
Generalized Predictive Coding: Bayesian Inference in
Static and Dynamic models

André Ofner1 Beren Millidge2 Sebastian Stober1
1 AILab, Otto-von-Guericke University, Magdeburg, Germany
2 MRC Brain Networks Dynamics Unit, University of Oxford
{ofner, stober}@ovgu.de beren@millidge.name

Abstract

Predictive coding networks (PCNs) have an inherent degree of biological plausibil-
ity and can perform approximate backpropagation of error in supervised learning
settings. However, it is less clear how predictive coding compares to state-of-the-art
architectures, such as VAEs, in unsupervised and probabilistic settings. We propose
a PCN that, inspired by generalized predictive coding in neuroscience, parame-
terizes hierarchical distributions of latent states under the Laplace approximation
and maximises model evidence via iterative inference using locally computed error
signals. Unlike its inspiration it uses multi-layer neural networks with nonlin-
earities between latent distributions. We compare our model to VAE and VLAE
baselines on three different image datasets and find that generalized predictive
coding shows performance comparable to variational autoencoders trained with
exact error backpropagation. Finally, we investigate the possibility of learning
temporal dynamics via static prediction by encoding sequential observations in
generalized coordinates of motion.

1 Introduction

Predictive coding is an influential theory in neuroscience that describes brain function as learning
and maintaining a generative model of the world by minimising prediction errors about sensory and
internal states [3, 18]. Static PCNs are organised hierarchically, where top-down signals from higher
layers predict the activity of the layer below and bottom-up signals convey prediction errors. In
dynamical predictive coding models each layer additionally predicts temporal changes of expected
neural activity in the layer below. Given these dynamics, Hebbian weight updates can be defined that
minimize the prediction error at each layer of the network.

The weight and activity update dynamics of PCNs can be interpreted as performing variational
inference (VI) by iteratively refining an inferred distribution over possible causes p(z|o) of observed
sensory data o [6, 5, 21]. In variational inference, an approximate distribution q(z;λ) is fit to the
generally intractable posterior pθ(z | o) by optimizing the variational free energy F , also known as
evidence lower-bound (ELBO) [6, 7]: Fθ(o;λ) = Eq(z;λ) [ln pθ(o, z)− ln q(z;λ)]

In predictive coding, we define q(z;λ) to be a simple diagonal or full-covariance Gaussian distribution
with λ as the sufficient parameters, i.e. the mean and covariance. Given the generative model θ
(decoder) of a particular hierarchical layer, inference in predictive coding models proceeds by
estimating the optimal variational parameters λ∗ that maximize model evidence given observed data
and current parameterization. Learning of the parameters of the generative model θ can be achieved
by performing a gradient descent on Fθ (o;λ

∗) with respect to θ which results in Hebbian weight
updates. Crucially, learning and inference in PCNs is driven by locally generated predictions and
prediction errors. In hierarchical PCNs, the predicted distributions of higher layers foster empirical

4th Workshop on Shared Visual Representations in Human and Machine Visual Intelligence (SVRHM) at the
Neural Information Processing Systems (NeurIPS) conference 2022. New Orleans.

priors for the next lower layer: p(z, o) = p (o | z1) p (z1 | z2) . . . p (zL−1 | zL), such that a layer’s
inference model can be interpreted as the next higher layer’s generative model.

The variational autoencoder (VAE) is a highly influential class of deep neural networks that performs
amortized inference of λ using an inference model ϕ (encoder) [10]. The inference model in VAEs
learns to predict the approximate posterior qϕ(z | o) by learning the parameters ϕ of the variational
mapping over a dataset. In contrast to the Hebbian updates in PCNs, VAEs are trained using exact
backpropagation of error through the entire model [20]. More recently, the notion of iterative
inference has been adapted for VAEs to improve the posterior distribution [16, 13]. While VAEs
and static PCNs have striking similarities in terms of architecture and optimisation scheme, there
is still a lack of quantitative comparisons in the literature. Similarly, various deep recurrent models
for predicting sequential stimuli have been developed, but lack exhaustive comparison to dynamical
PCNs [2, 19, 8]. To start addressing these gaps the main contributions of this paper are:

