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ABSTRACT

In this paper, we study the generalization risk of ridge and ridgeless linear regres-
sion. We assume that the data features follow a multivariate normal distribution
and that the spectrum of the covariance matrix consists of a given set of eigenval-
ues of proportionally growing multiplicity. We characterize the limiting bias and
variance when the dimension and the number of training samples tend to infinity
proportionally. Exact formulae for the bias and variance are derived using the ran-
dom matrix theory and convex Gaussian min-max theorem. Based on these formu-
lae, we study the sample-wise multiple descent phenomenon of the generalization
risk curve, i.e., with more data, the generalization risk can be non-monotone, and
specifically, can increase and then decrease multiple times with more training data
samples. We prove that sample-wise multiple descent occurs when the spectrum
of the covariance matrix is highly ill-conditioned. We also present numerical re-
sults to confirm the values of the bias and variance predicted by our theory and
illustrate the multiple descent of the generalization risk curve. Moreover, we the-
oretically show that the ridge estimator with optimal regularization can result in a
monotone generalization risk curve and thereby eliminate multiple descent under
some assumptions.

1 INTRODUCTION

The double/multiple descent phenomenon attracted recent research attention due to (Belkin et al.,
2019). This line of work focuses on the parameter-wise double/multiple descent phenomenon of
the risk curve (Bartlett et al., 2020; Tsigler & Bartlett, 2020; Belkin et al., 2019; 2020; Chen et al.,
2020a; Liang et al., 2020; Advani et al., 2020; Bös & Opper, 1998; Krogh & Hertz, 1992; Le Cun
et al., 1991; Mei & Montanari, 2019; Opper et al., 1990; Vallet et al., 1989; Watkin et al., 1993). The
classical learning theory shows that when the number of parameters (which reflects the model com-
plexity) increases, the test error (generalization risk) first decreases due to more fitting power, and
then increases due to overfitting. The generalization risk attains a peak at the interpolation threshold
(the number of parameters equals the number of data points so that the model interpolates the data).
This results in a U-shaped risk curve if we plot the test error versus the number of parameters. The
double descent risk curve posits that the risk will decrease (again) if one further increases the model
complexity beyond the interpolation threshold (Belkin et al., 2019). Thus there is a second descent
in addition to the first one in the U-shaped stage of the curve. Belkin et al. (2019) presented empiri-
cal results and showed the existence of such double descent behavior in the random Fourier features
model, the fully connected neural network, and the random forest model. Prior to (Belkin et al.,
2019), earlier studies of the shape and features of the risk curve in a number of contexts include
(Vallet et al., 1989; Opper et al., 1990; Le Cun et al., 1991; Krogh & Hertz, 1992; Bös & Opper,
1998; Watkin et al., 1993; Advani et al., 2020). Loog et al. (2020) presented a prehistory of the
double descent phenomenon. Belkin et al. (2020) proved the double descent curve in the Gaussian
model and the Fourier series model. Mei & Montanari (2019) theoretically established the double
descent curve of the random features regression. Bartlett et al. (2020); Tsigler & Bartlett (2020)
characterized the conditions for ridgeless and ridge linear regression problems, respectively, under
which the minimum-norm interpolants achieve near-optimal generalization risk. Liang et al. (2020)
showed that the test error of the minimum-norm interpolator of data in reproducing kernel Hilbert
space is upper bounded by a multiple descent curve as the model complexity increases. They also
presented a numerical result supporting that the test error itself exhibits a multiple descent curve.
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Chen et al. (2020a) proved that the multiple descent curve does exist for the minimum-norm inter-
polator in linear regression and that the curve can be even designed.

Following the parameter-wise double descent, research interest extended to epoch-wise and sample-
wise double descent (Nakkiran et al., 2020; Chen et al., 2020b; Min et al., 2021; Nakkiran et al.,
2021). Nakkiran et al. (2020) observed from their numerical result that the generalization risk ex-
periences a double descent as one keeps the model size fixed and increases the training time. They
called this observation epoch-wise double descent. Nakkiran et al. (2020) also noted sample-wise
non-monotonicity, which means that more data can hurt generalization. Nakkiran et al. (2021)
proved that for isotropic features, optimally regularized ridge regression yields a monotonic gener-
alization risk curve with more samples. Nakkiran et al. (2021) also showed that if the features are
formed by projecting high-dimensional isotropic data to a random low-dimensional space (say, d-
dimensional), the optimally regularized ridge regression has a monotonic generalization risk curve
with increasing d (the model size). Sample-wise non-monotonicity and double descent was also
observed in (Chen et al., 2020b; Min et al., 2021) in adversarially trained models. C ompared to
(Wu & Xu, 2020; ichi Amari et al., 2021; Dobriban & Wager, 2018; Richards et al., 2021), in what
follows, we highlight our contributions and the differences from them. First, our major contribu-
tion is providing a rigorous proof for the existence of sample-wise (test error vs. the number of
training samples) double and multiple descent in linear regression. However, (Richards et al., 2021)
only mentioned parameter-wise double descent (test error vs. model capacity) in their related work.
(ichi Amari et al., 2021) only mentioned epoch-wise (test error vs. training time) double descent
in Appendix A.2. Neither (Richards et al., 2021) nor (ichi Amari et al., 2021) mentioned multiple
descent. Second, we made and theoretically proved the observation that an ill-conditioned covari-
ance matrix is a sufficient condition for the existence of sample-wise multiple descent. To the best
of our knowledge, our work is the first paper that pointed this out. Third, we solved the Stieltjes
transform explicitly and derived explicit formulae for the risk and variance in our setup. In addition,
we also provided rigorous treatment to the ridgeless setting and also obtained explicit formulae for
it. Fourth, there is another difference between our paper and the papers that the reviewer mentioned.
(Wu & Xu, 2020; ichi Amari et al., 2021; Dobriban & Wager, 2018; Richards et al., 2021) assumed
a prior on the true linear model and takes expectation over the prior. In our paper, we do not assume
a prior on the true linear model and our risk does not take the expectation over a random true linear
model.

In the setting of generally anisotropic features, this paper gives an asymptotic characterization of the
generalization risk curve with more samples. The asymptotic regime is an approximation for large
n, d and can also shed light on practical machine learning problems. We first introduce our problem
setup.

1.1 PROBLEM SETUP

Data Distribution Let Σ ∈ Rd×d be a positive semi-definite matrix which is termed the covari-
ance matrix, and let θ∗ ∈ Rd. The eigenvalues of Σ are λ1, . . . , λm with multiplicity d1, . . . , dm,
respectively. We have d =

∑m
i=1 di. Assume that λ1, . . . , λm are fixed, distinct, all positive, and

do not depend on d (i.e., for all d, the eigenvalue of Σ are always λ1, . . . , λm). We assume the
following data distribution D for (x, y) ∈ Rd × R:

x ∼ N (0,Σ) , y = x>θ∗ + ε ,

where x and ε are independent and ε ∼ N (0, σ2). In practice, there are natural random variables
x that satisfy our assumption. For example, assume that we want to use machine A to measure the
length of several objects and use machine B to measure their temperature. The measured lengths
and temperatures follow an i.i.d. Gaussian distribution. However, the variance of measurement of
machine A is different from that of machine B. Then we consider the random vector formed by the
measurements x = (l1, . . . , ln, t1, . . . , tn), where li and ti are the length and temperature of object i,
respectively. This results in a block-structured covariance matrix. When we measure more objects,
the size of the covariance matrix tends to infinity. Second, the motivation came from (Nakkiran
et al., 2021). (Nakkiran et al., 2021) observed empirically in their Figure 2 that when the covariance
matrix has a block structure (specifically, there are only two fixed different eigenvalues 10 and 1),
the expected excess risk exhibits multiple descent. We quantitatively studied this observation and
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obtained the related formulae. The excess risk of an estimator θ ∈ Rd is given by

R(θ) = Ex,y∼D
[(
y − x>θ

)2 − (y − x>θ∗)2] .
Assume that the training data {(xi, yi)}ni=1 ⊆ Rd × R is drawn i.i.d. from D. Write

X =

 x>1
...
x>n

 ∈ Rn×d , y =

 y1

...
yn

 ∈ Rn . (1)

We have y = Xθ∗ + ε, where ε ∼ N (0, σ2In).

Ridge Estimator and Minimum-Norm Estimator

Definition 1 (Ridge estimator). The ridge estimator θ̂λ,n,d ∈ Rd (λ > 0) solves the following
minimization problem

min
θ∈Rd

1

n
‖Xθ − y‖22 + λ ‖θ‖22 .

Definition 2 (Minimum-norm estimator). The minimum-norm estimator (also known as the ridge-
less estimator) θ̂0,n,d ∈ Rd solves the following minimization problem

min
θ∈Rd

‖θ‖2 such that ‖Xθ − y‖2 = min
θ∈Rd

‖Xθ − y‖2 .

We are interested in the expected excess risk of θ̂λ,n,d, which is given by

Rλ,n,d = E
[
R
(
θ̂λ,n,d

)]
.

The expectation is taken over the randomness of the training data {(xi, yi)}ni=1.

Asymptotic Regime Let Πi ∈ Rd×d be the orthogonal projection to the eigenspace of λi. This
paper focuses on the asymptotic behavior of the expected excess risk of θ̂λ,n,d where n, di → +∞,
di/n→ zi (zi is a fixed positive constant), and ‖Πiθ

∗‖2 → ηi. In other words, we are interested in

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

Rλ,n,d .

1.2 OUR CONTRIBUTIONS

Our contributions are summarized as follows.

1. We obtain the formulae for the limiting bias and variance, and thereby the limiting risk.
We use two methods to obtain these formulae. Specifically, we obtain the limiting bias and
variance by solving the Stieltjes transform and computing its derivatives and antideriva-
tives. We also use convex Gaussian min-max theorem (CGMT) (Thrampoulidis et al.,
2015) to compute the limiting variance. The advantage of the CGMT method is that it is
more mathematically tractable for the ridgeless estimator. Through the CGMT approach,
we obtain a closed-form formula for the variance in the underparameterized regime and
simplify the formula for the variance in the overparameterized regime. Moreover, based on
the simplified formula, we deduce a closed-form expression for the variance if the covari-
ance matrix of the data distribution has two different eigenvalues.

2. We find and theoretically prove that sample-wise multiple descent happens when the co-
variance matrix has eigenvalues of very different orders of magnitude (thus the covariance
matrix is highly ill-conditioned).

3. We show that if the true linear model θ∗ satisfies ‖Πiθ
∗‖2 =

√
di
d , optimal regulariza-

tion (i.e., pick λ that minimizes the generalization risk of θ̂λ,n,d) results in a monotone
generalization risk curve—in other words, with optimal regularization, more data samples
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always improve generalization. Thus there is no sample-wise double or multiple descent.
This provides a theoretical proof of a phenomenon observed in (Nakkiran et al., 2021) that
optimal regularization can mitigate double descent for anisotropic data. Note that without
regularization, there will be a blow-up in expected excess risk when n = d (the linear
model exactly interpolates the data) and therefore, there is no samplewise descent across
the under- and over-parameterized regimes.

2 PRELIMINARIES

Notation Write [m] for {1, 2, . . . ,m}. Let i denote the imaginary unit. If x ∈ Rn and Σ ∈ Rn×n

is a positive semidefinite matrix, write ‖x‖Σ ,
√
x>Σx. For a vector x, let ‖·‖1 and ‖·‖2 denote

the `1 and `2 norm, respectively. Let � denote the Hadamard (entry-wise) product between vectors.
Write ‖ · ‖2 and ‖ · ‖F for the spectral matrix norm and Frobenius matrix norm, respectively. Let
4 denotes the Loewner order. For two square matrices A and B of the same size, write A 4 B
if B − A is positive semidefinite. Define spec (A) as the set of all eigenvalues of A. Let O(d) ={
A ∈ Rd×d | AA> = A>A = Id

}
denote the set of d × d orthogonal matrices. Define Sd−1(r) ,

{x ∈ Rd | ‖x‖2 = r}. Denote almost sure convergence by a.s.→, and convergence in probability plim

and P→.

Ridge Estimator and Minimum-Norm Estimator We begin with the equivalent characteriza-
tions of the ridge and minimum-norm estimator. An equivalent characterization of the ridge estima-
tor θ̂λ,n,d is

θ̂λ,n,d =
(
X>X + λnId

)−1
X>y = X>

(
λnIn +XX>

)−1
y . (2)

The second equality in Equation (2) is because of the Sherman–Morrison–Woodbury formula. A
proof of Equation (2) can be found in (Tsigler & Bartlett, 2020).

An equivalent definition of the minimum-norm estimator θ̂0,n,d is that θ̂0,n,d solves the following
minimization problem

min
θ∈Rd

‖θ‖2 such that X>Xθ = X>y .

Thus we have
θ̂0,n,d =

(
X>X

)+
X>y = X>

(
XX>

)+
y = X+y ,

where A+ denotes the pseudo-inverse of A. The second and third equalities are because of the
identity X+ =

(
X>X

)+
X> = X>

(
XX>

)+
. The minimum-norm estimator is the limit of the

ridge estimator θ̂λ,n,d as λ→ 0+:

θ̂0,n,d = lim
λ→0+

θ̂λ,n,d .

This is because of the identity limλ→0+

(
X>X + λnId

)−1
X> =

limλ→0+ X>
(
λnIn +XX>

)−1
= X+.

Bias-Variance Decomposition of Expected Excess Risk We first show that the excess risk of an
estimator θ equals the norm of θ − θ∗:

R(θ) = E(x,y)∼D

[(
y − x>θ

)2 − (y − x>θ∗)] = Ex
[(
x> (θ∗ − θ)

)2]
= E

[
(θ∗ − θ)> Σ (θ∗ − θ)

]
= E

[
‖θ∗ − θ‖2Σ

]
.

For the ridge estimator, the expected excess risk is

Rλ,d,n =E
[
‖θ∗ −X>(nλIn +XX>)−1(Xθ∗ + ε)‖2Σ

]
=E

[
‖(Id −X>(nλIn +XX>)−1X)θ∗ −X>(nλIn +XX>)−1ε‖2Σ

]
=E

[
‖(Id −X>(nλIn +XX>)−1X)θ∗‖2Σ

]
+ E

[∥∥X>(nλIn +XX>)−1ε
∥∥2

Σ

]
=E

[
‖(Id −X>(nλIn +XX>)−1X)θ∗‖2Σ

]
+ σ2E tr

[
XΣX>(nλIn +XX>)−2

]
,Bλ,d,n + Vλ,d,n . (3)
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For the minimum-norm estimator, the expected excess risk is
R0,d,n = E

[
‖θ∗ −X+(Xθ∗ + ε)‖2Σ

]
= E

[∥∥(Id −X+X
)
θ∗ −X+ε

∥∥2

Σ

]
= E

[∥∥(Id −X+X
)
θ∗
∥∥2

Σ

]
+ E

[∥∥X+ε
∥∥2

Σ

]
= E

[∥∥(Id −X+X
)
θ∗
∥∥2

Σ

]
+ σ2E tr

[(
X+
)>

ΣX+
]

, B0,d,n + V0,d,n . (4)
We call Bλ,d,n and B0,d,n the bias term, and call Vλ,d,n and V0,d,n the variance term. The bias and
variance for the minimum-norm estimator are the limit of their counterpart for the ridge estimator
as λ → 0+, i.e., limλ→0+ Bλ,d,n = B0,d,n and limλ→0+ Vλ,d,n = V0,d,n (this can be shown by
Lebesgue’s dominated convergence theorem, see our proof in Lemma 5 and Lemma 6, respectively).

3 MAIN RESULTS

3.1 LIMITING RISK AND SAMPLE-WISE MULTIPLE DESCENT

We study the limiting bias and variance for a linear regression problem in which the data distribution
follows a multivariate normal distribution, the spectrum of the covariance matrix exhibits a block
structure and tends to a discrete distribution. Thanks to the random matrix theory, we obtain the
formulae (presented in Theorem 1) for the limiting bias and variance, and thereby the total risk.

We use two methods to obtain these formulae. The first method is through the Stieltjes transform
of the matrix 1

nXX
>. The central quantity for computing the limiting bias and variance through

the first method is the solution ρ∗ to the optimization problem Equation (5) in Item 1 of Theorem 1.
Item 1 guarantees the existence of a solution and determines its optimality condition Equation (6).
Item 2 computes the Jacobian matrix of ρ∗ with respect to λi and provides a closed-form formula
to compute the Jacobian matrix. Equation (9) and Equation (10) in Item 4 give the formulae for
the limiting bias obtained by the first method. Equation (11) and Equation (12) give the limiting
variance.

