Since ‘tr N _1’ < i using the dominated convergence theorem and combining Equation (45) and
Equation (46) yields

limEtrN~'= max min 9(r;,r,\) = min  max 9J(rs,r, ).
a 0<r<K; 0<r; <K, 0<ri <K, 0<r;<K;

By the uniqueness of the limit, the right-hand side maxo<,,<x, Ming<,, <k, V(r¢, r, A) and
ming<y, <k, MaxXo<r, <k, V(r¢, r, A) do not depend on K; and K, as long as K; > %andKu >

w. Thus we have

limEtr N~ = max mln I(ry, v, A) = min maxﬁ(rt, r,A).
a re>0r; > r; >0 7r: >0
If ry = 0, then 9 (0,r%) = mineecpo,x,)m D icm +r? = 0. Thus r* must be zero. However,
9 (%, 0) = % > 9 (0,r*). Therefore r; > 0. We compute the partial derivative
oY ;
= 2 ——— - 2rt\/z7+2
" \/ 1+ Zze[m] 7’1-2
If r; =0, we have
oY
= -2rf\/z; <0.
87’2' r;=0,r¢=7} Tt \/Z

Therefore, one can increase 7} and make max, c[o, x,] Miny¢[o, &, ¥ (¢, T) smaller, which results
in a contradiction. Thus 7 > 0. Thus the minimax value is attained when 74, 7; > 0 for all ¢ € [m)].

To obtain the optimality condition, we compute the partial derivatives

By,
W:2/1+Zr§—2 > rivEi | =2,
¢ i€[m] 1€[m]

oY i
a - :2’[’t—r 27”t\/7+2i
" \/ L+ Zle [m] T
Setting them to zero gives the optimality condition for r;, 77, ..., and yields Equation (40) and

Equation (41).
Using the envelope theorem, we get
0
9 A
o e min (re,r, )
_00(rf, A, A)
B ONi

*2
T

A

Lemma 12. Define N = \nl,, + Z T AZ. The following equation holds

n,d; —-+oo
d; /n—>z,i

32
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where r* is a solution to sup,. .o inf,, ., >0V (re, 71,0, Tmy ALy .o, Am) and

D(resrs ooy Ty Aty Am) —27’t\/ﬁ—2ﬁ Z Vi + Z —7"2—/\1"?.
i€[m] 1€[m] Z

Proof. Since
9 1
ox r (V)

and E— E tr (Z 1 Z; ) /\2 (by Lemma 4), using the dominated convergence theorem gives

()\
E [ai tr (N‘l)] = B (N

We use « to denote the indices n,d; and use lim, to denote limy, 4, »4+00. Define fo(A;) =

=tr (2] N722) < —— tr (2 Z,) 47)

n

Etr (N1, o) = & infperp [log (A+ Sigpm Aii) + Siepm (01— 2 (log 2+ 1) )],
and h(\;) = sup,,soinfr, ;.50 9(re, 1, o Tms AL, ..o, Am). Because ’tr( | <
tr(-1,) < 5 and limg tr (N71) = g()\;) (by Lemma 9), we have Lemma 9 lim, fo();) =

limg Etr (N7') = g(X;). Lemma 11 shows lim, fo(\;) = h(X;). Therefore lim, fo(A;)
9(Xi) = h(X).

Because of Equation (47), we have f/,(\;) = 8 x (N~') and
0 0
L] = :@LM¢MN )

—~—Etr (N~

o B (V)

and therefore { f/,} is uniformly bounded for A;. Because
82

N}
=2tr (N~'2,Z/ N2,z N71)

O\

<E|xw

tr (N 1)

1 _ 2
St (N (zz) N
1 STN-27. 7T
—- 22/ N2 2,2])

<t (z:27)%,
—()\n)3 r( Z)

and E—~5 ( )\ G tr (Z Z T) = )\3 (by Lemma 4), using the dominated convergence theorem yields

