
The Evolution of Statistical Induction Heads:
In-Context Learning Markov Chains

Ezra Edelman∗

University of Pennsylvania
ezrae@cis.upenn.edu

Nikolaos Tsilivis∗
New York University†
nt2231@nyu.edu

Benjamin L. Edelman
Harvard University

bedelman@g.harvard.edu

Eran Malach
Harvard University

emalach@g.harvard.edu

Surbhi Goel
University of Pennsylvania
surbhig@cis.upenn.edu

Abstract

Large language models have the ability to generate text that mimics patterns in their
inputs. We introduce a simple Markov Chain sequence modeling task in order to
study how this in-context learning capability emerges. In our setting, each example
is sampled from a Markov chain drawn from a prior distribution over Markov
chains. Transformers trained on this task form statistical induction heads which
compute accurate next-token probabilities given the bigram statistics of the context.
During the course of training, models pass through multiple phases: after an initial
stage in which predictions are uniform, they learn to sub-optimally predict using
in-context single-token statistics (unigrams); then, there is a rapid phase transition
to the correct in-context bigram solution. We conduct an empirical and theoretical
investigation of this multi-phase process, showing how successful learning results
from the interaction between the transformer’s layers, and uncovering evidence
that the presence of the simpler unigram solution may delay formation of the
final bigram solution. We examine how learning is affected by varying the prior
distribution over Markov chains, and consider the generalization of our in-context
learning of Markov chains (ICL-MC) task to n-grams for n > 2.

1 Introduction

Large language models (LLMs) exhibit a remarkable ability to perform in-context learning (ICL)
from patterns in their input context [12, 16]. The ability of LLMs to adaptively learn from context is
profoundly useful, yet the underlying mechanisms of this emergent capability are not fully understood.

In an effort to better understand ICL, some recent works propose to study ICL in controlled synthetic
settings—in particular, training transformers on mathematically defined tasks which require learning
from the input context. For example, a recent line of works studies the ability of transformers
to perform ICL of standard supervised learning problems such as linear regression [3, 20, 26,
41]. Studying these well-understood synthetic learning tasks enables fine-grained control over
the data distribution, allows for comparisons with established supervised learning algorithms, and
facilitates the examination of the in-context “algorithm” implemented by the network. That said,
these supervised settings are reflective specifically of few-shot learning, which is only a special case
of the more general phenomenon of networks incorporating patterns from their context into their

∗Equal Contribution
†Work done while visiting Harvard University.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0

1

2

0.2

0.5
0.5

0.3

0.5

0.4

0.1
0.0

0.5

1 0 1 1 2 0 2 1 1 0 1 1 1 1 2 0

0

1

2

0.4

0.1
0.0

0.3

0.3

0.9

0.3

0.1
0.6

0 0 0 1 0 2 0 2 0 2 0 2 2 0 0 0

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

)

Transformer KL-Divergence: 3 Symbols
Uniform
Unigram
Bigram

Figure 1: (left) We train small transformers to perform in-context learning of Markov chains (ICL-
MC). Each training sequence is generated by sampling a transition matrix from a prior distribution,
and then sampling a sequence from this Markov chain. (right) Distance of a transformer’s output
distribution to several well-defined strategies over the course of training on our in-context Markov
chain task. The model passes through three stages: (1) predicting a uniform distribution (blue
region), (2) predicting based on in-context unigram statistics (orange region), (3) predicting based on
in-context bigram statistics (green region). Shading is based on the minimum of the curves.

predictions. A few recent works [8, 42] go beyond the case of cleanly separated in-context inputs and
outputs, studying in-context learning on distributions based on discrete stochastic processes.

The goal of this work is to propose and analyze a simple synthetic setting for studying ICL. To achieve
this, we consider n-gram models [11, 15, 37], one of the simplest and oldest methods for language
modeling. An n-gram language model predicts the probability of a token based on the preceding n−1
tokens, using fixed-size chunks (n-grams) of text data to capture linguistic patterns. Our work studies
ICL of n-gram models, where the network needs to compute the conditional probability of the next
token based on the statistics of the tokens observed in the input context, rather than on the statistics
of the entire training data. We mainly focus on the simple case of n = 2; i.e., bigram models, which
can be represented as Markov chains. We therefore consider ICL of Markov chains (ICL-MC): we
train two layer attention-only transformers on sequences of tokens, where each sequence is produced
by a different Markov chain, generated using a different transition matrix (see Figure 1 (left)).

By studying ICL-MC, we are able to replicate and study multiple phenomena that have been observed
in ICL for LLMs, and identify new ones. We demonstrate our findings using a combination of
empirical observations on transformers trained from scratch on ICL-MC and theoretical analysis of a
simplified linear transformer. Our key findings are summarized below:

(1) Transformers learn statistical induction heads to optimally solve ICL-MC. Prior work
studying ICL in transformers revealed the formation of induction heads [18], a circuit that looks for
recent occurrence(s) of the current token, and boosts the probabilities of tokens which followed in
the input context. We show that in order to solve ICL-MC, transformers learn statistical induction
heads that are able to compute the correct conditional (posterior) probability of the next token given
all previous occurrences of the prior token (see attention patterns in Figure 2). We show that these
statistical induction heads lead to the transformer achieving performance approaching that of the
Bayes-optimal predictor.

(2) Transformers learn predictors of increasing complexity and undergo a phase transition
when increasing complexity. We observe that transformers display phase transitions when learning
Markov chains—learning appears to be separated into phases, with fast drops in loss between the
phases. We are able to show that different phases correspond to learning models of increased
complexity—unigrams, then bigrams (see Figure 1)—and characterize the transition between the
phases. We also consider the n-gram generalization of our setting, where the next token is generated
based on the previous n− 1 tokens, and observe a similar multi-stage learning process.

(3) Simplicity bias may slow down learning. We provide evidence that the model’s inherent bias
towards simpler solutions (in particular, in-context unigrams) causes learning of the optimal solution

2

to be delayed. Changing the distribution of the in-context examples to remove the usefulness of
in-context unigrams leads to faster convergence, even when evaluated on the original distribution.

(4) Alignment of layers is crucial. We show that the transition from a phase of learning the
simple-but-inadequate solution to the complex-and-correct solution happens due to an alignment
between the layers of the model: the learning signal for the first layer is tied to the extent to which
the second layer approaches its correct weights.

1.1 Related Work

In-Context Learning. In [13], the authors discuss how properties of the data distribution promote
ICL. Xie et al. [42] suggest a Bayesian interpretation of ICL and studies how ICL emerges when the
training distribution comes from a Hidden Markov Model (HMM). Abernethy et al. [2] study the
ability of transformers to segment the context into pairs of examples and labels and provide learning
guarantees when the labeling is of the form of a sparse function. The work of Bietti et al. [8] studies
the dynamics of training transformers on a task that is reminiscent of our Markov chain setting but
has additional complexities. Instead of drawing a fresh Markov chain for each sequence, in their task
all sequences are sampled from the same Markov chain; after certain ‘trigger’ tokens, the following
‘output’ token is chosen deterministically within a sequence. Thus, successful prediction requires
incorporating both global bigram statistics and in-context deterministic bigram copying, unlike in our
setting where the patterns computed by statistical induction heads are necessary and sufficient. As in
our work, the authors identify multiple distinct stages of training and show how multiple top-down
gradient steps lead to a solution.

Induction Heads. Elhage et al. [18] relates ICL with the formation of induction heads, sub-
components of transformers that match previous occurrences of the current token, retrieving the
token that succeeds the most recent occurrence. Reddy [34] studies the formation of induction heads
and their role in ICL, showing empirically that a three layer network exhibits a sudden formation of
induction heads towards solving some ICL problem of interest. Bietti et al. [8] study the effect of
specific trigger tokens on the formation of induction heads.

Phase Transitions. It has been observed in different contexts that neural networks and language
models display a sudden drop in loss during their training process. This phase transition is often
related to emergence of new capabilities in the network. The work of Power et al. [32] observed the
“grokking” phenomenon, where the test loss of neural networks sharply drops, long after the network
overfits the training data. Chen et al. [14] shows another example of a phase transition in language
model training, where the formation of specific attention mechanisms happen suddenly in training,
causing the loss to quickly drop. Barak et al. [7] observe that neural networks trained on complex
learning problems display a phase transition when converging to the correct solution. Several works
[25, 27] attribute these phase transitions to rapid changes in the inductive bias of networks, while
Merrill et al. [29] argue that the models are sparser after the phase change. Schaeffer et al. [35] warn
that phenomena in deep learning that seem to be discontinuous can actually be understood to evolve
continuously once seen through the right lens.

Simplicity Bias. Various works observed that neural networks have a “simplicity bias”, which causes
them to “prioritize” learning simple patterns first [5, 39]. The work of Kalimeris et al. [23] shows that
SGD learns functions of increased complexity, first fitting a linear concept to the data before moving
to more complex functions. [36] shows that the simplicity bias of neural networks can sometimes be
harmful, causing them to ignore important features of the data. Chen et al. [14] demonstrate the effect
of simplicity bias on language tasks that require understanding of syntactic structure. Abbe et al.
[1] provide a theoretical framework for understanding how the simplicity of the target function can
govern the convergence time of SGD, describing how simple partial solutions can speed up learning;
in contrast, in our setting, the unigram solution appears likely to be a distractor which delays learning
of the correct solution.

Concurrent works. In parallel to this work, there have been a number of papers devoted to the study
of similar questions regarding in-context learning or Markov chains: Akyürek et al. [4] empirically
compare the ability of different architectures to perform in-context learning of regular languages.
Their experiments with synthetic languages motivate architectural changes which improve natural
language modeling in large scale datasets. Hoogland et al. [21] observe similar stage-wise learning
behaviors on transformers trained on language or synthetic linear regression tasks. Makkuva et al.

3

[28] study the loss landscape of transformers trained on sequences sampled from a single Markov
Chain. Perhaps closest to our work, Nichani et al. [30] introduces a general family of in-context
learning tasks with causal structure, a special case of which is in-context Markov chains. The authors
prove that a simplified transformer architecture (similar to the one we introduce in Section 2.2) can
learn to identify the causal relationships by training via gradient descent, and also characterize the
ability of the trained models to adapt to out-of-distribution data. The focus of our work, instead, is on
the different stages of training and how they relate to specific, well-defined, strategies.

