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Abstract
Differentially private (DP) machine learning often
relies on the availability of public data for tasks
like privacy-utility trade-off estimation, hyperpa-
rameter tuning, and pretraining. While public data
assumptions may be reasonable in text and image
data, they are less likely to hold for tabular data.
This work introduces the notion of “surrogate”
public data – datasets generated independently of
sensitive data, which consume no privacy budget
and are constructed solely from publicly available
metadata. We automate the process of generating
surrogate public data with large language mod-
els (LLMs); in particular, we propose two meth-
ods: direct record generation as CSV files, and
automated structural causal model (SCM) con-
struction for sampling records. Through extensive
experiments, we demonstrate that surrogate pub-
lic tabular data can effectively replace traditional
public data when pretraining differentially private
tabular classifiers. To a lesser extent, surrogate
public data are also useful for hyperparameter
tuning of DP synthetic data generators, and for
estimating the privacy-utility tradeoff.

1. Introduction
Differential privacy (DP) is a mathematical framework for
protecting individuals’ privacy in statistical analysis and
machine learning (Dwork et al., 2016), and was deployed
in multiple recent high-stakes releases and systems (Abowd
et al., 2022; Hod & Canetti, 2025; Miklau, 2022; Burman
et al., 2019; Wilson et al., 2020; Fitzpatrick & DeSalvo,
2020) (see (Desfontaines, 2021) for a more complete list).
It is common in the design of differentially private algo-
rithms to assume access to a relevant public dataset that can
guide hyperparameter tuning, pretraining, or performance
improving mechanisms (Bassily et al., 2019; 2020b; Liu
et al., 2021a; Zhou et al., 2021). Executing these tasks

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

with sensitive data would require an additional allocation
of the privacy budget, resulting in weaker overall privacy
guarantees or reduced utility. However, using this assumed
public data in a private mechanism avoids additional privacy
budget consumption. This leads to the following informal
definition of public data in our work:

Public Data (informal)
A dataset is considered public if a computation taking it as
input does not consume privacy loss budget with respect
to any fixed private, sensitive dataset.

For text and image domains, assuming public data avail-
ability is often reasonable: public image collections or
large-scale textual corpora are readily available, and it has
been shown that even out-of-distribution data can serve as a
valuable prior in these contexts, whether through pretrain-
ing or foundation models (Nasr et al., 2023; Ganesh et al.,
2023). However, this assumption does not often hold in a
tabular data setting. Tabular data is heterogeneous, high-
dimensional, subject to strict privacy or legal restrictions,
and has few universal priors (Müller et al., 2022). In many
real-world domains like healthcare, finance, and government
administration, tabular data encodes sensitive information
that drives high-stakes decisions. It is thus rare to find truly
public, non-sensitive samples with sufficient alignment to
a private distribution to be used for private hyperparameter
tuning or pretraining.

Nevertheless, recent theoretical insights confirm that if a
public dataset is “close enough” to a sensitive data distri-
bution, then private learning can still achieve strong utility,
even when the public and private datasets are not perfectly
matched (Bassily et al., 2019). In practice, however, iden-
tifying or constructing such a surrogate is often far from
trivial. Real-world deployments of differentially private
methods face numerous hurdles related to data availabil-
ity (Cummings & Sarathy, 2023; Cummings et al., 2024a).
As an example, a recent release of Israel’s Live Birth Reg-
istry (Hod & Canetti, 2025) underscores the challenges of
obtaining an end-to-end differential privacy guarantee.

Public data served two purposes for Hod & Canetti (2025): it
helped constrain the hyperparameter space within a compu-
tationally locked-down enclave environment, and it enabled
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the estimation of the privacy-utility trade-off when allocat-
ing privacy budget. Yet, in general, sensitive datasets (e.g.,
birth records) are not readily available as public data. Hod &
Canetti (2025) reported finding only one open-access birth
dataset worldwide (in the U.S.); without it, estimating the
necessary parameter settings for their release would have
been significantly more challenging.

A recent practical guide for differentially private machine
learning recommends that “the simplest approach, when
possible, is to do all model architecture search and hyperpa-
rameter tuning on a proxy public dataset (with a distribution
similar to the private data), and only use the private train-
ing dataset to train the final DP model” (Ponomareva et al.,
2023).
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Figure 1: (Top) The premise of this work: Can we uti-
lize LLMs to generate surrogate public data to solve DP
auxiliary tasks? (Bottom) The answer is yes; for example,
pretraining on surrogate public data generated through var-
ious LLM based methods (green, orange) nearly matches
the performance of pretraining on regular public data ( ma-
genta), and outperforms no pretraining (red), or pretraining
on baselines (gray, blue). Results on the EDAD dataset.

These two examples highlight a fundamental challenge;
many differentially private algorithms require informed de-

cisions a priori that, ideally, do not consume extra privacy
budget. This leads us to consider a class of DP auxiliary
tasks, which we define informally as:

Differential Privacy Auxiliary Task
A differential privacy auxiliary task, with respect to a dif-
ferentially private mechanism for conducting an analysis
of interest, is a required decision or procedure for exe-
cution. The auxiliary task may or may not incur privacy
loss. Examples include hyperparameter tuning, setting ε,
mechanism initialization, model selection, etc.

Motivated by the example of Hod & Canetti (2025) and
the recommendation of Ponomareva et al. (2023), we imag-
ine a world where we could convene a panel of domain
experts, and ask them to manually encode an approximate
data-generating process. In the birth registry example, epi-
demiologists and bio-statisticians could approximate high-
level relationships among the birth-related variables (e.g.,
premature birth correlated with infant weight), yielding a
sufficiently similar distribution. From this data generating
process, one could then generate “public” samples for dif-
ferential privacy auxiliary tasks . Indeed, for many tabular
settings that must accommodate strict privacy and legal con-
straints, we hypothesize that such an expert-driven approach
could offer a practical surrogate to traditional public data
(Hasani et al., 2024).

Surrogate Public Data
We consider a dataset generated independently of a sensi-
tive dataset, consuming no privacy loss budget, and based
only on publicly available schema or metadata to be a
surrogate public dataset.

Surrogate public data is positioned in contrast to “traditional”
public data, which shares a similar generation process (often
naturally occurring then collected) as the private data. Then,
the main question of this paper is: how useful is surrogate
public (1) relative to traditional public data, or (2) relative to
the lack of any public data? Is, for example, automating the
process of expert panel data generation with large language
models (LLMs) a suitable surrogate?

To investigate these questions, we evaluate automated data
generation approaches that leverage LLMs (Borisov et al.,
2023; Zhao et al., 2023; Kim et al., 2024). LLMs are trained
on enormous and diverse datasets, including vast amounts
of tabular data (Borisov et al., 2023; Hegselmann et al.,
2023) as well as scientific literature (Phan et al., 2025) that
captures rich structural and contextual knowledge of re-
lationships between variables. This allows for the direct
generation of realistic tabular records, along with the indi-
rect generation of coherent, causally informed relationships
among variables that can lead to the generation of reason-
able tabular data.
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This leads us to our main contributions.

(1.) Methods for generating surrogate public data (Sec-
tion 2). We introduced an agent-based strategy with a black-
box LLM access assumption to automatically construct a
plausible structural causal model for surrogate public data
generation. We also introduce a number of simpler baselines
methods for comparison.

(2.) Benchmark of DP auxiliary tasks with surrogate
public data (Section 3). Auxiliary DP tasks are part of a
wider private pipeline. Consequently, evaluating the use-
fulness of surrogate public data requires a careful design
across the DP downstream task, datasets, baselines, com-
parison conditions, and aggregated metrics. In this work,
we propose such a benchmark framework and provide an
extensible, method-agnostic implementation.

(3.) In-depth experimental results evaluating surrogate
public data on some DP auxiliary tasks (Section 4). We
find that pretraining with LLM-generated surrogate public
data can substantially improve differentially private clas-
sification performance; this holds true in the low dataset
size regime in particular. Additionally, we show that LLM-
generated surrogate public data can be useful for hyper-
parameter tuning of private data synthesizers. We further
present a complicated story on using surrogate public data
for privacy-utility tradeoff estimation .