E[;;tr(Nl)}ai [ai (Nl)] 88/\22E[tr(]\7 Ny

Moreover, we have
2

" 9 -1 1
2001 < B[ (v 5 55
Thus {f/} is uniformly equicontinuous for A;. We want to show that lim,, f,(\;) = ¢'(\;) by
contradiction. Assume that it is not true. Then there exists ¢ > 0 and a subsequence { f&k} such
that | f1, (X\i) — ¢'(\;)| > €. Since {f}, } is uniformly bounded and uniformly equicontinuous for
Ai € E (F is any closed finite interval containing A;), by the Arzela-Ascoli theorem, there exists

a subsequence { fém-} that converges uniformly on E. Since lim,, fo, (M) = g(Ai), by ( ,
, Thoerem 7.17), we have

lim f5, (Ai) = g'(N),

which yields a contradiction. Therefore, we have lim,, f/ (X\;) = ¢’(\;). Recall g()\;) = h(\;

for any A\; > 0. Then by the final part of Lemma 11, we have lim,, f/.(\;) = ¢'(N\;) = ' (N) =
*2

T O
22

i

33
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D.4 Bias

Lemma 13. Suppose that U ~ @, ¢(,,, Unif (O (d;)) and V' are two independent d x d random
matrices such that V 4 UVUT, where d = Z?il d;. Let § € RY pe a fixed vector. Write

61
0= , where 0; € R%. Let
O
¢~ €D Unif (8 (0:ll,)
i€[m]
be a random vector independent of V and let A = diag (A 14, .., Am1a, ) € R Then we have

zJaevel] =& [Jaevelf]

Proof. Recall UAU T = A and noticing U "6 < ¢, we get

Lemma 14. Define © = diag (|0|3/di1a,,- -, |00,]13/dmla,) and S =
AYV2Z (nAL, + ZTAZ)_1 ZTAY2. Then we have

Byan = 072 - 2E tr (Asé) +Etr (SAsé) .
Proof. Recall Equation (22) in Lemma 5

1 —1
Bran=E [AW (Id + n/\Al/QZZTAW) 9/||g] .

LetU ~ @ Unif (O(d;)) be a random matrix independent of Z. Because UZ L Z, we have

1€[m]

1 1 1
Ig+ —AYV2ZZTAV2 L 0 — N2UZzZTUTAY2 —=U (1, + —AYV2ZZ2TAY2 ) UT .
nA nA nA

Define 6 ~ Dicim) Unif (S%~1(]|6%]|2)). Lemma 13 gives

-1
Baan =E |[[AY/? (Id+1AA1/2ZZTA1/2> 9||%1
n

=E [|AV2 (1, - 5) B3]

=E [|| (s - $) 03]

:]EH@HZ _E [éTAsé} _E [éTSAé} +E {éTSASﬂ .

34



Under review as a conference paper at ICLR 2022

12
Notice that HO’ R

= ||¢'|3 and © = E {ééT} . Because © commutes with A, we have tr (SA(:)) =
tr (S(:)A) =tr (AS(:)). In light of these, we deduce
Baan= 0% —Etr (Asé) _Etr (SAé) Y Etr (SASé)

— 0% - 2Bt (Asé) +Etr (SAsé) .

Lemma 14 expresses the bias B) 4, as the sum of three terms.

Computing HQ’Hi Note that ||6’||i =0'TA = Dicm) i ||9;||§ Therefore,

li 7112 _ T ]
Ll IR =a" Ae)
111567 {1, —ma

Computing E tr (ASC:)) Define N = \nl,, + ZTAZ = Mnl,, + Zie[m] \iZ;Z;" . We have

E tr (Asé)
—Etr (27AY200Y2Z (nAl, + 270Z) )
—Etr (ZTAQ(:)ZN‘I)

/

i€[m]
N
=y )\2\\9’\\ [ —log det }
1€[m]
oo 0 N
_ T ElI -
; X2 16; szi o, [n og det n} ,

where the second inequality is because © commutes with A3/2 and the final equality is because of
Equation (38). Taking lim ,, 4,400 and using Lemma 10 gives