2 Setup

In this section, we describe our learning problem and present the neural network architectures that
we will use for learning.

ICL-MC Task. Our learning task consists of sequences generated from Markov Chains with
random transition matrices. The goal is to in-context estimate the transition probabilities from
sampled sequences, in order to predict the next state. Formally, each sample sequence is generated
by a Markov Chain with state space S = {1, . . . , k} and a transition matrix P sampled from a prior
distribution, with x1 drawn from some other prior distribution (potentially dependent on P), and
the rest of x = (x1, . . . , xT) drawn from the Markov Chain. We primarily focus on the case where
each row of the matrix is sampled from the Dirichlet distribution with concentration parameter α, i.e.
Pi,: ∼ Dir(α). We want to learn a predictor that, given context x1, . . . , xT , predicts the next token,
xT+1. Note that this is an inherently non-deterministic task, even provided full information about
the transition matrix, and as such it can better capture certain properties of language than previous
in-context learning modeling approaches, such as linear regression [20]. We focus on the case of the
flat Dirichlet distribution, with α = (1, . . . , 1)⊤, that corresponds to uniform transition probabilities
between states. We draw the initial state x1 from the stationary distribution π of the chain (which
exists almost surely). We primarily consider the case where the number of states k is 2 or 3.

In subsection 3.3, we consider the generalization of this setting to n-grams for n > 2. Instead of
the distribution of xT being determined by xT−1, we let it be determined by xT−n+1, . . . , xT−1,
according to a conditional distribution P which is uniform over the possible states3.

2.1 Potential Strategies for (Partially) Solving ICL-MC

We adopt the Bayesian interpretation of in-context learning [42], in which a prior distribution is
provided by the training data, and, at test time, the model updates this prior given the in-context
sequence. In this framework, we focus on two strategies for Bayesian inference: a (suboptimal)
unigram strategy which assumes tokens in each sequence are i.i.d. samples (and counts the frequency
of the states in the sequence so far), and the bigram strategy which correctly takes into account
dependencies among adjacent tokens (and counts frequency of pairs of tokens).

1st strategy: Unigrams. Since we initialize the Markov chain at its stationary distribution (which
exists a.s.), the optimal strategy across unigrams is just to count frequency of states and form a
posterior belief about the stationary distribution. Unfortunately, the stationary distribution of this
random Markov chain does not admit a simple analytical characterization when there is a finite
number of states, but it can be estimated approximately. At the limit of k → ∞, the stationary
distribution converges to the uniform distribution [10].

2nd strategy: Bigrams. For any pair of states i and j, let Pij be the probability of transition-
ing from i to j. On each sample x, we can focus on the transitions from the i-th state, which
follow a categorical distribution with probabilities equal to (Pi1, . . . ,Pik). If we observe the in-
context empirical counts {cij}kj=1 of the transitions, then Pij is given by: (Pi1, . . . ,Pik) |x ∼
Dir(k, ci1 + α1, . . . , cik + αk), where α1, . . . , αk are the Dirichlet concentration parameters of
the prior. Hence, each Pij has a (marginal) distribution that is actually a Beta distribution:

Pij |x ∼ Beta
(
cij + αj ,

∑
j αj +Ni − αj − cij

)
, where Ni is the total number of observed transi-

3In particular, for each tuple of n− 1 tokens, we sample the vector of conditional probabilities for the next
state from a flat Dirichlet distribution.

4

0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

Se
co

nd
 L

ay
er

t=3
0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

t=92
0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

t=121

0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

Fir
st

 L
ay

er

0 1 2 1 0 2 2 0 0 0 1 2 1 1 2 0 1 2 1 0 2 2 0 0 0 1 2 1 1 2

Attention Patterns

Figure 2: Attention patterns that correspond to the last token of the sequence for a transformer trained
to perform ICL-MC. The intensity of each blue line signifies the strength of the corresponding atten-
tion value. As the model gets trained, we observe that the attention weights mimic the construction of
Proposition 2.1. Specifically, at the end of training (right), each token in the first layer is attending to
the previous token. In the second layer, the last token, a “2”, is attending to tokens that followed “2”s,
allowing bigram statistics to be calculated. See also Figure 9 for full attention matrices during the
course of training.

tions from state i. As such, our best (point) estimate for each state j is given by: E [Pij |x] = cij+αj

N+
∑

i αi
.

For the uniform Dirichlet, α = (1, . . . , 1)⊤, it is E [Pij |x] = cij+1
Ni+k .

2.2 Architectures: Transformers and Simplifications

We are interested in investigating how transformers [40] can succeed in in-context learning this
task. We focus on attention-only transformers with 2 layers with causal masking which is a popular
architecture for language modeling. Given an input sequence x, the output of an n-layer attention-only
transformer4 is:

TF (E) = P ◦ (Attnn + I) · · · ◦ (Attn1 + I) ◦ E, (1)

where E ∈ RT×d is an embedding of x ∈ Rd, P ∈ Rd×k is a linear projection to the output logits,
and Attn(x) is masked self attention with relative position embeddings [38], which is parameterized
by WQ,WK ,WV ∈ Rd×d, v ∈ RT×d:

Attn(z) = softmax(mask(A))zWV , Ai,j =
(ziWQ)(zjWK + vi−j+1)

⊤
√
d

. (2)

In general, transformers often contain an MLP module, but for this task they are not necessary (see
Appendix A and Figure 10 for additional experiments with transformers with MLPs). During training,
we minimize the loss:

L(θ) = E
x∼P

P∼Dir(α)k

[
1

t

T∑
i=1

l (TF (x; θ)i, xi+1)

]
, (3)

where θ denotes the parameters of the model and l is the cross entropy loss. Notice that we provide
supervision in all positions, as standard in language modeling.

We now show how a two-layer transformer of the above architecture can represent the optimal bigrams
solution.
Proposition 2.1 (Transformer Construction). A single-head two layer attention-only transformer can
find the bigram statistics in the in-context learning Markov chain task.

Intuitively, the first layer of the transformer copies the previous token at each position, and in the
second layer each token sums the embeddings of all the tokens whose output from the first layer
matches itself. The full proof can be found in Appendix B.1.

Simplified Transformer Architecture. As we see from the construction, there are two main
ingredients in the solution realized by the transformer; (1st layer) the ability to look one token back
and (2nd layer) the ability to attend to itself. For this reason, we define a minimal model that is

4For simplicity, we assume embedding and hidden dimension are equal, but they can be different in general.

5

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

KL
-D

iv
 L

os
s t=3

t=64
t=127

Test Loss

0.00

0.01
t=3

Positional Encoding

0.00

0.05
t=64

0 25 50 75 100
Position

0

1
t=127

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.0

0.1

0.2

0.3

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

) Transformer KL-Divergence: 2 Symbols
Uniform
Unigram
Bigram

0.0 20.0 40.0 60.0 80.0
Training Sequences Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

KL
-D

iv
 L

os
s t=1

t=38
t=76

Test Loss

0.00

0.01
t=1

Positional Encoding

0.000
0.025 t=38

0 25 50 75 100
Position

0.0

0.5
t=76

0.0 20.0 40.0 60.0 80.0
Training Sequences Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

)

Distance between model predictions
 and candidate strategies
Minimal Model 2 layers

Uniform
Unigram
Bigram

Figure 3: A two layer transformer (top) and a minimal model (bottom) trained on our in-context
Markov Chain task. A comparison of the two layer attention-only transformer and minimal model
(4) (with v and W initialized to 0). The graphs on the left are test loss measured by KL-Divergence
from the underlying truth. The orange line shows the loss of the unigram strategy, and the green line
shows the loss of the bigram strategy. The middle graph shows the effective positional encoding
(for the transformer, these are for the first layer, and averaged over all tokens). The graph on the
right shows the KL-divergence between the outputs of the models and three strategy. The lower the
KL-divergence, the more similar the model is to that strategy.

expressive enough to be able to represent such a solution, but also simple enough to be amenable to
analysis. Let exi denote the one-hot embedding that corresponds to the state at position i ∈ [T], and
let E be the R(T+1)×k one-hot embedding matrix. Then the model is parameterized by W ∈ Rk×k

and v ∈ RT+1 and defined as:

f(E) = mask(EW (Softmax(M)E)⊤)E, M =

v0 −∞ . . . −∞
v1 v0 . . . −∞
...

... · · ·
...

vT vT−1 . . . v0

 ∈ R(T+1)×(T+1),

(4)
where mask (·) is a causal mask, and Softmax(M)i,j =

exp(Mi,j)∑T
t=0 exp(MT,j)

. Notice that the role of W is
to mimic the attention mechanism of the second layer and the role of v is that of the relative positional
embeddings. This model can be seen as a simplified version of a two-layer linear attention-only
transformer. See also Appendix B.2 for a discussion.
Fact 2.2. Both the bigrams strategy and the unigrams strategy can be expressed by the minimal model
with a simple choice of weights.

• Bigrams: Let v = (0 c 0 . . . 0)
⊤ and W = Ik×k, then f(E)T,s =∑T

t=2 1 {xt = s}1 {xt−1 = xT }+O
(

kT 2

exp(c)

)
.

• Unigrams: For v = (0 . . . 0)
⊤, W = 1

k11
⊤, we have f(E)T,s =

∑T
t=1 1 {xt = s}.

See Section B for the proofs.

3 Empirical Findings and Theoretical Validation

In this section, we present our empirical findings on how transformers succeed in in-context learning
Markov Chains, we demonstrate the different learning stages during training and the sudden transitions
between them, and draw analytical and empirical insights from the minimal model.

6

0 25 50 75 100 125
Doubly Stochastic Sequences Seen (1000s)

0.10

0.15

0.20

0.25

0.30

KL
-D

iv
 L

os
s

Test Loss in Original Distribution
75% Doubly Stochastic 25% Unigrams
Doubly Stochastic

0 1

0
1

W Matrix

0 20 40 60 80 100
1

0

1

2

3

4

5
v vector

0.00

0.01

0.02

0.03

Figure 4: (left) Unigrams slow down optimization: Comparison of two-layer attention only transform-
ers trained on two distributions; one with a uniformly random doubly stochastic transition matrix
and another with a mixture of the doubly stochastic and unigrams distribution (see Appendix A.1
for details). We see that in absence of unigrams “signal” the model minimizes the loss (evaluated
on the full distribution) much faster. (center, right) Training of the minimal model on ICL-MC with
k = 2 states: (center) The heatmap of the second layer (W matrix) that learns to be close to diagonal.
(right) The values of the positional embeddings (1st layer) that display a curious even/odd pattern.
This is before any softmax is applied to the positional embeddings.