• We compare a static PCN model with full covariance estimation via the Laplace approxima-
tion for nonlinear neural networks to VAE baselines on several image datasets

• We extend our PCN model to temporal predictions of video in generalized coordinates of
motion in line with generalized predictive coding in Neuroscience [5]

2 Generalized predictive coding

Generalized predictive coding (GPC) describes a particularly influential class of PCNs that covers
static and dynamic models in combination with generalized coordinates of state motion and the
Laplace approximation [5, 6, 4, 1]. Static GPC networks infer the conditional mean and covariance of
cause states v and hidden states x. Each hierarchical layers predicts the expected activity in the next
lower layer using non-linear function g: y = g(x, v, θ) + z. Dynamical GPC networks additionally
predict the motion of hidden states ẋ = f(x, v, θ) + w using a non-linear transition function f 1. z
and w denote observation noise and transition noise respectively. While cause states are predicted
hierarchically, hidden states are usually not observed by higher layers.

Under the assumption of local linearity, GPC uses states in generalized coordinates of motion
ỹ = [y, y′, y′′, . . .]

T, where y′ denotes the temporal derivative at y. Similarly, for cause and hidden
states:

y = g(x, v) + z x′ = f(x, v) + w

y′ = gxx
′ + gvv

′ + z′ x′′ = fxx
′ + fvv

′ + w′

Using Gaussian priors p(z) = N (z; µ̄,Σ), GPC infers posterior distributions of the causes p(x̃ | ṽ) =
N

(
Dx̃ : f̃ , Σ̃z

)
and the hidden states p(ỹ | x̃, ṽ) = N

(
ỹ : g̃, Σ̃z

)
. Here, D denotes a derivative

operator that replaces each order of state motion with the next higher order: x← x′, x′ ← x′′,

While conditional mean parameters µ are encoded explicitly, the covariance Σ is encoded implicitly
as a function of the mean using the Laplace approximation (LA). Under the LA, the covariance is
determined by the local curvature of − log pθ(y, v, x) at the inferred mode of pθ(v, x | o). Figure 1
shows dynamical and static GPC in comparison to a VAE.

GPC proceeds by expressing the free energy F of each hierarchical layer l as a function of precision
weighted prediction errors ξ(l,o) = Σ(l,o)−1

ϵ(l,o) for outgoing predictions and for top-down predic-
tions ξ(l,v) = Σ(l,v)−1

ϵ(l,v) from the next higher layer. Here, precision is the inverse of the covariance
Σ. Depending on the chosen prior, the distance between prior and posterior distribution is measured
by ξ(l,p) = Σ(l,p)−1

ϵ(l,p). Here, ϵp = µ− µ̄ = µ− 0, is the prediction error between posterior and
prior and ϵ(l)v = µ(l) − g(µ(l+1)) is the hierarchical prediction error between layers (or the sensory
prediction error at the lowest layer). For dynamical models, the generalized predictions ỹ result in
generalized errors ϵ̃ = ỹ − õ = [ϵ, ϵ′, ϵ′′, . . .]

T. Inference in each layer is done via gradient descent
on ξ = Σ−1ϵ for cause states ˙̃µ(l)v = µ̃(l)v − ε̃

(l)T
v ξ(l) − ξ(l+1)v [5]. Within each hierarchical layer,

the motion of hidden states is inferred as ˙̃µ(l)x = Dµ̃(l)x − ε̃
(l)T
x ξ(l).

1Since static models lack dynamical predictions, hidden states can usually be ignored in the static case.