2. Producing Public Data Surrogates
We evaluate multiple methods for generating surrogates to
public data, categorizing them into baseline and LLM-based
approaches. For these methods, we assume that the private
data’s metadata – consisting of the dataset schema and a
brief description of its topic (e.g., demographics, epidemiol-
ogy) – is publicly available. All methods we introduce rely
solely on this metadata.1 A schema provides a description
of the dataset domain and structure, specifying for each vari-
able: (1) its name, (2) a very brief description, (3) the data
type (e.g., integer, string), and (4) either allowed values and
their meanings for categorical columns or value ranges for
continuous columns. (See Figure 2 for an example.) Each
LLM-based method is applied to the three models presented
in Table 2. Below we briefly summarize each approach; see
Appendix E for full details, and Figure 1 for an overview.

Baselines. We evaluate three baseline methods – Uniform,
Univariate, and Arbitrary – that rely solely on the
public schema. The Uniformmethod samples records i.i.d.
from each variable’s full domain, while the Univariate
approach samples columns independently using empirical

1With one exception: the univariate baseline, which samples
directly from the sensitive data without correlation between vari-
ables. This method is introduced purely for comparison, and is not
a valid public data surrogate under our working defition.

1-way marginal distributions from the private data (this vi-
olates privacy, but serves as a competitive baseline). The
Arbitrary method constructs a random Bayesian net-
work over the high-dimensional domain by sequentially
building a DAG (maximum in-degree of 5) and parame-
terizes random conditional probability tables via Dirichlet
sampling Algorithm 1).

CSV (direct generation). The CSV method prompts LLMs
to generate CSV records that strictly adhere to the schema,
including exact header rows, data types, allowed values,
and realistic inter-field relationships (see Figure 3). The
prompt specifies rules to ensure statistical plausibility and
the inclusion of realistic edge cases, while the generation is
executed in batches with schema-based validation of each
record. This process relies solely on the LLM’s pretrained
knowledge without any direct access to the private data.

Agent (state machine) approach. The Agent method
(implemented as a state machine, see Figure 4) is a multi-
step process to construct a structural causal model (SCM)
from the schema metadata. It begins by describing the
full set of variables and domain-specific constraints, then
sequentially constructs a causal DAG – first identifying
root nodes and then establishing edges (ensuring acyclicity
deterministically) before mapping variables to structural
equations. The final output is an integrated Python program
based on the Pyro package that enforces variable ranges
and constraints. The Agent method has two variants: we
experiment with generating multiple expert models whose
records are re-sampled (using uniform or facility location-
based sampling (Wang & Zhou, 2020)).

3. Evaluation Framework
Our evaluation framework assesses the viability of the sur-
rogate public data in three DP auxiliary tasks: (1) classi-
fier pretraining, (2) hyperparameter optimization, and (3)
privacy-utility trade-off estimation. Each task is assessed
using three datasets, and corresponding DP mechanisms.
Our strategy in evaluating each task is guided by a high
level question: how useful is each surrogate public data
method relative to traditional public data and relative to
the lack of any public data?

Task 1: Model Pretraining for Classification. We assess
the benefit of surrogate public data as a pretraining step for
binary classification on tabular data using an FTTransformer
model (Gorishniy et al., 2021; Rosenblatt et al., 2024b). Pub-
lic and private datasets are split into train, validation, and
test sets (72:8:20), and performance is measured via AUC
along with an AUC Advantage metric comparing models
with and without public pretraining, aggregated over multi-
ple experiment seeds. See Appendix F.1.1 for the detailed
specification of this task.
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Task 2: Hyperparameter Tuning for Synthetic Data Gen-
eration. We evaluate whether surrogate public datasets
can effectively guide hyperparameter selection for DP syn-
thetic data generators across privacy budgets ε. For each
synthesizer and hyperparameter configuration, we gener-
ate synthetic datasets matching the size of the private data
and measure their performance on the private data using
multiple metrics (marginals, correlations, and classification-
based; Table 3). We quantify performance degradation by
comparing results obtained when tuning hyperparameters on
surrogate public data versus directly on private data (optimal
choice of hyperparameters), aggregating outcomes across
multiple experimental seeds via Pareto frontier analysis. See
Appendix F.1.2 for the detailed specification of this task.

Task 3: Privacy-Utility Rstimation for Synthetic Data
Generation. Finally, we assess how accurately surrogate
public datasets can approximate the privacy-utility trade-off
curve of a DP synthetic data mechanism fitted to private
data. For each combination of synthesizer, dataset, and met-
ric group, we select the best-performing hyperparameters
based on surrogate public datasets, and then evaluate the
DP mechanism across a range of ε values. This produces
paired performance curves: one based on the private data
(true curve) and others based on surrogate public datasets.
We quantify the dissimilarity between these curves using
the ℓ1 and ℓ2 distances. See Appendix F.1.3 for the detailed
specification of this task.

Datasets. We run the experiments on three datasets (ACS,
EDAD, and WE; high-level details presented in Table 1).
Each dataset has a private, sensitive split; additionally, we
pair each dataset with a reasonable public analogue. These
public datasets have inherent distribution shift between
them; for ACS this is a geographical variation or, for EDAD
and WE, temporal differences . The private split serves as
ground truth to benchmark the contribution of the “tradi-
tional” approach of using a public split compared to our
surrogate generation methods. To mitigate the risk of data
memorization in LLMs, we specifically selected the private
splits for EDAD and WE to be recently published, i.e., after
the training data cutoff of some of the LLMs we evaluate.
To this end, we include a memorization analysis, based on
the methodology of Bordt et al. (2024). For the complete
details for each dataset and an in-depth discussion of LLM
memorization, refer to Appendix F.2.

4. Results
Task 1: Model Pretraining for Classification. Our experi-
ments provide strong evidence that LLM-based methods –
both CSV and Agent generation (notably with Claude 3.5
Sonnet) – offer a competitive alternative to traditional public
data in the small dataset regime (fewer than 10K records).
In many settings, the surrogate public data matched (or

even occasionally exceeded) the performance of regu-
lar public data as a starting point for DP fine-tuning.
Figure 7 presents our experimental results on the EDAD
and WE datasets, demonstrating how pretraining on the sur-
rogate public data can vastly improve the starting point of
model performance. For the ACS dataset, we do not observe
a benefit from pretraining, either with regular or surrogate
public data (see Figure 13). However, when the ACS dataset
is sub-sampled to a smaller dataset (e.g., 5% of the records),
we observe a similar pattern regarding the usefulness the
traditional and surrogate public data as with the EDAD and
WE datasets. See Appendix G.2 for a further analysis of
the role of dataset size. See Appendix G.1 for an in-depth
treatment of all pretraining results.

Task 2: Hyperparameter Tuning for Synthetic Data Gen-
eration. No single surrogate public-data strategy dominates
across all evaluation criteria (Figure 7; Tables 1-3). Each
generation method achieves superior performance on a sub-
set of metrics – whether predictive accuracy, preservation
of pairwise correlations, or marginal distribution fidelity.
Pareto-frontier analysis suggests that the critical determi-
nant is the extent to which a surrogate captures higher-order
dependence structure; even the Arbitrary baseline ap-
pears on the frontier even though it does not encode similar
statistical relationship of the private data (for evidence, see
Figure 7; Table 3). Nonetheless, the LLM-generation meth-
ods (CSV and Agent) exhibit the most favorable overall
trade-offs, underscoring their utility for hyperparameter tun-
ing of DP synthetic data generators. See Appendix G.3 for
an in-depth treatment of all hyperparameter tuning results.