3.1 Transformers In-Context Learn Markov Chains Hierarchically

We focus on attention-only transformers with 2 layers with causal masking and relative positional
encodings and train them with the Adam optimizer on ICL-MC (see Section A for experimental
details). As can be seen in Figure 3, all the models converge near the Bayesian optimal solution,
suggesting that they learn to implement the bigram strategy. Curiously, however, learning seems to
be happening in stages; there is an initial rapid drop and the model quickly finds a better than random
solution. Afterwards, there is a long period of only slight improvement before a second rapid drop
brings the model close to the Bayes optimal loss. We observe that training a 1-layer transformer fails
to undergo a phase transition or converge to the right solution, even if trained for 10x the amount of
time - see Figure 7 in the Appendix.

Interestingly, as can be seen from the horizontal lines in Figure 3, the intermediate plateau corresponds
to a phase when the model reaches the unigram baseline. We provide evidence that this is not a
coincidence, and that after the initial drop in loss, the model’s strategy is very similar to the unigram
strategy, before eventually being overtaken by the bigram strategy. Some of the strongest such
evidence is on the right in Figure 3, where we plot the KL divergence between model’s prediction
and the two different strategies. For both the strategies, their KL divergence from the model quickly
goes down, with the unigram solution being significantly lower. Around the point of the second
loss drop, the KL divergence between the model and the bigram solution decreases, while the other
one increases, making it clear that the model transitions from the one solution to the other. This
final drop is what has been associated to prior work with induction heads formation [31]; special
dedicated heads inside a transformer are suddenly being formed to facilitate in-context learning.
Similar observation hold for Markov Chains with a larger number of states - see Figures 8 and 11.

Mechanistic evidence for solutions found by transformer. To confirm how the two layer attention-
only transformer solves ICL-MC, we inspected the attention in each layer throughout training. Figure
2 shows the attention for a particular input during different parts of training. By the end of training,
the attention patterns match that of our construction in Proposition 2.1, with the first layer attending
to tokens one in the past, and the second layer attending to tokens that follow the same token as the
current one.

Varying the data distribution - Unigrams slow down learning. There are several interesting
phenomena in the learning scenario that we just described, but it is the second drop (and the preceding
plateau) that warrants the most investigation. In particular, one can ask the question: is the unigram
solution helpful for the eventual convergence of the model, or is it perhaps just a by-product of the
learning procedure? To answer these questions, we define distributions over Markov chains that are
in between the distribution where unigrams is Bayes optimal, and the distribution where unigrams is
as good as uniform - see Appendix A for more details. As we see in Figure 4, the transformers that

7

are being trained on the distribution where there is no unigrams “signal" train much faster. And even
more tellingly, giving additional “unigram samples” curiously slows down learning. See also Figure
12 in the Appendix that displays how the models perform on different parts of the distribution during
training.

3.2 Theoretical Insights from the Minimal Model

To abstract away some of the many complicated components from the transformer architecture, we
focus our attention now to the minimal model of Section 2.2. We train minimal models of eq. (4),
starting from a deterministic constant initialization, by minimizing the cross entropy loss with SGD.
Full experimental details can be found in Appendix A. Figure 3 (bottom) displays the training curves
for the minimal model. Similar to the transformer, learning occurs in two stages and the models
eventually converge close to the optimal solution.

We now provide theoretical insights on how training progresses stage by stage and how this is
achieved by the synergy between the two layers. As it turns out, there need to be at least two steps of
gradient descent in order for both elements of the solution to be formed.
Proposition 3.1. Let the model be defined as in eq. (4) and initialized with W (0) = 0, v(0) =
0. Suppose the transition matrix P ∈ Rk×k is sampled from one of the following two types of
distribution:

1. k = 2, and P is sampled from the uniform distribution over the set of 2× 2 stochastic matrices.
2. For any constant k and 0 < α < 1, with probability α, sample the matrix P uniformly

from a “bigram-only” distribution—the set of k × k doubly stochastic matrices; and with
probability 1 − α use a “unigram-only distribution”: draw a vector u uniformly from the set
{u ∈ Rk

≥0 : ∥u∥1 = 1} and let P = 1u⊤.

Then after one step of population gradient descent with step size η > 0,

W (1) = Θ(ηT)I +Θ(ηT)11⊤ + E and v(1) = 0

where ∥E∥ ≤ O(η log T). In other words, for large T , the second layer weights are a mixture of the
correct solution I and uniform attention 11⊤.

Assuming in the first step η1 = O
(

1
T 2

)
, then W (2) has the same structure as W (1) (up to scaling).

Furthermore,

v
(2)
1 = Ω(η2 log T), and v(2)n ≤ cv

(2)
1 ∀n ̸= 1, c < 1

where η2 is the step size for the second step.

If η2 = Ω(T), then the output of the model will be a weighted sum of bigrams and unigrams strategy.
Formally,

f(E)T,s = Θ(η2T)

T∑
i=1

1 [xi−1 = xt, xi = s] + Θ(η2T)

T∑
i=1

1 [xi = s] +O(log T)

Note In the first distribution (uniformly random 2× 2) or the second distribution with k > 6, at the
end of the two steps, the weight on bigrams is greater than that of the weight on unigrams strategy.

Proof Overview. The idea of the proof is that a first step of gradient descent with a small learning rate
can align the second layer, while a second step can learn to identify the correct relative positional
embedding. The identity bias of W in the second layer ensures there is a strong signal in the gradient
to look back one in the first layer. Without a bias in W , the gradient for the positional encodings, v,
is zero.

We get additional intuition from the second distribution (mixture of unigrams and doubly stochastic):
in the first step, effectively all of the gradient comes from the examples where the unigram strategy is
optimal, while in the second step effectively all of the gradient comes from the examples where the
bigram strategy is optimal.
Remark 3.2. It is worth noting that, while this is a simplified setting, the analysis goes beyond
NTK-based [22] analyses where the representations do not change much and it crucially involves
more than one step which has been a standard tool in the analysis of feature learning [6].

We summarize the key theoretical implications:

8

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
 L

os
s

Transformer Trigram: 3 Symbols

Unigram
Bigram

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

) Transformer Trigram KL-Divergence: 3 Symbols
Uniform
Unigram
Bigram
Trigram

Figure 5: Three-headed transformer trained on In-Context Learning 3-grams (trigrams), with context
length 200. (left) Loss during training. The model hierarchically converges close to the Bayes
optimal solution. (right) KL divergence between the model and different strategies during training.
As we observe, there are 4 stages of learning, each of them corresponding to a different algorithm
implemented by the model.

Learning occurs in two phases. Both in the theoretical and experimental models, training has
two phases that work at very different speeds. The first phase is fast in both cases; in the theoretical
setting, even a single step with step size O

(
1
T

)
is sufficient for learning the second layer. In the

second phase, a much larger step size of Ω(1) is needed in order to learn the positional encodings (in
one step).

Second layer is learned first. It has been observed before in a similar bigram learning setting with
a two-layer transformer that the model might be learning first the second layer [8]. We also make
similar observations in our experiments with the minimal model and the transformers (see Figure
2). For the minimal model, the gradient calculations, clearly suggest that starting from a default
initialization, it is only the second layer that quickly “picks up" the right solution.

Even/odd pattern in positional encodings emerges. We notice in the experiments, that the
positional embeddings of both the transformer and minimal model displayed an intriguing even/odd
oscillating pattern - see Figure 3 (top, center) and Figure 4 (right). We believe that a careful analysis
the gradient of v in the second step will recover this pattern, which is likely related to the moments of
the eigenvalues of the transition matrix.

3.3 Beyond Bigrams: n-gram Statistics

Finally, we investigate the performance of transformers on learning in-context n-grams for n > 2;
in particular, 3-grams. We train attention-only transformers with three heads in each layer5 by
minimizing the in-context cross entropy loss with the Adam optimizer. As can be seen in Figure 5
(left), the model eventually converges to the Bayes optimal solution. Interestingly, as in the case of
Markov Chains, the model displays a “hierarchical learning" behavior characterized by long plateaus
and sudden drops. In this setup, the different strategies correspond to unigrams, bigrams and trigrams,
respectively. This is presented clearly on the right of Figure 5, where we plot the similarity of the
model with the different strategies and it exhibits the same clear pattern as in the case of n = 2. We
leave a more thorough investigation of n-grams for future work.

4 Conclusion and Discussion

In this work, we have introduced a simple learning problem which serves as a controlled setting
for understanding in-context learning and the emergence of (statistical) induction heads. Through a
combination of theoretical analysis and empirical investigation, we identify different stages during
learning, which we were able to precisely characterize. These validate similar observations from
training large-scale language models.

5Our experiments with one head per layer did not converge to low loss during training, but follow-up work
by [33] showed that with sufficiently long training time a single head in each layer can suffice.

9

The main limitation of our work is that our analysis relies on a simplified transformer architecture
and our learning task is synthetic. Yet, we see the simplicity of our modeling as a positive, since it
allows to make rigorous predictions about the mechanisms behind in-context learning abilities of a
transformer. On the theoretical front, it would be interesting to extend our analysis to handle higher
number of symbols and more complex models for language generation (beyond Markov chains).

On the empirical front, it would be worthwhile to understand similar stage-wise learning with
natural language data, and use insights from our minimal model to improve formation of induction
heads. In particular, it would be great to understand if better data curriculum could remove the
undesirable simplicity bias we observe from unigrams. Such simple but incomplete solutions may be
commonplace in language modeling and other rich learning settings; for any such solution, one can
ask to what extent its presence speeds up or slows down the formation of more complex circuits with
higher accuracy.

Acknowledgements. EE thanks Alan Yan for helpful conversations. NT acknowledges support
through the National Science Foundation under NSF Award 1922658. NT would like to thank Boaz
Barak, Cengiz Pehlevan and the whole ML Foundations Group at Harvard for their hospitality during
Fall 2023 when most of this work was done. BE acknowledges funding from the ONR under award
N00014-22-1-2377 and the NSF under award IIS 2229881. SG acknowledges support through the
Open AI SuperAlignment Fast Grants.

References
[1] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural net-

works: leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference
on Learning Theory, pages 2552–2623. PMLR, 2023.