[ITL6% (| —ms
lim  Etr (Asé) = i 0 inf [log | A+ S x|+ > (o (log 21
Mdi = +00 , zi ON; peR i ’ 2
d; /n—z; i€[m] i€[m] i€[m]

ITL; 0[], —m;

Using the envelope theorem yields

o . pi p; Zi — p;
inf |log [ A+ ipi | + — 2z |log=— +1 = L = L
8/\1 pERT & Z pi Z ( < s Z5 )) A+ Zie[m] /\1/}: Ai

i€[m]
where the final equality is because of Equation (6) in Item 1. Therefore, we deduce

L jim B (AS(Z)) =y AZ”’ P ( ) =q" (Ao (z—pY).

. 7
di/nﬁzi ze[m] Ze[m
111567 |, —m:
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Computing E tr (SAS@) We have
Etr (SASé)
—Etr [A1/2ZN*1ZTAQZN*1ZTA1/2(:)}
—Etr [ZTAl/QéAlﬂZN_lZTAZZN_l}
—Etr [ZTAGZN 1ZTA2ZN~ }

1€[m] JjE[m]
Aill0f]13n op [ 9 N
ig{:] 4 jz[:]/\ B3,00 1 logdet— ,

where the third equality is because © commutes with A2, Taking lim ,, 4,—+oc and using
di/n—z;
ITL; 0% [y —m:
Lemma 10 gives

Jm B (5A86) =~ 37 ”77 Z 2 w . plenf log [ A+ > i | + Z] (pz ~z (log +1)>

di /n—z; i€[m] le[m] le[m
ITL.6° 5 —m:

Write A = (A1,..., ) " and z = (21,...,2m) . Let p* € R™ be a minimizer of Equation (5)

and J = %‘;\ € R™>™ be the Jacobian matrix J;; = 8 )\ . Recall Item 2

(diag(A) + A+ ATp*) Ly = (2= p")AT) T = (2= p*) p" T — diag (p*) .
Using the envelope theorem, we have

a . p* p’?
inf |log | A+ A + —z (log 2 +1 = L = .
Ox; perp |8 z?] . zez[n:z] <pl l ( : )> At Dierm Ap - A+ AT
Recall Equation (6) yields

* *
Pi _ R TP

AFATp N\
Differentiating the above equation with respect to A; gives

32
inf |log [ A+ Z N |+ Z (pl -2z (log+1)>
OXON; pery 1e[m] 1€[m)
8 Zq — pz
8>\ Y
—Xidij — (zi — p}) 0ij

N A2
It follows that
lim  Etr (SAsé)

n,d; —+oo
di/n—>zi
ITL: 67 || ,—ms

_ Z ’an Z )\2>\ J’L] + Zz pl)(slj

1€[m]

i — Pj) 0ij
5 (01 . )

i,j€[m]

=q' (A@ (z—p") + JA®?)
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Putting all three terms together, we have

dliﬁg_ Byan=4d A©2z2)-2q" A@(z—p))+d A0 (z—p")+JA?)=q" (A p* + JA®?) .
ITL:0% |, =i

Since {B) 4,n} is uniformly bounded and uniformly equicontinuous for A € (0,1] by Lemma 5,
{Bx,d,n} can be extended continuously to [0, 1] and the family of extended functions is still uni-
formly bounded and uniformly equicontinuous for A € [0,1]. By the Arzela-Ascoli theorem,
{Bh,d,n} converges uniformly to the limit. By the Moore-Osgood theorem, we can exchange the
two limits lim ,, g, 400 and limy_,o+ and get

di/n—>zi
ITL: 07 ||, —mi
: _ _ _ T * ©2
lim Bogn= lim lim By g4n= lim lim Brxgn=49q ()\G)p + JA )|>\:0.
n,d; —+oo 77 n,d; —4+oco A—0t A—0+ n,d;—4o0 ’7
di/n—z; d /n—z; d /n—z;
ITL;0™ ||y —m: ITL; 0% ||y —m: ITL:0™ (|, —m:

D.5 VARIANCE

Define N = n\I,, + Z " AZ. Recalling Lemma 6 gives
Wad.n
=0’E|AZN"|3

=0 NEtr(Z:2  N7?)