The second method is through the convex Gaussian min-max theorem (CGMT) (Thrampoulidis
et al., 2015). The central quantity is the solution r∗ to the minimax optimization problem Equa-
tion (8) in Item 3. We use CGMT to obtain the formulae for the variance term. They are presented
in Equation (13) and Equation (14) in Item 4.
Theorem 1. The following statements hold:

1. There exists a minimizer ρ ∈ Rm+ that solves

inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

) . (5)

The minimizer ρ∗ satisfies
λi

λ+
∑m
j=1 λjρ

∗
j

+ 1− zi
ρi

= 0 , ∀i ∈ [m] . (6)

2. Let ρ∗ ∈ Rm be a minimizer of Equation (5) and J = ∂ρ∗

∂λ ∈ Rm×m be the Jacobian
matrix Jij =

∂ρ∗i
∂λj

. Then J is given by

J =
(
diag (λ) +

(
λ+ λ>ρ∗

)
Im − (z− ρ∗)λ>

)−1 (
(z− ρ∗) ρ∗> − diag (ρ∗)

)
and the matrix

(
diag (λ) +

(
λ+ λ>ρ∗

)
Im − (z− ρ∗)λ>

)
is always invertible.

3. Define r = (r1, . . . , rm), λ = (λ1, . . . , λm), and

ϑ(rt, r,λ) = 2rt

√
1 +

∑
i∈[m]

r2
i − 2rt

∑
i∈[m]

√
ziri +

∑
i∈[m]

1

λi
r2
i − λr2

t . (7)

5



Under review as a conference paper at ICLR 2022

For any Kt ≥ 2
λ and Ku ≥

2λ+(2+
√
γ)

λ , we have

max
0≤rt≤Kt

min
0≤ri≤Ku

ϑ(rt, r,λ) = min
0≤ri≤Ku

max
0≤rt≤Kt

ϑ(rt, r,λ) = max
rt≥0

min
ri≥0

ϑ(rt, r,λ) = min
ri≥0

max
rt≥0

ϑ(rt, r,λ)

(8)
and the above optimization problem has a solution.

4. Let r∗ = (r∗1 , . . . , r
∗
m) solve Equation (8). Define q =

(
η2

1/z1, . . . , η
2
m/zm

)>
and view

λ = (λ1, . . . , λm)
> as a column vector. The limiting bias is given by

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

Bλ,d,n = q>(λ� ρ∗ + Jλ�2) , (9)

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

B0,d,n = lim
λ→0+

q>(λ� ρ∗ + Jλ�2) . (10)

The limiting variance is given by

lim
n,di→+∞
di/n→zi

Vλ,d,n = σ2λ
�2>(ρ∗ + J>λ)

(λ+ λ>ρ∗)2
, (11)

lim
n,di→+∞
di/n→zi

V0,d,n = σ2 lim
λ→0+

λ�2>(ρ∗ + J>λ)

(λ+ λ>ρ∗)2
, (12)

lim
n,di→+∞
di/n→zi

Vλ,d,n = σ2
m∑
i=1

r∗2i , (13)

lim
n,di→+∞
di/n→zi

V0,d,n = σ2 lim
λ→0+

m∑
i=1

r∗2i . (14)

Figure 1 illustrates the theoretical and numerical values of the bias, variance, and total risk. We
observe a triple descent in Figure 1a where the covariance matrix has three blocks, and a quadruple
descent in Figure 1b where the covariance has four blocks. In the three-block example, we set λ3 �
λ2 � λ1 (λ1 = 1, λ2 = 100, λ3 = 1000). In the four-block example, we set λ4 � λ3 � λ2 � λ1

(λ1 = 1, λ2 = 100, λ3 = 104, λ4 = 107). For the values of other parameters, please refer to the
caption of Figure 1 Our findings provide an explanation for the occurrence of sample-wise multiple
descent: it occurs when the covariance matrix is highly ill-conditioned. Moreover, we find that the
generalization risk curve is continuous in ridge regression (λ > 0) while it blows up at n = d
in ridgeless regression (λ = 0). We can see the singularity (at n = d = 200) of the ridgeless
generalization risk curve in Figure 2a.

Following Theorem 1, we focus on the variance in the ridgeless case (λ = 0) and further study
the expressions in Equation (13) and Equation (14). We find that the variance exhibits sharply
different behaviors in the underparameterized and overparameterized regimes. Recall that we will
let n, di → +∞ and keep di/n → zi. Then d/n →

∑
i∈[m] zi. If lim d/n =

∑
i∈[m] zi > 1, we

are in the underparameterized regime. In this regime, the bias vanishes and therefore the risk equals
the variance. If lim d/n < 1, we are in the overparameterized regime.

Theorem 2. If d/n→
∑
i∈[m] zi > 1 and r∗ = (r∗1 , . . . , r

∗
m) solves

min
ri≥0

∑
i∈[m]

1

λi
r2
i subject to

√∑
i∈[m]

r2
i + 1 =

∑
i∈[m]

√
ziri ,

then we have an optimality condition for r∗:

r∗i
r∗j

=
λi
λj
·
√
ziA
∗ − r∗i√

zjA∗ − r∗j
, i, j ∈ [m] , (15)
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(a) Sample-wise Triple Descent
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(b) Sample-wise quadruple de-
scent

Figure 1: Figure 1a and Figure 1b illustrate sample-wise triple and quadruple descent, respectively.
We specify the parameters that we used as follows. Figure 1a: There are 3 blocks. We set d1 = 60 ,
d2 = d3 = 40, λ1 = 1, λ2 = 100, λ3 = 1000, ‖Π1θ

∗‖2 = ‖Π3θ
∗‖2 = 0.1 and ‖Π2θ

∗‖2 = 1. The
three descents occur at n = 36, 80, 136, respectively. Figure 1b: There are 4 blocks. We set d1 =
d2 = d3 = d4 = 40, λ1 = 1, λ2 = 100, λ3 = 104, λ4 = 107, and ‖Πiθ

∗‖2 = 0.01(i ∈ [4]). The
four descents occur at around n = 1, 37, 80, 120, 150, respectively. In the legend, the items starting
with “T.” are theoretical values predicted by Theorem 1. Items starting with “N.” are numerical
values. We plot two curves for the variance in Figure 1a. “T. Var1” is obtained by Equation (11) of
Theorem 1. “T. Var2” is obtained by Equation (13).

where A∗ =
√∑

i∈[m] r
∗2
i + 1. Moreover, we have limn,di→+∞

di/n→zi
V0,d,n = σ2 limλ→0+

∑m
i=1 r

∗2
i .

If d/n→
∑
i∈[m] zi < 1, then we have

lim
n,di→+∞
di/n→zi

V0,d,n = σ2

∑
i∈[m] zi

1−
∑
i∈[m] zi

.

.

Corollary 1. If m = 1 and d/n→ z1 > 1, we have limn,di→+∞
di/n→zi

V0,d,n = σ2 1
z1−1 .

Proof. In the case m = 1, we have r∗1 solves minr1≥0
1
λ1
r2
1 subject to

√
r2
1 + 1 =

√
z1r1. The

equality constraint gives r∗21 = 1
z1−1 . Then by Theorem 2, the limiting variance is σ2r∗21 = σ2 1

z1−1 .

In Theorem 2, we find that in the underparameterized regime, r∗ solves an equality-constrained
minimization problem. In the proof of Theorem 2, we see that the equality constraint is feasible
in the underparameterized regime but infeasible in the overparameterized regime. Moreover, we
present an optimality condition for r∗, which will be used in Theorem 3 to study the two-block
(m = 2) case. If the data distribution is isotropic (which means that the covariance matrix is a scalar
matrix), Collorary 1 shows that the limiting variance is σ2 1

z1−1 , which agrees with (Hastie et al.,
2019, Theorem 1).

In the overparameterized regime, however, we find that the limiting variance does not depend on the
spectrum {λ1, . . . , λm}of the covariance matrix and only depends on the noise intensity σ and the
ratios zi = lim di/n. This agrees with (Hastie et al., 2019, Proposition 2).

In Theorem 3, we study the case m = 2 and present a concrete closed-form formula for the limiting
variance in the overparameterized regime. Recall that the limiting variance in the underparameter-
ized regime has a closed-form σ2

∑
i∈[m] zi

1−
∑
i∈[m] zi

for general m, as shown in Theorem 2.

Theorem 3. If m = 2 and d/n→ z1 + z2 > 1, we have

lim
n,di→+∞
di/n→zi

V0,d,n = σ2 q2 + 1

q2(z1 − 1) + 2q
√
z1z2 + z2 − 1

.

7
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Figure 2: Figure 2a: We illustrate sample-wise triple descent of the variance term in ridgeless
regression (λ = 0). There are 2 blocks. We set d1 = 80 , d2 = 120, λ1 = 1 and λ2 = 100.
The two descents occur at around n = 125, 200, respectively. In the legend, “T. Var” denotes
the theoretical values predicted by Theorem 3. “N. Var” denotes the numerical values. Figure 2b:
Function f(ζ) defined in Equation (17) with σ = 1.

where

q =
λ1 (z1 − 1) + λ2 (1− z2) +

√
(λ1 (z1 − 1) + λ2 (1− z2)) 2 + 4λ1λ2z1z2

2λ2
√
z1z2

. (16)

We illustrate the theoretical values predicted by Theorem 3 (overparameterized regime) and Theo-
rem 2 (underparameterized regime) in Figure 2a and compare it to the numerical values.
Corollary 2 (Triple descent in the two-block case). Assume m = 2, z1 = z2, d/n→ ζ = 2z1, and
λ2/λ1 = %. Define f%(ζ) = limn,di→+∞

di/n→zi
V0,d,n. We have

f(ζ) , lim
%→+∞

fρ(ζ) =


σ2 ζ

1−ζ ζ < 1 ,

σ2
(

1
ζ−1 + 2

2−ζ − 1
)

1 < ζ < 2

σ2 2
ζ−2 ζ > 2

. (17)

There exists ζ1, ζ2, ζ3, ζ4 and %0 such that for all % > %0, we have f ′%(ζ1) < 0, f ′%(ζ2) > 0,
f ′%(ζ3) < 0, and f ′%(ζ4) < 0.

Proof. The case ζ < 1 is already given in Theorem 2. In the sequel, assume ζ > 1. Define q as in
Equation (16). We have

q =
ζ +

√
ζ2(%+ 1)2 − 4ζ(%− 1)2 + 4(%− 1)2 − (ζ − 2)%− 2

2ζ%
.

Recall Theorem 3, we get

f%(ζ) = lim
n,di→+∞
di/n→zi

V0,d,n =
2
(
q2 + 1

)
ζ (q + 1)

2 − 2 (q2 + 1)
=

2σ2

ζ (q+1)2

q2+1 − 2
.

Direct calculation yields

lim
%→+∞

f%(ζ) =


σ2 ζ

1−ζ ζ < 1 ,

σ2
(

1
ζ−1 + 2

2−ζ − 1
)

1 < ζ < 2

σ2 2
ζ−2 ζ > 2 .

,

g(ζ) , lim
%→+∞

f ′%(ζ) =


σ2 1

(ζ−1)2 ζ < 1 ,

σ2 ζ2−2
(ζ2−3ζ+2)2 1 < ζ < 2

σ2 −2
(ζ−2)2 ζ > 2 .

,

8
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The function g(ζ) > 0 if ζ ∈
(√

2, 2
)

and we have g(ζ) < 0 if ζ <
√

2 or ζ > 2. Pick ζ1 > 2 >

ζ2 >
√

2 > ζ3 > 1 > ζ4. Then we have g(ζ1) < 0, g(ζ2) > 0, g(ζ3) < 0, and g(ζ4) > 0. There
exists %0 such that for all % > %0, we have f ′%(ζ1) < 0, f ′%(ζ2) > 0, f ′%(ζ3) < 0, and f ′%(ζ4) < 0.

Collorary 2 theoretically proves that there exists triple descent when m = 2 and λ2 � λ1. Note
that a larger ζ = lim d/n reflects a relatively smaller n. If f ′%(ζ) < 0, then f%(ζ) decreases on
a neighborhood of ζ and therefore the limiting variance increases with a relatively larger n. As n
becomes relatively larger, we see an increasing stage, a decreasing stage, and finally an increasing
stage in order in the overparameterized regime (n < d). When we further increase n and enter
the underparameterized regime, we observe a decreasing stage. We illustrate f(ζ) in Figure 2b. In
Figure 2b, we observe two singularities at ζ = 1 and ζ = 2.

3.2 OPTIMAL REGULARIZATION MONOTONIZES GENERALIZATION RISK CURVE

Recall the definition of the ridge estimator in Definition 1. Since this subsection concerns sample-
wise monotonicity, we add a subscript n toX and y (they are defined by Equation (1) in Section 1.1)
to emphasize that they consist of n data items. Therefore we write

θ̂λ,n,d , arg min
θ

1

n
‖yn −Xnθ‖22 + λ ‖θ‖22 .

In this subsection, under an assumption, we show that optimal regularization (i.e., pick λ that min-
imizes the generalization risk of θ̂λ,n,d) results in a monotone generalization risk curve—in other
words, with optimal regularization, more data always reduces the generalization risk. The assump-

tion is that ‖Πiθ
∗‖2 =

√
di
d , i.e., the squared norm of the projection of θ∗ onto each eigenspace of

the covariance matrix is proportional to the dimension of that eigenspace. (Nakkiran et al., 2021)
showed by numerical results that optimal regularization can mitigate double descent for anisotropic
data distribution. We give a partial theoretical proof of their observed phenomenon.

To ease the notation, we use γi , limn/di rather than zi , lim di/n in Theorem 4 because a larger
γ reflects a relatively larger n (in the limit). Theorem 4 shows that with the optimal regularization,
the limiting risk is an increasing function of γ1, . . . , γm.

Theorem 4 (Optimal regularization). If

‖Πiθ
∗‖2 =

√
di
d
, (18)

then there exists a function g(γ1, . . . , γm) such that g(γ1, . . . , γm) is increasing in every γi and

lim
n,di→∞
n/di→γi

inf
λ>0

EXn,yn
∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ
= g(γ1, . . . , γm) .

4 CONCLUSION

We studied the generalization risk (test error) versus the number of training samples in ridgeless
regression. Under the assumption that the data distribution is Gaussian and the spectrum distribu-
tion of its covariance matrix converges to a discrete distribution, we obtained the exact formulae
for the limiting bias and variance terms using the random matrix theory when the dimension and
the number of training samples go to infinity in a proportional manner. Using these formulae, we
proved the sample-wise multiple descent phenomenon of the generalization risk curve.Moreover, we
theoretically showed that the ridge estimator with optimal regularization can result in a monotone
generalization risk curve and thereby eliminate multiple descent under some assumptions.
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Notation Comments
Σ = PΛP> Rd×d Covariance matrix of data
P O(d)
Λ = diag(λ1Id1

, . . . , λmIdm) Rd×d
θ′ , P>θ∗ Rd

X = Z>Λ1/2P> = (x1, . . . , xn)
> Rn×d xi ∼ N (0,Σ)

Z = (Z1, . . . , Zm)
> Rd×n Zi ∈ Rn×di . Each entry follows N (0, 1).

Table 1: Notation

A EIGENDECOMPOSITION AND MORE NOTATION

Write Σ = PΛP>, where P is an orthogonal matrix and Λ = diag (λ1Id1 , . . . , λmIdm) ∈ Rd×d is
a diagonal matrix. Write λ− = mini∈[m] λi and λ+ = maxi∈[m] λi. We can generate x1, . . . , xn
from standard normal random vector zi ∼ N (0, Id) by setting xi = PΛ1/2zi. Therefore, if Z =
( z1 . . . zn ) ∈ Rd×n,we get

X> = ( x1 . . . xn ) = PΛ1/2 ( z1 . . . zn ) = PΛ1/2Z .

Take the transpose gives X = Z>Λ1/2P>. Note that every entry of Z ∈ Rd×n follows i.i.d.
N (0, 1). Write Z in a row-partitioned form

Z =

 Z>1
...
Z>m

 ,

where Zi ∈ Rn×di . Write P in a column-partitioned form

P = ( P1 . . . Pm ) ,

where Pi ∈ Rd×di . Recall that Πi ∈ Rd×d denotes the orthogonal projection to the eigenspace of
λi. We have Πi = PiP

>
i . Define θ′ , P>θ∗ and write it in a row-partitioned form

θ′ =

 P>1 θ
∗

...
P>mθ

∗

 =

 θ′1
...
θ′m

 , (19)

where θ′i ∈ Rdi . Then ‖θ′i‖2 =
∥∥P>i θ∗∥∥2

=
∥∥PiP>i θ∗∥∥2

= ‖Πiθ
∗‖2. We summarize part of the

notation above in Table 1.

B BIAS AND VARIANCE UNDER EIGENDECOMPOSITION

Lemma 1 characterizes the smallest and largest eigenvalue of Z>Z
d (if n/d → γ < 1) and ZZ>

n (if
n/d→ γ > 1). Recall that we study the asymptotic regime di/n→ zi. Therefore γ = 1∑

j∈[m] zj
.

Lemma 1 ((Bai & Yin, 2008, Theorem 2)). Let Z ∈ Rd×n be a random matrix whose entries are
i.i.d. N (0, 1) random variables. As n, d→ +∞, n/d→ γ ∈ (0, 1), we have

limλmin

(
Z>Z

d

)
= (1−√γ)

2
, limλmax

(
Z>Z

d

)
= (1 +

√
γ)

2

almost surely. If γ ∈ (1,∞), as n, d→ +∞, n/d→ γ, we have

limλmin

(
ZZ>

n

)
=
(

1−
√

1/γ
)2

, limλmax

(
ZZ>

n

)
=
(

1 +
√

1/γ
)2

almost surely.