Task 3: Privacy-utility Estimation for Synthetic Data
Generation. The story for this task is less clear-cut. While
surrogate public data generally provides a reasonable ap-
proximation for the privacy-utility tradeoff curves, the dif-
ferences between various generation methods were not pro-
nounced. We observed that regular public data provided the
best or second-best estimation of the privacy-utility tradeoff
curve in the vast majority of cases. This observation sug-
gests that data similarity may be an important contributing
factor. However, a subsequent analysis (Section G.5) ex-
amining the role of similarity did not reveal a clear pattern
that explains this result. See Appendix G.4 for an in-depth
treatment of all privacy-utility estimation results.

5. Conclusion
In this work, we asked whether LLMs can be used to gener-
ate effective surrogate public data for solving DP auxiliary
tasks in settings where traditional public tabular data is
limited or unavailable. Overall, our results provide an affir-
mative answer: for the DP auxiliary tasks we considered,
generating surrogate public data with LLMs can overcome
tabular public data scarcity.
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Tramèr, F., Kamath, G., and Carlini, N. Position: Consider-
ations for differentially private learning with large-scale
public pretraining. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024.

Vashishtha, A., Reddy, A. G., Kumar, A., Bachu, S., Bala-
subramanian, V. N., and Sharma, A. Causal inference us-
ing llm-guided discovery. CoRR, abs/2310.15117, 2023.

Vietri, G., Tian, G., Bun, M., Steinke, T., and Wu, Z. S.
New oracle-efficient algorithms for private synthetic data
release. In Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 9765–9774. PMLR, 2020.

Wang, D., Hu, L., Zhang, H., Gaboardi, M., and Xu, J.
Generalized linear models in non-interactive local differ-
ential privacy with public data. J. Mach. Learn. Res., 24:
132:1–132:57, 2023a.

Wang, J. and Zhou, Z. Differentially private learning with
small public data. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 6219–6226.
AAAI Press, 2020.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023, 2023b.

Wilson, R. J., Zhang, C. Y., Lam, W., Desfontaines, D.,
Simmons-Marengo, D., and Gipson, B. Differentially
private SQL with bounded user contribution. Proc. Priv.
Enhancing Technol., 2020(2):230–250, 2020.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on em-
pirical methods in natural language processing: system
demonstrations, pp. 38–45, 2020.

Wu, S., Xu, Z., Zhang, Y., Zhang, Y., and Ramage,
D. Prompt public large language models to synthe-
size data for private on-device applications. CoRR,
abs/2404.04360, 2024.

Xu, C., Guan, S., Greene, D., and Kechadi, M. T. Bench-
mark data contamination of large language models: A
survey. CoRR, abs/2406.04244, 2024.

10

https://doi.org/10.3886/E116922V2
https://doi.org/10.3886/E116922V2
https://github.com/usnistgov/SDNist/blob/main/BenchmarkData/README.md 
https://github.com/usnistgov/SDNist/blob/main/BenchmarkData/README.md 
https://docs.together.ai/reference/chat-completions-1
https://docs.together.ai/reference/chat-completions-1


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Do You Really Need Public Data? Surrogate Public Data for Differential Privacy on Tabular Data

Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. Modeling tabular data using conditional
GAN. pp. 7333–7343, 2019.

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Kamath,
G., Kulkarni, J., Lee, Y. T., Manoel, A., Wutschitz, L.,
Yekhanin, S., and Zhang, H. Differentially private fine-
tuning of language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Yu, D., Backurs, A., Gopi, S., Inan, H., Kulkarni, J., Lin, Z.,
Xie, C., Zhang, H., and Zhang, W. Training private and
efficient language models with synthetic data from llms.
In Socially Responsible Language Modelling Research,
2023.

Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava, D.,
and Xiao, X. Privbayes: private data release via bayesian
networks. In Dyreson, C. E., Li, F., and Özsu, M. T.
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A. Related Work
Public data in differential privacy Empirical evidence demonstrates that public data can improve the performance
of differentially private machine learning models through a two-stage approach: pretraining on public data followed by
differentially private fine-tuning on sensitive data. This approach has been extensively studied across NLP and vision tasks
(Tramèr & Boneh, 2021; Amid et al., 2022; Yu et al., 2022; Golatkar et al., 2022; Ginart et al., 2022; He et al., 2023; Bu
et al., 2024).

Ganesh et al. (2023) identify two phases in neural network optimization within non-convex loss landscapes. The first
locates an optimal basin, where public data suffices and using the privacy budget is unnecessary. The second performs local
optimization within that basin; here, if the public and target distributions differ – as they often do – consuming privacy
budget to update weights with sensitive data is beneficial. Supporting this, Thaker et al. (2024) show that public pretraining
outperforms fully private training in vision tasks, even under significant distribution shifts. This advantage holds even when
private fine-tuning is limited to the final layer, as in Ke et al. (2024).

Another research direction incorporates public data directly into differentially private computations, rather than treating it as
a separate preprocessing step. This approach spans private estimation (Bie et al., 2022), statistical queries (Bassily et al.,
2020a; Liu et al., 2021a), and learning and optimization (Bassily et al., 2019; Wang & Zhou, 2020; Bassily et al., 2020b;
Kairouz et al., 2021; Zhou et al., 2021; Nasr et al., 2023; Ben-David et al., 2023; Gu et al., 2023; Olatunji et al., 2023;
Wang et al., 2023a; Block et al., 2024; Lowy et al., 2024). An emerging line of research finetunes pretrained, open-source
LLMs on private, sensitive data with DP-SGD (Abadi et al., 2016) to generate training data for downstream models, such as
classifiers or other LLMs (Kurakin et al., 2023; Yu et al., 2023; Amin et al., 2024; Wu et al., 2024). For a broader survey on
recent advances in privacy research, see (Cummings et al., 2024a).

Finally, contemporary work by Swanberg et al. (2025) is closely related to ours, but with three key differences. First,
while they evaluate LLM-generated public data in a single experimental setting (for public pretraining of private synthetic
data mechanisms), we assess its utility across several DP auxiliary tasks — including hyperparameter tuning for synthetic
data generation, privacy/utility tradeoff estimation, and private classifier pretraining. Second, our evaluation is broader in
scope, incorporating multiple datasets (with different data-origins), diverse metrics and additional baselines / methods for
leveraging an LLM to produce surrogate public data. Third, we designed our experiments to mitigate the risk of positive
results due to memorization, including an explicit test based on Bordt et al. (2024), and provide results and analysis to assess
the impact of data leakage on the performance of our methods.

Generating tabular data with LLMs Transformer-based models can be used to generate synthetic samples from tabular
data. The fundamental approach involves treating each record as a “sentence” for the transformer architecture to process.
Two overall strategies exist: training transformers from scratch specifically for tabular data and adapting pretrained LLMs
for tabular generation tasks. For the first strategy, one variant trains a transformer on an individual dataset or distribution
to produce synthetic records (Solatorio & Dupriez, 2023; Zhao et al., 2023; Gulati & Roysdon, 2023; Zhao et al., 2023);
another variant pretrains a general tabular foundation model on multiple datasets and then adapts this model to novel unseen
datasets through in-context learning (Ma et al., 2024). The second strategy uses existing pretrained LLMs, adapting them for
tabular data generation through either fine-tuning (Borisov et al., 2023) or in-context learning (Seedat et al., 2024; Kim et al.,
2024). These methods cannot be directly applied to our setting, as we only consider DP auxiliary tasks (e.g., pretraining,
hyperparameter tuning) that do not consume privacy budget. Both approaches condition on sensitive data and thus require
accounting for privacy loss.