[2] Jacob D. Abernethy, Alekh Agarwal, Teodor V. Marinov, and Manfred K. Warmuth. A mecha-
nism for sample-efficient in-context learning for sparse retrieval tasks. CoRR, abs/2305.17040,
2023.

[3] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

[4] Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning:
Architectures and algorithms. CoRR, abs/2401.12973, 2024. doi: 10.48550/ARXIV.2401.12973.
URL https://doi.org/10.48550/arXiv.2401.12973.

[5] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A
closer look at memorization in deep networks. In International conference on machine learning,
pages 233–242. PMLR, 2017.

[6] Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022.

[7] Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

[8] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint, 2023.

[9] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A, 5:
147–151, 1946.

[10] Charles Bordenave, Pietro Caputo, and Djalil Chafai. Circular law theorem for random markov
matrices. Probability Theory and Related Fields, 152, 08 2008.

[11] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based n-gram models of natural language. Comput. Linguist., 18(4):467–479, dec 1992.
ISSN 0891-2017.

10

https://doi.org/10.48550/arXiv.2401.12973

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[13] Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre
Richemond, James McClelland, and Felix Hill. Data distributional properties drive emer-
gent in-context learning in transformers. Advances in Neural Information Processing Systems,
35:18878–18891, 2022.

[14] Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L. Leavitt, and Naomi Saphra.
Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms,
2023.

[15] Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

[16] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[17] Benjamin L. Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms, 2022.

[18] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1, 2021.

[19] Robert Gallager. Discrete Stochastic Processes (Draft of 2nd Edition). MIT OpenCouseWare,
2011.

[20] Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers
learn in-context? A case study of simple function classes. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

[21] Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
Murfet. The developmental landscape of in-context learning. CoRR, abs/2402.02364, 2024. doi:
10.48550/ARXIV.2402.02364. URL https://doi.org/10.48550/arXiv.2402.02364.

[22] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Conver-
gence and generalization in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 8580–8589, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

[23] Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz
Barak, and Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity.
Advances in neural information processing systems, 32, 2019.

[24] Andrej Karpathy. Mingpt. https://github.com/karpathy/minGPT/tree/master, 2023.
[25] Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking

as the transition from lazy to rich training dynamics. CoRR, abs/2310.06110, 2023. doi:
10.48550/ARXIV.2310.06110. URL https://doi.org/10.48550/arXiv.2310.06110.

[26] Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In International
Conference on Machine Learning, pages 19565–19594. PMLR, 2023.

[27] Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S. Du, Jason D. Lee, and Wei Hu. Dichotomy of
early and late phase implicit biases can provably induce grokking. CoRR, abs/2311.18817,
2023.

11

https://doi.org/10.48550/arXiv.2402.02364
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://github.com/karpathy/minGPT/tree/master
https://doi.org/10.48550/arXiv.2310.06110

[28] Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji
Kim, and Michael Gastpar. Attention with markov: A framework for principled analysis of
transformers via markov chains. CoRR, abs/2402.04161, 2024. doi: 10.48550/ARXIV.2402.
04161.

[29] William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as
competition of sparse and dense subnetworks. CoRR, abs/2303.11873, 2023.

[30] Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

[31] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

[32] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

[33] Nived Rajaraman, Marco Bondaschi, Kannan Ramchandran, Michael Gastpar, and Ashok Vard-
han Makkuva. Transformers on markov data: Constant depth suffices. arXiv preprint
arXiv:2407.17686, 2024.

[34] Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task, 2023.

[35] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? CoRR, abs/2304.15004, 2023.

[36] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli.
The pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing
Systems, 33:9573–9585, 2020.

[37] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[38] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position repre-
sentations. In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018,
Volume 2 (Short Papers), pages 464–468. Association for Computational Linguistics, 2018.

[39] Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes
because the parameter-function map is biased towards simple functions. arXiv preprint
arXiv:1805.08522, 2018.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017.

[41] Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L
Bartlett. How many pretraining tasks are needed for in-context learning of linear regression?
arXiv preprint arXiv:2310.08391, 2023.

[42] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

12

A Experimental Details and Additional Experiments

A.1 Experimental details

We train transformers of the form (1) with the AdamW optimizer with learning rate 3× 10−5 (for
3-grams a learning rate of 3×10−2 was used), batch size 64, and hidden dimension 16. The sequence
length of the examples is 100 tokens. The minimal model was trained with SGD, with batch size 64,
and learning rate 3× 10−4. We use PyTorch 2.1.2.

The data was generated in an online fashion, using numpy.random.dirichlet to generate each row of
the transition matrices. At each epoch, we generate a new transition matrix, and, then, a sequence
from the induced Markov chain (starting from the stationary distribution of the chain). Both the
model initialization (for the transformers) and the data were randomized based on the seed (in a
perfectly reproducible manner).

Some of the training and model code was based on minGPT [24]. The experiments all measure the
outputs of the models at the last token.

All of the experiments were performed with a single NVIDIA GeForce GTX 1650 Ti GPU with 4
gigabytes of vram with 32 gigabytes of system memory. Each training run took under ten minutes.

The code used can be found at:
https://github.com/EzraEdelman/Evolution-of-Statistical-Induction-Heads.

Details for experiment on the left in Figure 4 In this experiment, we compared the test loss of
the model trained in too different ways. Consider two distributions, each uniform over their support
(subsets of the space of 3× 3 transition matrices for this particular experiment):

1. The “doubly stochastic” distribution is uniform over the space of doubly stochastic matrices,
that is, transition matrices for which each row or column has entries summing to 1. This
is equivalent to the space of Markov Chains with a uniform stationary distribution (that is,
π = 1

k1), which means that the unigram and uniform strategy are the same.
2. The “unigram distribution” is uniform over the space of stochastic matrices P such that for any

two rows Pi, Pj in P , Pi = Pj . This is equivalent to the distribution over markov chains for
which the distribution of the next state doesn’t change depending on the previous state. Notice
that the unigram strategy is asymptotically optimal on any markov chain from this distribution.

We first train models on a number of samples from the doubly stochastic distribution, and plot their
training loss as the blue line. Then, we trained models on a random mixture of the two distributions,
with 75% of the samples coming from doubly stochastic distribution, and the remaining 25% coming
from the unigram distribution. Importantly, we train this second batch of models on more total
samples, so that they see the same number of samples from the doubly stochastic distribution, and
then plot their test loss in orange with the x-axis being the number of samples from the doubly
stochastic distribution seen. This means that every point on the x-axis in the graph, the models in the
orange line have seen more samples than seen by those in the blue line, and yet still take longer to
converge.

We would also like to note that the test loss measured is in the distribution uniform over all stochas-
tic matrices, which the models in the orange line do seem to generalize slightly better to after
convergence.

Note on KL-divergence In our experiments, we used KL divergence to measure the difference
between the probabilities predicted by the model and various other probability distributions. For test
loss (depicted, for instance, in Figure 3 (left)), this other distribution comes from the appropriate
rows of the transition matrices used to generate the test examples.

Formally, let f(x1:T−1) be the softmax distribution of the transformer’s output, given the input
sequence x1:T−1. In our standard setting, we measured

dKL(PxT−1
||f(x1:T−1))

where PxT−1
is the true distribution of the next state xT given the previous state, under the true

Markov chain P . Note that P varies from sequence to sequence (it is drawn from a prior over

13

https://github.com/EzraEdelman/Evolution-of-Statistical-Induction-Heads

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.05

0.10

0.15

0.20

0.25

0.30

KL
-D

iv
 L

os
s

Transformer: 3 Symbols
 Test Loss in Distribution For 10 Random Seeds

Figure 6: In distribution test loss for 10 two layer attention only transformers, with random seeds
0, 1, . . . 9 (randomness affects initialization and the training data). The training dynamics are consis-
tent for each model, though the exact position of the phase transitions changes.

0 204 408 612 816 1020
Number of Examples Seen (Thousands)

0.05

0.10

0.15

0.20

0.25

0.30

KL
-D

iv
 L

os
s

Single Layer Transformer: 3 Symbols

0 204 408 612 816 1020
Number of Examples Seen (Thousands)

0.05

0.10

0.15

0.20

0.25

0.30
KL

-D
iv

 L
os

s

Single Layer Transformer: 3 Symbols

Figure 7: Graphs of test loss showing that a single layer transformer can not achieve good performance
on ICL-MC. This result holds for transformers with or without MLPs, and with absolute or relative
positional encodings. These graphs show that even trained 8 times longer, there is no notable increase
in performance beyond the unigrams strategy (orange line).

transition matrices) and is not directly observable by the learner—this is what needs to be learned
in-context.

For measuring how close the model was to various strategies (for instance, in Figure 3 (right)), we
computed the predicted probabilities given by said strategies, and used those as the base distribution.
Note that the output of the bigrams strategy (which is Bayes-optimal for our base setting) is different
from the aforementioned ground-truth PxT−1

). Instead, as described in Section 2, it is a Bayesian
posterior distribution of the next state given the observed sequence, with the prior determined by the
prior distribution of transition matrices. Formally, this corresponds to E[PxT−1

|x1:T−1], where the
expectation is taken over the draw of Markov chain transition matrix.

A.2 Additional experiments

In the main text, we mainly show experiments with one seed per experiment, in order to keep
presentation simple. Figure 6 justifies this choice: it plots the test loss of two-layer transformers
(multiple random seeds) trained on ICL-MC for chains with 3 states. Randomness slightly affects the
duration of the plateau, but not the qualitative, two-stage, process of learning.

Figure 7 demonstrates the inability of one layer attention only transformers to in-context learn Markov
Chains with 3 states.

Figure 8 shows that our results extend for Markov Chains with larger state spaces (here, k = 8). As
the number of states grows, larger sequence lengths are needed for learning (this is to be expected as a
larger transition matrix needs to be estimated in context - roughly, sequence length needs to be Ω(k2)).

14

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

)

Transformer KL-Divergence: 8 Symbols

Uniform
Unigram
Bigram

Figure 8: Our results extend to more symbols than k = 2 or k = 3. The KL-divergence between the
transformer and strategies over training. This required a sequence length greater than 100 (200 in this
case) for the difference between unigrams and uniform to be large enough for the unigram phase to
be visible (in either case there was a plateau before the final drop in test loss).