12
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Lemma 2 (Corollary 5.35 (Vershynin, 2010)). Let A be an N × n matrix whose entries are in-
dependent standard normal random variables. Then for every t ≥ 0, with probability at least
1− 2 exp

(
−t2/2

)
one has
√
N −

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ t ,

where smin(A) and smax(A) are the smallest and largest singular value of A.

Lemma 3. Let Z ∈ Rd×n be a random matrix whose entries are i.i.d. N (0, 1) random variables,
where d = d(n) satisfies limn→∞

n
d(n) = γ. There exists universal positive constants C1, C2, N

such that for all n > N , we have

0 < C1 <
1

n
s2

min(Z) ≤ 1

n
s2

max(Z) < C2 .

Proof. Since d(n) � n, with loss of generality, we assume n/d → γ ∈ (0, 1). Take t = c1
√
n in

Lemma 2, where c1 = 1
2

(
1√
γ − 1

)
> 0. With probability at least 1− 2e−c

2
1n/2, we have

√
d−
√
n− c1

√
n ≤ smin(Z) ≤ smax(Z) ≤

√
d+
√
n+ c1

√
n .

Therefore, we deduce(√
d

n
− 1− c1

)2

≤ 1

n
s2

min(Z) ≤ 1

n
s2

max(Z) ≤

(√
d

n
+ 1 + c1

)2

.

Define C1 = 1
8

(
1√
γ − 1

)2

> 0 and C2 =
(

3√
γ + 1

)2

. Then there exists a universal constant N1

such that for all n > N1, with probability at least 1− 2e−c
2
1n/2, we have

0 < C1 <
1

n
s2

min(Z) ≤ 1

n
s2

max(Z) < C2 .

Define event En =
{
C1 <

1
ns

2
min(Z) ≤ 1

ns
2
max(Z) < C2

}c
. Then we have Pr {En} ≤ 2e−c

2
1n/2.

Since
∑
n≥1 Pr {En} ≤

∑
n≥1 2e−c

2
1n/2 < ∞, then the probability that infinitely many of En

occur is 0, i.e.,

Pr

{
lim sup

n
En

}
= 0 .

Therefore, there exists a universal constant N2 such that for all n > N2, En does not happen, in
other words,

0 < C1 <
1

n
s2

min(Z) ≤ 1

n
s2

max(Z) < C2

holds.

Lemma 4. Let Z ∈ Rd×n be a random matrix whose entries are i.i.d. N (0, 1) random variables,
and let p be a fixed positive integer which is viewed as a constant and hidden in .. If n � d, we
have E tr

(
ZZ>

)
� n2, E tr

(
ZZ>

)2 � n3, and E ‖Z‖p2 . np/2.

Proof. We have
E tr

(
ZZ>

)
= E ‖Z‖2F =

∑
i∈[d],j∈[n]

Ez2
ij = nd � n2 .

Write Z =

 z>1
...
z>d

, where zi ∈ Rn and zi ∼ N (0, In). We have E
(
z>i zi

)2
= E ‖zi‖42 =

n(n + 2). For i 6= j, we deduce E
(
z>i zj

)2
= E

(
‖zi‖2 ‖zj‖2 u

>v
)2

where u, v ∼ Unif
(
Sn−1

)
and ‖zi‖2 , ‖zj‖2 , u, v are independent. Then we get

E
(
‖zi‖ ‖zj‖ s>i sj

)2
= E ‖zi‖22 ‖zj‖

2
2

(
s>i sj

)2
= n2Eu2

1 = n2 · 1

n
= n .

13
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As a result, we have

E tr
(
ZZ>

)2
= E

∥∥ZZ>∥∥2

F
=
∑
i,j∈[d]

E
(
z>i zj

)2
= dn(n+ 2) +

(
d2 − d

)
n � n3 .

By (Vershynin, 2018), there exists a universal constant C > 0 such that for any t > 0,
P
{
‖Z‖2 > C

(√
n+
√
d+ t

)}
< 2e−t

2

. Define K = C
(√

n+
√
d
)

. Then we have

P {‖Z‖2 > K + t} < 2e−t
2/C2

. (20)

Recall Γ(z) =
∫∞

0
xz−1e−xdx. Setting t = C

√
u in the equation below yields∫ ∞

0

e−t
2/C2

tp−1dt .
∫ ∞

0

e−uu
p
2−1du = Γ

(p
2

)
� 1 .

Then we can bound the following integral∫ ∞
K

P {‖Z‖2 ≥ t} pt
p−1dt

=

∫ ∞
0

P {‖Z‖2 ≥ K + t} p (t+K)
p−1

dt

.
∫ ∞

0

e−t
2/C2

(t+K)
p−1

dt

.
∫ ∞

0

e−t
2/C2 (

tp−1 +Kp−1
)
dt

=

∫ ∞
0

e−t
2/C2

tp−1dt+Kp−1

∫ ∞
0

e−t
2/C2

dt

.n
p−1

2 ,

where the first inequality is because of Equation (20). We are in a position to bound E ‖Z‖p2:

E ‖Z‖p2

=

∫ ∞
0

P {‖Z‖p2 ≥ u} du

=

∫ ∞
0

P {‖Z‖2 ≥ t} pt
p−1dt

=

∫ K

0

P {‖Z‖2 ≥ t} pt
p−1dt+

∫ ∞
K

P {‖Z‖2 ≥ t} pt
p−1dt

.np/2 + n(p−1)/2

.np/2 ,

where the first inequality is because∫ K

0

P {‖Z‖2 ≥ t} pt
p−1dt ≤

∫ K

0

ptp−1dt = Kp . np/2 .

Lemma 5. The following equation for the bias term Bλ,d,n (defined in Equation (3)) holds

Bλ,d,n =E
[
‖Λ1/2

(
Id − Λ1/2Z

(
nλIn + Z>ΛZ

)−1
Z>Λ1/2

)
θ′‖22

]
(21)

=E

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

θ′‖22

]
. (22)

Moreover, we have |Bλ,d,n| . ‖θ∗‖22 and limλ→0+ Bλ,d,n = B0,d,n. For all sufficiently large n and
d such that n/d → γ ∈ (0, 1), we have 0 ≤ d

dλBλ,d,n . ‖θ∗‖22. Therefore, {Bλ,d,n} is uniformly
bounded and uniformly equicontinuous with respect to λ ∈ (0,∞).
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Proof. Introduce the shorthand notation M = Λ1/2ZZ>Λ1/2 ∈ Rd×d, A = Id + 1
nλM ∈ Rd×d,

N = nλIn + Z>ΛZ ∈ Rn×n, and Q = Id − Λ1/2ZN−1Z>Λ1/2 ∈ Rd×d. Because

X>(nλIn +XX>)−1X = PΛ1/2Z
(
nλIn + Z>ΛZ

)−1
Z>Λ1/2P> ,

we have

Bλ,d,n =E
[
‖(Id − PΛ1/2Z

(
nλIn + Z>ΛZ

)−1
Z>Λ1/2P>)θ∗‖2PΛP>

]
=E

[
‖Λ1/2

(
Id − Λ1/2Z

(
nλIn + Z>ΛZ

)−1
Z>Λ1/2

)
θ′‖22

]
=E

[
‖Λ1/2Qθ′‖22

]
.

Using the Sherman–Morrison-Woodbury formula yields

N−1 =
1

nλ
In −

1

(nλ)
2Z
>Λ1/2

(
I +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

Λ1/2Z

=
1

nλ

(
In − Z>Λ1/2

(
nλId + Λ1/2ZZ>Λ1/2

)−1

Λ1/2Z

)
=

1

nλ

(
In − Z>Λ1/2 (nλId +M)

−1
Λ1/2Z

)
. (23)

It follows that

Q =Id − Λ1/2ZN−1Z>Λ1/2

=Id −
1

nλ
Λ1/2Z

(
In − Z>Λ1/2 (nλId +M)

−1
Λ1/2Z

)
Z>Λ1/2

=Id −
M

nλ

(
Id − (nλId +M)

−1
M
)

=Id −
M

nλ

(
Id − (nλId +M)

−1
(nλId +M − nλId)

)
=Id −M (nλId +M)

−1

=

(
Id +

1

nλ
M

)−1

=A−1 .

Therefore, we deduce

Bλ,d,n = E

[
‖Λ1/2

(
Id +

1

nλ
M

)−1

θ′‖22

]
= E

[
‖Λ1/2A−1θ′‖22

]
.

Because
∥∥Λ1/2

∥∥
2
. 1 and

∥∥∥(Id + 1
nλΛ1/2ZZ>Λ1/2

)−1
∥∥∥

2
≤ 1, we have

‖Λ1/2A−1θ′‖22 . ‖θ′‖22 = ‖θ∗‖22 .

Therefore |Bλ,d,n| . ‖θ∗‖22. Moreover, by the dominated convergence theorem,

lim
λ→0+

Bλ,d,n = B0,d,n .

We compute the derivative of A−1:

dA−1

dλ
= −A−1 dA

dλ
A−1 =

MA−2

nλ2
.

The matrix M
n = Λ1/2ZZ>Λ1/2

n ∈ Rd×d is positive semidefinite and its d − n smallest eigenvalues
are zeros. Its non-zero eigenvalues are the same as the non-zero eigenvalues of Z

>ΛZ
n . Because all

eigenvalues of Z
>ΛZ
n are positive almost surely, the spectrum of Mn consists of d− n zeros and the
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spectrum of Z>ΛZ
n . We study the range of the spectrum of Z>ΛZ

n . Because λ− Z
>Z
n 4 Z>ΛZ

n 4

λ+
Z>Z
n , we deduce

λmin

(
Z>ΛZ

n

)
≥ λ−λmin

(
Z>Z

n

)
→ λ−

(
1−

√
1/γ
)2

(24)

λmax

(
Z>ΛZ

n

)
≤ λ+λmax

(
Z>Z

n

)
→ λ+

(
1 +

√
1/γ
)2

. (25)

Define L1 = λ−λmin

(
Z>Z
n

)
and L2 = λ+λmax

(
Z>Z
n

)
. We get limn,d→+∞

n/d→γ<1

L1 =

λ−

(
1−

√
1/γ
)2

, limn,d→+∞
n/d→γ<1

L2 = λ+

(
1 +

√
1/γ
)2

and

spec

(
Z>ΛZ

n

)
⊆ [L1, L2] .

We bound
∥∥MA−3

∥∥
2 ∥∥MA−3

∥∥
2

=n

∥∥∥∥∥Mn
(
Id +

M

nλ

)−3
∥∥∥∥∥

2

=n max
s∈spec(Mn )

s

(1 + s/λ)
3

=n max
s∈{0}∪spec

(
Z>ΛZ
n .

) s

(1 + s/λ)
3

=n max
s∈spec

(
Z>ΛZ
n .

) s

(1 + s/λ)
3

≤n max
s∈[L1,L2]

s

(1 + s/λ)
3 .

We compute d
dλ‖Λ

1/2A−1θ′‖22:

d

dλ
‖Λ1/2A−1θ′‖22

=
1

nλ2
θ′>
(
A−1ΛMA−2 +MA−2ΛA−1

)
θ′

=
1

nλ2

(
A−1θ′

)> (
ΛMA−1 +MA−1Λ

) (
A−1θ′

)
Next, we bound

∣∣ d
dλ‖Λ

1/2A−1θ′‖22
∣∣:∣∣∣∣ ddλBλ,d,n

∣∣∣∣
≤ 1

nλ2

∥∥MA−2ΛA−1 +A−1ΛMA−2
∥∥

2
‖θ′‖22

≤ 2

nλ2

∥∥MA−2ΛA−1
∥∥

2
‖θ′‖22

=
2

nλ2

∥∥MA−3AΛA−1
∥∥

2
‖θ′‖22

≤ 2

nλ2

∥∥MA−3
∥∥

2

∥∥AΛA−1
∥∥

2
‖θ′‖22

.
1

λ2
max

s∈[L1,L2]

s

(1 + s/λ)
3 ‖θ

′‖22 ,

where the last inequality is because
∥∥AΛA−1

∥∥
2

= ‖Λ‖2 ≤ λ+ . 1. Define f(s) = s
(1+s/λ)3 .

Because f ′(s) = λ3(λ−2s)
(λ+s)4 , the function f is increasing on [0, λ/2] and decreasing on [λ/2,+∞).
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If λ ≤ 2L1, we have

max
s∈[L1,L2]

s

(1 + s/λ)
3 =

L1

(1 + L1/λ)
3 .

It follows that

1

λ2
· L1

(1 + L1/λ)
3 =

L1λ

(λ+ L1)
3 ≤ max

λ∈[0,2L1]

L1λ

(λ+ L1)
3 .

1

L1
.

If λ ≥ 2L2, we get

1

λ2
max

s∈[L1,L2]

s

(1 + s/λ)
3 =

1

λ2
· L2

(1 + L2/λ)
3 ≤ max

λ∈[2L2,∞)

L2λ

(λ+ L2)
3 .

1

L2
≤ 1

L1
.

If 2L1 < λ < 2L2, we obtain

1

λ2
max

s∈[L1,L2]

s

(1 + s/λ)
3 .

1

λ
.

1

L1
.

In all three cases, we show that 1
λ2 maxs∈[L1,L2]

s
(1+s/λ)3 . 1

L1
. It follows that∣∣∣∣ ddλ‖Λ1/2A−1θ′‖22

∣∣∣∣ . 1

L1
‖θ′‖22 =

‖θ′‖22
λ−λmin

(
Z>Z
n

) � ‖θ′‖22
λmin

(
Z>Z
n

) .
By Lemma 3, there exists a universal constant n0 such that for all n > n0, one has 1

λmin

(
Z>Z
n

) . 1.

Thus we conclude that ∣∣∣∣ ddλ‖Λ1/2A−1θ′‖22
∣∣∣∣ . ‖θ′‖22 .

We can exchange differentiation and expectation and get

d

dλ
Bλ,d,n = E

[
d

dλ
‖Λ1/2A−1θ′‖22

]
and ∣∣∣∣ ddλBλ,d,n

∣∣∣∣ = E
[∣∣∣∣ ddλ‖Λ1/2A−1θ′‖22

∣∣∣∣] . ‖θ′‖22 .

Lemma 6. The following equation for the variance term holds

Vλ,d,n =σ2E‖Λ1/2
(
λnId + Λ1/2ZZ>Λ1/2

)−1

Λ1/2Z‖22

=σ2E‖ΛZ
(
λnIn + Z>ΛZ

)−1 ‖22 .

Moreover, for all sufficiently large n and d such that n/d → γ 6= 1, we have limλ→0+ Vλ,d,n =

V0,d,n, |Vλ,d,n| . 1 and
∣∣ d
dλVλ,d,n

∣∣ . 1. Therefore, {Vλ,d,n} is uniformly bounded and uniformly
equicontinuous with respect to λ ∈ (0,∞).

Proof. As in the proof of Lemma 5, defineM = Λ1/2ZZ>Λ1/2 ∈ Rd×d andN = nλIn+Z>ΛZ ∈
Rn×n. Recalling Σ = PΛP> and X = Z>Λ1/2P>, we have

Vλ,d,n =σ2E tr
[
XΣX>(nλIn +XX>)−2

]
=σ2E tr

[
Z>Λ2ZN−2

]
=σ2E tr

[
N−1Z>Λ2ZN−1

]
=σ2E

∥∥ΛZN−1
∥∥2

F
.

17
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Recalling Equation (23) yields

ΛZN−1 =
1

nλ
ΛZ

(
In − Z>Λ1/2 (nλId +M)

−1
Λ1/2Z

)
=

1

nλ
Λ1/2

(
In −M (nλId +M)

−1
)

Λ1/2Z

=Λ1/2 (nλId +M)
−1

Λ1/2Z .

Define R = Λ1/2Z ∈ Rd×n. We get

(nλId +M)
−1

Λ1/2Z =
(
nλId +RR>

)−1
R .

Notice that if 0 < a < b, then aId +RR> 4 bId +RR>. We deduce(
bId +RR>

)2 − (aId +RR>
)2

=
(
b2 − a2

)
Id + 2 (b− a)RR> < 0 .

Thus
(
bId +RR>

)2
<
(
aId +RR>

)2
, which implies

(
bId +RR>

)−2
4
(
aId +RR>

)−2
. We

get

R>
(
bId +RR>

)−2
R 4 R>

(
aId +RR>

)−2
R ,

tr
(
R>

(
bId +RR>

)−2
R
)
≤ tr

(
R>

(
aId +RR>

)−2
R
)

Let λ0 (·) denote the smallest non-zero eigenvalue of a positive semidefinite matrix. We bound the
Frobenius norm ∥∥∥(nλId +M)

−1
Λ1/2Z

∥∥∥2

F

= tr
(
R>

(
nλId +RR>

)−1
R
)

≤ tr

(
lim
λ→0+

R>
(
nλId +RR>

)−2
R

)
= tr

(
R>R

)+
= tr

(
Z>ΛZ

)+
. tr

(
Z>Z

)+
.