Recent work has explored the potential of LLMs for causal modeling tasks, including pairwise causal discovery, causal
model generation, and counterfactual reasoning (Kiciman et al., 2023; Chen et al., 2024). While causality itself is not the
primary focus of our project, the ability to produce plausible causal models is highly relevant since causal models are also
generative, capable of producing realistic records. LLM-based causal model discovery methods can operate either with
metadata alone (using only dataset descriptions and schema) (Vashishtha et al., 2023; Long et al., 2023b;a; Zhang et al.,
2024; Darvariu et al., 2024; Bynum & Cho, 2024) or with additional observations (Abdulaal et al., 2024; Le et al., 2024)
– with the metadata-only approach being particularly relevant to our project as we have no access to observations. Most
literature in this area that operates without observations focuses solely on discovering causal graphs – descriptions of causal
dependencies without specifying conditional distributions. However, (Bynum & Cho, 2024) extends this approach by adding
a second step that prompts LLMs with the topological order over variables, embedded in a prompt structure, to generate
records directly.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Do You Really Need Public Data? Surrogate Public Data for Differential Privacy on Tabular Data

B. Future Work
The strong performance of the Arbitrary method in hyperparameter tuning is intriguing, as it suggests that finding
good-enough hyperparameter configuration might depend on the record domain and the synthetic data generators, and not
necessarily on the private data. This raises questions about potential theoretical justifications for this observation.

The fact that traditional public data often performs best for privacy/utility trade-off estimation would lead us to believe that
dataset similarity plays an important role for this task. We hypothesize that the two similarity metrics used in this work,
while being natural candidates, may not adequately capture dataset characteristics relevant to estimating the behavior of data
synthesizers across privacy budget settings. Identifying metrics that better predict which surrogate data provides accurate
trade-off estimations would be beneficial. Such a metric could enable, e.g., the exponential mechanism (McSherry & Talwar,
2007) to select similar datasets (or combinations of datasets), if such a metric had low sensitivity with respect to the private
dataset.

Several additional DP auxiliary tasks remain unexplored in our study, such as using public data for seeding synthetic data
generation (Swanberg et al., 2025) and assessing the success rate of privacy attacks as a function of ε (Cummings et al.,
2024b). We leave these avenues for future research.

We propose three approaches to improve the quality of surrogate data produced by Agent-based methods, making it more
closely resemble private data. First, subject matter experts can review and refine the generated SCM to better encode experts’
domain knowledge. Second, Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) could be beneficial to surface
specific knowledge from scientific literature, enabling the model to incorporate both accurate causal relationships and their
quantitative parameters as established in peer-reviewed research. Third, recent advancements in reasoning LLMs (Sun et al.,
2023; Jaech et al., 2024; DeepSeek-AI et al., 2025) may enhance LLMs’ ability to consider causal relationships.

Finally, some recent work on Sequence Driven Structural Causal Models (SD-SCMs) shows how to simulate counterfactual
outcomes and treatment scenarios that are often inaccessible in sensitive datasets (by allowing an LLM to specify structural
equations implicitly, given a topological order and a specific prompting structure) (Bynum & Cho, 2024). Similarly to the
surrogate public data approaches explored in this paper, the SD-SCM approach does not require access to a downstream
private dataset of interest; instead, it only requires a schema over the data to be generated, and a user to specify the prompting
structure and topological order over variables (which could be generated e.g., by the first few steps of the Agent procedure
given in Figure 4). There may be many potential uses for SD-SCM generated surrogate public data for private causal
algorithms; for example, we believe that future work could explore how it can be used to improve the performance of
hyperparameter tuning for private causal effect estimators.

C. Limitations
The overarching goal of this work is to address a significant barrier to the real-world adoption of differential privacy (Dwork
et al., 2016). Enabling more widespread deployment of differential privacy, when appropriate, can promote the protection of
individuals’ privacy (Cummings et al., 2024a). However, our work does have several risks and limitations. First, there is a
risk that LLM memorization may lead to overly optimistic performance estimates (we attempted to mitigate this risk by
carefully checking for evidence of memorization, see Appendix F.2.4).

Second, the normative implications of employing LLMs to generate surrogate public data should be carefully analyzed in
this context. Recent work by Tramèr et al. (2024) cautions against treating web-scraped LLM training data as “public” or
non-sensitive. Traditionally, differentially private algorithms have assumed data is either fully private (restricted) or fully
public (freely available and safe to reuse). However, Tramèr et al. (2024) emphasize a messier reality; social media and other
sources of personally identifiable information, for example, may be both accessible to language models for training data and
contain sensitive information specific to individuals. When an LLM is trained on such data, it may memorize fragments of it;
regurgitating these private fragments could be interpreted as a privacy violation. Indeed, even if a final model is fine-tuned
under DP constraints, privacy violations may originate from the pretrained model (e.g., a base model memorized private
details during pretraining, and a subsequent DP fine-tuning step does not noise those probabilities sufficiently to obfuscate).
This undermines trust, as an individual may be told that the entire pipeline is “privacy preserving,” yet see their personal
data re-emerge in the final model’s outputs.

We carefully position our work under the paradigm shift identified by Tramèr et al. (2024). Using LLMs to emulate
expert-driven data-generating processes risks inadvertently exposing sensitive information that is publicly available, as
mediated by the LLM. Thus, we propose that best practice is to report empirical measurements of memorization levels. We
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do this by leveraging work by Bordt et al. (2024) on verbatim memorization of tabular data by LLMs; see Appendix F.2.4.
Additionally, we report on datasets (see Table 1) that post-date LLM training (for the models we evaluate; see Table 2).
Choosing tasks where the LLM’s prior knowledge is outdated or non-existent demonstrates performance on truly unseen
data (Cheng et al., 2024). We stress the importance of communicating these nuances, and of reporting, to the best of one’s
knowledge/ability, the empirical level of memorization and the potential LLM data regurgitation risks when presenting these
methods.

Finally, given substantial evidence that LLMs encode biases (Gallegos et al., 2024), these biases could be reflected in the
generated data – either implicitly in CSV generation or explicitly via the causal relationships in the Agent-based approach.
For instance, a stereotypical correlation could persist through pretraining and DP fine-tuning, ultimately resulting in an
unfair classifier. We leave a detailed investigation of these issues for future work.

D. Preliminaries
We now provide relevant background on differential privacy, large language models, and statical distance metrics.

D.1. Differential Privacy
Differential privacy (DP) ensures that the presence or absence of a single individual’s data has only a limited influence on an
output statistic; in other words, it restricts how much any single record can affect the outcome of an analysis. To define this,
we consider two datasets D,D′ ∈ Xn, which are neighboring if they differ in at most one data entry. Let X denote the
universe of records.
Definition D.1 (Differential Privacy (Dwork et al., 2016)). An algorithmM : Xn → R satisfies (ε, δ)-differentially private
if, for every pair of neighboring datasets D,D′ ∈ Xn, and for every subset of possible outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ .

The ε parameter is considered the leading privacy parameter. (ε, δ)-DP is also referred to as approximate differential privacy.
When δ = 0, i.e., (ε, 0)-DP, we refer to it as pure differential privacy and denote it with ε-DP.

The following definition of public data is inspired by Ben-David et al. (2023).
Definition D.2 (Public Data). A dataset D̂ ∈ Xm is public if incorporating it into any computation does not incur additional
privacy loss. That is, for any sensitive dataset D ∈ Xn and for every (ε, δ)-differentially private mechanismM, the privacy
guarantee is identical whether D̂ is used or not, i.e.,M(D, ·) andM(D, D̂) both satisfy identical (ε, δ)-differential privacy
guarantees.

D.2. Large Language Models
Large Language Models (LLMs) are trained to generate sequences of tokens by modeling the probability of the next token
given its preceding context (Devlin et al., 2019). Let V be the vocabulary of tokens. Formally, given a sequence of tokens
x = (x1, x2, . . . , xn) ∈ V n, a generative language model estimates,

Pr[x1, x2, . . . , xn] =

n∏
i=1

Pr[xi | x1, . . . , xi−1] .

In other words, a language model is a function f : V n → P(V ); f(x) maps a sequence to a probability distribution over
the vocabulary V of possible tokens for the next token, where P(V ) is the space of probability distributions over V . This
autoregressive formulation enables, for example, the generation of new samples from a tabular distribution when prompted
with known samples (Borisov et al., 2023; Zhao et al., 2023).

D.3. Statistical Distance Metrics
We now introduce metrics for comparing probability distributions and datasets used throughout this paper.