- 0
_ 2 2
=—0 ;:1 A E [8)\1 tr

)
Using Lemma 12, we get

lim V)\ d,n
n,d; —00
d; /n—)zL

m
— 2 2 : 0 —1
=—0 ;)\i n761l1riloo]E{a)\i tr (N~1)

di/n%zi

m 8 B
==t 3¢, B[ (V)

di/n—z;

2
=—0 Z)\Zﬁ)\a)\plenf log )‘+Z)‘JPJ +Z( — 2 log —|—1))

Using the envelope theorem, we deduce

o < - Pj 1
— inf |log [ A+ Ajpi | + i — 2z [log =L +1 = IS
O\ peRrr & ; iPi ;(pj j( gzj )) A+ 220N

Then we take % and obtain

2
mplenf log /\+Z)\jpj +Z( -z log +1)>

I
P; + 2 jem Nidji

(/\ + 2 jelm] /\jp}*)2
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As aresult,

S 22 it 2jerm Midii o2 (>‘®2)T (" +77A)

clllm V)\ dn = O’ i 3 \ )\T 3
n,d;—o0 . # *
di/n—z; i=1 <)\ + Zje[m} )‘jpj) A+ P

By Lemma 12, the variance is given by

d _ .
nclllrgooV,\dn:mltrgoo—aQZ)\QE [m r (N 1)] :O'2ZTZ-Q7

di/n—z; di/n—z, i=1

where r* solves

sup inf 1+ r? —2r n—i— —r —

Since {V 4.} is uniformly bounded and uniformly equicontinuous with respect to A € (0, 1] by
Lemma 5, {V) 4} can be extended continuously to [0, 1] and the family of extended functions
is still uniformly bounded and uniformly equicontinuous. By the Arzela-Ascoli theorem, {V) 4., }
converges uniformly to the limit. By the Moore-Osgood theorem, we can exchange the two limits

limy, 4,00 and limy_,o+ and get
dl/n%z,

m
lim lim V)gn,= lim lim Vig,= o? E 7‘:2 [x=0
n,d;—00 A—0+ A—=0+ n,di—oo0 /

d; /n%zI d; /n~>z1 =1

E PROOF OF THEOREM 2

We use Theorem 1 to prove Theorem 2. As in Theorem 1, let r* solve min,, >o max,,>o 9(r¢, r, A),
where ¥ is defined in Equation (7). Note that ¥ is a quadratic function of r;. Define A =

\/ Zie[m] T2 +1B = Z’ie[m] \/Z»ﬂ,i’ Ar = \/ Zle[m] ri? + 1, and B* Zie[m] \/ZT: Then

T = A/\B and we get
A-B)? 1 A-B)? 1
min max I(ry, v, A) = min A-By + —72 | = min A-By + —r?
ri >0 Ty > r; >0 A ] i r; >0 A ;
i€[m)] i€[m)]

Taking the partial derivative with respect to r; gives

o [ (A-B)? 1 ,\ . A-B/n
|l X vt = (

1€[m]

Setting it to zero gives the optimality condition for 7

A* — B* [ rf r¥ .
B (E-va)=-E e 48)
It follows that X
= VE i/
AT TVE NN e

* b)
E-vE TN

Some algebraic manipulation in the above equation yields

N JEAT -7

i,j € [m].
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Define z = (21,...,2mn). Then |z||, = 3, 2 By Cauchy-Schwarz inequality, if d/n —

2
B< | ailrlly < lirlly < y/lirll; +1 = A.

1€[m]

Thus there does not exist r such that A = B. If d/n — Zie[m] z; > 1, then A = B is feasible for

r. For example, set
1

(lzlly = 1) ll=zl,

lz]|,
B: = —_—
&VE) =\
5 1
1

If ||z]|, > 1, since A = B is feasible, then

Vz.