It follows that∥∥ΛZN−1
∥∥2

F
=
∥∥∥Λ1/2 (nλId +M)

−1
Λ1/2Z

∥∥∥2

F
.
∥∥∥(nλId +M)

−1
Λ1/2Z

∥∥∥2

F
. tr

(
Z>Z

)+
= tr

(
ZZ>

)+
.

If n/d → γ < 1, the matrix Z>Z is full-rank almost surely. Then, using the formula for the mean
of inverse Wishart distribution, we have E tr

(
Z>Z

)+
= trE

(
Z>Z

)−1
= tr

(
In

d−n−1

)
� 1. If

n/d → γ > 1, the matrix ZZ> is full-rank almost surely. Similarly, we have E tr
(
ZZ>

)+
=

trE
(
ZZ>

)−1 � 1. By the dominated convergence theorem, we have limλ→0+ Vλ,d,n = V0,d,n.
Moreover, Vλ,d,n . E

∥∥ΛZN−1
∥∥2

F
. 1.

Next we bound d
dλV (θ̂). Because dN−1

dλ = −N−1 dN
dλN

−1 = −nN−2, we deduce
d

dλ

∥∥ΛZN−1
∥∥2

2
=

d

dλ
tr
(
N−1Z>Λ2ZN−1

)
= −2n tr

(
Z>Λ2ZN−3

)
≤ 0 .

On the other hand, we have
tr
(
Z>Λ2ZN−3

)
= tr

(
N−3/2Z>Λ2ZN−3/2

)
. tr

(
N−3/2Z>ΛZN−3/2

)
= tr

(
Z>ΛZN−3

)
=

∑
s∈spec(Z>ΛZ)

s

(λn+ s)
3 .

18



Under review as a conference paper at ICLR 2022

Because the number of non-zero eigenvalues of Z>ΛZ equals rank
(
Z>ΛZ

)
= n ∧ d � n, we get∣∣∣∣ ddλ ∥∥ΛZN−1

∥∥2

2

∣∣∣∣ � n tr
(
Z>Λ2ZN−3

)
. n2 max

s∈spec(Z>ΛZ)

s

(λn+ s)
3 = max

s∈spec
(
Z>ΛZ
n

)
\{0}

s

(λ+ s)
3 .

If γ < 1, the matrix Z>ΛZ
n is full-rank almost surely. By Equation (24) and Equation (25) in the

proof of Lemma 5, there exists universal positive constants C1 and C2 such that spec
(
Z>ΛZ
n

)
⊆

[C1, C2] for all sufficiently large n and d such that n/d→ γ < 1. If γ > 1, the non-zero eigenvalues
of Z

>ΛZ
n and M

n are the same. The matrix M
n is full-rank almost surely. Thus spec

(
Z>ΛZ
n

)
\{0} =

spec
(
M
n

)
. Because y>Λ−1y . y>y,

λmin

(
M

n

)
= min

x6=0

x> Λ1/2ZZ>Λ1/2

n x

x>x
= min

y 6=0

y> ZZ
>

n y

y>Λ−1y
& min

y 6=0

y> ZZ
>

n y

y>y
= λmin

(
ZZ>

n

)
.

Similarly, we get

λmax

(
M

n

)
. λmax

(
ZZ>

n

)
.

Therefore, there exists universal positive constants C1 and C2 such that

spec

(
Z>ΛZ

n

)
\ {0} ⊆

[
C1λmin

(
Z>Z

n

)
, C2λmax

(
Z>Z

n

)]
.

Thus in both cases, we have shown that there exists universal positive constants C1 and C2 such that

spec

(
Z>ΛZ

n

)
\ {0} ⊆

[
C1λmin

(
Z>Z

n

)
, C2λmax

(
Z>Z

n

)]
.

Define L1 = C1λmin

(
Z>Z
n

)
and L2 = C2λmax

(
Z>Z
n

)
. As a result, we get∣∣∣∣ ddλ ∥∥ΛZN−1

∥∥2

2

∣∣∣∣ . max
s∈[L1,L2]

s

(λ+ s)
3 .

Define f(s) = s
(λ+s)3 . Because f ′(s) = λ−2s

(λ+s)4 , the function f is increasing on [0, λ/2] and
decreasing on [λ/2,+∞). If λ ≥ 2L2 or λ ≤ 2L1, we get

max
s∈[L1,L2]

s

(λ+ s)
3 ≤

L1

(λ+ L1)
3 ∨

L2

(λ+ L2)
3 ≤

1

L2
1

.

If 2L1 < λ < 2L2, we get

max
s∈[L1,L2]

s

(λ+ s)
3 .

1

λ2
.

1

L2
1

.

As a result, for all sufficiently large n, we have∣∣∣∣ ddλ ∥∥ΛZN−1
∥∥2

2

∣∣∣∣ = max
s∈[L1,L2]

s

(λ+ s)
3 .

1

L2
1

.
1

λ2
min

(
Z>Z
n

) . 1 ,

where the final inequality is because of Lemma 3. We can exchange the expectation and differenti-
ation and obtain

d

dλ
Vλ,d,n = σ2E

d

dλ

∥∥ΛZN−1
∥∥2

2

and ∣∣∣∣ ddλVλ,d,n
∣∣∣∣ ≤ σ2E

∣∣∣∣ ddλ ∥∥ΛZN−1
∥∥2

2

∣∣∣∣ . 1 .
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C LEMMAS ON STIELTJES TRANSFORM

Definition 3 (Stieltjes transform). The Stieltjes transform of a distribution with cumulative distri-
bution function F is defined by

sF (z) =

∫
1

λ− z
dF (λ) (z ∈ H , {z ∈ C | =z > 0}) .

Lemma 7 (Theorem 4.3 (Bai & Silverstein, 2010)). Suppose that the entries of Xn ∈ Cn×p are
complex random variables that are independent for each n and identically distributed for all n
and satisfy E

[
|x11 − Ex11|2

]
= 1. Also, assume that Tn = diag(τ1, . . . , τp), τi is real, and the

empirical distribution function of {τ1, . . . , τp} converges almost surely to a probability distribution
function H as n → ∞. The entries of both Xn and Tn may depend on n, which is suppressed for
brevity. Set Bn = An + 1

nXnTnX
∗
n, where X∗n is the conjugate transpose of Xn, An is Hermitian,

n× n satisfying FAn → FA almost surely, where FA is a distribution function (possibly defective)
on the real line. Assume also that Xn, Tn, and An are independent. When p = p(n) with p/n →
y > 0 as n → ∞, then, almost surely, FBn , the empirical spectral distribution of the eigenvalues
of Bn, converges vaguely, as n → ∞, to a (nonrandom) distribution function F , where for any
z ∈ C+ = {z ∈ C | =z > 0}, its Stieltjes transform s = s(z) is the unique solution in C+ to the
equation

s = sA

(
z − y

∫
τdH(τ)

1 + τs

)
,

where sA is the Stieltjes transform of FA.

Lemma 8. If the functions fα, gα : I → R satisfy fα(x)− gα(x)→ 0 uniformly as α→ +∞, then
limα→+∞ (infx∈I f(x)− infx∈I g(x)) = 0.

Proof. Because fα(x)− gα(x)→ 0 uniformly as α→ +∞, we have for ∀ε > 0, there exists N(ε)
such that for ∀α > N(ε) and ∀x ∈ I , it holds that |fα(x)− gα(x)| < ε. Therefore, we get

gα(x)− ε < fα(x) < gα(x) + ε .

Thus we obtain

inf
x∈I

fα(x) ≤ fα(x) < gα(x) + ε

inf
x∈I

gα(x)− ε ≤ gα(x)− ε < fα(x) ,

which in turn implies

inf
x∈I

fα(x) ≤ inf
x∈I

gα(x) + ε

inf
x∈I

gα(x)− ε ≤ inf
x∈I

fα(x) .

It follows that |infx∈I fα(x)− infx∈I gα(x)| ≤ ε. In other words, we proved

lim
α→+∞

(
inf
x∈I

f(x)− inf
x∈I

g(x)

)
= 0 .

Lemma 9. Define N = λnIn + Z>ΛZ. Then we have

lim
n,di→+∞
di/n→zi

tr
(
N−1

)
=
d

dλ
inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) ,
(26)

lim
n,di→+∞
di/n→zi

1

n
log det

N

n
= inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) . (27)
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Proof. Proof of Equation (26). We apply Lemma 7 with An = 0n×n, Xn = Z> ∈ Rn×d,
Tn = Λ, and Bn = 1

nZ
>ΛZ. The distribution function of 0n×n converges to 1t≤0 and

its Stieltjes transform is sA(z) =
∫

1
λ−zd1λ≤0 = − 1

z . The empirical distribution function
of {λ1, . . . , λ1︸ ︷︷ ︸

d1

, . . . , λm . . . , λm︸ ︷︷ ︸
dm

} is Hn,di(t) =
∑
i∈[m]

di
d 1t≤λi . Recall di/n → zi. Thus

di/d → zi/K, where d/n → y =
∑
j∈[m] zj . The empirical distribution function converges to

H(t) =
∑
i∈[m]

zi
y 1t≤λi . Then the empirical spectral distribution of the eigenvalues of 1

nZ
>ΛZ

converges vaguely to a nonrandom distribution function F and its Stieltjes transform is

s = s(z) = lim
n,di→+∞
di/n=zi

1

n
tr

(
1

n
Z>ΛZ − zIn

)−1

= lim
n,di→+∞
di/n=zi

tr
(
Z>ΛZ − znIn

)−1

(this is because of (Bai & Silverstein, 2010, Theorem B.9)). By Lemma 7, s(z) is the unique solution
in C+ to the equation

s(z) = sA

(
z − y

∫
τdH(τ)

1 + τs

)
= − 1

z −
∑
i∈[m]

λizi
1+λis(z)

,

which gives

s(z)

z − ∑
i∈[m]

λizi
1 + λis(z)

 = −1 .

We want to prove Equation (26) first. The lefthand side of Equation (26) equals

lim
n,di→+∞
di/n=zi

tr
(
λnIn + Z>ΛZ

)−1
= s(−λ) .

Because the matrix 1
nZ
>ΛZ is positive semidefinite and thereby all of its eigenvalues are non-

negative, its limiting spectral distribution is supported on [0,∞). The Stieltjes transform s(z) of
the limiting spectral distribution can be continuously extended to (−∞, 0). Therefore, for ∀λ > 0,
s(−λ) is the unique solution to the following equation

s(−λ)

(
λ+

m∑
i=1

λizi
1 + λis(−λ)

)
= 1 . (28)

We will verify that

d

dλ
inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

)
satisfies Equation (28). Take a minimizer ρ∗ of Equation (5). Using the envelope theorem yields

d

dλ
inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

) =
1

λ+
∑m
j=1 λjρ

∗
j

. (29)

Plugging the righthand side of Equation (29) into Equation (28), we get

1

λ+
∑m
j=1 λjρ

∗
j

(
λ+

m∑
i=1

λizi

1 + λi · 1
λ+
∑m
j=1 λjρ

∗
j

)
= 1 .

Rewriting the above equation yields
m∑
i=1

λizi

1 + λi · 1
λ+
∑m
j=1 λjρ

∗
j

=

m∑
i=1

λiρ
∗
i .

It suffices to show that each summand on the lefthand side equals its counterpart on the righthand
side

λizi

1 + λi · 1
λ+
∑m
j=1 λjρ

∗
j

= λiρ
∗
i .
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We need to show
zi
ρ∗i

= 1 + λi ·
1

λ+
∑m
j=1 λjρ

∗
j

,

which is equivalent to Equation (6) and therefore holds. Hence we have proved Equation (26).

Proof of Equation (27). We use α to denote the indices n, di. Define

h(λ) = inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

) .
First, we want to show that limλ0→+∞ (h(λ0)− log λ0) = 0. Define

lλ0
(ρ) = log

1 +
1

λ0

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj

(
log

ρj
zj

+ 1

))
,

q(ρ) =

m∑
j=1

(
ρj − zj

(
log

ρj
zj

+ 1

))
.

The Hessian matrix of q(p) is diag
(
z1
ρ2

1
, . . . , zmρ2

m

)
, which is positive definite since zi, ρi > 0. There-

fore, q(p) is convex and the minimum of q(ρ) on Rm+ is attained at ρ = z, where z = (z1, . . . , zm)
>.

The minimum is infρ∈Rm+ q(ρ) = q(z) = 0. Because lim‖ρ‖2→+∞ lλ0
(ρ) = +∞, there ex-

ists a universal constant K1 > ‖z‖2 > 0 such that lλ0
(ρ) > lλ0

(z) for all ‖ρ‖2 > K1. De-
fine E =

{
ρ ∈ Rm+ | ‖ρ‖2 ≤ K1

}
. We have z ∈ E , infρ∈E lλ0(ρ) = infρ∈Rm+ lλ0(ρ), and

infρ∈E q(ρ) = infρ∈Rm+ q(ρ) = 0. Therefore, we get

h(λ0)− log λ0 = inf
ρ∈Rm+

lλ0(ρ) = inf
ρ∈E

lλ0(ρ)− inf
ρ∈E

q(ρ) . (30)

On E, there exists a universal constant K2 > 0 such that
∑
j∈[m] λjρj < K2. Thus on E, we

deduce

0 < lλ0
(ρ)− q(ρ) = log

1 +
1

λ0

m∑
j=1

λjρj

 < log

(
1 +

K2

λ0

)
.

The right-hand side log
(

1 + K2

λ0

)
→ 0 as λ0 → +∞. Thus limλ0→+∞ (lλ0

(ρ)− q(ρ)) = 0

uniformly for ρ ∈ E. By Lemma 8, we get

lim
λ0→+∞

(
inf
ρ∈E

lλ0
(ρ)− inf

ρ∈E
q(ρ)

)
= 0 .

Recalling Equation (30) yields

lim
λ0→+∞

(h(λ0)− log λ0) = 0 . (31)

Define fα(λ) = 1
n log det Nn . Second, we want to show limα fα(λ) = h(λ), where limα means

limn,di→+∞
di/n=zi

. We have fα(λ)− fα(λ0) =
∫ λ
λ0
f ′α(x)dx for ∀λ, λ0 > 0. It follows that

|fα(λ)− h(λ)| ≤ |fα(λ)− h(λ) + h(λ0)− fα(λ0) + fα(λ0)− log λ0 + log λ0 − h(λ0)|
≤ |fα(λ)− h(λ) + h(λ0)− fα(λ0)|+ |fα(λ0)− log λ0|+ |log λ0 − h(λ0)|

=

∣∣∣∣∣
∫ λ

λ0

f ′α(x)dx− (h(λ)− h(λ0))

∣∣∣∣∣+ |fα(λ0)− log λ0|+ |log λ0 − h(λ0)| .

Taking lim supα on both sides gives

lim sup
α
|fα(λ)− h(λ)| ≤ lim sup

α

∣∣∣∣∣
∫ λ

λ0

f ′α(x)dx− (h(λ)− h(λ0))

∣∣∣∣∣+lim sup
α
|fα(λ0)− log λ0|+|log λ0 − h(λ0)| .

(32)
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Recall f ′α(λ) = trN−1 and limα f
′
α(λ) = h′(λ) (this is exactly Equation (26)). Because∣∣trN−1

∣∣ = trN−1 ≤ 1
λ and

∫ λ
λ0

1
xdx < +∞, by the dominated convergence theorem, we have

lim
α

∫ λ

λ0

f ′α(x)dx =

∫ λ

λ0

h′(x)dx = h(λ)− h(λ0) .

It follows that

lim sup
α

∣∣∣∣∣
∫ λ

λ0

f ′α(x)dx− (h(λ)− h(λ0))

∣∣∣∣∣ = lim
α

∣∣∣∣∣
∫ λ

λ0

f ′α(x)dx− (h(λ)− h(λ0))

∣∣∣∣∣ = 0 . (33)

Since

fα(λ0)−log λ0 =
1

n
log det

(
λ0In +

1

n
Z>ΛZ

)
− 1

n
log det (λ0In) =

1

n
log det

(
In +

1

nλ0
Z>ΛZ

)
and the matrix 1

nλ0
Z>ΛZ is positive semidefinite, we have

fα(λ0)− log λ0 ≥ 0 .

We have

fα(λ0)− log λ0

=
1

n
log det

(
In +

1

nλ0
Z>ΛZ

)
≤ 1

n
log det

(
In +

λ+

nλ0
Z>Z

)
≤ log

(
1 +

λ+

λ0
λmax

(
Z>Z

n

))
≤λ+

λ0
λmax

(
Z>Z

n

)
.

Then taking lim supα, we get

lim sup
α
|fα(λ0)− log λ0| = lim sup

α
(fα(λ0)− log λ0) ≤ λ+

λ0
lim sup

α
λmax

(
Z>Z

n

)
.

1

λ0
,

(34)

where the last inequality is because lim supα λmax

(
Z>Z
n

)
=
(

1 +
√
γ ∨ 1

γ

)2

� 1 by Lemma 1.
Using Equation (32), Equation (33) and Equation (34) gives

lim sup
α
|fα(λ)− h(λ)| . 1

λ0
+ |log λ0 − h(λ0)| .