Definition D.3 (Total Variation Distance). For discrete probability distributions P and Q over X , the Total Variation
Distance (TVD) is defined as:

TVD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Do You Really Need Public Data? Surrogate Public Data for Differential Privacy on Tabular Data

The Total Variation Similarity (TVS) is simply 1− TVD(P,Q), representing the similarity rather than the distance between
distributions. Both TVD and TVS can be naturally extended to datasets by considering the empirical probability distributions
induced by the datasets over the universe X .

Now we turn to a more specific measurement of disparity between two datasets based on the results of statistical queries.

Definition D.4 (Linear Query). Given a predicate ϕ : X → {0, 1} that maps database records to binary values, a linear
query qϕ : Xn → N+

0 is a function that, for a dataset D ∈ Xn, computes:

qϕ(D) =
∑
r∈D

ϕ(r)

In other words, a linear query counts the number of records in dataset D that satisfy the predicate ϕ.

Definition D.5 (Workload Error). Given a workload W = {q1, . . . , qk} of linear queries, and a pair of datasets D,D′ ∈ Xn,
the workload error is defined as:

WError(D,D′) =
∑
q∈W

|qi(D)− qi(D
′)|

The average k-way marginal error can be defined as a special case of the workload error where the workload W consists
of all possible k-way marginal queries. For instance, the 3-way marginal error uses all possible triplet combinations of
attributes as queries. Assuming datasets of equal size, the average k-way marginal error is normalized by both the number
of queries in the workload |W | and the size of the datasets |D|:

AvgErrork-way(D,D′) =
1

|W | · |D|
∑
q∈W

|q(D)− q(D′)|

where W is the set of all k-way marginal queries, and |W | =
(
d
k

)
for a dataset with d attributes.
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E. Details of Surrogate Public Data Generation
E.1. Baselines
Before discussing the LLM-based approach, we present a series of baseline generation processes to systematically evaluate
which aspects of public data characteristics are useful for differential privacy tasks: pretraining, hyperparameter tuning, and
estimating the privacy-utility trade-off. The baselines differ in statistical structure and in the information available about the
private data.

E.1.1. UNIFORM DISTRIBUTION OVER THE DOMAIN

The dimensionality of the data plays a critical role in differentially private algorithms (McKenna et al., 2021; Rosenblatt
et al., 2023), as it could affect, for example, the magnitude of noise introduced to satisfy DP or the ratio between signal and
that noise (e.g., when tuning data synthesizers like PrivBayes or AIM). This Uniform distribution baseline captures the
scenario where we have no prior knowledge about the underlying data distribution beyond the schema itself by using the
maximum entropy probability distribution (Jaynes, 1957): for each record, Uniform samples i.i.d. from either the set of
possible values (for categorical columns) or the specified range (for continuous columns), both given in the schema.

E.1.2. UNIVARIATE DISTRIBUTION

Beyond knowledge of the record domains, organizations and researchers might have access to prior information about
the univariate distributions of individual columns, either precisely or approximately. This prior knowledge is available
in cases where organizations may have released various statistical measures of private data, such as histograms, means,
medians, and standard deviations, with or without differential privacy (Rosenblatt et al., 2024a; Hasani et al., 2024). As
a facsimile for data generated with knowledge of the distributions along individual columns, the Univariate baseline
samples independently from each column according to the empirical univariate distribution drawn directly from the private
data. To make this baseline more realistic – assuming only an approximate PDF (e.g., the distribution’s “shape”) is known –
we round the probabilities to two decimal places, normalize to 1, and rescale during sampling.

E.1.3. ARBITRARY DISTRIBUTION

The previous two baselines are limited by column independence in their sampling, preventing them from capturing complex
statistical structures needed for higher-order analysis and predictive tasks (Rosenblatt et al., 2023). To isolate the role
of structural dependencies in our DP auxiliary tasks with surrogate public data, we consider whether only capturing the
existence of relationships between columns could make surrogate public data a useful prior. To test this, we generate an
arbitrary dataset from a random but structured distribution that adheres to the schema.

Algorithm 1 details the full Arbitrary baseline procedure; here, we provide a high-level overview of the two-step
generation process. First, we construct a random Directed Acyclic Graph (DAG) representing a Bayesian network over
the column variables. The DAG is built sequentially, with each new node potentially connecting to any previously added
nodes, subject to a maximum in-degree (here we used 5). This ensures a structured yet arbitrary dependency pattern between
variables. Second, we parameterize the network by sampling conditional probability tables for each node. For a given
node, we use a Dirichlet distribution with concentration parameter α = 1 to generate probability distributions for each
configuration of its parent variables. Specifically, for each parent value combination, we sample a categorical distribution
from the k-simplex, where k is the cardinality of the node’s domain. This yields a distribution with meaningful dependencies
(e.g., correlations) while remaining entirely independent of the true empirical distribution of the private data.

E.2. CSV Direct Generation
We evaluate a direct approach to data generation using LLMs. The generation process involves prompting the LLM to create
CSVs – tabular records that adhere to the schema while following specific guidelines (Almeida, 2024). These guidelines
instruct the model to ensure realistic value distributions and relationships between fields, maintain real-world patterns and
constraints, and incorporate edge cases at frequencies that mirror their natural occurrence. Similarly to the other surrogate
public data methods we evaluate, this approach operates without access to the private dataset, relying solely on the LLM’s
pretrained knowledge.

To ensure data quality, each generated record is validated against the schema, and only valid records are retained. Due to
context window limitations and API constraints, the generation process is executed in multiple batches until the desired
number of records is obtained (OpenAI, 2025; Anthropic, 2025; Together AI, 2025). Note that, due to the autoregressive
nature of LLMs (see e.g., Appendix D), records within the same generation batch are not sampled independently, in contrast
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to the baseline methods.

E.3. Agent (State Machine) Approach
As a final approach, we employ a multi-step, Agent-based process to elicit a structural causal model (SCM) from an LLM
given only text-based access through prompts and responses. Our goal is to arrive at a coherent directed acyclic graph (DAG)
that captures the inter-dependencies among variables in the schema, along with associated structural equations (e.g., the
actual distributional parameters, probabilities, etc.). Each step concludes with an automated validation of the LLM’s output;
so, if any contradictions or omissions are detected, the Agent (implemented as a state machine, see Figure 4) automatically
refines our prompt and re-queries the LLM.

First, we prompt the LLM to 1 list out all variables (keys) from the provided schema, ensuring the response exactly matches
the schema’s variable set. Next, we ask it to 2 propose realistic consistency constraints among these variables; these
constraints should capture domain knowledge such as permissible value ranges (e.g., “age must be at least 0”) or logical
relationships (e.g., “an individual who is 10 years old must have fewer than 10 years of education”). We then instruct
the LLM to 3 identify a subset of variables that can serve as the “root nodes” in a causal graph, typically those deemed
exogenous or less likely to be influenced by other variables in the schema. From there, the LLM proposes parent–child
relationships 4 from root nodes to non-root nodes, and then 5 among all remaining variables, 6 ensuring no cycles are
introduced so that the final structure is a DAG (which we validate with a graph library to confirm it contains all variables
exactly once and remains acyclic (Hagberg et al., 2008)).

Having obtained a DAG, we prompt the LLM to 7 map each variable to a structural equation that references its parents.
For instance, if a node depends on two parents, the LLM might generate a formula specifying a probabilistic distribution
conditional on parent values. These structural equations encode marginal distributions for root variables and conditional
distributions for their descendants. Sometimes the structural equations are not fully specified (e.g., the probability parameter
in Bernoulli distribution is parameterized), so we instruct the LLM to 8 assign values to all parameters. Then, 9 we combine
the DAG and structural equations automatically into a single code snippet (we use the Pyro library (Bingham et al., 2019)),
which lets us generate synthetic data automatically. Finally, we ask the LLM to amend the Python code to 10 enforce the
range or valid values for each column, and 11 include the constraints elicited at the beginning of the interaction. This entire
interaction is a stateful, automatic, closed loop, allowing the LLM to act on its own as an “expert” to design a plausible
causal model solely from schema level information (containing short descriptions of each variable), without a need to inspect
any real-world sensitive records.