2

An appeal of the GPC model is that it provides a simple model inversion scheme that with a strong
degree of neurobiological plausibility[5, 1]. Encoding state motion in generalized coordinates
casts dynamical predictions (which normally require complex recurrent connectivity) as a static
prediction mechanism. Similarly, the Laplace approximation provides a simplified scheme to represent
uncertainty that allows approximate inference to be performed with simple Hebbian updates.

z

y yy

y Layer 2

Layer 1

Local
error

Precision
(Laplace)

Variational Autoencoder

Hidden
states

Cause
states

Generalized Predictive Coding
(Static model)

a) VAE b) GPC-V c) GPC-M d) GPC

Generalized Predictive Coding
(Full model)

Figure 1: Variational autoencoders (a) encode mean and variance of their latent distribution. Error
signals are propagated through the entire network via the backpropagation algorithm. Generalized
predictive coding (b-d) propagates local errors and encodes only the mean under the Laplace approxi-
mation. The variance is a function of the mean and can be explicitly sampled (b) or appears only as
error weighting terms (c).

3 Implemented models and baselines

3.1 VAE and VLAE baseline

We use the conventional VAE architecture with fully factorized normal distribution, reparameterization
of the latent distribution and training via backpropagation of error [10]. It uses a single sample from
the latent distribution to estimate the reconstruction error. The complexity is measured using the
analytical KL divergence between inferred distribution and a standard normal prior. The VLAE is
a variant of the VAE with iterative mode seeking that defines a full-covariance Gaussian posterior
at the mode using the Laplace approximation [16]. The VLAE uses a single sample from the latent
distribution at the inferred mode as input to the decoder. The model uses a decaying learning rate
for mode seeking. For the VAE and VLAE models, the encoder and decoder consist of two ReLU
activated layers with 256 hidden units and parameterize 16 latent units.

3.2 Static GPC model

We implement a static GPC with two hierarchical layers and fix the mean of the second layer’s latents
to the data. In this setup, the output of the second hierarchical layer provides empirical priors via
amortized inference on the first hierarchical layer’s cause states p(v1) 2. The resulting architecture
resembles that of an autoencoder as it uses the second layer’s generative model as the first layer’s
inference model. Predictions between cause states are parameterized by a dense neural network with
three layers. All generative networks have 256 hidden units and 16 latent units (causes). In contrast
to the VAE baseline, inference and learning in the presented network (GPC-M) does not involve a
sampling step. For comparison we also implement a network (GPC-V) that is trained using stochastic
updates with a single sample from the posterior distribution. Section A of the Appendix provides a
detailed explanation of the objective used for learning and inference in the proposed model.

2Note that the cause state of the second hierarchical layer is fixed, i.e. iterative inference is restricted to the
first hierarchical layer.

3

3.3 Laplace approximation with ReLU nonlinearity

Inspired by the work of Park et al. [16], we employ ReLU non-linearity for the input and hidden
layer, followed by a linear output layer. For network weights W and Jacobian Wz with respect to
latent states z = (v, x) ReLU non-linearity allows to efficiently compute the precision of inferred
posterior states Σ−1 = − ∇2

z log pθ(o, z)
∣∣
z=µ

= Wz
TWz + I |z=µ by computing binary activation

masks ReLU(Wz) = O(Wz) during the decoder’s forward pass and recursively multiplying with
the decoder’s weights [16]. After a fixed amount of inference steps towards the posterior mode the
approximate posterior distribution is q(z | o) = N (µ,Σ) using the LA [16]. This distribution is then
used to compute gradients for the weights. We perform exact error propagation to the weights strictly
locally within each hierarchical layer using automatic differentiation in PyTorch [7, 17]. This is in
contrast to a backpropagation pass over all parameters, such as in VAEs, where the decoder’s error
directly drive updates of encoder parameters.

3.4 Dynamical GPC model

We also implement two variants of dynamical GPC models to test amortized inference and dynamical
inference of causes respectively: A simplified model with two hierarchical layers without cause states
that predicts hidden states top-down. Again, the data serves as fixed input to the second hierarchical
layer. The second model consists of a single hierarchical layer that infers cause and hidden states
with associated dynamics using multiple shooting, as explained in the next section. We use 16 units
for cause and hidden states in all models. Differently to the static model, we do not employ biases
and use weighted errors at each inference step for the second model, as detailed in Appendix A.