Then taking limλ0→+∞ and recalling Equation (31) yields

lim
α
|fα(λ)− h(λ)| = lim sup

α
|fα(λ)− h(λ)| = 0 .

Therefore, we conclude limα fα(λ) = h(λ).

Lemma 10. Define N = λnIn+Z>ΛZ = λnIn+
∑
i∈[m] λiZiZ

>
i . The following equation holds

lim
n,di→+∞
di/n→zi

E
[
∂

∂λi

1

n
log det

N

n

]
=

∂

∂λi
inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) ,
(35)

lim
n,di→+∞
di/n→zi

E
[

∂2

∂λj∂λi

1

n
log det

N

n

]
=

∂2

∂λj∂λi
inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) .
(36)
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Proof. Proof of Equation (35). We use α to denote the indices n, di and use limα to denote
limn,di→+∞

di/n=zi

. Define fα(λi) = E
[

1
n log det Nn

]
, f ′α(λi) = ∂

∂λi
E
[

1
n log det Nn

]
, and

h(λi) = inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) .
We have∣∣∣∣ 1n log det

N

n

∣∣∣∣ ≤ 1

n
log det

(
λIn + λ+

Z>Z

n

)
= log λ+

1

n
log det

(
In +

λ+

nλ
Z>Z

)
.

By Lemma 3, there exists a universal constant C > 0 such that for all sufficiently large n,

1

n
log det

(
In +

λ+

nλ
Z>Z

)
≤ log

(
1 +

C

λ

)
.

Therefore, we get ∣∣∣∣ 1n log det
N

n

∣∣∣∣ ≤ log (λ+ C) .

By the dominated convergence theorem and Lemma 9 (specifically, Equation (27)), we obtain

lim
α
fα(λi) = h(λi) . (37)

Because ∣∣∣∣ ∂∂λi 1

n
log det

N

n

∣∣∣∣ =
1

n
tr
(
Z>i N

−1Zi
)
≤ 1

λn2
tr
(
Z>i Zi

)
and E

[
1
λn2 tr

(
Z>i Zi

)]
< +∞, we can interchange the differentiation and the expectation and get

f ′α(λi) =
∂

∂λi
E
[

1

n
log det

N

n

]
= E

[
∂

∂λi

1

n
log det

N

n

]
. (38)

Thus we deduce∣∣∣∣ ∂∂λiE
[

1

n
log det

N

n

]∣∣∣∣ =

∣∣∣∣E [ ∂

∂λi

1

n
log det

N

n

]∣∣∣∣ ≤ E
∣∣∣∣ ∂∂λi 1

n
log det

N

n

∣∣∣∣ ≤ E
[

1

λn2
tr
(
Z>i Zi

)]
.

By Lemma 4, E tr
(
Z>i Zi

)
� n2 and therefore E

[
1
λn2 tr

(
Z>i Zi

)]
. 1

λ . The function sequence
{f ′α} is uniformly bounded.

Then we want to show that {f ′α} is uniformly equicontinuous by showing that {f ′′α} is uniformly
bounded. Because∣∣∣∣ ∂2

∂λ2
i

1

n
log det

N

n

∣∣∣∣ =
1

n
tr
(
Z>i N

−1Zi
)2 ≤ 1

nλ2
tr

(
Z>i Zi
n

)2

and E
[

1
nλ2 tr

(
Z>i Zi
n

)2
]
< +∞, we can interchange the differentiation and the expectation and

get
∂2

∂λ2
i

E
[

1

n
log det

N

n

]
=

∂

∂λi
E
[
∂

∂λi

1

n
log det

N

n

]
= E

[
∂2

∂λ2
i

1

n
log det

N

n

]
.

Therefore, we deduce∣∣∣∣ ∂2

∂λ2
i

E
[

1

n
log det

N

n

]∣∣∣∣ ≤ E
∣∣∣∣ ∂2

∂λ2
i

1

n
log det

N

n

∣∣∣∣ ≤ 1

nλ2
E tr

(
Z>i Zi
n

)2

.

Again, by Lemma 4, tr
(
Z>i Zi
n

)2

� n. It follows that 1
nλ2E tr

(
Z>i Zi
n

)2

. 1
λ2 . Therefore {f ′α} is

uniformly equicontinuous.

We want to show limα f
′
α(λi) = h′(λi) by contradiction. If it is not true, there exists ε > 0 and

a subsequence {f ′αk} such that
∣∣f ′αk(λi)− h′(λi)

∣∣ ≥ ε. Let E = [a, b] 3 λi (b > a > 0) be
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a closed interval that contains λi. The subsequence {f ′αk} is uniformly bounded and uniformly

equicontinuous. By the Arzela-Ascoli theorem, there exists a subsequence
{
f ′αkj

}
that converges

uniformly on λi ∈ E. Recall limα fα(λi) = h(λi) (Equation (37)). Thus limj fαkj (λi) = h(λi).
By (Rudin, 1976, Theorem 7.17), for λi ∈ E, we have

lim
j
f ′αkj

(λi) = h′(λi) .

This is a contradiction. Hence, we have shown that limα f
′
α(λi) = h′(λi), which is exactly Equa-

tion (35) (recall f ′α(λi) = ∂
∂λi

E
[

1
n log det Nn

]
= E

[
∂
∂λi

1
n log det Nn

]
in Equation (38)).

Proof of Equation (36). Define gα(λj) = ∂
∂λi

E
[

1
n log det Nn

]
= E

[
∂
∂λi

1
n log det Nn

]
. Then

g′α(λj) = ∂2

∂λj∂λi
E
[

1
n log det Nn

]
= ∂

∂λj
E
[
∂
∂λi

1
n log det Nn

]
. We have

∣∣∣∣ ∂2

∂λj∂λi

1

n
log det

N

n

∣∣∣∣
=

1

n
tr
(
ZiZ

>
i N

−1ZjZ
>
j N

−1
)

=
1

n
tr
(
Z>i N

−1ZjZ
>
j N

−1Zi
)

=
1

n

∥∥Z>j N−1Zi
∥∥2

F

≤ 1

n
‖Zj‖22 ‖Zi‖

2
2

∥∥N−1
∥∥2

F

≤ 1

λ2n2
‖Zj‖22 ‖Zi‖

2
2 .

where the last inequality is because
∥∥N−1

∥∥2

F
≤
∥∥ 1
λnIn

∥∥2

F
= 1

λ2n . If i 6= j, by Lemma 4, we have

1

λ2n2
E ‖Zj‖22 ‖Zi‖

2
2 =

1

λ2n2
E ‖Zj‖22 · E ‖Zi‖

2
2 .

1

λ2
.

If i = j, by Lemma 4, we have

1

λ2n2
E ‖Zi‖42 .

1

λ2n2
· n2 =

1

λ2
.

As a result, we get

∣∣∣∣ ∂2

∂λj∂λi

1

n
log det

N

n

∣∣∣∣ . 1

n
· n2 · 1

λ2n
=

1

λ2
.

Thus we can interexchange ∂
∂λj

and expectation, and get g′α(λj) = E
[

∂2

∂λj∂λi
1
n log det Nn

]
. Be-

cause |g′α(λj)| ≤ E
∣∣∣ ∂2

∂λj∂λi
1
n log det Nn

∣∣∣ . 1
λ2 , the function sequence {g′α} is uniformly bounded

for λj .
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Define L = Z>j N
−1Zi and W = Z>j N

−1Zj . We have∣∣∣∣∣ ∂3

∂λ2
j∂λi

1

n
log det

N

n

∣∣∣∣∣
=

2

n
tr
(
L>WL

)
.

1

λn2
tr
(
L>Z>j ZjL

)
=

1

λn2
tr
(
Z>i N

−1
(
ZjZ

>
j

)2
N−1Zi

)
.

=
1

λn2

∥∥ZjZ>j N−1Zi
∥∥2

F

≤ 1

λn2

∥∥N−1
∥∥2

F

∥∥ZjZ>j ∥∥2

2
‖Zi‖22

≤ 1

λ3n3

∥∥ZjZ>j ∥∥2

2
‖Zi‖22

=
1

λ3n3
‖Zj‖42 ‖Zi‖

2
2 ,

where the first inequality is becauseW 4 1
λnZ

>
j Zj and the third inequality is becauseN−1 4 1

λnIn

and then
∥∥N−1

∥∥2

F
≤
∥∥ 1
λnIn

∥∥2

F
≤ 1

λ2n . By Lemma 4, we have E ‖Zj‖42 . n2 and E ‖Zi‖22 . n. If
i 6= j, then Zj and Zi are independent, and we deduce

1

λ3n3
E ‖Zj‖42 ‖Zi‖

2
2 .

1

λ3
.

If i = j, we have
1

λ3n3
E ‖Zi‖42 ‖Zi‖

2
2 =

1

λ3n3
E ‖Zi‖62 .

1

λ3
.

As a result, we deduce E
[

∂3

∂λ2
j∂λi

1
n log det Nn

]
= ∂

∂λj
E
[

∂2

∂λj∂λi
1
n log det Nn

]
= g′′α(λj). Moreover,

we have

|g′′α(λj)| ≤ E

∣∣∣∣∣ ∂3

∂λ2
j∂λi

1

n
log det

N

n

∣∣∣∣∣ . 1

λ3
.

Therefore {g′α} is uniformly equicontinuous.

Define

w(λj) =
∂

∂λi
inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) .
We want to show by contradiction that limα g

′
α(λj) = w′(λj). Assume that it is not true. Then

there exists ε > 0 and a subsequence
{
g′αk
}

such that
∣∣g′αk(λj)− w′(λj)

∣∣ > ε. Since
{
g′αk
}

is
uniformly bounded and uniformly equicontinuous, by the Arzela-Ascoli theorem, there is a subse-
quence

{
g′αkr

}
that converges uniformly on a closed intervalE containing λj . Equation (35) shows

that limα gα(λj) = w(λj). It follows that limr gαkr (λj) = w(λj). By (Rudin, 1976, Theorem
7.17), for λi ∈ E, we have

lim
r
g′αkr (λj) = w′(λj) ,

which is a contradiction. Therefore, we have shown that limα g
′
α(λj) = w′(λj), which is exactly

Equation (36).
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D PROOF OF THEOREM 1

D.1 PROOF OF ITEM 1

Define g(ρ) = log
(
λ+

∑m
j=1 λjρj

)
+
∑m
j=1

(
ρj − zj(log

ρj
zj

+ 1)
)

. The func-

tion g(ρ) is continuously differentiable on Rm+ . The boundary of R+
m is ∂Rm+ =

{ρ ∈ Rm | (∀i ∈ [m], ρi ≥ 0) ∧ (∃i ∈ [m], ρi = 0)}. Because limRm+3ρ→ρ0∈∂Rm+ g(ρ) =

limRm+3ρ→∞ g(ρ) = +∞, there exists a minimizer ρ∗ ∈ Rm+ of g(ρ).

Taking the derivative with respect to ρi gives

∂

∂ρi

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

) =
λi

λ+
∑m
j=1 λjρj

+ 1− zi
ρi
.

Setting it to zero gives Equation (6).

D.2 PROOF OF ITEM 2

Recall Equation (6)
λi

λ+
∑m
j=1 λjρ

∗
j

+ 1− zi
ρ∗i

= 0 , ∀i ∈ [m] .

Rewriting the above equation gives

(zi − ρ∗i )

(
λ+

m∑
k=1

λkρ
∗
k

)
= λiρ

∗
i , ∀i ∈ [m] .

Rewriting it in the linear algebraic form yields

(z− ρ∗)
(
λ+ λ>ρ∗

)
= λ� ρ∗ .

Applying ∂
∂λ to both sides and using the implicit function theorem, we get

(z− ρ∗)
(
ρ∗> + λ>J

)
− J

(
λ+ λ>ρ∗

)
= diag (λ) J + diag (ρ∗) .

Arranging the above equation yields(
diag (λ) +

(
λ+ λ>ρ∗

)
Im − (z− ρ∗)λ>

)
J = (z− ρ∗) ρ∗> − diag (ρ∗) .

Define a = λ + λ>ρ∗, A = diag (λ) +
(
λ+ λ>ρ∗

)
Im = diag (λ) + aIm and B = diag (λ) +(

λ+ λ>ρ∗
)
Im − (z− ρ∗)λ> = A− (z− ρ∗)λ>. The matrix determinant lemma gives

det (B) =
(
1− λ>A−1 (z− ρ∗)

)
det (A) .

Recall Equation (6) again and we have

λi + a =
zia

ρ∗i
.

We have

a−
∑
i∈[m]

λiρ
∗
i (1− ρ∗i /zi)

=

λ+
∑
i∈[m]

λiρ
∗
i

− ∑
i∈[m]

λiρ
∗
i (1− ρ∗i /zi)

=λ+
∑
i∈[m]

λi
(ρ∗i )

2

zi
> 0 .

It follows that ∑
i∈[m] λiρ

∗
i (1− ρ∗i /zi)
a

< 1 .
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Then we compute λ>A−1 (z− ρ∗):

λ>A−1 (z− ρ∗)

=
∑
i∈[m]

λi (zi − ρ∗i )
λi + a

=
∑
i∈[m]

λi (zi − ρ∗i )
zia
ρ∗i

=

∑
i∈[m] λiρ

∗
i (1− ρ∗i /zi)
a

< 1 .

Thus we get 1− λ>A−1 (z− ρ∗) > 0. Therefore, detB 6= 0 and the matrix B is invertible.

D.3 PROOF OF ITEM 3

Lemma 11. Define N = λnIn + Z>ΛZ, γ =
∑
i∈[m] zi, r = (r1, . . . , rm), λ = (λ1, . . . , λm),

and

ϑ(rt, r,λ) = 2rt

√
1 +

∑
i∈[m]

r2
i − 2rt

∑
i∈[m]

√
ziri +

∑
i∈[m]

1

λi
r2
i − λr2

t .

For any Kt ≥ 2
λ and Ku ≥

2λ+(2+
√
γ)

λ , we have

lim
n,di→+∞
di/n→zi

trN−1 = lim
n,di→+∞
di/n→zi

E trN−1

= max
0≤rt≤Kt

min
0≤ri≤Ku

ϑ(rt, r,λ) = min
0≤ri≤Ku

max
0≤rt≤Kt

ϑ(rt, r,λ) = max
rt≥0

min
ri≥0

ϑ(rt, r,λ) = min
ri≥0

max
rt≥0

ϑ(rt, r,λ) .

(39)

If r∗ is a solution to the optimization problem in Equation (39), then

1 +

m∑
j=1

r∗2j =

 m∑
j=1

r∗j
√
zj + λr∗t

2

, (40)

r∗t
r∗i√

1 +
∑m
j=1 r

∗2
j

= r∗t
√
zi −

r∗i
λi
. (41)

Moreover, we have
∂

∂λi
max
rt≥0

min
ri≥0

ϑ(rt, r,λ) = −r
∗2
i

λ2
i

.

Proof. Let g ∼ N (0, In) be a multivariate standard normal random vector. We have

trN−1

=Egg>N−1g

=Eg sup
t∈Rn

(
2g>t− t>Nt

)
=Eg sup

t∈Rn

(
2g>t− t>Z>ΛZt− nλ ‖t‖22

)
=Eg sup

t∈Rn
inf
u∈Rd

(
2g>t− 2u>ΛZt+ u>Λu− nλ ‖t‖22

)
=− 2Eg inf

t∈Rn
sup
u∈Rd

(
u>ΛZt− g>t− 1

2
u>Λu+

1

2
nλ ‖t‖22

)
=− 2Eg inf

t∈Rn
sup
u∈Rd

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
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We view

inf
t∈Rn

sup
u∈Rd

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
(42)

as the primal optimization (PO) problem in the convex Gaussian min-max theorem (CGMT) (Thram-
poulidis et al., 2015).

The KKT conditions for Equation (42) give

Z>u− g + nλt = 0 ,

Zt− Λ−1u = 0 .

Solving the above equations gives

t = N−1g , u = ΛZN−1g .

With probability at least 1− 4 exp(−cn) (c > 0 is a universal constant), we have ‖g‖2 ≤ 2
√
n and

‖Z‖ ≤
√
d+ 2

√
n ≤

(
2 +
√
γ
)√

n. Therefore, we get

‖t‖2 ≤
∥∥N−1

∥∥ ‖g‖2 ≤ 1

λn
· 2
√
n =

2

λ
√
n
,

‖u‖2 ≤ λ+ ‖Z‖ ‖t‖2 ≤ λ+ (2 +
√
γ)
√
n · 2

λ
√
n

=
2λ+

(
2 +
√
γ
)

λ
.

Write u =

 u1

...
um

, where ui ∈ Rdi . For all Kt ≥ 2
λ , Ku ≥

2λ+(2+
√
γ)

λ , the opti-

mal solutions t∗ and u∗ to Equation (42) satisfy
√
n ‖t∗‖2 ≤ Kt and ‖ui‖2 ≤ Ku for all

i ∈ [m] with probability at least 1 − 4 exp(−cn). Define St = {t ∈ Rn |
√
n ‖t‖2 ≤ Kt} and

Su =
{
u ∈ Rd | ‖ui‖ ≤ Ku,∀i ∈ [m]

}
. We use α to denote the indices n, di and use limα to

denote limn,di→+∞
di/n=zi

. Define event

Eα =

{
inf
t∈Rn

sup
u∈Rd

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
= inf
t∈St

sup
u∈Su

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)}
.