We have

. . 1 1 5
lim min —|— — = min —r.
A—0+ ;>0 )\Z n>0 i
i€[m] A=Bi€[m]

If ||z]|, < 1, then A — B always holds. To be precise, we have

=52 (Ve 1= el ) v (1= ) el ) -

2
If x|, > 1, then (1 — /Tz]l;) llrlly > 1— /2. If [[x]l, < 1. then \/||r[|? + 1—Ir[l, > v2—1.

Thus there exists a universal constant Co = (1 — /[[z[];) V (V2 — 1) > 0 such that
A—-—B>Cy.
Recall Equation (48). We have

*

r Art

A*— B | L —/z; | = -2L% ; .
(=) (5 -vE) = il
Taking limy_,q+, since A* — B* > C}, does not go to zero, we have

-z =0, ie[m].

Then we get
- € m)
= =%, € |m.
L2 jem 75
Summing all 7 € [m)] yields
Zze[m] :(2
z(l, =

1+ Zve[m] i

Therefore, we have
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F PROOF OF THEOREM 3

Define A* =, /Zze[m] r*?2 4+ 1and B* = Zie[m] z;r;. Equation (15) in Theorem 2 yields
o A VEaA -]

s Ay VZAY =15
Using the constraint A* = B*, we get

" _ M (VEB )

rs X (yzmB*—r13)

Define g = :—1 We have the following equation
2

g= )\1 (q(z1 — 1) + \/2’122)
A (qy/z122 + 22— 1)

Solving the above equation yields

_ AM (21 — 1) + A (1 — 2’2) + \/()\1 (Zl — 1) + Ao (1 — 2:2)) 244N Moz129
2)\2\/2122 '

Here we discard the negative root. Let z = {2 + 732 = 132 (1 + ¢?). ?? yields

L+z =15 (¢vz +V2)' = — (oWz + V)

Solving z from the above equation gives

(49)

xr = q2+1
q2(z1 — 1) + 2q\/2129 + 20 — 1 '
Therefore,
lim V1, = ¢+l
n,d;—+o00 0.dn q2(21—1)—|—2q\/zle—|—z2—1'

di/n—z;

G PROOF OF THEOREM 4

Instead of considering the §* specified in Equation (18), we first consider a Bayesian setting where
0* ~ N (0, %1). Later, we will show that the setup in Equation (18) is asymptotically (as d; — 00)
equivalent to this Bayesian setting. The precise meaning of equivalence will also be presented later.
Our strategy can be divided into two steps. The first step is to show that the Bayes risk of the
Bayes estimator is monotonically decreasing in the sample size n. The second step is to translate
the sample-wise monotonicity of the Bayes estimator to the excess risk of the optimally regularized

estimator ¢ 4 ,, in the setup of Equation (18).

Recall that since we are interested in sample-wise monotonicity, we add a subscript n to X and y
(they are defined by Equation (1) in Section 1.1) to emphasize that they consist of n data items. In
this Bayesian setting, the likelihood function of 6* is

* 2 9
iepn) (Wi — (07, X,.0% —y,
L(O" | Xn,yn) = ” L0" | zi,y:) O<€XP< il 202< ) ):eXp <_y2> .

202
i€[n]

The density of the prior of 6* is proportional to exp (—g |lo* H;) Therefore, the posterior density
of 6* is given by

dlo*l5  I1Xn0" — yall3
9* Xn n - 2 _ = s .
p(0" | Xn,yn) X exp ( 5 552
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As a result, the posterior distribution of §* is Gaussian. The Bayes estimator is
. ) 5
eBayes (Xn,Yn) = argemm IE:9*r\/p(9*|Xn,y7,,) ”9 -0 HE .

Taking the derivative with respect to 6 gives

0

* 12 *
%E9*~p(9*\xmyn) 10— 0 ||2 =2%(0-0%).