Dynamical GPC models are trained like static GPC via iterative inference. However, in addition
to decoding the states y = g(z), the explicitly represented state motion ỹ = g(z̃) is decoded
and compared with the data õ. During decoding the states y = g(z), the Jacobian Wz at the
currently inferred mode is computed by masking the decoder network. All other orders of state
motion y′ = gzz

′, y′′ = gzz
′′, ... are decoded through this masked decoder network Wz . Similarly,

during the prediction of hidden state motion x′ = f(z) the Jacobian of the transition network fz is
computed. This Jacobian is reused for all higher order hidden state motion predictions z′′ = fz(z

′),
..., zN = fz(z

N−1). We use N = 2 for the first and N = 3 for the second GPC model. Amortized
inference on the hidden states and their motion is possible by repeating the process with the second
hierarchical layer’s decoder. We interpret the Taylor series expansion underlying the forward and
inverse embedding of sequential data as a convolution operation along the temporal axis, which can
efficiently be computed using convolutional kernels. More details and examples for such kernels are
shown in section B of the Appendix. Figure 3 a) displays the dynamical connectivity in a hierarchical
GPC layer.

3.5 Multiple shooting

Following related work on multiple shooting (MS) based training of Neural ODEs we train the model
by splitting discrete sequences into multiple segments, which are optimised in parallel [23, 22]. We
sample discrete sequences [ot1 , ...otn] of length n at m shooting points [oτ1 , ...oτm] which are then
embedded into generalized coordinates. For b sequences sampled at m point, the network is trained
with a batch size of b ∗m. In practise, this means that we can omit the term Dµ̃(l)x for the dynamical
predictions, which would be required for sequential filtering. Figure 2 shows an example with two
discrete sequences. Crucially, while hidden states are inferred for each shooting point oτi individually,
the prediction errors for cause states are averaged over all m samples from a sequence. We use MS
with b = 4,m = 8 for the dynamical GPC model that infers causes and b = 64,m = 1 otherwise.

4 Static predictive coding on MNIST, FashionMNIST and OMNIGLOT

We train and evaluate static models on MNIST [12], FashionMNIST [24] and OMNIGLOT [11].
Unlike the VLAE baseline, we do not initialise the decoder output variance based on dataset statistics.
Instead we add noise from a uniform distribution and apply a logit transformation for all datasets.
Tables 1 and 2 shows test results on all datasets for 3 iterative inference steps using the conventional
train and test splits. Listed are mean and standard deviation across 5 runs. We trained for 1e+4 steps
with the ADAM optimiser at a learning rate of 1e-3 and a inference update rate of 0.01 for GPC-M

4

and GPC-S [9]. The VLAE is trained with the default inference update rate of 0.5 [16]. GPC-S
and GPC-M slightly outperform the VAE on MNIST and OMNIGLOT, while the VLAE model
consistently outperforms both PCNs and VAEs on all datasets. This indicates that PCNs, despite
lacking exact error signals for the inference network learn a generative model that is comparable in
performance to VAEs. The GPC-M model, without explicit sampling, outperformed the sample-based
GPC-S model, except for one configuration on MNIST. In terms of divergence from the prior, the
GPC models consistently showed posterior complexity that is comparable to, but slightly higher
than, VAE complexity. For more details on model complexity and the influence of inference steps,
see Section C of the Appendix. For all tested models, increasing the number of inference steps is
beneficial only for low numbers of steps. We found that reducing the inference learning rate or adding
a decay term can improve stability, but did not include it in our experiments.