Then with probability at least 1 − 4 exp(−cn), we have t∗ ∈ St and u∗ ∈ Su. Therefore the event
Eα occurs with probability at least 1− 4 exp(−cn), which yields

P {Ecα} ≤ 4 exp(−cn) .

Since
∑
n≥1 4 exp(−cn) < +∞, by Borel-Cantelli lemma, we have

P
{

lim sup
α

Ecα

}
= P

{(
lim inf

α
Eα

)c}
= 0 .

Then with probability 1, all but finitely many Eα occur. Then almost surely there exists n0 such that
for all n > n0, Eα occurs.

The auxiliary optimization (AO) problem is

inf
t∈St

sup
u∈Su

(
‖t‖2 g

>
1 u+ ‖u‖2 g

>
2 t− g>t−

1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)

= inf
0≤rt≤Kt

sup
0≤ri≤Ku

−
∥∥∥g −√∑i∈[m] r

2
i g2

∥∥∥
2√

n
rt + rt

∑
i∈[m]

‖g1,i‖2√
n

ri −
1

2

∑
i∈[m]

1

λi
r2
i +

1

2
λr2
t


= inf

0≤rt≤Kt
sup

0≤ri≤Ku

−√1 +
∑
i∈[m]

r2
i

‖g3‖2√
n
rt + rt

∑
i∈[m]

‖g1,i‖2√
n

ri −
1

2

∑
i∈[m]

1

λi
r2
i +

1

2
λr2
t

 ,

where g1 ∼ N (0, Id), g2 ∼ N (0, In), and g3 ∼ N (0, In).
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Taking n, di → +∞ with di/n→ zi constant, the strong law of large numbers gives√
1 +

∑
i∈[m]

r2
i

‖g3‖2√
n

a.s.→
√

1 +
∑
i∈[m]

r2
i ,

‖g1,j‖2√
n

=

√
dj
n

‖g1,j‖2√
dj

a.s.→ √zj .

Define

Xα (rt, r) = −
√

1 +
∑
i∈[m]

r2
i

‖g3‖2√
n
rt + rt

∑
i∈[m]

‖g1,i‖2√
n

ri −
1

2

∑
i∈[m]

1

λi
r2
i +

1

2
λr2
t .

It is a stochastic process on (rt, r) ∈ [0,Kt]× [0,Ku]
m. We have

lim
α
Xα (rt, r) = X (rt, r) := −rt

√
1 +

∑
i∈[m]

r2
i + rt

∑
i∈[m]

√
ziri −

1

2

∑
i∈[m]

1

λi
r2
i +

1

2
λr2
t

almost surely. Since
√

1 + x2 is convex and increasing and the function ‖r‖2 is convex,

thus
√

1 + ‖r‖22 is convex in r and then −
√

1 +
∑
i∈[m] r

2
i
‖g3‖2√

n
rt = −

√
1 + ‖r‖22

‖g3‖2√
n
rt

is concave in r. Because − 1
2

∑
i∈[m]

1
λi
r2
i is concave in r and rt

∑
i∈[m]

‖g1,i‖2√
n
ri is lin-

ear in r, we deduce that Xα (rt, r) is concave in r. By (Liese & Miescke, 2008, Lemma
7.75), supr∈[0,Ku]m |Xα (rt, r)−X (rt, r)| → 0 almost surely. Then for ∀ε > 0, there exists
n0(ε), d0,i(ε), δ0,i(ε) such that for all n > n0(ε), di > d0,i(ε), |di/n− zi| < δ0,i(ε) and for all
r ∈ [0,Ku]

m, we have

X (rt, r)− ε < Xα(rt, r) < X (rt, r) + ε .

Thus we obtain

X (rt, r)− ε < Xα(rt, r) ≤ sup
r∈[0,Ku]m

Xα(rt, r)

Xα(rt, r) < X (rt, r) + ε ≤ sup
r∈[0,Ku]m

X(rt, r) + ε ,

which in turn implies

sup
r∈[0,Ku]m

X (rt, r)− ε ≤ sup
r∈[0,Ku]m

Xα(rt, r)

sup
r∈[0,Ku]m

Xα(rt, r) ≤ sup
r∈[0,Ku]m

X(rt, r) + ε .

It follows that
∣∣∣supr∈[0,Ku]m Xα(rt, r)− supr∈[0,Ku]m X(rt, r)

∣∣∣ ≤ ε. In other words, we showed

|Yα (rt)− Y (rt)| → 0

almost surely, where Y (rt) := supr∈[0,Ku]m Xα(rt, r) and Y (rt) := supr∈[0,Ku]m X(rt, r).

Because Xα (rt, r) is convex in rt, then Y (rt) = supr∈[0,Ku]m Xα(rt, r) is convex in rt. By (Liese
& Miescke, 2008, Lemma 7.75) again, suprt∈[0,Kt] |Yα (rt)− Y (rt)| → 0 almost surely. A similar
argument shows that∣∣∣∣ inf
rt∈[0,Kt]

Yα (rt)− inf
rt∈[0,Kt]

Y (rt)

∣∣∣∣ =

∣∣∣∣∣ inf
rt∈[0,Kt]

sup
r∈[0,Ku]m

Xα(rt, r)− inf
rt∈[0,Kt]

sup
r∈[0,Ku]m

X(rt, r)

∣∣∣∣∣→ 0

almost surely.
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Therefore, we obtain

inf
t∈St

sup
u∈Su

(
‖t‖2 g

>
1 u+ ‖u‖2 g

>
2 t− g>t−

1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)

= inf
0≤rt≤Kt

sup
0≤ri≤Ku

−√1 +
∑
i∈[m]

r2
i

‖g3‖2√
n
rt + rt

∑
i∈[m]

‖g1,i‖2√
n

ri −
1

2

∑
i∈[m]

1

λi
r2
i +

1

2
λr2
t


a.s.→ inf

0≤rt≤Kt
sup

0≤ri≤Ku

−rt√1 +
∑
i∈[m]

r2
i + rt

∑
i∈[m]

√
ziri −

1

2

∑
i∈[m]

1

λi
r2
i +

1

2
λr2
t

 (43)

=:µ .

Define event

Aα =

{∣∣∣∣ inf
t∈Rn

sup
u∈Rd

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
− µ

∣∣∣∣ > τ

}
,

Bα =

{∣∣∣∣ inf
t∈St

sup
u∈Su

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
− µ

∣∣∣∣ > τ

}
,

Cα =

{∣∣∣∣ inf
t∈St

sup
u∈Su

(
‖t‖2 g

>
1 u+ ‖u‖2 g

>
2 t− g>t−

1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
− µ

∣∣∣∣ > τ

}
.

Recall

Eα =

{
inf
t∈Rn

sup
u∈Rd

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
= inf
t∈St

sup
u∈Su

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)}
.

We have Aα ∩ Eα ⊆ Bα. Equation (43) gives limα P {Cα} = 0 for any τ > 0 because almost
sure convergence implies convergence in probability. By the convex Gaussian min-max theorem
(Thrampoulidis et al., 2015), we have

P {Bα} ≤ 2P {Cα} .
It follows that

P {Aα} ≤ P {Aα ∩ Eα}+ P {Ecα} ≤ P {Bα}+ P {Ecα} ≤ 2P {Cα}+ P {Ecα} .
Taking lim supα on both sides, because lim supα P {Bα} ≤ 2 lim supα P {Cα} = 0, we get

lim sup
α

P {Aα} ≤ lim sup
α

P {Ecα} ≤ P
{

lim sup
α

Ecα

}
= 0 ,

where the second inequality is because of the reverse Fatou’s lemma. Thus

inf
t∈Rn

sup
u∈Rd

(
u>Zt− g>t− 1

2
u>Λ−1u+

1

2
nλ ‖t‖22

)
P→ µ .

Therefore, we deduce

g>N−1g
P→ −2 inf

0≤rt≤Kt
sup

0≤ri≤Ku

−rt√1 +
∑
i∈[m]

r2
i + rt

∑
i∈[m]

√
ziri −

1

2

∑
i∈[m]

1

λi
r2
i +

1

2
λr2
t


= sup

0≤rt≤Kt
inf

0≤ri≤Ku

2rt

√
1 +

∑
i∈[m]

r2
i − 2rt

∑
i∈[m]

√
ziri +

∑
i∈[m]

1

λi
r2
i − λr2

t


= sup

0≤rt≤Kt
inf

0≤ri≤Ku
ϑ(rt, r,λ) . (44)

Because
∣∣g>N−1g

∣∣ ≤ 1
λn ‖g‖

2
2 and E 1

λn ‖g‖
2
2 = 1

λ < ∞, by the dominated convergence theorem
for convergence in probability (Cohn, 2013, Proposition 3.1.6), we get

lim
α

trN−1 = lim
α

Eg
[
g>N−1g

]
= max

0≤rt≤Kt
min

0≤ri≤Ku
ϑ(rt, r,λ) . (45)
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Note that 2rt
√

1 +
∑
i∈[m] r

2
i is convex in r, −2rt

∑
i∈[m]

√
ziri is linear in r, and

∑
i∈[m]

1
λi
r2
i

is strongly convex in r. Thus ϑ is strongly convex in r. Note that 2rt
√

1 +
∑
i∈[m] r

2
i −

2rt
∑
i∈[m]

√
ziri is linear in rt and that −λr2

t is strongly concave in rt. Thus ϑ is strongly concave
in rt. Then ϑ has a unique saddle point (r∗t , r

∗) on [0,Kt]× [0,Ku]
m that satisfies

max
rt∈[0,Kt]

min
r∈[0,Ku]m

ϑ (rt, r) = min
r∈[0,Ku]m

max
rt∈[0,Kt]

ϑ (rt, r) = ϑ (r∗t , r
∗) , (46)

where the first equality is due to Sion’s minimax theorem.

Since
∣∣trN−1

∣∣ ≤ 1
λ , using the dominated convergence theorem and combining Equation (45) and

Equation (46) yields

lim
α

E trN−1 = max
0≤rt≤Kt

min
0≤ri≤Ku

ϑ(rt, r,λ) = min
0≤ri≤Ku

max
0≤rt≤Kt

ϑ(rt, r,λ) .

By the uniqueness of the limit, the right-hand side max0≤rt≤Kt min0≤ri≤Ku ϑ(rt, r,λ) and
min0≤ri≤Ku max0≤rt≤Kt ϑ(rt, r,λ) do not depend on Kt and Ku as long as Kt ≥ 2

λandKu ≥
2λ+(2+

√
γ)

λ . Thus we have

lim
α

E trN−1 = max
rt≥0

min
ri≥0

ϑ(rt, r,λ) = min
ri≥0

max
rt≥0

ϑ(rt, r,λ) .

If r∗t = 0, then ϑ (0, r∗) = minr∈[0,Ku]m
∑
i∈[m]

1
λi
r2
i = 0. Thus r∗ must be zero. However,

ϑ
(

1
2λ ,0

)
= 3

4λ > ϑ (0, r∗). Therefore r∗t > 0. We compute the partial derivative

∂ϑ

∂ri
= 2rt

ri√
1 +

∑
i∈[m] r

2
i

− 2rt
√
zi + 2

ri
λi
.

If r∗i = 0, we have
∂ϑ

∂ri

∣∣∣
ri=0,rt=r∗t

= −2r∗t
√
zi < 0 .

Therefore, one can increase r∗i and make maxrt∈[0,Kt] minr∈[0,Ku]m ϑ (rt, r) smaller, which results
in a contradiction. Thus r∗i > 0. Thus the minimax value is attained when rt, ri > 0 for all i ∈ [m].

To obtain the optimality condition, we compute the partial derivatives

∂ϑ

∂rt
= 2

√
1 +

∑
i∈[m]

r2
i − 2

∑
i∈[m]

ri
√
zi

− 2λrt ,

∂ϑ

∂ri
= 2rt

ri√
1 +

∑
i∈[m] r

2
i

− 2rt
√
zi + 2

ri
λi
.

Setting them to zero gives the optimality condition for r∗t , r
∗
1 , . . . , r

∗
m and yields Equation (40) and

Equation (41).

Using the envelope theorem, we get
∂

∂λi
max

rt∈[0,Kt]
min

r∈[0,Ku]m
ϑ(rt, r,λ)

=
∂ϑ(r∗t , r

∗, λ1, . . . , λm)

∂λi

=− r∗2i
λ2
i

.

Lemma 12. Define N = λnIn + Z>ΛZ. The following equation holds

lim
n,di→+∞
di/n→zi

E
[
∂

∂λi
tr
(
N−1

)]
=

∂2

∂λi∂λ
inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

) = −r
∗2
i

λ2
i

,
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where r∗ is a solution to suprt>0 infr1,...,rm>0 ϑ(rt, r1, . . . , rm, λ1, . . . , λm) and

ϑ(rt, r1, . . . , rm, λ1, . . . , λm) = 2rt

√
1 +

∑
i∈[m]

r2
i − 2rt

∑
i∈[m]

√
ziri +

∑
i∈[m]

1

λi
r2
i − λr2

t .

Proof. Since ∣∣∣∣ ∂∂λi tr
(
N−1

)∣∣∣∣ = tr
(
Z>i N

−2Zi
)
≤ 1

(λn)
2 tr

(
Z>i Zi

)
(47)

and E 1
(λn)2 tr

(
Z>i Zi

)
� 1

λ2 (by Lemma 4), using the dominated convergence theorem gives

E
[
∂

∂λi
tr
(
N−1

)]
=

∂

∂λi
E tr

(
N−1

)
.

We use α to denote the indices n, di and use limα to denote limn,di→+∞
di/n=zi

. Define fα(λi) =

E tr
(
N−1

)
, g(λi) = ∂

∂λ infρ∈Rm+

[
log
(
λ+

∑
i∈[m] λiρi

)
+
∑
i∈[m]

(
ρi − zi

(
log ρi

zi
+ 1
))]

,

and h(λi) = suprt>0 infr1,...,rm>0 ϑ(rt, r1, . . . , rm, λ1, . . . , λm). Because
∣∣tr (N−1

)∣∣ ≤
tr
(

1
λnIn

)
≤ 1

λ and limα tr
(
N−1

)
= g(λi) (by Lemma 9), we have Lemma 9 limα fα(λi) =

limα E tr
(
N−1

)
= g(λi). Lemma 11 shows limα fα(λi) = h(λi). Therefore limα fα(λi) =

g(λi) = h(λi).

Because of Equation (47), we have f ′α(λi) = ∂
∂λi

E tr
(
N−1

)
and

|f ′α(λi)| =
∣∣∣∣ ∂∂λiE tr

(
N−1

)∣∣∣∣ =

∣∣∣∣E [ ∂

∂λi
tr
(
N−1

)]∣∣∣∣ ≤ E
∣∣∣∣ ∂∂λi tr

(
N−1

)∣∣∣∣ . 1

λ2

and therefore {f ′α} is uniformly bounded for λi. Because∣∣∣∣ ∂2

∂λ2
i

tr
(
N−1

)∣∣∣∣
=2 tr

(
N−1ZiZ

>
i N

−1ZiZ
>
i N

−1
)

.
1

λn
tr
(
N−1

(
ZiZ

>
i

)2
N−1

)
=

1

λn
tr
(
ZiZ

>
i N

−2ZiZ
>
i

)
≤ 1

(λn)
3 tr

(
ZiZ

>
i

)2
,

and E 1
(λn)3 tr

(
ZiZ

>
i

)2 � 1
λ3 (by Lemma 4), using the dominated convergence theorem yields

E
[
∂2

∂λ2
i

tr
(
N−1

)]
=

∂

∂λi
E
[
∂

∂λi
tr
(
N−1

)]
=

∂2

∂λ2
i

E
[
tr
(
N−1

)]
= f ′′α(λi) .

Moreover, we have

|f ′′α(λi)| ≤ E
∣∣∣∣ ∂2

∂λ2
i

tr
(
N−1

)∣∣∣∣ . 1

λ3
.

Thus {f ′α} is uniformly equicontinuous for λi. We want to show that limα f
′
α(λi) = g′(λi) by

contradiction. Assume that it is not true. Then there exists ε > 0 and a subsequence
{
f ′αk
}

such
that

∣∣f ′αk(λi)− g′(λi)
∣∣ > ε. Since

{
f ′αk
}

is uniformly bounded and uniformly equicontinuous for
λi ∈ E (E is any closed finite interval containing λi), by the Arzela-Ascoli theorem, there exists
a subsequence

{
f ′αkr

}
that converges uniformly on E. Since limα fαkr (λi) = g(λi), by (Rudin,

1976, Thoerem 7.17), we have
lim
r
f ′αkr (λi) = g′(λi) ,

which yields a contradiction. Therefore, we have limα f
′
α(λi) = g′(λi). Recall g(λi) = h(λi)

for any λi > 0. Then by the final part of Lemma 11, we have limα f
′
α(λi) = g′(λi) = h′(λi) =

− r
∗2
i

λ2
i

.
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D.4 BIAS

Lemma 13. Suppose that U ∼
⊕

i∈[m] Unif (O (di)) and V are two independent d × d random

matrices such that V d
= UV U>, where d =

∑m
i=1 di. Let θ ∈ Rd be a fixed vector. Write

θ =

 θ1

...
θm

, where θi ∈ Rdi . Let

φ ∼
⊕
i∈[m]

Unif
(
Sdi−1 (‖θi‖2)

)
be a random vector independent of V and let Λ = diag (λ1Id1

, . . . , λmIdm) ∈ Rd×d. Then we have

E
[∥∥∥Λ1/2V θ

∥∥∥2

2

]
= E

[∥∥∥Λ1/2V φ
∥∥∥2

2

]
.