To extend this approach from a “single expert” to a “panel of experts,” we execute the complete generation workflow
multiple times to produce a collection of datasets, inspired by prior work on “self-consistency” prompting methods (Wang
et al., 2023b). These datasets are then combined to yield a single mixed dataset using two approaches. The first approach,
Unif., involves uniform sampling of records across all generated datasets. The second approach, Max Cov., solves the
Facility Location submodular problem (Wang & Zhou, 2020) by finding a subset of datasets that maximizes the sum of
pairwise Total Variation similarities. This optimization selects a subset of datasets that aims to represent the space of all
generated datasets (Wang & Zhou, 2020). Then, similarly to the Unif. approach, we sample records uniformly from the
selected datasets.

One important advantage of agent-generated SCMs is that domain experts can modify the causal structure, structural
equations, and constraints based on their expertise, scientific literature, and common sense. We leave this for future work.
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Algorithm 1 Random Bayesian network generation for the arbitrary dataset.

1: procedure GENERATERANDOMBN(S, dmax, α)
Input:
S = {(v1,D1), . . . , (vn,Dn)}: Schema where vi is a variable and Di is its domain of possible values
dmax: Maximum parent degree
α: Dirichlet concentration parameter
Output:
Bayesian network B = (G,Θ) where:
G = (V, E): Directed acyclic graph with nodes V and edges E
Θ = {θv|Πv

: v ∈ V}: Set of conditional probability distributions, where θv|Πv
represents

the distribution of v given its parent set Πv

Initialization:
2: Extract variables V = {v1, . . . , vn} from schema S
3: Define indexing function ϕv : Dv → {1, . . . , |Dv|} for each v ∈ V

Network Structure Generation:
4: Randomly permute the ordering of variables in V
5: Initialize edge set E ← ∅
6: Initialize parameter set Θ← ∅
7: for i = 1 to n do
8: Define candidate parent set Ci = {v1, . . . , vi−1}
9: Select Πi ⊆ Ci randomly with |Πi| ≤ min(dmax, i− 1)

10: Add edges {(u, vi) : u ∈ Πi} to E
Parameter Generation:

11: Let ΩΠi be the set of all configurations of Πi where each configuration π ∈ ΩΠi is a tuple of values
12: Let ki = |Dvi | be the cardinality of variable vi’s domain
13: if Πi = ∅ then
14: θvi ∼ Dir(α · 1ki

) ▷ Sample from Dirichlet with symmetric α parameter
15: else
16: for all π ∈ ΩΠi do
17: θvi|π ∼ Dir(α · 1ki) ▷ Conditional probability distribution of vi given parent configuration π
18: end for
19: end if
20: Θ← Θ ∪ {θvi|Πi

}
21: end for
22: return B = ((V, E),Θ)
23: end procedure
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{
. . .
”RELACT” : {

” d e s c r i p t i o n ” : ” Main l a b o u r marke t a c t i v i t y s t a t u s ” ,
” d t y p e ” : ” i n t 6 4 ” ,
” v a l u e s ” : {

” 1 ” : ” Employed ” ,
” 2 ” : ” Unemployed ” ,
” 3 ” : ” R e t i r e d ” ,
” 4 ” : ” S t u d e n t ” ,
” 5 ” : ” Unable t o work ” ,
” 6 ” : ” Doing un pa i d s o c i a l work or c h a r i t a b l e a c t i v i t i e s ” ,
” 7 ” : ” Othe r i n a c t i v e p e r s o n ”

}
} ,
”CERTIG ” : {

” d e s c r i p t i o n ” : ” Degree o f d i s a b i l i t y ” ,
” d t y p e ” : ” i n t 6 4 ” ,
” v a l u e s ” : {

” 1 ” : ”0 −32%” ,
” 2 ” : ”33 −44%” ,
” 3 ” : ”45 −64%” ,
” 4 ” : ”65 −74%” ,
” 5 ” : ”75% or more ” ,
” 6 ” : ” Not known”

}
} ,
” AUDI 7 1 ” : {

” d e s c r i p t i o n ” : ” Has s i g n i f i c a n t d i f f i c u l t y h e a r i n g a c o n v e r s a t i o n wi th
↪→ s e v e r a l p e o p l e w i t h o u t a h e a r i n g a i d ” ,

” d t y p e ” : ” i n t 6 4 ” ,
” v a l u e s ” : {

” 1 ” : ” Yes ” ,
” 2 ” : ”No”

}
} ,
. . .

}

Figure 2: Excerpt from the schema of the EDAD dataset (Spanish disability, autonomy, and dependency survey) (Instituto
Nacional de Estadı́stica, 2024).
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System : You a r e an e x p e r t i n {domain} who g e n e r a t e s s y n t h e t i c d a t a t h a t
↪→ c l o s e l y m i r r o r s r e a l − wor ld {domain} d a t a . Your g o a l i s t o c r e a t e d a t a
↪→ t h a t would be i n d i s t i n g u i s h a b l e from r e a l {domain} r e c o r d s .

Fol low e x a c t l y t h e s e r u l e s :
1 . Only o u t p u t t h e CSV d a t a wi th no a d d i t i o n a l t e x t o r e x p l a n a t i o n s
2 . Always i n c l u d e a h e a d e r row match ing t h e schema e x a c t l y
3 . S t r i c t l y a d h e r e t o t h e p r o v i d e d schema ’ s d a t a t y p e s and p o s s i b l e v a l u e s

↪→ f o r a l l f i e l d s
4 . Use comma as t h e s e p a r a t o r
5 . Ensure a l l v a l u e s and r e l a t i o n s h i p s between f i e l d s a r e r e a l i s t i c and

↪→ s t a t i s t i c a l l y p l a u s i b l e
6 . G e n e r a t e d i v e r s e d a t a w h i l e m a i n t a i n i n g r e a l − wor ld p a t t e r n s and

↪→ c o n s t r a i n t s
7 . I n c l u d e o c c a s i o n a l edge c a s e s a t r e a l i s t i c f r e q u e n c i e s

User : G e n e r a t e {num rows} rows of d a t a wi th t h e s e f i e l d s :

{ schema}

Figure 3: The prompt template used for CSV generation with an LLM.
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1 Schemastart 2 Elicit
constraints

3 Root
nodes

6 DAG

5 Non-
root to

non-root
edges

4 Root
nodes to
non-root

edges

7 Structural
equations 8 Parameters

9 Pyro
code

12 Sample
11 Enforce
constraints

10 Enforce
range

failed failed failed

failed failed failed

failed failed failed

failed failed

success success

success

successsuccess

success
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Figure 4: State machine for the SCM Agent showing state transitions. Each state can transition to itself upon failure or
advance to the next state upon success, following a zigzag pattern.
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Table 1: Overview of the datasets used for evaluation.

Dataset Topic Features ×Dims Private Split Public Split

Name Size Published Name Size Published

ACS Census 7 116,640 National 23,006 Sep 2020 Massachusetts 23,006 Sep 2020
EDAD Disability 11 2,188,800 2023 1,469 Apr 2024 2020 1,469 Apr 2022
WE Workplace 12 1,924,560 2023 1,400 Apr 2024 2018 837 Dec 2019

Table 2: Large Language Models (LLMs) used in this work

Name Provider Version Cutoff Date

GPT-4o OpenAI gpt-4o-2024-08-06 October 2023
Claude 3.5 Sonnet Anthropic claude-3-5-sonnet-20241022 April 2024
Llama 3.3 70B Instruct-Turbo Meta via TogetherAI Llama-3.3-70B-Instruct-Turbo December 2023

F. Details of Evaluation Framework

Priv./Utility Est. Parameter Tuning♆ Model Pretraining ▣

Public Data
(Trd. or Alt.) Mpre

MftPrivate Data

SGD

DP-SGD

Evaluation
AUC

Hyperparameter 
Space

✧ ✧ ✦ ✧

✧ ✧ ✧ ✦
✧ ✧ ✧ ✧

Synth

Synth

SYNTHETIC DATA: SETUP CLASSIFICATION: SETUP

Public Data (Trd. or Surr.)