MNIST fMNIST OMNIGLOT

GPC-S 748.7±3.7 722.9±2.5 994.8±2.9
GPC-M 756.4±5.0 714.9±1.1 990.8±1.8
VAE 759.5±3.9 713.1±1.6 995.1±1.6
VLAE 713.5±3.7 683.6±1.3 956.6±2.4

Table 1: Negative evidence lower bound (test set)

MNIST fMNIST OMNIGLOT

-699.6±3.8 -678.0±2.6 -952.0±2.4
-707.5±5.2 -665.9±1.3 -953.7±1.8
-712.9±4.2 -671.5±1.5 -958.5±1.7
-666.8±3.9 -641.5±1.4 -918.5±2.6

Table 2: Accuracy (test set)

5 Dynamical predictive coding on the dSprites dataset

To assess the capabilities of dynamical PCNs we train a dynamical GPC model on a variant of the
Disentanglement testing sprites dataset [15]. Most conventional video benchmarks have relatively
low sampling rates, where the local linearity assumption does not hold. We generate high resolution
videos for a single direction of rotation (counterclockwise) and use random, but constant, values for
the remaining latent factors. We applied Gaussian blur to all images and cropped the videos to 32x32
pixel resolution, making sure that no sprites appear outside the area.

Seq. 2

Seq. 1

Multiple shooting with cause and hidden states

Batch

Figure 2: Multiple shooting

GPC-all GPC-L1

MSE 0.432±0.124 0.476±0.204
Layer 1 0.768±0.257 0.779±0.422
Layer 2 0.097±0.013 0.173±0.031

Table 3: Accuracy (dSprites)

Table 3 shows mean and standard deviation of the mean squared error (MSE) for 10 runs over 3e+4
updates using two different variants of the simplified dynamical model: The GPC-all model was
trained using the prediction error from both dynamical layers, while GPC-L1 only considers the
error in the lowest dynamical layer. Both models smoothly predict the constant rotation across latent
factors. GPC-all shows improved MSE in terms of total and per-layer prediction. This indicates
that including higher-order dynamical predictions errors propagated through the network’s Jacobian
indeed improves accuracy. We found that GPC-L1 reacts poorly to increased latent dimensionality
and stops predicting any meaningful state motion when 32 or more latent units were used. In contrast,
GPC-all showed meaningful transitions for larger embeddings.

6 Simultaneously inferring cause and hidden states

We found that training a dynamical model that infers causes and hidden states simultaneously on the
rotating dSprites dataset leads to a clear clustering of causes into the two directions of motion for the
inferred cause states, as shown in Figure 4 b). The hidden states capture spatial aspects, such as sprite
shape, which change in dependency of the inferred cause. After training the network and freezing
weights, new generalized observations õ can be encoded via iterative inference. The inferred stated
can then be used for dynamical prediction of future timesteps, by applying x′ = f(z), x′′ = fz(z

′),
Figure 4 a) shows a typical extrapolation for up to 50 with different step sizes dt scaling the predicted

5

v'

v

v''

v'

v

v''

Response

Hidden state
timescale

Cause state
timescale

State motion

StateCause Hidden

Hierarchical layer 1

H
ie

ra
rc

hi
ca

l l
ay

er
 2

(a) GPC layer (b) Generalized states

Figure 3: a) Hierarchical predictions (green) express expectations about causes (or data) in the next
lower layer. Dynamical predictions (blue) predict higher orders of state motion. Dotted connections
indicate optional skip connections between causes and the layer’s hierarchical response (not used
here). b) Discrete video frames (right) are fed to the model as generalized observations (left). The
generalized sensory prediction of the network can be projected back to discrete sequences (center).

(a) Dynamical prediction

Cause states
Direction

CW
CCW

Hidden states
Shape

Square
Ellipse
Heart

(b) t-SNE projection of cause and hidden states

Figure 4: a) Dynamical prediction with learned causes over three different step sizes dt. Shown is
every tenth of 50 steps. b) t-SNE projection of cause and hidden states after unsupervised learning.
Hidden states encode spatial aspects, such as shape while cause states encode hidden state motion
and cluster into rotation directions. Marker sizes indicate the scale of observed sprites.

hidden state motion x′ = f(x, v) ∗ dt. Changing the applied step size allows to increase and decrease
the speed of motion forward and backward in time. Figure 3 b) shows the discrete observations and
their temporal embeddings. Additionally shown are the model’s generalized prediction ỹ from hidden
states as well as the resulting inverse embedding to a discrete sequence.