Setting the above equation to zero yields ¥ (§Bayes (Xn,¥n) = Egxopoe| me”)e*) = 0 and there-
fore

A * * . * Xng* —Yn ;
eBayes (Xn,Yn> = E9*~p(9*\Xn,yn)9 =K [9 | XnaYn] = arggmn (d ||9 ||§ + |02|2> .

The final equality is because the posterior mean of a Gaussian distribution equals its mode.

il

Define the Bayes risk

*

Rn £ EG*NN(OaéId)vay" |:H0BayeS (X"’y”) -0

Write X = R? and ) = R. Define

A 2
R 2 inf Eg- 1 (X _ot|l”
" é:X"xyn_)]R o N(O’Eld)ﬁxnayn ( naYn) .
We have
A 2
R = inf E,. $1/2) (X _s1/2ge
" é:X"xyﬂ*}Rd 0 NN(O’éIJLXnQ’n ( 717yTL) )
= if Epon(0.250) X0y |0 (Xn yn) — S1/20% 2
é:X”xy”_)Rd ’d yAnsYn )

2
= EG*NN(O,%Id),Xn,yn H]E [21/20* | Xnayn:| — 21/29*

2
2

= Ege on(0,470) Xy || 2 OBayes (X, yn) — 51267

=R,.

2

where the third equality is because the conditional expectation minimizes the ¢2 loss. Next, we want
to show that R,, 11 < R, i.e., the Bayes risk of the Bayes estimator is monotonically decreasing in
the sample size n.

2

b

Rn+1 = Goarntl irgl;fnJrl_ﬂRd EO*NN(O%Id),Xn+1,yn+1 |:H9 (Xn+17 yn+1) -0
2
z

Then we want to show that R,, equals the Bayes risk of the optimally regularized estimator GA,\m,d:

. A *
= é:anilyfn_”R]EG*NN(Ovéld)vXn+17Yn+l |:H0 (X”’y”) -0

=R,.

N 2
ﬁmd—eﬂ .
>

Fn = 10f Bgeon(0,414), X0 3

. 2
Since Ry, = infy, yn yn_pe Bov X,y ||0 (Xnyyn) — G*HZ, we get

. 2
Orm,a— 0"

Rn S )I\I;f(‘) EQ*NN(O7%Id);XTL7yn
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On the other hand, recalling éBayes (Xn,yn) = argmin, (d ||9|| + M) = 0,2,

S (Xnayn) - 9*

2
] , we deduce
b))

Rn = EH*NN(O,%Id);XTL’yn |:

R 2
ek,n,d -0

R, > ig% o o n(0,114). X,y

. 2
Therefore we deduce R, = infa>0 Ege nr0,21,),x, 3, ||Orn.a — 0 H . As a result, we establish
= sd »XnsYn > n

sample-wise monotonicity of the Bayes risk of optimal regularized 85 ,, 4:

N 2
9)\,n,d -0 . = Rn . (50)

~ 2
. .
Oxn+1,a — 0 HE < ;I;%Ee*,xmyn

Ry = )1\1;% Ep- X n41,¥n+1

In what follows, we show that if 8* is given by Equation (18), the excess risk of é,\,n,d is asymptoti-
cally equal to its Bayes risk when 6% ~ N(0, 21,):

Oxn,a— 0"

R 2 2
* _
Oxn,a—0 HE —Epn0,11)Ex,y, 2‘ =0.

S ‘]Exn,yn

. 2
We abuse the notation in the above equation. The 0* inEx y. |[0xn — 07 H satisfies Equation (18),

while the 0" in Eg. _x0,17,)Ex,.y.