Proof. Recall UΛU> = Λ and noticing U>θ d
= φ, we get

E
[∥∥∥Λ1/2V θ

∥∥∥2

2

]
=E

[∥∥∥Λ1/2UV U>θ
∥∥∥2

2

]
=E

[
θ>UV >U>ΛUV U>θ

]
=E

[
θ>UV >ΛV U>θ

]
=E

[∥∥∥Λ1/2V U>θ
∥∥∥2

2

]
=E

[∥∥∥Λ1/2V φ
∥∥∥2

2

]
.

Lemma 14. Define Θ̃ = diag
(
‖θ′1‖22/d1Id1 , . . . , ‖θ′m‖22/dmIdm

)
and S =

Λ1/2Z
(
nλIn + Z>ΛZ

)−1
Z>Λ1/2. Then we have

Bλ,d,n = ‖θ∗‖2Σ − 2E tr
(

ΛSΘ̃
)

+ E tr
(
SΛSΘ̃

)
.

Proof. Recall Equation (22) in Lemma 5

Bλ,d,n = E

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

θ′‖22

]
.

Let U ∼
⊕

i∈[m] Unif (O(di)) be a random matrix independent of Z. Because UZ d
= Z, we have

Id +
1

nλ
Λ1/2ZZ>Λ1/2 d

= Id +
1

nλ
Λ1/2UZZ>U>Λ1/2 = U

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)
U> .

Define θ̃ ∼
⊕

i∈[m] Unif(Sdi−1(‖θ′i‖2)). Lemma 13 gives

Bλ,d,n =E

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

θ̃‖22

]
=E

[
‖Λ1/2 (Id − S) θ̃‖22

]
=E

[
‖ (Id − S) θ̃‖2Λ

]
=E

∥∥∥θ̃∥∥∥2

Λ
− E

[
θ̃>ΛSθ̃

]
− E

[
θ̃>SΛθ̃

]
+ E

[
θ̃>SΛSθ̃

]
.
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Notice that
∥∥∥θ̃∥∥∥2

Λ
= ‖θ′‖2Λ and Θ̃ = E

[
θ̃θ̃>

]
. Because Θ̃ commutes with Λ, we have tr

(
SΛΘ̃

)
=

tr
(
SΘ̃Λ

)
= tr

(
ΛSΘ̃

)
. In light of these, we deduce

Bλ,d,n = ‖θ′‖2Λ − E tr
(

ΛSΘ̃
)
− E tr

(
SΛΘ̃

)
+ E tr

(
SΛSΘ̃

)
= ‖θ′‖2Λ − 2E tr

(
ΛSΘ̃

)
+ E tr

(
SΛSΘ̃

)
.

Lemma 14 expresses the bias Bλ,d,n as the sum of three terms.

Computing ‖θ′‖2Λ Note that ‖θ′‖2Λ = θ′>Λθ′ =
∑
i∈[m] λi ‖θ′i‖

2
2. Therefore,

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

‖θ′‖2Λ = q> (λ� z) .

Computing E tr
(

ΛSΘ̃
)

Define N = λnIn + Z>ΛZ = λnIn +
∑
i∈[m] λiZiZ

>
i . We have

E tr
(

ΛSΘ̃
)

=E tr
(
Z>Λ1/2Θ̃Λ3/2Z

(
nλIn + Z>ΛZ

)−1
)

=E tr
(
Z>Λ2Θ̃ZN−1

)
=
∑
i∈[m]

λ2
i

‖θ′i‖22
di

E tr
(
ZiZ

>
i N

−1
)

=
∑
i∈[m]

λ2
i ‖θ′i‖22

n

di
E
[
∂

∂λi

1

n
log det

N

n

]

=
∑
i∈[m]

λ2
i ‖θ′i‖22

n

di

∂

∂λi
E
[

1

n
log det

N

n

]
,

where the second inequality is because Θ̃ commutes with Λ3/2 and the final equality is because of
Equation (38). Taking lim n,di→+∞

di/n→zi
‖Πiθ∗‖2→ηi

and using Lemma 10 gives

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

E tr
(

ΛSΘ̃
)

=
∑
i∈[m]

λ2
i η

2
i

zi

∂

∂λi
inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) .
Using the envelope theorem yields

∂

∂λi
inf
ρ∈Rm+

log

λ+
∑
i∈[m]

λiρi

+
∑
i∈[m]

(
ρi − zi

(
log

ρi
zi

+ 1

)) =
ρ∗i

λ+
∑
i∈[m] λiρ

∗
i

=
zi − ρ∗i
λi

,

where the final equality is because of Equation (6) in Item 1. Therefore, we deduce

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

E tr
(

ΛSΘ̃
)

=
∑
i∈[m]

λ2
i η

2
i

zi

zi − ρ∗i
λi

=
∑
i∈[m]

λiη
2
i

(
1− ρ∗i

zi

)
= q> (λ� (z− ρ∗)) .
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Computing E tr
(
SΛSΘ̃

)
We have

E tr
(
SΛSΘ̃

)
=E tr

[
Λ1/2ZN−1Z>Λ2ZN−1Z>Λ1/2Θ̃

]
=E tr

[
Z>Λ1/2Θ̃Λ1/2ZN−1Z>Λ2ZN−1

]
=E tr

[
Z>ΛΘ̃ZN−1Z>Λ2ZN−1

]
=
∑
i∈[m]

λi‖θ′i‖22
di

∑
j∈[m]

λ2
jE tr

[
ZiZ

>
i N

−1ZjZ
>
j N

−1
]

=−
∑
i∈[m]

λi‖θ′i‖22n
di

∑
j∈[m]

λ2
jE
[

∂2

∂λj∂λi

1

n
log det

N

n

]
,

where the third equality is because Θ̃ commutes with Λ1/2. Taking lim n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

and using

Lemma 10 gives

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

E tr
(
SΛSΘ̃

)
= −

∑
i∈[m]

λiη
2
i

zi

∑
j∈[m]

λ2
j

∂2

∂λj∂λi
inf
ρ∈Rm+

log

λ+
∑
l∈[m]

λlρl

+
∑
l∈[m]

(
ρl − zl

(
log

ρl
zl

+ 1

)) .
Write λ = (λ1, . . . , λm)> and z = (z1, . . . , zm)>. Let ρ∗ ∈ Rm be a minimizer of Equation (5)
and J = ∂ρ∗

∂λ ∈ Rm×m be the Jacobian matrix Jij =
∂ρ∗i
∂λj

. Recall Item 2(
diag (λ) +

(
λ+ λ>ρ∗

)
Im − (z− ρ∗)λ>

)
J = (z− ρ∗) ρ∗> − diag (ρ∗) .

Using the envelope theorem, we have

∂

∂λi
inf
ρ∈Rm+

log

λ+
∑
l∈[m]

λlρl

+
∑
l∈[m]

(
ρl − zl

(
log

ρl
zl

+ 1

)) =
ρ∗i

λ+
∑
l∈[m] λlρ

∗
l

=
ρ∗i

λ+ λ>ρ∗
.

Recall Equation (6) yields
ρ∗i

λ+ λ>ρ∗
=
zi − ρ∗i
λi

.

Differentiating the above equation with respect to λj gives

∂2

∂λj∂λi
inf
ρ∈Rm+

log

λ+
∑
l∈[m]

λlρl

+
∑
l∈[m]

(
ρl − zl

(
log

ρl
zl

+ 1

))
=

∂

∂λj

zi − ρ∗i
λi

=
−λiJij − (zi − ρ∗i ) δij

λ2
i

.

It follows that

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

E tr
(
SΛSΘ̃

)

=
∑
i∈[m]

λiη
2
i

zi

∑
j∈[m]

λ2
j

λiJij + (zi − ρ∗i ) δij
λ2
i

=
∑

i,j∈[m]

qiλ
2
j

(
Jij +

(zi − ρ∗i ) δij
λi

)
=q>

(
λ� (z− ρ∗) + Jλ�2

)
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Putting all three terms together, we have

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

Bλ,d,n = q> (λ� z)−2q> (λ� (z− ρ∗))+q>
(
λ� (z− ρ∗) + Jλ�2

)
= q>

(
λ� ρ∗ + Jλ�2

)
.

Since {Bλ,d,n} is uniformly bounded and uniformly equicontinuous for λ ∈ (0, 1] by Lemma 5,
{Bλ,d,n} can be extended continuously to [0, 1] and the family of extended functions is still uni-
formly bounded and uniformly equicontinuous for λ ∈ [0, 1]. By the Arzela-Ascoli theorem,
{Bλ,d,n} converges uniformly to the limit. By the Moore-Osgood theorem, we can exchange the
two limits lim n,di→+∞

di/n→zi
‖Πiθ∗‖2→ηi

and limλ→0+ and get

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

B0,d,n = lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

lim
λ→0+

Bλ,d,n = lim
λ→0+

lim
n,di→+∞
di/n→zi
‖Πiθ∗‖2→ηi

Bλ,d,n = q>
(
λ� ρ∗ + Jλ�2

)
|λ=0 .

D.5 VARIANCE

Define N = nλIn + Z>ΛZ. Recalling Lemma 6 gives
Vλ,d,n

=σ2E‖ΛZN−1‖22

=σ2
m∑
i=1

λ2
iE tr

(
ZiZ

>
i N

−2
)

=− σ2
m∑
i=1

λ2
iE
[
∂

∂λi
tr
(
N−1

)]
.

Using Lemma 12, we get
lim

n,di→∞
di/n→zi

Vλ,d,n

=− σ2
m∑
i=1

λ2
i lim
n,di→∞
di/n→zi

E
[
∂

∂λi
tr
(
N−1

)]

=− σ2
m∑
i=1

λ2
i lim
n,di→∞
di/n→zi

E
[
∂

∂λi
tr
(
N−1

)]

=− σ2
m∑
i=1

λ2
i

∂2

∂λi∂λ
inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

) .
Using the envelope theorem, we deduce

∂

∂λ
inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj

(
log

ρj
zj

+ 1

)) =
1

λ+
∑m
j=1 λjρ

∗
j

.

Then we take ∂
∂λi

and obtain

∂2

∂λi∂λ
inf
ρ∈Rm+

log

λ+

m∑
j=1

λjρj

+

m∑
j=1

(
ρj − zj(log

ρj
zj

+ 1)

)
=

∂

∂λi

1

λ+
∑m
j=1 λjρ

∗
j

=−
ρ∗i +

∑
j∈[m] λjJji(

λ+
∑
j∈[m] λjρ

∗
j

)2 .
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As a result,

lim
n,di→∞
di/n→zi

Vλ,d,n = σ2
m∑
i=1

λ2
i

ρ∗i +
∑
j∈[m] λjJji(

λ+
∑
j∈[m] λjρ

∗
j

)2 = σ2

(
λ�2

)> (
ρ∗ + J>λ

)
(λ+ λ>ρ∗)

2 .

By Lemma 12, the variance is given by

lim
n,di→∞
di/n→zi

Vλ,d,n = lim
n,di→∞
di/n→zi

−σ2
m∑
i=1

λ2
iE
[
∂

∂λi
tr
(
N−1

)]
= σ2

m∑
i=1

r∗2i ,

where r∗ solves

sup
rt>0

inf
r1,...,rm>0

2rt

√
1 +

∑
i∈[m]

r2
i − 2rt

∑
i∈[m]

√
ziri +

∑
i∈[m]

1

λi
r2
i − λr2

t

 .

Since {Vλ,d,n} is uniformly bounded and uniformly equicontinuous with respect to λ ∈ (0, 1] by
Lemma 5, {Vλ,d,n} can be extended continuously to [0, 1] and the family of extended functions
is still uniformly bounded and uniformly equicontinuous. By the Arzela-Ascoli theorem, {Vλ,d,n}
converges uniformly to the limit. By the Moore-Osgood theorem, we can exchange the two limits
limn,di→∞

di/n→zi
and limλ→0+ and get

lim
n,di→∞
di/n→zi

lim
λ→0+

Vλ,d,n = lim
λ→0+

lim
n,di→∞
di/n→zi

Vλ,d,n = σ2
m∑
i=1

r∗2i |λ=0 .

E PROOF OF THEOREM 2

We use Theorem 1 to prove Theorem 2. As in Theorem 1, let r∗ solve minri≥0 maxrt≥0 ϑ(rt, r,λ),
where ϑ is defined in Equation (7). Note that ϑ is a quadratic function of rt. Define A =√∑

i∈[m] r
2
i + 1, B =

∑
i∈[m]

√
ziri, A∗ =

√∑
i∈[m] r

∗2
i + 1, and B∗ =

∑
i∈[m]

√
zir
∗
i . Then

r∗t = A−B
λ and we get

min
ri≥0

max
rt≥0

ϑ(rt, r,λ) = min
ri≥0

 (A−B)
2

λ
+
∑
i∈[m]

1

λi
r2
i

 = min
ri≥0

 (A−B)
2

λ
+
∑
i∈[m]

1

λi
r2
i

 .

Taking the partial derivative with respect to ri gives

∂

∂ri

 (A−B)
2

λ
+
∑
i∈[m]

1

λi
r2
i

 = 2 · A−B
λ

(ri
A
−
√
zi

)
+ 2 · ri

λi
.

Setting it to zero gives the optimality condition for r∗i :

A∗ −B∗

λ

(
r∗i
A∗
−
√
zi

)
= −r

∗
i

λi
, i ∈ [m] . (48)

It follows that
r∗i
A∗ −

√
zi

r∗j
A∗ −

√
zj

=
r∗i /λi
r∗j /λj

, i, j ∈ [m] .

Some algebraic manipulation in the above equation yields

r∗i
r∗j

=
λi
λj
·
√
ziA
∗ − r∗i√

zjA∗ − r∗j
, i, j ∈ [m] .
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Define z = (z1, . . . , zm). Then ‖z‖1 =
∑
i∈[m] zi. By Cauchy–Schwarz inequality, if d/n →∑

i∈[m] zi < 1

B ≤
√∑
i∈[m]

zi ‖r‖2 < ‖r‖2 <
√
‖r‖22 + 1 = A .

Thus there does not exist r such that A = B. If d/n →
∑
i∈[m] zi > 1, then A = B is feasible for

r. For example, set

r =
1√

(‖z‖1 − 1) ‖z‖1

√
z .

We have

B =
〈
r,
√
z
〉

=

√
‖z‖1
‖z‖1 − 1

A =

√
1 + ‖r‖22 =

√
1 +

1

‖z‖1 − 1
= B .

If ‖z‖1 > 1, since A = B is feasible, then

lim
λ→0+

min
ri≥0

 (A−B)
2

λ
+
∑
i∈[m]

1

λi
r2
i

 = min
ri≥0
A=B

∑
i∈[m]

1

λi
r2
i .

If ‖z‖1 < 1, then A−B always holds. To be precise, we have

A−B ≥
(√
‖r‖22 + 1− ‖r‖2

)
∨
((

1−
√
‖z‖1

)
‖r‖2

)
.

If ‖r‖2 > 1, then
(
1−

√
‖z‖1

)
‖r‖2 > 1−

√
‖z‖1. If ‖r‖2 ≤ 1, then

√
‖r‖22 + 1−‖r‖2 ≥

√
2−1.

Thus there exists a universal constant C0 =
(
1−

√
‖z‖1

)
∨
(√

2− 1
)
> 0 such that

A−B ≥ C0 .

Recall Equation (48). We have

(A∗ −B∗)
(
r∗i
A∗
−
√
zi

)
= −λr

∗
i

λi
, i ∈ [m] .

Taking limλ→0+ , since A∗ −B∗ ≥ C0 does not go to zero, we have

r∗i
A∗
−
√
zi = 0 , i ∈ [m] .

Then we get

r∗2i
1 +

∑
j∈[m] r

∗2
j

= zi , i ∈ [m] .

Summing all i ∈ [m] yields

‖z‖1 =

∑
i∈[m] r

∗2
i

1 +
∑
i∈[m] r

∗2
i

.

Therefore, we have

lim
n,di→+∞
di/n→zi

V0,d,n = σ2 lim
λ→0+

m∑
i=1

r∗2i = σ2

∑
i∈[m] zi

1−
∑
i∈[m] zi

.
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F PROOF OF THEOREM 3

Define A∗ =
√∑

i∈[m] r
∗2
i + 1 and B∗ =

∑
i∈[m]

√
zir
∗
i . Equation (15) in Theorem 2 yields

r∗1
r∗2

=
λ1

λ2
·
√
z1A

∗ − r∗1√
z2A∗ − r∗2

.