7 Conclusion

We presented a generalized predictive coding network (GPC) that uses Hebbian updates and the
Laplace approximation with nonlinear neural networks to infer posterior distributions. We have
shown that the model performs comparably to VAEs trained with exact error backpropagation. We
extended the model to cover dynamical predictions of simple video sequences and demonstrated
the possibility to learn dynamics using generalized coordinates of motion. We found that in many
cases, GPC still learns meaningful dynamics on video datasets with lower sampling rate. For this
work however, we focus on high resolution data. Important steps for future work could be to use
convolutional neural networks or a comparison to related dynamical models, such as Neural ODEs or
RNNs [22, 19].

8 Acknowledgments

This research was funded by the Federal Ministry of Education and Research of Germany (BMBF) as
part of the "Cognitive neuroscience Inspired techniques for eXplainable AI" (CogXAI) project.

6

References
[1] Andre M Bastos, W Martin Usrey, Rick A Adams, George R Mangun, Pascal Fries, and Karl J

Friston. Canonical microcircuits for predictive coding. Neuron, 76(4):695–711, 2012.

[2] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. Advances in neural information
processing systems, 28, 2015.

[3] Karl Friston. A theory of cortical responses. Philosophical transactions of the Royal Society B:
Biological sciences, 360(1456):815–836, 2005.

[4] Karl Friston. Hierarchical models in the brain. PLoS computational biology, 4(11):e1000211,
2008.

[5] Karl Friston and Stefan Kiebel. Predictive coding under the free-energy principle. Philosophical
transactions of the Royal Society B: Biological sciences, 364(1521):1211–1221, 2009.

[6] Karl Friston, James Kilner, and Lee Harrison. A free energy principle for the brain. Journal of
physiology-Paris, 100(1-3):70–87, 2006.

[7] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the sixth annual conference on
Computational learning theory, pp. 5–13, 1993.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[11] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[12] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[13] Joseph Marino. Predictive coding, variational autoencoders, and biological connections. Neural
Computation, 34(1):1–44, 2022.

[14] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentangle-
ment testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

[15] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentan-
glement testing sprites dataset, 2017. URL https://github. com/deepmind/dsprites-dataset,
2020.

[16] Yookoon Park, Chris Kim, and Gunhee Kim. Variational laplace autoencoders. In International
conference on machine learning, pp. 5032–5041. PMLR, 2019.

[17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[18] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87,
1999.

[19] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

7

[20] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[21] Alexander Tschantz, Beren Millidge, Anil K Seth, and Christopher L Buckley. Hybrid predictive
coding: Inferring, fast and slow. arXiv preprint arXiv:2204.02169, 2022.

[22] Evren Mert Turan and Johannes Jäschke. Multiple shooting for training neural differential
equations on time series. IEEE Control Systems Letters, 6:1897–1902, 2021.

[23] B van Domselaar and Piet W Hemker. Nonlinear parameter estimation in initial value problems.
Stichting Mathematisch Centrum. Numerieke Wiskunde, (NW 18/75), 1975.

[24] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

A Inference and learning with precision weighted prediction errors

For a hierarchical layer l, the variational free energy F decomposes into an accuracy term, that
measures the quality of the outgoing prediction g(l)(µ(l)), and a complexity term between top-down
predicted state g(l+1)(µ(l+1)) and inferred state µ(l). Since we want to compare the GPC model to
variational autoencoders, we additionally regularize by the distance between a standard normal prior
distribution and the inferred posterior distribution:

F(o, q(l), q̂(l)) = Eq[log p(o | z)]−KL(q(l)(z)∥q̂(l)(z))−KL(q(l)(z)∥p(z)) (1)

where q(l)(z) is the inferred distribution, q̂(l)(z) is its top-down prediction and p(z) is the chosen
prior distribution. Hidden hierarchical layers predict the activity µl−1 in the layer below instead of
sensory observations o.