Lemma 5 and Lemma 6, if ¥ = PAPT and §' = PTG* are as defined in Table 1 (where Pisan
orthogonal matrix and A = diag(A114,, ..., Amla,,) € R¥?is a diagonal matrix), for fixed 6* we
have

0 Anad — 0% H follows a normal distribution A(0, =1,). By

*
]EXVHYn 9>\7” -0 _EXn1Yn

-1
||A1/2<1+ A1/2ZZTA1/2> 9'||§]

+0%Ex,y, [IAZ (nl, + 27A2) ]

where every entry of Z € R4*™ follows i.i.d. N'(0,1). If * ~ N(0, 11,), we have 0’ ~ N(0, 11,).
Since the variance term 0?Ex, y. [||AZ (A, + ZTAZ)f1 ||§] does not depend on 6*, the two
variance terms cancel out and we get

X 2
Orm,a—0"

R 2
*
9)\,1’7,,(1 - 9 H - EQ*NN(O,éId)EXnQ’n

EXTL Yn

=Ex, y. |[[AY? (I + /\Al/QZZTAW) 9’||§1

—Ex, y.00~N0,11,) |AY/? (I + )\Al/zZZTAl/2> 9/||§1

For U ~ @;¢,,,; Unif (O (d;)), we have

—1 —1

—1
<1d+ Al/ZZZTAl/Q) <1d+ AI/QUZZTUTAUQ) U(Id+ Al/ZZZTAW) u'.

By Lemma 13, for * (and thereby 6’) specified in Equation (18), we get

EXTl)yTL ||[\1/2 <I + Al/2ZZTA1/2> 9’“2 - EXn;yna¢

-1
|AY2 (Id+ A”ZZZTAW) ¢||%],

where

o @ (50 ) - @ v (54 (V)

i€[m]
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In the Bayesian setting, if 6’ ~ N(0, 21;), then U 6" ~ N(0, 11,). We have

2

2 1 -1
Orm = 07| = Born(0,412) Xo 5 AY2U (Id + n/\Al/QZZTAl/2> ute

Eor oA (0.114). X0 3

2
2

—1
1
:Ememw A1/2 <Id+n/\A1/QZZTA1/2> ’l/)

2

where ¢ = U "6 ~ N (0, 11,).

Next, we want to couple ¢ and 9. Let s; " Unif (89:71(1)), hy S x?(d;), and define

\/dl/dsl I \/h /d81

V dm/dsm L V hm/dsm

©
|

S
|

We have ||¢||, = 1 and

NGE
ol
o &

Ti
—
S0 ‘s.

||1/’H2 =

) m
=1

NE

o &

m 2
6= bl = |3 1(1— )
=1

By the strong law of large numbers, limg, oo h;/d; = 1 almost surely. Thus we get

limg, st oo.d; 7dosws |Ulle = v/ Doreq vi and limg, 4 oo 4, 7d—sw, || — 1]l = 0 almost surely (re-
call that we will let d; — 400 and d;/d — v; for some constant v; > 0. ). Because

|AY2]], < 1 and H(Idenfl)\Al/zZZTAl/z)_lH < |4ll, = 1, we bound the norm of
2
Q2 AV2 (I, + L AV2Z27 AV2) ™ as follows

<1,

-1
Id + iAl/QZZTA1/2
nA )

@l < A2 |

It follows that
2 2
[Ex, o [IQ615] —Ex,uyw [IQUIE) |

2 2
<Ex, yoou |1Q613 — 1QuI3

=Ex, yno0 (1Q2]2 + Q1) Q4 = QU]
SEx, yasw (12l + [1912) QS = ¥)ll,]

SEX, v, ¢ — 1/’”2 )
where the last inequality is because ||¢||, + [|1[|, < 1 for all sufficiently large d;. We know that
limg, 4 00.d; /d—v; [|® — ¥|l, = 0 almost surely. To apply Lebesgue’s dominated convergence
theorem, we need to find a dominating integrable random variable. In fact, 1 + ||¢||, dominates

¢ —lly:

16 = Dlly < M18lly + 19l =1+ (191l -

It is integrable because E ||¢)||, = E {\/ dew)] < \/ w = 1. Application of Lebesgue’s

dominated convergence theorem yields

Ex, .0 [1Q01] —Ex,.y.. [IQuIE]| = 0

lim
d;—+00,d; /d—v;
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Therefore, we conclude that

Exmyn é)\,n,d — 0" =0

R 2 2
%
Oxn — 0 Hz —Egeno,11)Ex0 v ‘

lim
di—+o00,d; /d—v;

and this convergence is uniform in n and A € (0, 00). It follows that

o 2 N 2
Oxn.d — 9*HZ —Egen0.21)Ex0 v ||Orna — 0 HZ’ =0

lim ‘Emen
n,d; —oo
n/d7—>'yl

and this convergence is uniform in A € (0, o).