Using the constraint A∗ = B∗, we get

r∗1
r∗2

=
λ1

(√
z1B

∗ − r∗1
)

λ2

(√
z2B∗ − r∗2

) .
Define q =

r∗1
r∗2

. We have the following equation

q =
λ1

(
q(z1 − 1) +

√
z1z2

)
λ2

(
q
√
z1z2 + z2 − 1

) .

Solving the above equation yields

q =
λ1 (z1 − 1) + λ2 (1− z2) +

√
(λ1 (z1 − 1) + λ2 (1− z2)) 2 + 4λ1λ2z1z2

2λ2
√
z1z2

. (49)

Here we discard the negative root. Let x = r∗21 + r∗22 = r∗22

(
1 + q2

)
. ?? yields

1 + x = r∗22 (q
√
z1 +

√
z2)

2
=

x

1 + q2
(q
√
z1 +

√
z2)

2
.

Solving x from the above equation gives

x =
q2 + 1

q2(z1 − 1) + 2q
√
z1z2 + z2 − 1

.

Therefore,

lim
n,di→+∞
di/n→zi

V0,d,n =
q2 + 1

q2(z1 − 1) + 2q
√
z1z2 + z2 − 1

.

G PROOF OF THEOREM 4

Instead of considering the θ∗ specified in Equation (18), we first consider a Bayesian setting where
θ∗ ∼ N

(
0, 1

dId
)
. Later, we will show that the setup in Equation (18) is asymptotically (as di →∞)

equivalent to this Bayesian setting. The precise meaning of equivalence will also be presented later.
Our strategy can be divided into two steps. The first step is to show that the Bayes risk of the
Bayes estimator is monotonically decreasing in the sample size n. The second step is to translate
the sample-wise monotonicity of the Bayes estimator to the excess risk of the optimally regularized
estimator θ̂λ,d,n in the setup of Equation (18).

Recall that since we are interested in sample-wise monotonicity, we add a subscript n to X and y
(they are defined by Equation (1) in Section 1.1) to emphasize that they consist of n data items. In
this Bayesian setting, the likelihood function of θ∗ is

L (θ∗ | Xn,yn) =
∏
i∈[n]

L (θ∗ | xi, yi) ∝ exp

(
−
∑
i∈[n] (yi − 〈θ∗, xi〉)2

2σ2

)
= exp

(
−
‖Xnθ

∗ − yn‖22
2σ2

)
.

The density of the prior of θ∗ is proportional to exp
(
−d2 ‖θ

∗‖22
)

. Therefore, the posterior density
of θ∗ is given by

p (θ∗ | Xn,yn) ∝ exp

(
−
d ‖θ∗‖22

2
−
‖Xnθ

∗ − yn‖22
2σ2

)
.
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As a result, the posterior distribution of θ∗ is Gaussian. The Bayes estimator is

θ̂Bayes (Xn,yn) = arg min
θ

Eθ∗∼p(θ∗|Xn,yn) ‖θ − θ∗‖
2
Σ .

Taking the derivative with respect to θ gives

∂

∂θ
Eθ∗∼p(θ∗|Xn,yn) ‖θ − θ∗‖

2
Σ = 2Σ (θ − θ∗) .

Setting the above equation to zero yields Σ
(
θ̂Bayes (Xn,yn)− Eθ∗∼p(θ∗|Xn,yn)θ

∗
)

= 0 and there-
fore

θ̂Bayes (Xn,yn) = Eθ∗∼p(θ∗|Xn,yn)θ
∗ = E [θ∗ | Xn,yn] = arg min

θ

(
d ‖θ∗‖22 +

‖Xnθ
∗ − yn‖22
σ2

)
.

The final equality is because the posterior mean of a Gaussian distribution equals its mode.

Define the Bayes risk

Rn , Eθ∗∼N (0, 1d Id),Xn,yn

[∥∥∥θ̂Bayes (Xn,yn)− θ∗
∥∥∥2

Σ

]
.

Write X = Rd and Y = R. Define

R′n , inf
θ̂:Xn×Yn→R

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂ (Xn,yn)− θ∗
∥∥∥2

Σ
.

We have

R′n = inf
θ̂:Xn×Yn→Rd

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥Σ1/2θ̂ (Xn,yn)− Σ1/2θ∗
∥∥∥2

2

= inf
θ̂:Xn×Yn→Rd

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂ (Xn,yn)− Σ1/2θ∗
∥∥∥2

2

= Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥E [Σ1/2θ∗ | Xn,yn

]
− Σ1/2θ∗

∥∥∥2

2

= Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥Σ1/2θ̂Bayes (Xn,yn)− Σ1/2θ∗
∥∥∥2

2

= Rn .

where the third equality is because the conditional expectation minimizes the `2 loss. Next, we want
to show that Rn+1 ≤ Rn, i.e., the Bayes risk of the Bayes estimator is monotonically decreasing in
the sample size n.

Rn+1 = inf
θ̂:Xn+1×Yn+1→Rd

Eθ∗∼N (0, 1d Id),Xn+1,yn+1

[∥∥∥θ̂ (Xn+1,yn+1)− θ∗
∥∥∥2

Σ

]
≤ inf
θ̂:Xn×Yn→R

Eθ∗∼N (0, 1d Id),Xn+1,yn+1

[∥∥∥θ̂ (Xn,yn)− θ∗
∥∥∥2

Σ

]
= Rn .

Then we want to show that Rn equals the Bayes risk of the optimally regularized estimator θ̂λ,n,d:

Rn = inf
λ≥0

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
.

Since Rn = inf θ̂:Xn×Yn→Rd Eθ∗,Xn,yn
∥∥∥θ̂ (Xn,yn)− θ∗

∥∥∥2

Σ
, we get

Rn ≤ inf
λ≥0

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
.
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On the other hand, recalling θ̂Bayes (Xn,yn) = arg minθ

(
d ‖θ‖22 +

‖Xnθ−yn‖22
σ2

)
= θ̂σ2d

n ,n,d
and

Rn = Eθ∗∼N (0, 1d Id),Xn,yn

[∥∥∥θ̂Bayes (Xn,yn)− θ∗
∥∥∥2

Σ

]
, we deduce

Rn ≥ inf
λ≥0

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
.

Therefore we deduce Rn = infλ≥0 Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
. As a result, we establish

sample-wise monotonicity of the Bayes risk of optimal regularized θ̂λ,n,d:

Rn+1 = inf
λ≥0

Eθ∗,Xn+1,yn+1

∥∥∥θ̂λ,n+1,d − θ∗
∥∥∥2

Σ
≤ inf
λ≥0

Eθ∗,Xn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
= Rn . (50)

In what follows, we show that if θ∗ is given by Equation (18), the excess risk of θ̂λ,n,d is asymptoti-
cally equal to its Bayes risk when θ∗ ∼ N (0, 1

dId):

lim
di→∞

∣∣∣∣EXn,yn ∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
− Eθ∗∼N (0, 1d Id)EXn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ

∣∣∣∣ = 0 .

We abuse the notation in the above equation. The θ∗ in EXn,yn
∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ
satisfies Equation (18),

while the θ∗ in Eθ∗∼N (0, 1d Id)EXn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
follows a normal distribution N (0, 1

dId). By

Lemma 5 and Lemma 6, if Σ = PΛP> and θ′ = P>θ∗ are as defined in Table 1 (where P is an
orthogonal matrix and Λ = diag(λ1Id1

, . . . , λmIdm) ∈ Rd×d is a diagonal matrix), for fixed θ∗ we
have

EXn,yn
∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ
=EXn,yn

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

θ′‖22

]
+ σ2EXn,yn

[
‖ΛZ

(
λnIn + Z>ΛZ

)−1 ‖22
]
,

where every entry ofZ ∈ Rd×n follows i.i.d. N (0, 1). If θ∗ ∼ N (0, 1
dId), we have θ′ ∼ N (0, 1

dId).

Since the variance term σ2EXn,yn
[
‖ΛZ

(
λnIn + Z>ΛZ

)−1 ‖22
]

does not depend on θ∗, the two
variance terms cancel out and we get

EXn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
− Eθ∗∼N (0, 1d Id)EXn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ

=EXn,yn

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

θ′‖22

]

− EXn,yn,θ′∼N (0, 1d Id)

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

θ′‖22

]

For U ∼
⊕

i∈[m] Unif (O (di)), we have(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1
d
=

(
Id +

1

nλ
Λ1/2UZZ>U>Λ1/2

)−1

= U

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

U> .

By Lemma 13, for θ∗ (and thereby θ′) specified in Equation (18), we get

EXn,yn

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

θ′‖22

]
= EXn,yn,φ

[
‖Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

φ‖22

]
,

where
φ ∼

⊕
i∈[m]

Unif
(
Sdi−1 (‖θ′i‖2)

)
=
⊕
i∈[m]

Unif
(
Sdi−1

(√
di/d

))
.
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In the Bayesian setting, if θ′ ∼ N (0, 1
dId), then U>θ′ ∼ N (0, 1

dId). We have

Eθ′∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ
= Eθ′∼N (0, 1d Id),Xn,yn

∥∥∥∥∥Λ1/2U

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

U>θ′

∥∥∥∥∥
2

2


= EXn,yn,ψ

∥∥∥∥∥Λ1/2

(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1

ψ

∥∥∥∥∥
2

2

 ,
where ψ = U>θ′ ∼ N (0, 1

dId).

Next, we want to couple φ and ψ. Let si
i.i.d.∼ Unif

(
Sdi−1(1)

)
, hi

i.i.d.∼ χ2(di), and define

φ =


√
d1/ds1

...√
dm/dsm

 , ψ =


√
h1/ds1

...√
hm/dsm

 .
We have ‖φ‖2 = 1 and

‖ψ‖2 =

√√√√ m∑
i=1

hi
d

=

√√√√ m∑
i=1

di
d
· hi
di
,

‖φ− ψ‖2 =

√√√√ m∑
i=1

di
d

(
1−

√
hi
di

)2

.

By the strong law of large numbers, limdi→+∞ hi/di = 1 almost surely. Thus we get
limdi→+∞,di/d→νi ‖ψ‖2 =

√∑m
i=1 νi and limdi→+∞,di/d→νi ‖φ− ψ‖2 = 0 almost surely (re-

call that we will let di → +∞ and di/d → νi for some constant νi > 0. ). Because∥∥Λ1/2
∥∥

2
. 1 and

∥∥∥(Id + 1
nλΛ1/2ZZ>Λ1/2

)−1
∥∥∥

2
≤ ‖Id‖2 = 1, we bound the norm of

Q , Λ1/2
(
Id + 1

nλΛ1/2ZZ>Λ1/2
)−1

as follows

‖Q‖2 ≤
∥∥∥Λ1/2

∥∥∥
2

∥∥∥∥∥
(
Id +

1

nλ
Λ1/2ZZ>Λ1/2

)−1
∥∥∥∥∥

2

. 1 .

It follows that ∣∣∣EXn,yn,φ [‖Qφ‖22]− EXn,yn,ψ
[
‖Qψ‖22

]∣∣∣
≤EXn,yn,φ,ψ

∣∣∣‖Qφ‖22 − ‖Qψ‖22∣∣∣
=EXn,ynφ,ψ (‖Qφ‖2 + ‖Qψ‖2) |‖Qφ‖2 − ‖Qψ‖2|
.EXn,ynφ,ψ [(‖φ‖2 + ‖ψ‖2) ‖Q(φ− ψ)‖2]

.EXn,ynφ,ψ ‖φ− ψ‖2 ,

where the last inequality is because ‖φ‖2 + ‖ψ‖2 . 1 for all sufficiently large di. We know that
limdi→+∞,di/d→νi ‖φ− ψ‖2 = 0 almost surely. To apply Lebesgue’s dominated convergence
theorem, we need to find a dominating integrable random variable. In fact, 1 + ‖ψ‖2 dominates
‖φ− ψ‖2:

‖φ− ψ‖2 ≤ ‖φ‖2 + ‖ψ‖2 = 1 + ‖ψ‖2 .

It is integrable because E ‖ψ‖2 = E
[√

χ2(d)
d

]
≤
√

E[χ2(d)]
d = 1. Application of Lebesgue’s

dominated convergence theorem yields

lim
di→+∞,di/d→νi

∣∣∣EXn,yn,φ [‖Qφ‖22]− EXn,yn,ψ
[
‖Qψ‖22

]∣∣∣ = 0 .
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Therefore, we conclude that

lim
di→+∞,di/d→νi

∣∣∣∣EXn,yn ∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ
− Eθ∗∼N (0, 1d Id)EXn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ

∣∣∣∣ = 0

and this convergence is uniform in n and λ ∈ (0,∞). It follows that

lim
n,di→∞
n/di→γi

∣∣∣∣EXn,yn ∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
− Eθ∗∼N (0, 1d Id)EXn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ

∣∣∣∣ = 0

and this convergence is uniform in λ ∈ (0,∞).

By Lemma 8 (the proof is similar when we replace α→ +∞ by n, di →∞, n/di → γi), we have

lim
n,di→∞
n/di→γi

∣∣∣∣ inf
λ>0

EXn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
− inf
λ>0

Eθ∗∼N (0, 1d Id)EXn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ

∣∣∣∣ = 0 . (51)

Define fα(λ) = Eθ∗∼N (0, 1d Id)EXn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
. We use α to denote the indices n, di. By

Lemma 5 and Lemma 6, we have

Eθ∗∼N (0, 1d Id)EXn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
. Eθ∗∼N (0, 1d Id) ‖θ∗‖

2
2 = 1 .

Therefore {fα(λ)} is uniformly bounded for λ > 0. Since
∣∣∣∣ ddλEXn,yn ∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ

∣∣∣∣ . ‖θ∗‖22 and

Eθ∗∼N (0, 1d Id) ‖θ∗‖
2
2 = 1, we have∣∣∣∣ ddλEθ∗∼N (0, 1d Id)EXn,yn

∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ

∣∣∣∣ =

∣∣∣∣Eθ∗∼N (0, 1d Id)

d

dλ
EXn,yn

∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ

∣∣∣∣ . 1 .

As a result, {fα(λ)} is uniformly equicontinuous for λ > 0, and in particular λ ∈ (0,M ] for any
M > 0. Therefore {fα(λ)} can be extended continuously to [0,M ] and the family of extended
functions is still uniformly bounded and uniformly equicontinuous. Recall that if θ∗ ∼ N (0, 1

dId),
we have θ′ ∼ N (0, 1

dId). As in Equation (19), write θ′ in a row-partitioned form

θ′ =

 θ′1
...
θ′m

 ,

where θ′i ∈ Rdi . Then ‖Πiθ
∗‖2 = ‖θ′i‖2 ∼

√
χ2(di)
d =

√
χ2(di)
di
· did →

√
νi as n, di → +∞

and n/di → γi, where νi =
(
γi
∑
j∈[m]

1
γj

)−1

. By Theorem 1, {fα(λ)} converges pointwise, say,
to h(λ, γ1, . . . , γm). By the Arzela-Ascoli theorem, limα fα(λ) = h(λ, γ1, . . . , γm) uniformly on
λ ∈ [0,M ]. Therefore, as n, di →∞ and n/di → γi, by Lemma 8, we have

inf
λ∈[0,M ]

Eθ∗∼N (0, 1d Id)EXn,yn
∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ
→ inf

λ∈[0,M ]
h(λ, γ1, . . . , γm) .

Recalling θ̂Bayes (Xn,yn) = arg minθ

(
d ‖θ‖22 +

‖Xnθ−yn‖22
σ2

)
= θ̂σ2d

n ,n
and

Rn = Eθ∗∼N (0, 1d Id),Xn,yn

[∥∥∥θ̂Bayes (Xn,yn)− θ∗
∥∥∥2

Σ

]
= inf
λ≥0

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
.

For all M > CM := 2σ2
∑
i∈[m]

1
γi
≥ σ2d

n (recall dn →
∑
i∈[m]

1
γi

), we have

inf
λ∈[0,M ]

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
= inf
λ≥0

Eθ∗∼N (0, 1d Id)EXn,yn
∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ

→ inf
λ∈[0,M ]

h(λ, γ1, . . . , γm) .
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The uniqueness of limits implies that infλ∈[0,M ] h(λ, γ1, . . . , γm) is independent of M as
long as M > σ2. As a result, if M > CM , we have infλ∈[0,M ] h(λ, γ1, . . . , γm) =
infλ≥0 h(λ, γ1, . . . , γm), which yields

inf
λ≥0

Eθ∗∼N (0, 1d Id),Xn,yn

∥∥∥θ̂λ,n,d − θ∗∥∥∥2

Σ
→ inf

λ≥0
h(λ, γ1, . . . , γm) . (52)

Equation (50) implies infλ≥0 h(λ, γ1, . . . , γm) is decreasing in every γi. Combining Equation (51)
and Equation (52) gives

inf
λ≥0

EXn,yn
∥∥∥θ̂λ,n − θ∗∥∥∥2

Σ
→ inf

λ≥0
h(λ, γ1, . . . , γm) .

45