Private Data

Pareto Front
Analysis

Performance Degradation

Evaluation

Evaluation

1 2

TRADITIONAL PUBLIC DATA Sample

Arbitrary Domain Univariate

CSV Llama 3.3

CSV Claude 3.5

CSV GPT-4o

Agent Llama 3.3

Agent Claude 3.5

Agent GPT-4o

SURROGATE PUBLIC DATA (BASELINES)

SURROGATE PUBLIC DATA (LLMS)

Marginals – Correlations – Classification

Figure 5: An overview of our evaluation framework (Section 3) We assess the usefulness of regular public data and surrogate
public data (Section 2) on three tasks. Two tasks are related to synthetic data generation – hyperparameter tuning and
privacy-utility estimation – and one to classification model pretraining.
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Category Metric Description

Marginals Total Variation Distance Distance between the joint distributions of the original and
synthetic datasets.

Max 3-Way Marginal Error Maximum absolute difference error for 3-way marginals be-
tween original and synthetic datasets, normalized by dataset
size.

Avg. 3-Way Marginal Error Average absolute difference error for 3-way marginals between
original and synthetic datasets, normalized by dataset size and
query count.

Max Binarized Marginal Error Maximum absolute difference error for 3-way marginals after
thresholding continuous variables to binary values, normalized
by dataset size.

Avg. Binarized Marginal Error Average absolute difference error for 3-way marginals after
thresholding continuous variables to binary values, normalized
by dataset size and query count.

Correlations Max Pearson Correlation Diff Maximum absolute difference between Pearson correlation
coefficients of original and synthetic datasets.

Avg. Pearson Correlation Diff Average absolute difference between Pearson correlation coef-
ficients of original and synthetic datasets.

Max Cramer’s V Diff Maximum absolute difference between Cramer’s V correlation
coefficients of original and synthetic datasets.

Avg. Cramer’s V Diff Average absolute difference between Cramer’s V correlation
coefficients of original and synthetic datasets.

Classification Error Rate Diff Difference in classification error rates between models trained
on original vs. synthetic data and evaluated on the same test
set.

AUC Diff Difference in Area Under the ROC Curve (AUC) between
models trained on original vs. synthetic data and evaluated on
the same test set.

Table 3: Overview of quality evaluation metrics for a synthetic dataset against the original dataset. All metrics range from 0
to 1, with lower values indicating better synthetic data quality.

F.1. Tasks
F.1.1. TASK 1: MODEL PRETRAINING FOR CLASSIFICATION

A common practice in machine learning with DP is to first pretrain a model on public data (incurring no privacy loss) before
fine-tuning it privately on sensitive data (using e.g., DP-SGD, incurring fixed (ε, δ)-privacy loss). We apply this method to
evaluate surrogate public data for binary classification tasks on tabular data (recall that this is a less common setting than
public pretraining with image data (Ganesh et al., 2023; Thaker et al., 2024), due to a general lack of publicly available
priors for tabular datasets).

We divided public and private datasets into train, validation, and test subsets using a 72 : 8 : 20 ratio, and used an
FTTransformer deep neural attention based classification model architecture (Gorishniy et al. (2021); see Appendix F.3.1 for
more details). Our classification evaluation framework follows three steps: (1) standard pretraining, updating model weights
with gradients calculated from (surrogate) public data; (2) DP fine-tuning on private training data; and (3) performance
assessment on the private test data. For comparison, we include a control condition that omits the pretraining phase. We
measure classification performance using AUC metric and ensure balanced datasets by downsampling the majority class to
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match the minority class size. We also consider an AUC Advantage metric, which we define as the difference in AUC
between models with public data pretraining and a model without pretraining, which directly quantifies the incremental
benefit provided by pretraining before private finetuning.

To account for the multiple hyperparameters in both pretraining and fine-tuning stages, we conduct a comprehensive grid
search, further running each configuration 10 times to mitigate variations inherent to differential privacy training and model
initialization. We analyze results using two complementary approaches: averaging performance across all hyperparameter
combinations, and simulating a real-world scenario by selecting the optimal pretraining hyperparameters based on public
validation data before averaging results across fine-tuning hyperparameters. Refer to Appendix F.4 for the complete
hyperparameter space details.

F.1.2. TASK 2: HYPERPARAMETER TUNING FOR SYNTHETIC DATA

Hyperparameters play an important role in training machine learning models, especially when differential privacy is involved
(Ponomareva et al., 2023). While selecting the best performing hyperparameters in the non-private setting can be done with
many model training runs using a validation split or cross-validation, this is not feasible in a straightforward manner with
differential privacy due to the privacy loss incurred on each run. Public data may be helpful in this case, allowing researchers
to run multiple experiments without consuming the privacy loss budget (Iyengar et al., 2019; Cattan et al., 2022).

To assess the usefulness of surrogate public data for this DP auxiliary task, we run a large-scale DP synthetic data evaluation
across multiple dimensions: (1) datasets (including private and public splits, and various public data surrogates); (2) privacy
loss budget ε; (3) different DP synthetic data generators (see Section F.3.2; GEM (Liu et al., 2021b), AIM (McKenna et al.,
2022), PrivBayes (Zhang et al., 2014)); and (4) their associated hyperparameter spaces. For each configuration, we fit a
synthetic data generator and produce a synthetic dataset of the same size as the original, private data. We then evaluate
across a variety of metrics, which fall into three general categories: marginal-based metrics, correlational metrics, and
classification-based metrics, as shown in Table 3.

We conduct our analysis (1) per synthetic data generator, because each has a different hyperparameter space and different
sensitivity to changes in hyperparameter configuration; (2) per metric, because the best-performing hyperparameter is
defined with respect to a specific metric; and (3) per privacy loss budget ε. We quantify the degradation in performance
when using the synthetic generator on the private data by comparing the best hyperparameter setting that we would have
chosen with the private data (i.e., the optimal case) relative to the hyperparameters we would have chosen with each of the
(potentially surrogate) public datasets.

To aggregate the usefulness of public data in choosing hyperparameter configurations across different evaluation metrics,
we computed a relative performance degradation metric for each configuration. Concretely, for every private synthetic
data generator, privacy level ε and dataset (ACS, EDAD, and WE), we first identified the hyperparameter configuration
that yielded the best performance on the private reference dataset (i.e. the real data). We then determined, for each
candidate surrogate public dataset (and the regular public data), the hyperparameter configuration that would have been
chosen based solely on its corresponding performance. Our benchmark quantifies degradation as the relative difference
between the performance achieved by the surrogate-chosen hyperparameters on the private reference and the optimal
performance on the reference dataset (measured as either absolute error or percent degradation, depending on the metric).
We conducted this process independently for each metric – across classification, correlation, and marginal-based metrics. We
averaged across multiple experimental seeds to obtain aggregate performance with standard error; we then conducted a Pareto
frontier analysis (Ehrgott, 2005) across the frontier defined by aggregating into the three metric categories: classification,
correlation and marginal-based metrics.

F.1.3. TASK 3: PRIVACY-UTILITY ESTIMATION FOR SYNTHETIC DATA

Understanding the privacy-utility trade-off of a mechanism for a specific private dataset is extremely useful for producing a
differentially private release in the real world (Rosenblatt et al., 2024a). For example, it may provide guidance on setting the
privacy loss budget by exposing its impact on the fidelity of private synthetic data (e.g., (Abowd et al., 2023; Hod & Canetti,
2025)).

In this task, we evaluate how well a public dataset – either traditional or surrogate – can estimate the privacy-utility curve for
each utility metric. This experiment is, in a sense, the “dual” of the hyperparameter tuning task described in the previous
section: here, we compare the privacy-utility curve computed on the public data with the curve obtained on the private
data. To mimic real-world usage, we run the DP mechanism with the best-performing hyperparameters determined from the
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public data (Table 3), selecting the optimal configuration independently at each tested ε value.