By Lemma 8 (the proof is similar when we replace « — 400 by n,d; — oo, n/d; — 7;), we have

N 2 " 2
lim |inf Ex o |6, d—e*H —inf By 10 0Ex o 60— 0% |=0. (51
nodi— 00 | >0 nYn n, s AS0 0*~N(0,%14) nYn s, 5 (5D
n/d;i—;

Define fo(A) = Bgepro,2 1B X,y Oxm.a — 0

Lemma 5 and Lemma 6, we have

2
. We use « to denote the indices n, d;. By
pX

2
R . 2
Oxn,a—0 Hz S Egeno,10) 16712 =1.

Eo a0, 11 Ex,y,

~ 2
Therefore { fo(A)} is uniformly bounded for A > 0. Since | 5B, . ||0x.n = 0" E‘ < [6%3 and
* 12
Eo-n0,21,) 107[)3 = 1, we have
d A e i A o
AX N O B Oxn =0 S ‘E9*~N(0751d)CD\EXn,yn Orn — 0 . <1.

As a result, {f,(\)} is uniformly equicontinuous for A > 0, and in particular A € (0, M] for any
M > 0. Therefore {f,(\)} can be extended continuously to [0, M] and the family of extended
functions is still uniformly bounded and uniformly equicontinuous. Recall that if 6* ~ A/ (0, é] d)s

we have 6/ ~ N(0, 21;). As in Equation (19), write 8’ in a row-partitioned form

0 = :
o

where 0, € R%. Then |[IL6*|, = [|6}], ~ \/XQEIdi) = \/XQd(fji) U as n,d; — +o0

—1
and n/d; — ;, where v; = (’yi > jeim] vi) . By Theorem 1, {f,(\)} converges pointwise, say,
J

to (A, 71, - -,Ym)- By the Arzela-Ascoli theorem, lim,, fo(A) = h(\, 71, ..., ¥m) uniformly on
A € [0, M]. Therefore, as n,d; — oo and n/d; — ~;, by Lemma 8, we have

. 2
Orn —0 . — Ael[rOl,fIL{] R\ Y15y Ym) -

inf Eg. 1\
A€E[0,M] 0*~N (0, 31a) " Xn:Yn

Recalling fpayes (X, ¥,) = arg min, (d 16]2 + “X{;Y") — 0,2, and

R 2
Oxn.a = 9*H2 '

~ 2
OBayes (Xns Yn) — 9*‘(2] = inf Bge pr0,114),X 0 30

Rn = EO*NN(O,éjd)an’yn |: A>0

2
For all M > C); = 202 > icim] % > 24 (recall 4 — > icim] %), we have
. N * 2 . N * 2
sy Bor N 0.4 1) Xy || PAomit =0 HZ = Il By on0,410EX0 v ||Oana =0

inf A(A .
HAEI[I[},M] ( » V15 7’Ym)
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The uniqueness of limits implies that infycio ar) 2(A, V1,...,Ym) is independent of M as

long as M > o2 As aresult, if M > Cuy, we have infycoag h(A 71, 9m) =

infy>o h(A, 71, -, ¥m), which yields

. 2
;\g%Ee*NN(O;éId)an&'n eA)n,d _9 HE — ig%h()ﬁ'}ﬁ,.,'ym) . (52)
Equation (50) implies infx>o h(A, 71, . .., ¥m) is decreasing in every ;. Combining Equation (51)

and Equation (52) gives

~ 2
inf E 0 —9*H s inf A1) -
fEx.y. |[0an 5 7 AL Ym)
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