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.05

0.10

0.15

0.20

0.25

0.30

KL
-D

iv
 L

os
s

t=3 t=92 t=121

Test Loss

Fir
st

 L
ay

er

t=3

0.5

1.0

Se
co

nd
 L

ay
er

0.5

1.0

t=92

0.5

1.0

0.5

1.0

t=121

0.5

1.0

0.5

1.0

Transformer: 3 Symbols

Figure 9: A two layer attention-only transformer trained with cross entropy loss on ICL-MC. The
heatmaps on the right represent part of the attention for the transformer at various time steps,
specifically the values of the matrix A from (2). The top row are showing A from the first layer, and
the bottom row from the second layer.

We also know that, in this particular family of Markov Chains, the stationary distribution approaches
the uniform distribution as the number of states grows. As a result, we expect the difference between
uniform and unigram solutions to be less noticeable.

Figure 9 shows the attention patterns for the two layers of a transformer during training.

In Figure 10, we demonstrate that our observations extend to two-layer transformers, which have an
additional fully-connected MLP on top of the attention layers.

Finally, in Figure 12 we plot the performance of the transformer and the minimal model in various
distributions over the course of training.

B Proofs

In this section, we present our theoretical results on in-context learning Markov Chains of Section
2.2.

15

0.0 48.0 96.0 144.0 192.0
Training Sequences Seen (Thousands)

0.1

0.2
KL

-D
iv

 L
os

s t=4
t=96

t=191

Test Loss

0.005
0.000
0.005 t=4

Positional Encoding

0.000
0.025 t=96

0 25 50 75 100
Position

0
10 t=191

0.0 48.0 96.0 144.0 192.0
Training Sequences Seen (Thousands)

0.0

0.1

0.2

0.3

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

)

Distance between model predictions
 and candidate strategies

Relative Transformer with MLPs 2 layers
Uniform
Unigram
Bigram

Figure 10: A two layer relative position encoding transformer with MLPs trained on ICL-MC with
k=3 symbols. Notice while slightly noisier, the overall trend and observations made regarding the
attention only transformer still hold.

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.1

0.2

0.3

KL
-D

iv
 L

os
s

t=3 t=92 t=121
Test Loss

0.00

0.01

Positional Encoding
t=3

0.000

0.025
t=92

0 50 100
Position

0

1
t=121

Two Layer Transformer: 3 Symbols

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

)

Transformer KL-Divergence: 3 Symbols
Uniform
Unigram
Bigram

0.0 20.0 40.0 60.0 80.0
Training Sequences Seen (Thousands)

0.1

0.2

KL
-D

iv
 L

os
s t=1

t=38
t=76

Test Loss

0.00

0.01
t=1

Positional Encoding

0.000
0.025 t=38

0 25 50 75 100
Position

0.0
0.5 t=76

0.0 20.0 40.0 60.0 80.0
Training Sequences Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

)
Distance between model predictions

 and candidate strategies
Minimal Model 2 layers

Uniform
Unigram
Bigram

Figure 11: A comparison of the two layer attention only transformer and minimal model for k = 3
symbols.

B.1 Transformer Construction

Proof of Proposition 2.1. Set the internal dimension d = 3k, and choose ex to be one-hot
embeddings—that is, exi

= δxi
, where δ is the Kronecker delta. We will call the parameters

of attention layer i, W (i)
Q ,W

(i)
K ,W

(i)
V , v(i). Let

v(1) =

δ21
⊤
k

0
0

 W
(1)
Q =

cIk×k 0 0
0 0 0
0 0 0

 W
(1)
K = 0 W

(1)
V =

0 Ik×k 0
0 0 0
0 0 0

So,

A
(1)
i,j =

(eiW
(1)
Q)(v

(1)
i−j+1)

⊤
√
d

.

Notice that A(1)
i,j = c1[j = i − 1]. So, softmax(mask(A))

(1)
i,j ≈ 1[j = i − 1] for large enough c.

So, for any 2 ≤ i < T, 1 ≤ j < k, Attn1(e)i,j+k = ei−1,j . Effectively, the first layer appends
the embedding of the previous token after the embedding of the current token, so that the output at
position i is approximately (exi

exi−1
0).

16

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.05

0.10

0.15

0.20

0.25

0.30

KL
-D

iv
 L

os
s

Two Layer Transformer: 3 Symbols
 Test Loss on Distributions

Full
Unigram
Uniform Stationary

0.0 20.0 40.0 60.0 80.0
Training Sequences Seen (Thousands)

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
 L

os
s

Minimal Model: 3 Symbols
 Test Loss on Distributions

Full
Unigram
Uniform Stationary

Figure 12: A two layer attention-only transformer (top) and minimal model (4) (bottom), trained
on the main task with ICL-MC with cross entropy loss, test loss measured by KL-Divergence from
the underlying truth (labels based on transition probabilities, not samples). The distributions test
loss is measured in are (from left to right) in-distribution, a distribution where each token is sampled
i.i.d., and a distribution over uniformly random doubly stochastic transition matrices (that is, a setting
where the stationary distribution is the uniform distribution, which implies that unigram based guesses
are as good as guessing uniform probability). For both models, the in distribution test loss quickly
drops to the level of the unigram algorithm.

The second layer is defined as follows:

v(2) = 0 W
(2)
Q =

cIk×k 0 0
0 0 0
0 0 0

 W
(2)
K =

 0 0 0
Ik×k 0 0
0 0 0

 W
(2)
V =

0 0 Ik×k

0 0 0
0 0 0

Note that z = e+Attn1(e), then

A
(2)
i,j =

(ziW
(2)
Q)(zjW

(2)
K)⊤

√
d

=
cexi

(exj−1
)⊤

√
d

=
c√
d
1[xj−1 = xi].

So, for all j < i, softmax(mask(A))i,j ≈ 1[xj−1=xi]∑i
h=1 1[xh−1=xi]

for large enough c. For any 2 ≤ i <

T, 1 ≤ j < k,

Attn2(e)i,j+2k =

3k∑
h=1

1[xh−1 = xi]∑i
g=1 1[xg−1 = xi]

(zW
(2)
V)h,j =

∑k
h=1 1[xh−1 = xi]1[xh = j]∑i

g=1 1[xg−1 = xi]
.

This is exactly the empirical bigram statistics (that is, the number of times xi → j appears before

position i). In order to make this the output, we set P =

 0
0

Ik×k

 6

B.2 ICL-MC with Minimal Model

Setup and notation Our data consists of sequences of length T + 1, x = (x0, . . . , xT), drawn
from a Markov Chain with state space S = {1, . . . , k} (i.e., xj ∈ {1, . . . , k} for all j ∈ [T]), and
a transition matrix P . Each row of the matrix is sampled from a flat Dirichlet distribution, i.e.
Pi ∼ Dir(1), corresponding drawing the row from a uniform distribution over the simplex. Let

6Technically, the output of this construction is not the log probabilities as generally cross-entropy loss

assumes. These can be approximated linearly by setting P =

 b1⊤1
0

aIk×k

 to change the output from x to ax+ b.

In practice, this approximation can achieve close to Bayes optimal loss.

17

E ∈ {0, 1}(T+1)×k be the one hot embedding matrix of x, that is, Ei,xi = 1 and for all s ̸= xi

Ei,s = 0. A crucial difference with parallel work which also studies in-context learning of Markov
Chains [30] is that the whole sequence is sampled from the Markov Chain (whilst in [30], the
penultimate token is sampled from the uniform distribution).

Model We define our model as a simplified sequence to sequence transformer f : RT×k →
R(T+1)×k with f(E) = mask(EW (Softmax(M)E)⊤)E. The trainable parameters are W ∈ Rk×k

and v ∈ RT+1. We define M ∈ R(T+1)×(T+1) as M =

v0 −∞ . . . −∞
v1 v0 . . . −∞
...

... · · ·
...

vT vT−1 . . . v0

, that is, for all

T ≥ i ≥ j ≥ 0, Mi,j = vi−j and if i > j, Mj,i = −∞. Furthermore, v = [v0, v2, . . . , vT] ∈
Rt×T+1. Softmax is defined as follows:

Softmax(M)i,j =
exp (Mi,j)∑T

T=1 exp (Mi,j)
.

The logit for symbol s at position T for our model is:

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

. (5)

The model can represent the unigrams and bigrams solutions as following:

• Construction for bigrams: v = (0, c, 0, . . . , 0)⊤ and W = Ik×k, then f(E)T,s =∑T
i=0 1 [xi = s ∧ xi−1 = xT] +O

(
T 3

exp(c)

)
. As c tends to infinity, this becomes bigrams.

• Construction for unigrams: v = 0 and W = 1
k1

⊤1, then f(E)T,s =
∑T

i=0 1 [xi = s].

We prove the above claims.

Proof of Fact 2.2

Proof. We will first prove the unigrams construction.

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

k∑
u=1

T∑
i=0

i∑
j=0

1[xi−j = u ∧ xi = s]
1

i

=
1

k

T∑
i=0

i∑
j=0

1[xi = s]
k

i

=

T∑
i=0

1[xi = s],

which is exactly the unigrams solution.

Now consider the bigrams construction. As c grows, the softmax of v very quickly becomes one hot.
Formally, by Lemma B.7 in [17], for any i > 0,

exp(vj)∑i
ℓ=0 exp(vℓ)

= 1 [j = 1] +O

(
T

exp(c)

)

18

So,

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

T∑
i=0

i∑
j=0

1[xi−j = xT ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

= 1[xT = x0 = s] +

T∑
i=1

i∑
j=0

1[xT = xi−j ∧ xi = s]
exp(vj)

i− 1 + exp(c))

= 1[xT = x0 = s] +

T∑
i=1

i∑
j=0

1[xT = xi−j ∧ xi = s]

(
1 [j = 1] +O

(
2T

exp(c)

))
(Lemma B.7 in [17])

= 1[xT = x0 = s] +

T∑
i=1

1[xT = xi−1 ∧ xi = s] +

T∑
i=1

i∑
j=0

1[xT = xi−j ∧ xi = s]O

(
2T

exp(c)

)

=

T∑
i=1

1[xT = xi−1 ∧ xi = s] +

T∑
i=1

O

(
T 3

exp(c)

)

This simplified model was constructed by taking a two layer transformer with relative positional
encodings and simplifying it. Our construction for how transformers would form induction heads
(corroborated with experiments such as the viewing of attention patterns in figure 2) implies that the
MLPs and the value matrices could just be identity functions, and the first layer query matrix, and the
second layer positional embeddings were zero matricies, so in the simplified model we froze these
parameters to there final states. We also remove the softmax on the attention in the first layer. Despite
these changes, the training dynamics, our main interest, stay remarkably similar.