A central idea in predictive coding is to approximate the KL divergences in 1 with respect to prediction
errors ϵ:

ϵ(l,p) = (µ(l) − 0)

ϵ(l,v) = (µ(l) − g(l+1)(µ(l+1)))

ϵ(l,o) = (g(l)(µ(l))− o)

(2)

where ϵ(l,o) measures the reconstruction accuracy, ϵ(l,v) measures the distance between inferred
activity µ(l) and top-down predicted activity µ̂(l) and ϵ(l,p) measures the distance of inferred activity
from the prior with zero mean. To make use of amortized inference, at the start of iterative inference,
the inferred posterior is initialized with its top-down prediction µ0 = µ̂. During inference, the optimal
µ∗(l) with respect to complexity and accuracy is computed using a gradient descent on ϵ(l,p) and
ϵ(l,o). Under the Laplace approximation, the divergence from a standard normal prior simplifies to
the divergence from zero mean.

After inference, the covariance parameters of the top-down predicted distribution q̂(z) and the inferred
posterior distribution q∗(z) are inferred following the routine described in Park et al. [16] using
Σ−1 = − ∇2

z log pθ(o, z)
∣∣
z=µ

, which can be efficiently computed for ReLU activations. Then, the
weights of the model can be updated with respect to the distance between optimal inferred distribution
and the top-down predicted distribution:

F(o, q(l), q̂(l)) = Eq[log p(o | z)]−KL(q∗(l)(z)∥q̂(l)(z)) (3)

where the KL divergence is approximated by a precision weighted prediction error:

ξ(l,v) = Σ(l,v)−1

ϵ(l,v) (4)

8

We train the weights of all predictive coding models using the weighted prediction errors. For
model evaluation and the comparison to VAE and VLAE baselines, we use the full (analytical) KL
divergence between prior and posterior. We found that using precision weighted state updates of
form µ̇ =

(
WT

z Wz + I
)−1

WT
z ε |z=µ during iterative state inference improves performance in the

dynamical model, when there is no top-down amortization (i.e. a single hierarchical layer is used). In
the current configuration, the ELBO of static models does not improve with such weighted inference
updates.

B Generalized coordinates from discrete sequential data

We compute temporal embeddings of observations according to a Taylor expansion of form

f(x± dx) = f(x)± dxf ′(x) +
dx2

2!
f ′′(x)± dx3

3!
f ′′′(x) +

dx4

4!
f ′′′′(x)± . . . (5)

for points x± dx around a point x assuming a fixed step size e.g. dx = 1. Since we observe discrete
samples [o1, ...on] we approximate the instantaneous derivatives f ′, f ′′, ... up to desired order using
a central finite difference operator δdxn[f](x). We interpret the resulting differencing coefficients as
convolutional kernels, which can be applied to any sequential data with sufficiently high sampling
rate either online or during preprocessing. Mapping back from the network’s states to sequential
data can easily be done using the inverse kernel. Figure 5 shows examples for forward and inverse
embedding kernels.

Em
be

dd
in

g
co

ef
fic

ie
nt

s

n=1 n=2 n=4 n=6 n=8

In
ve

rs
e

em
be

dd
in

g

Figure 5: Forward and inverse embedding kernels for five different embedding orders.

C Static predictive coding

C.1 Influence of iterative inference steps

MNIST OMNIGLOT fMNIST MNIST OMNIGLOT fMNIST

Steps 3 3 3 6 6 6

PC_S 49.0±0.3 44.9±1.0 42.8±0.9 48.4±0.2 60.2±3.9 36.3±0.3
PC 48.9±0.3 49.0±0.3 37.1±0.2 48.2±0.1 56.1±1.4 36.8±0.1
VAE 46.6±0.5 41.6±0.6 36.5±0.2 46.6±0.5 41.6±0.6 36.5±0.2
VLAE 46.7±0.1 42.1±0.1 38.1±0.2 47.2±0.1 42.5±0.1 38.8±0.1