Training We analyze gradient descent with the cross entropy loss LT (f,E, xT+1) =

−
∑k

s=1 log Softmax (f(E))T,s PXT ,s
7

B.3 Gradient Calculations

For use in the proofs, here we show the calculations of the gradients of the model with respect to the
parameters, and the loss with respect to the model.

∂f(E)T,s

∂Wa,b
=

k∑
u=1

T∑
i=0

i∑
j=0

1[xT = a ∧ b = u]1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

∂f(E)T,s

∂va

=

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]

(
1[j = a]

exp(va)∑i
ℓ=0 exp(vℓ)

− 1[a ≤ i]
exp(vj)∑i
ℓ=0 exp(vℓ)

exp(va)∑i
ℓ=0 exp(vℓ)

)

=

k∑
u=1

T∑
i=0

exp(va)∑i
ℓ=0 exp(vℓ)

i∑
j=0

WxT ,u

(
1[xi−a = u ∧ xi = s]1[j = a]− 1[xi−j = u ∧ xi = s]1[a ≤ i]

exp(vj)∑i
ℓ=0 exp(vℓ)

)
7In practice, one could use the empirical value of xT+1 rather than its distribution PXT ,s, but in full batch

gradient descent this is in fact equivalent. This is because conditional on xT and P , xT+1 is independent of
x1, . . . xT−1.

19

=

k∑
u=1

T∑
i=0

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u

1[xi−a = u ∧ xi = s]1[a ≤ i]−
i∑

j=0

1[xi−j = u ∧ xi = s]1[a ≤ i]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

k∑
u=1

T∑
i=a

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u

1[xi−a = u ∧ xi = s]−
i∑

j=0

1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

k∑
u=1

T∑
i=a

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u1[xi = s]

1[xi−a = u]−
i∑

j=0

1[xi−j = u]
exp(vj)∑i
ℓ=0 exp(vℓ)

∂LT

∂f(E)T,s
= Softmax(f(E))T,s − PxT ,s

B.4 Proof of lemma 3.1

Proof. Recall that at initialization, v = 0 and W = 0, implying further that f(E) = 0.

First step.

First consider the gradient of the loss with respect to W . By chain rule,

∂LT (E)

∂Wa,b
=

k∑
s=1

∂LT

∂f(E)T,s

∂f(E)T,s

∂Wa,b

=

k∑
s=1

(Softmax(f(E))T,s − PxT ,s)

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

k∑
s=1

(
1

k
− PxT ,s

)
1[xT = a]

T∑
i=0

i∑
j=0

1[xi−j = b ∧ xi = s]
1

i+ 1

=
1

k
1[xT = a]

T∑
i=0

 i∑
j=0

1[xi−j = b]
1

i+ 1
−

k∑
s=1

Pa,s1[xT = a]

i∑
j=0

1[xi−j = b ∧ xi = s]
1

i+ 1

=

1

k
1[xT = a]

T∑
i=0

1[xi = b]−
k∑

s=1

Pa,s1[xT = a

i∑
j=0

1[xi−j = b ∧ xi = s]
1

i+ 1

=

1

k

T∑
i=0

1[xi = b ∧ xT = a]−
k∑

s=1

Pa,s

i∑
j=0

1[xi−j = b ∧ xi = s ∧ xT = a]
1

i+ 1

=

1

k

T∑
i=0

1[x0 = b ∧ xT−i = a]−
k∑

s=1

Pa,s

i∑
j=0

1[x0 = b ∧ xj = s ∧ xT−i+j = a]
1

i+ 1

Where the last line follows from the Markov property.

Now we take the expectation over x, xT+1 conditioned on the transition matrix P ,

Ex|P

[
∂LT

∂Wa,b

]
= πb

T∑
i=0

1

k

(
PT−i

)
b,a

−
k∑

s=1

Pa,s
1

i+ 1

(
PT−i

)
s,a

i∑
j=0

(
P j
)
b,s

= πb

T∑
i=0

1

k

(
P i
)
b,a

−
k∑

s=1

Pa,s
1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s

= πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)
+O(log T)

20

Where the last step follows from Lemma B.6. Then, by applying Lemma B.1 (for the uniform over
all 2× 2 transition matrices case) or lemmas B.3 and B.4 (for the mixture of distributions case), there
exist positive constants (potentially depending on k, but not T) A,B such that for all a

Ex|P

[
∂LT

∂Wa,a

]
= −(A+B)T +O(log T)

and for all a ̸= b,

Ex|P

[
∂LT

∂Wa,b

]
= −BT +O(log T)

The updated Wa,b after the gradient step is just −η1Ex|P

[
∂LT

∂Wa,b

]
(because W is initialized at 0).

Choose η1 = Θ
(
1
T

)
, so that W will be O(1) with respect to T after the first step.

For the gradient with respect to v, since W = 0,

∂F (E)T,s

∂v
=

k∑
u=1

T∑
i=a

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u

1[xi−a = u ∧ xi = s]−
i∑

j=0

1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

= 0

So,

∂LT (E)

∂v
=

k∑
s=1

∂LT (E)

∂f(E)T,s

∂F (E)T,s

∂v
= 0

Completing the first step calculations.

Second step.

After the first step, W = η1
(
AI +B1⊤1

)
. Now let us bound the output of the model,

|f(E)T,s| =

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

η1
(
AI +B1⊤1

)
xT ,u

1[xi−j = u ∧ xi = s]
1

i

∣∣∣∣∣∣
≤ η1

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

(A+B)1[xi−j = u ∧ xi = s]
1

i

∣∣∣∣∣∣
≤ η1

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

(A+B)1[xi−j = u]
1

i

∣∣∣∣∣∣
≤ η1

∣∣∣∣∣∣
T∑

i=0

i∑
j=0

(A+B)
1

i

∣∣∣∣∣∣
≤ η1T |A+B|

So, using the first order approximation of softmax,

∂LT (E)

∂f(E)T,s
= Softmax(f(E))T,s − 1 [xT+1 = s]

=
1

k
+

f(E)T,s

k
−
∑k

u=1 f(E)T,u

k2
+O(f(E)2T,s)− 1 [xT+1 = s]

=
1

k
+O

(
η1

T

k
(A+B)

)
+O(η21T

2(A+B)2)− 1 [xT+1 = s]

21

=
1

k
+O

(
η1

T

k
(A+B)

)
+O(η21T

2(A+B)2)− 1 [xT+1 = s]

=
1

k
− 1 [xT+1 = s] +O

(
1

T

)
Where the last step follows since for the first step, eta = O

(
1
T 2

)
.

Now, we can begin to analyze the gradients with respect to the parameters. For W , the gradient is
approximately the same as in the last step. Notice that ∂f(E)T,s

∂Wa,b
does not depend on W , and v is

unchanged, so ∂f(E)T,s

∂Wa,b
is unchanged. Furthermore,

∂f(E)T,s

∂Wa,b
=

k∑
s=1

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b]
1

i

≤
T∑

i=0

i∑
j=0

1

i

= T

We will now show that the gradient is approximately the same as in the first gradient step:

∂LT (E)

∂Wa,b
=

k∑
s=1

∂LT

∂f(E)T,s

∂f(E)T,s

∂Wa,b

=

k∑
s=1

(
1

k
− 1 [xT+1 = s] +O

(
1

T

))
∂f(E)T,s

∂Wa,b

=

k∑
s=1

(
1

k
− 1 [xT+1 = s]

)
∂f(E)T,s

∂Wa,b
+O

(
1

T

)
∂f(E)T,s

∂Wa,b

= πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)
+O(log T)

Where the last lines follows from the gradient calculations in the first step.

Now we will consider the gradient with respect to v. First, notice that the uniform component of W ,
B1⊤1, has no affect on the gradient of v:

∂f(E)T,s

∂va
=

k∑
u=1

T∑
i=a

WxT ,u
exp(va)∑i
ℓ=0 exp(vℓ)

1[xi = s]

1[xi−a = u]−
i∑

j=0

exp(vj)∑i
ℓ=0 exp(vℓ)

1[xi−j = u]

=

k∑
u=1

T∑
i=a

(
mI +B1⊤1

)
xT ,u

1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

=

k∑
u=1

T∑
i=a

(A1[xT = u] +B)
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

+B

k∑
u=1

T∑
i=a

1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

22

= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

+B

T∑
i=a

1

i+ 1
1[xi = s]

 k∑
u=1

1[xi−a = u]−
i∑

j=0

1

i+ 1

k∑
u=1

1[xi−j = u]

= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

+B

T∑
i=a

1

i+ 1
1[xi = s]

1−
i∑

j=0

1

i+ 1

= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

By chain rule,

∂LT

∂va
=

k∑
s=1

∂LT

∂f(E)T,s

∂f(E)T,s

∂va

=

k∑
s=1

(
1

k
− PxT ,s +O

(
1

T

)) k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

=

k∑
s=1

(
1

k
− PxT ,s

) k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

+O

(
log T

T

)

Where the last step follows because∣∣∣∣∣∣
k∑

u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

∣∣∣∣∣∣ ≤
∣∣∣∣∣

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1

∣∣∣∣∣
=

∣∣∣∣∣
T∑

i=a

1

i+ 1

∣∣∣∣∣
≤ log T

In expectation over the values of x, conditioned on the choice of P :

Ex|P

[
∂LT

∂va

]
=

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

i+ 1

(
PT−i

)
s,u

(P a)u,s −
1

i+ 1

i∑
j=0

(
P i−j

)
u,s

+O

(
log T

T

)

=

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(
P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

+O

(
log T

T

)

= (log (T + 1)− log (a+ 1))

k∑
s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)
+O(1)

Where the last step follows from Lemma B.7. Then, by applying Lemma B.2 or lemmas B.3 and B.4
(depending on the distribution assumption on P),

Ex|P

[
∂LT

∂v1

]
< Ex|P

[
∂LT

∂va

]

23

Ex|P

[
∂LT

∂v1

]
< 0

Therefore, after the step is taken,

v1 = Θ(η2 log T)

v1 − vn = η2Ω(log T)

Finally, we can consider the state of the model after the second step. Assume that the step size for v
in the second step is O(T), and the step size for W is 1

T (A+B)

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=
1

A+B

k∑
u=1

T∑
i=0

i∑
j=0

(
AI +B1⊤1+O

(
log T

T

))
xT ,u

1[xi−j = u ∧ xi = s]

(
1 [j = 1] +O

(
2T

exp(log(T))

))

=
1

A+B

k∑
u=1

T∑
i=0

i∑
j=0

(
AI +B1⊤1+O

(
log T

T

))
xT ,u

1[xi−j = u ∧ xi = s]

(
1 [j = 1] +O

(
1

T

))

=
1

A+B

k∑
u=1

T∑
i=0

(
AI +B1⊤1

)
xT ,u

1[xi−1 = u ∧ xi = s] +O(log T)

=
A

A+B

T∑
i=0

1[xi−1 = xT ∧ xi = s] +
B

A+B

k∑
u=1

T∑
i=0

1[xi−1 = u ∧ xi = s] +O(log T)

=
A

A+B

T∑
i=0

1[xi−1 = xT ∧ xi = s] +
B

A+B

T∑
i=0

1[xi = s] +O(log T)

Since A and B are constant in terms of T , we can recover the desired statements, completing the
proof.

B.5 Inequality lemmas for k = 2

Lemma B.1. If P is a uniformly random stochastic 2× 2 matrix, and π is the stationary distribution
of P , then

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
=

5

12
− 2

3
log(2) ≈ −0.045

and for any b ̸= a

E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
= −7

6
+

5

3
log(2) ≈ −0.011

Proof. We have:

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
= Ea,b

[
(b− 1)2

(a+ b− 2)2

[
1

2
− a(b− 1)

a+ b− 2
− (1− a)(a− 1)

a+ b− 2

]]
=

1

2

∫ 1

0

∫ 1

0

(b− 1)2

(a+ b− 2)2
dadb−

∫ 1

0

∫ 1

0

a(b− 1)3

(a+ b− 2)3
dadb+

∫ 1

0

∫ 1

0

(b− 1)2(a− 1)2

(a+ b− 2)3
dadb

=
1

2
(1− ln 2)− 1

2
(1− ln 2) +

5

12
(5− 8 ln 2) =

5

12
− 2

3
ln 2.

(6)

24

For the non-diagonal elements, it holds:

E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]

=
1

2

∫ 1

0

∫ 1

0

(b− 1)(a− 1)

(a+ b− 2)2
dadb−

∫ 1

0

∫ 1

0

a(b− 1)2(a− 1)

(a+ b− 2)3
dadb+

∫ 1

0

∫ 1

0

(b− 1)(a− 1)3

(a+ b− 2)3
dadb

=
1

2

(
ln 2− 1

2

)
− 1

6
(1− ln 2) +

(
ln 2− 3

4

)
=

5

3
ln 2− 7

6
.

(7)

Lemma B.2. If P is a uniformly random stochastic 2× 2 matrix, and π is the stationary distribution
of P , then,

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
= −7/2 + 5 log(2) ≈ −0.034

and for any n ̸= 1

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
≤ E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)]

Proof. We have:

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
=[

1/6x4 + (x+ y)(6xy(−4x2 + 2x+ 1) + 6y4 + y3(20− 24x)

12(x+ y)

+
y2(12x2 − 12x− 3) + log((x+ y)6x

2(4x2+2x−1)(x+ y)6y
2(4y2+2y−1)))

12(x+ y)

]1
0

= −7/2 + 5log(2)

(8)

For the inequality, we have an intuition that doesn’t depend on k, notice that:
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)
≥ −

k∑
s=1

k∑
u=1

π2
uPu,s

∣∣∣πs − (P a)u,s

∣∣∣
≥ −

k∑
s=1

k∑
u=1

π2
uPu,sα

n

= −
k∑

u=1

π2
uα

n

≥ −αn

As long as α isn’t concentrated around 1, then this shows that the magnitude of the RHS is bounded
by a term that shrinks exponentially in n. For k = 2, we will find a similar bound, and then show
separately that for all n for which the bound fails, the inequality still holds true.

k∑
s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)
=

P1,2P2,1(4P1,2P2,1 − P1,2 − P2,1)

(P1,2 + P2,1)3
(1− P1,2 − P2,1)

n

We can show that for any choice of P1,2 and P2,1 on the unit square,∣∣∣∣P1,2P2,1(4P1,2P2,1 − P1,2 − P2,1)

(P1,2 + P2,1)3

∣∣∣∣ ≤ 1

4

25

To see why this is true, observe that,

(4P1,2P2,1 − P1,2 − P2,1)
2

= 16P 2
1,2P

2
2,1 + (P1,2 + P2,1)

2 − 8(P1,2 + P2,1)P1,2P2,1

≤ 16P 2
1,2P

2
2,1 + (P1,2 + P2,1)

2 − 4(P1,2 + P2,1)
2P1,2P2,1 since P1,2 + P2,1 ≤ 2

= 16P 2
1,2P

2
2,1 + (P1,2 + P2,1)

2 − 4P1,2P2,1((P1,2 + P2,1)
2 − 4P1,2P2,1)

= (P1,2 + P2,1)
2 − 4P1,2P2,1(P1,2 − P2,1)

2

≤ (P1,2 + P2,1)
2

Using the above, we have(
P1,2P2,1(4P1,2P2,1 − P1,2 − P2,1)

(P1,2 + P2,1)3

)2

≤
P 2
1,2P

2
2,1(P1,2 + P2,1)

2

(P1,2 + P2,1)6

=
P 2
1,2P

2
2,1

(P1,2 + P2,1)4

≤
P 2
1,2P

2
2,1

16P 2
1,2P

2
2,1

using (P1,2 + P2,1)
2 ≥ 4P1,2P2,1

=
1

16
.

So,

∥
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)
∥ ≤ 1

4
|1− P1,2 − P2,1|n

Now,

E
[
−1

1

4
|1− P1,2 − P2,1|n

]
= −1

4

∫ 1

0

∫ 1

0

|1− x− y|n

= −1

4

2

(n+ 1)(n+ 2)

= − 1

2(n+ 1)(n+ 2)

Notice that this decreases in n, and at n = 3, 1
2(3+1)(3+2) =

1
40 = 0.025 which is less in magnitude

than the value we proved at n = 1, | − 7/2 + 5 log 2| ≈ 0.034. So, solving for n = 2 (verified by a
symbolic algebra program)

E

[
P1,2P2,1 (−P1,2 − P2,1 + 1)

2 · (2P1,2P2,1 + P1,2 (P2,1 − 1) + P2,1 (P1,2 − 1))

(P1,2 + P2,1)
3

]
= −413

60
+

149 log (2)

15
≈ 0.002

Which is not only greater than −7/2 + 5 log 2, but positive. Lastly, we simply need to show that the
inequality holds at n = 0, and we are done.

E

[
P1,2P2,1 (−P1,2 − P2,1 + 1)

0 · (2P1,2P2,1 + P1,2 (P2,1 − 1) + P2,1 (P1,2 − 1))

(P1,2 + P2,1)
3

]

=− E

[
P1,2P2,1 · (2P1,2P2,1 + P1,2 (P2,1 − 1) + P2,1 (P1,2 − 1))

(P1,2 + P2,1)
3

]
= −7/6 + 5 ∗ log(2)/3 ≈ −0.0114

Which is greater than −7/2 + 5 log 2, completing our proof.

26

Lemma B.3. If P is a uniformly random doubly stochastic matrix, then,

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
= E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
for all a, b and

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
< E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
For all non-negative a ̸= 1. and

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
< 0

Proof. We will use the fact that for doubly stochastic matrices, the stationary distribution is the
uniform vector 1

k1.

The first equality follows directly from πa = 1
k = πb. Now we will prove the first inequality.

E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
= E

[
k∑

s=1

k∑
u=1

1

k2
Pu,s

(
1

k
− (P a)u,s

)]

=
1

k2
− 1

k2

k∑
s=1

k∑
u=1

E
[
Pu,s (P

a)u,s

]
=

1

k2
− 1

k2
E [⟨P, P a⟩F]

Where ⟨., .⟩F is the Frobenius inner product. We will first consider the case where a > 1. Notice that
it is sufficient to prove that for any doubly stochastic P (excluding the measure zero case of where
P = P 2, where equality is reached), ⟨P, P a⟩F < ∥P∥2F . First, by Cauchy–Schwarz,

⟨P, P a⟩F < ∥P∥F ∥P a∥F

We can use strictly less than because Cauchy Schwarz is only tight when P and P a are linearly
dependent, and since both P and P a are doubly stochastic, linear dependence implies equality, which
is only the case when P = P a. Then, For now assume a > 0, then,

= ∥P∥F ∥P a∥F
= ∥P∥F ∥PP a−1∥F
= ∥P∥F ∥

∑
i

αiΛiP
a−1∥F

≤
∑
i

αi∥P∥F ∥ΛiP
a−1∥F

=
∑
i

αi∥P∥F ∥P a−1∥F

= ∥P∥F ∥P a−1∥F
The third step used the well known Birkhoff-Von Neumann Theorem [9] that any doubly stochastic
matrix P is the convex combination of permutation matrices, so P =

∑
i αiΛi for some permutation

matrices Λi and constants αi > 0 with
∑

i αi = 1. The inequality step uses the triangle inequality.
Induction on positive a yields the desired inequality for positive a.

Now consider the remaining case, a = 0,

1

k2
− 1

k2

k∑
s=1

k∑
u=1

E
[
Pu,s

(
P 0
)
u,s

]
=

1

k2
− 1

k2

k∑
s=1

E [Ps,s]

27

=
1

k2
− 1

k2
= 0.

While at a = 1, for any P that isn’t 11⊤, ∥P∥F > 1, so

1

k2
− 1

k2

k∑
s=1

k∑
u=1

E
[
P 2
u,s

]
<

1

k2
− 1

k2
= 0.

Completing the proof of both inequalities.

Lemma B.4. If P is a uniformly random k × k stochastic matrix subject to each row being the same,
then,

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
< E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
< 0

and

E
[
π2
a

(
1
k −

∑k
s=1 Pa,sπs

)]
E
[
πaπb

(
1
k −

∑k
s=1 Pa,sπs

)] ≥ 8

5

for all a and b and

E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
= 0

For all a.