Table 4: Complexity (test set)

Table 4 shows the posterior complexity of models trained on the static prediction task for MNIST,
OMNIGLOT and Fashion MNIST in terms of mean and standard deviation over five runs. The
predictive coding models GPC-S and GPC-M show complexity that is comparable to, but slightly
higher than the complexity of the baseline VAE. For VLAE, increasing the amount of inference steps

9

from 3 to 6 slightly increases the complexity of encoded states. For GPC models, increasing the
amount of inference steps sometimes leads to an improvement in terms of complexity.

C.2 Influence of iterative inference steps

We found that, for static models, increasing the amount of inference steps is beneficial primarily for
low amounts (1-5 steps). Figure 6 show test set results on the MNIST dataset with various amounts of
iterative inference steps. Since the top-down prediction performs amortized inference of the inferred
state, even a single inference step leads to meaningful results. Choosing a higher inference update
rate (e.g. 0.01) often shows favorable performance over choosing a lower learning rate (e.g. 0.001)
with more update steps.

2 4 6 8 10
Inference steps

400

500

600

700

800

900

1000

1100

EL
BO

ELBO (0.001)
ELBO (0.01)
Complexity (0.001)
Complexity (0.01)

50

60

70

80

90

100

110

Co
m

pl
ex

ity

Figure 6: Evidence lower bound and complexity on the MNIST test set after training with different
amounts of iterative inference steps. Shown are two different runs with iterative inference update
rates (0.01 and 0.001).

D Data sources

We employ three popular datasets for unsupervised learning on images: The MNIST dataset (Creative
Commons Attribution-Share Alike 3.0 license), Fashion MNIST (MIT license) and OMNIGLOT
(MIT License). Evaluation of the dynamical predictive coding model is based on the Disentanglement
testing Sprites dataset (Apache License 2.0). Table 5 shows sources and licenses for all datasets.
MNIST and FashionMNIST contain 60000 train and 10000 test images (with 28 × 28 pixels) while
the OMNIGLOT dataset contains 24345 train and 8070 test images (also with 28 × 28 pixels).

Dataset Source License

MNIST [12] yann.lecun.com/exdb/mnist CC BY-SA 3.0
OMNIGLOT [11] github.com/brendenlake/omniglot MIT license
Fashion MNIST [24] github.com/zalandoresearch/fashion-mnist MIT license
dSprites [14] deepmind.com/open-source/dsprites Apache License 2.0

Table 5: Data sources

To generate discrete video sequences with high temporal resolution for the dynamical GPC model we
use a customized version of the dSprites dataset [14]. We generate 128000 random samples from
the original dataset and apply Gaussian blur along both spatial axes with kernel size 3 and Standard

10

deviation of 10 before applying normalization. We restrict x and y positions to six values respectively,
such that all sprites appear within a center crop of 32 x 32 pixels. Starting with the noisy version
of the sprite, we apply a single direction of rotation (counterclockwise) by rotating the sprite by a
single degree. All remaining aspects, such as shape, size, horizontal position and vertical position
stay constant. The Gaussian noise was applied only to the first frame of each sequence. We then
projected the resulting discrete video sequences into generalized coordinates using the embedding
kernels discussed in Section B of the appendix.

11

	Introduction
	Generalized predictive coding
	Implemented models and baselines
	VAE and VLAE baseline
	Static GPC model
	Laplace approximation with ReLU nonlinearity
	Dynamical GPC model
	Multiple shooting

	Static predictive coding on MNIST, FashionMNIST and OMNIGLOT
	Dynamical predictive coding on the dSprites dataset
	Simultaneously inferring cause and hidden states
	Conclusion
	Acknowledgments
	Inference and learning with precision weighted prediction errors
	Generalized coordinates from discrete sequential data
	Static predictive coding
	Influence of iterative inference steps
	Influence of iterative inference steps

	Data sources