Proof. The equality statement follows from the facts that for such transition matrices, P a = P for all
natural a > 0, and that the stationary distribution matches the rows, that is, for any a, b, πb = Pa,b,

E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
= E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
= E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − πs)

]
= 0

Now we will do the inequalities. We will also use the following facts derived from the moments of
the Dirichlet distribution,

E
[
∥π∥22

]
=

2

k + 1

E
[
∥π∥42

]
=

4(k + 5)

(k + 1)(k + 2)(k + 3)

So,

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
= E

[
π2
a

(
1

k
−

k∑
s=1

π2
s

)]

=
1

k
E
[
∥π∥22

(
1

k
− ∥π∥22

)]
=

1

k2
E
[
∥π∥22

]
− 1

k
E
[(
∥π∥42

)]
=

2

k2(k + 1)
− 4(k + 5)

k(k + 1)(k + 2)(k + 3)

Which is negative for all k ≥ 2. And,

E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
=E

[
πaπb

(
1

k
−

k∑
s=1

π2
s

)]

28

=
1

k2
E
[(

1

k
− ∥π∥22

)]
=

1

k3
− 1

k2
E
[
∥π∥22

]
=

1

k3
− 2

k2(k + 1)

Which is also negative for all k ≥ 2. Finally, notice that
2

k2(k+1) −
4(k+5)

k(k+1)(k+2)(k+3)

1
k3 − 2

k2(k+1)

≥ 8

5

For all k ≥ 2.

B.6 Approximation Lemmata

The following lemma is a well known property of stochastic matrices, (see Lemma 3.3.2 Gallager
[19] for example).
Lemma B.5. Let α = 1− 2mini,j Pi,j . Then, for any i, j∣∣∣(Pn)i,j − πj

∣∣∣ ≤ αn

Lemma B.6 and Lemma B.7 both share similar intuitions and proofs. They largely rely on Lemma
B.5, which shows that (Pn)i,j approaches πj exponentially fast with respect to n, to show that over
the course of summations over n the stationary distribution dominates, allowing us to simplify the
expressions.
Lemma B.6. Let P be a stochastic matrix with all positive entries, and let a, b be states. Assume
that mini,j Pi,j is positive and doesn’t dependend on T . Then,

πb

T∑
i=0

1

k

(
P i
)
b,a

−
k∑

s=1

Pa,s
1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s

= πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)
+O(log T).

Proof. Let us bound the magnitude of the difference between the two expressions.∣∣∣∣∣∣πb

T∑
i=0

1

k

(
P i
)
b,a

−
k∑

s=1

Pa,s
1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s

− πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)∣∣∣∣∣∣
=

∣∣∣∣∣∣πb

T∑
i=0

1

k

((
P i
)
b,a

− πa

)
−

k∑
s=1

Pa,s

 1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s

− πsπa

∣∣∣∣∣∣
≤ πb

T∑
i=0

1

k

∣∣∣(P i
)
b,a

− πa

∣∣∣+ k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

∣∣∣(P i
)
s,a

(
P j
)
b,s

− πsπa

∣∣∣

≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

∣∣∣(P i
)
s,a

(
P j
)
b,s

− πsπa

∣∣∣

= πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

∣∣∣((P j
)
b,s

(
P i
)
s,a

− πa) + πa(
(
P j
)
b,s

− πs)
∣∣∣

≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

((
P j
)
b,s

∣∣∣(P i
)
s,a

− πa

∣∣∣+ πa

∣∣∣(P j
)
b,s

− πs

∣∣∣)

29

≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

((
P j
)
b,s

αi + πaα
j
)

≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

(
αi + αj

)
≤ πb

T∑
i=0

(
1

k
αi +

k∑
s=1

Pa,s

(
αi +

1

T − i+ 1

1− αT−i+1

1− α

))

≤ πb

T∑
i=0

(
1

k
αi +

k∑
s=1

Pa,s

(
αi +

1

T − i+ 1

1

1− α

))

≤ πb

T∑
i=0

(
1

k
αi + αi +

1

T − i+ 1

1

1− α

)

≤ πb

T∑
i=0

(
1

k
αi + αi +

1

T − i+ 1

1

1− α

)
≤ πb

((
1 +

1

k

)
1− αT+1

1− α
+

log(T + 1) + 1

1− α

)
≤ πb

2 + 1
k + log(T + 1)

1− α

≤ 2 log T

1− α

=
log T

mini,j Pi,j

= O(log T)

The last step follows from our assumption, completing the proof.

Lemma B.7. Let P be a stochastic matrix with all positive entries, and let a, b be states. Assume
that mini,j Pi,j is positive and doesn’t depend on T . Then,

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(
P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

= (log (T + 1)− log (a+ 1))

k∑
s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)
+O(1)

Proof. First notice that,
k∑

s=1

k∑
u=1

(
1

k
− Pu,s

)
π2
u

(
(P a)u,s − πs

)
=

k∑
s=1

k∑
u=1

π2
u

(
1

k

(
(P a)u,s − πs

)
− Pu,s

(
(P a)u,s − πs

))

=

k∑
u=1

π2
u

(
k∑

s=1

1

k

(
(P a)u,s − πs

)
−

k∑
s=1

Pu,s

(
(P a)u,s − πs

))

=

k∑
u=1

π2
u

(
1

k
(1− 1)−

k∑
s=1

Pu,s

(
(P a)u,s − πs

))

=

k∑
u=1

π2
u

k∑
s=1

Pu,s

(
πs − (P a)u,s

)
We will bound the distance between

∑k
s=1

∑k
u=1

(
1
k − Pu,s

)
π2
u

(
(P a)u,s − πs

)
and Ex|P

[
∂LT

∂va

]
.

Define α = 1− 2mini,j Pi,j as in lemma B.5.

30

=

∣∣∣∣∣∣
k∑

s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(
P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

−

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

π2
u

1

T − i+ 1

(
(P a)u,s − πs

)∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

− πu

(
(P a)u,s − πs

)∣∣∣∣∣∣
≤

k∑
s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

∣∣∣∣∣∣(P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

− πu

(
(P a)u,s − πs

)∣∣∣∣∣∣
≤

k∑
s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

∣∣∣∣∣∣(P i
)
s,u

πs −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

−
(
(P a)u,s − πs

)((
P i
)
s,u

− πu

)∣∣∣∣∣∣
≤

k∑
s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

∣∣∣∣∣∣(P i
)
s,u

1

T − i+ 1

T−i∑
j=0

(
πs −

(
P j
)
u,s

)
−
(
(P a)u,s − πs

)((
P i
)
s,u

− πu

)∣∣∣∣∣∣
≤

k∑
s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

(P i
)
s,u

1

T − i+ 1

T−i∑
j=0

∣∣∣πs −
(
P j
)
u,s

∣∣∣+ ((P a)u,s − πs

) ∣∣∣(P i
)
s,u

− πu

∣∣∣

≤
k∑

s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

(P i
)
s,u

1

T − i+ 1

T−i∑
j=0

αj +
(
(P a)u,s − πs

)
αi

 By lemma B.5

=

k∑
s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

((
P i
)
s,u

1

T − i+ 1

1− αT−i+1

1− α
+
(
(P a)u,s − πs

)
αi

)

≤
k∑

s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

(
1

T − i+ 1

1

1− α
+
(
(P a)u,s − πs

)
αi

)

≤
T∑

i=a

1

T − i+ 1

(
k∑

s=1

1

T − i+ 1

1

1− α
+

k∑
s=1

(
k∑

u=1

πu (P
a)u,s − πs

)
αi

)

≤
T∑

i=a

1

T − i+ 1

(
k∑

s=1

1

T − i+ 1

1

1− α
+

k∑
s=1

(πs − πs)α
i

)

≤
T∑

i=a

1

T − i+ 1

(
k

T − i+ 1

1

1− α

)

≤
T∑

i=a

1

(T − i+ 1)
2

k

1− α

≤ 2k

1− α

=
k

mini,j Pi,j

= O(1)

The last step follows from our assumption, and the fact that k does not depend on T .

31

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in our paper are supported by theoretical proofs or rigorous
empirical evaluations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The purpose of this work is to introduce a novel task to study in-context learning
in transformers. Since it focuses on a theoretical understanding, certain assumptions must be
made. We mention in the introduction that our theoretical results apply to a simplified model
of a transformer, while we precisely define our experimental setup.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

32

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Our main paper may have some informal theorem statements for ease of read-
ability, we give formal versions of all the statements with full proofs in the appendix. We also
make sure to clarify the assumptions under which our results hold.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all training details in Appendix A, and information on the data
generating process and architecture in Section 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

33

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our code is shared at https://github.com/EzraEdelman/
Evolution-of-Statistical-Induction-Heads.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The details are available in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our main results regard the multiphase nature of training, and we include Figure 6
which shows that for the seeds 0, 1, . . . 9 the model each time has the same patterns in the
training curve. The curves were shown individually instead of through error bars since the
main purpose of the loss curves is to show the shape, but because the phase transition doesn’t
occur at a consistent time, adding error bars smooths out the curve making the phase transition
look less sharp.

Guidelines:

• The answer NA means that the paper does not include experiments.

34

https://github.com/EzraEdelman/Evolution-of-Statistical-Induction-Heads
https://github.com/EzraEdelman/Evolution-of-Statistical-Induction-Heads
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The resources are described in Appendix A. Only a single computer was used,
and none of the training runs took longer than ten minutes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the code of ethics in its entirety and strongly believe that our research
abides by the stated code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

35

https://neurips.cc/public/EthicsGuidelines

Justification: Our work focuses on understanding the internal mechanisms of Transformer
models on synthetic tasks. We do not foresee any direct societal impact of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not release any data or models that poses safety risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We cite the Github repository we use as the codebase for our Transformer models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

36

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

37

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

	Introduction
	Related Work

	Setup
	Potential Strategies for (Partially) Solving ICL-MC
	Architectures: Transformers and Simplifications

	Empirical Findings and Theoretical Validation
	Transformers In-Context Learn Markov Chains Hierarchically
	Theoretical Insights from the Minimal Model
	Beyond Bigrams: n-gram Statistics

	Conclusion and Discussion
	Experimental Details and Additional Experiments
	Experimental details
	Additional experiments

	Proofs
	Transformer Construction
	ICL-MC with Minimal Model
	Gradient Calculations
	Proof of lemma 3.1
	Inequality lemmas for k=2
	Approximation Lemmata