For each dataset, synthetic data generator, and evaluation metric, we created both public-based and private-based curves over
a range of privacy loss budgets ε. To aggregate the results across different evaluation metrics, we first compute, for each
metric group (classification, correlation, and marginals) and each synthesizer (PrivBayes, AIM, and GEM), an aggregated
performance value that is the average “chosen value” across all metrics in that group. For a given synthesizer and for each ε,
we group the results by dataset and reference dataset and then pivot these averages so that each row corresponds to a dataset
and each column to an ε level. This representation enables us to generate line plots to visually assess the similarity between
performance curves (see, e.g., Figure 28 for an example with the PrivBayes synthesizer).

Since the line plots alone are insufficient to quantify aggregate closeness, we compute both ℓ1 and ℓ2 distances between
each pair of curves. The ℓ1 distance is more interpretable – being in the same units as the evaluation metric – while the ℓ2
distance is less sensitive to outliers. We average the ℓ1 and ℓ2 distances across the different metric categories (weighting
each category equally). To reduce variability, each configuration is run 10 times. Finally, we perform a Pareto frontier
analysis across both ℓ1 and ℓ2 distances for each dataset (Ehrgott, 2005).

F.2. Datasets
F.2.1. ACS
The ACS data excerpt was released by the US Census Bureau in September 2020 and provided by the NIST CRC to assess
synthetic data generation methods. We designated the “National” dataset (27,254 records) as the private split and the
“Massachusetts” dataset (7,634 records) as the public split. Since the differential privacy synthetic data generators assessed
in this project are primarily designed for categorical data, we used the “demographic” subset containing 7 categorical
features provided by NIST CRC. After removing records with missing values, we retained 23,006 and 6,514 records for the
private and public splits, respectively. The public split was up-sampled to match the size of the private split. For a complete
description of the dataset and its curation, refer to its documentation (Task et al., 2023).

F.2.2. EDAD
The EDAD (Survey on Disability, Personal Autonomy and Dependency Situations) datasets were released by the Spanish
National Statistics Institute (INE) in April 2022 and April 2024, containing responses from their 2020 (164,254 records)
and 2023 (12,518 records) surveys respectively. We designated the 2023 survey responses as the private split and the 2020
survey responses as the public split. Since our synthetic data generators are primarily designed for categorical data, we used
a subset of 11 categorical features from both surveys. After removing records with missing values, we retained 8,922 and
1,469 records for the private and public splits, respectively. The private split was down-sampled to match the size of the
public split. For a complete description of the datasets and their curation, refer to the documentation given by (Instituto
Nacional de Estadı́stica, 2024).

F.2.3. WE
The Workplace Equity Survey datasets (WE) consist of responses from two global surveys conducted in 2018 (released
December 2019) and 2023 (released April 2024) by the Coalition for Diversity and Inclusion in Scholarly Communications
C4DISC). We designated the 2023 survey responses (1,755 records) as the private split and the 2018 survey responses (1,182
records) as the public split. Since our synthetic data generators are primarily designed for categorical data, we used a subset
of 12 categorical features from both surveys. In this dataset, we kept the missing values as another category. We retained
837 and 1,400 records for the public and private splits, respectively, and no upsampling or downsampling was done. The
slight reduction in records is due to filtering response with high levels of missingness and only using respondents from the
top 10 most common country affiliations in the survey (to reduce dimensionality). For a complete description of the datasets
and their curation, refer to their documentation (Spilka et al., 2020; Lemieux et al., 2024).

F.2.4. DATASET MEMORIZATION BY THE LLMS

Recent research has highlighted growing concerns that, because LLMs are exposed to benchmark data from the internet
during training, their performance those and other benchmarks may be inflated when assessing performance post-training
(Magar & Schwartz, 2022; Golchin & Surdeanu, 2024; Roberts et al., 2024; Xu et al., 2024; Dong et al., 2024). For example,
it is well known that LLMs have a large capacity for training data memorization (Carlini et al., 2021; Kandpal et al., 2022;
Carlini et al., 2023); this is one mechanism by which they could “hack” existing benchmarks, by simply memorizing the
examples and their answers. This memorization consideration is particularly relevant for our experimental setup, where we
utilize LLMs to generate records both directly and indirectly. Thus, any prior exposure to our evaluation datasets (ACS,
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EDAD, and WE) could significantly impact model performance in our evaluations (of particular concern is exposure to the
split of these datasets that we consider private in our evaluations, e.g., the national version of the ACS dataset). We address
this memorization concern through two mitigation strategies.

First, we considered the temporal relationship between dataset releases and model knowledge cutoff dates when selecting
two of our datasets for evaluation. Namely, the private splits of EDAD and WE were released in April 2024, which is
later than the knowledge cutoff dates of most models used in our study (Table 2): GPT-4o (October 2023), Llama 3.3 70B
(December 2023), and Claude 3.5 Sonnet (April 2024). While there is a one-month overlap with Claude, the analysis of
Cheng et al. (2024) suggests that the effective knowledge cutoff dates of LLMs typically precede their reported dates.

Second, we executed the LLM memorization assessment methodology proposed by (Bordt et al., 2024); they provide an
extensive package & benchmark for LLM memorization detection specific to tabular data. We ran their assessment across all
private and public splits. In the data generation tests from (Bordt et al., 2024) – the most relevant to our setting – both header
tests (generating the first few rows) and row completion tests (generating random-location rows) indicated no evidence of
record-level memorization by any of the three LLMs across all datasets. Refer to Figure 6 for an example of the header test
results for the ACS dataset with Claude 3.5 Sonnet.

Additional tests examining an LLM’s metadata knowledge of tabular datasets, rather than record generation capabilities,
revealed varying levels of dataset familiarity. The models unsurprisingly demonstrated strong familiarity with ACS, but
limited knowledge of EDAD and minimal recognition of WE. This pattern aligns with the relative public visibility of these
datasets: ACS is a core and official product of the US Census, EDAD is an official product of the Spanish National Statistics
Institute, and WE is a small-scale survey conducted by a coalition of professional and trade organizations.

When provided with header columns and the first few rows, all models successfully identified the name of the ACS dataset,
and sometimes could identify the EDAD dataset name (where the 2020 public split consists of multiple raw files). However,
for the WE dataset, even when given headers and first rows, no model generated the correct dataset name – instead, they
provided thematically related names such as “work-life-and-career-survey” and “publishing-industry-diversity-survey.” We
hypothesize that this pattern emerges from the survey questions themselves serving as column names, which inherently
reveal the overall topic of the survey (e.g., “How long have you worked in publishing and/or related industries?”).

We observed similar patterns regarding column name completion. When given the dataset name and the first few features, all
models failed to generate the correct column names for both EDAD and WE datasets. For ACS, the models could generate
some of the column names, but not in the correct order. We hypothesize that this is due to the fact that the ACS datasets we
used were sub-sampled, modified, and adopted from the US Census release by NIST.

F.3. Private Mechanisms
F.3.1. CLASSIFICATION

Differentially private pretraining is usually conducted in domains where strong, publicly available priors with matching
data-dimensionality are available (e.g., text or image data). In these fields, neural transformer models dominate (Wolf et al.,
2020; Khan et al., 2022).

For an adequate analog to this space in the tabular setting, we consider an FTTransformer model (Gorishniy et al., 2021),
which is a transformer based architecture for tabular data classification. FTTransformer has demonstrated strong performance
against established powerful gradient boosting approaches such as XGBoost (Chen & Guestrin, 2016). Its effectiveness
stems from specialized data transformations that mitigate information loss in transformer-based attention layers (Gorishniy
et al., 2022). Prior work shows how simple it can be to adapt FTTransformer to the private setting (Rosenblatt et al., 2024b)
by making minor modifications to its architecture to support DP-SGD (Abadi et al., 2016). Importantly, it can also be easily
pre-trained with public data through standard gradient updates before private training. The differentially private variant of
FTTransformer is (ε, δ)-DP, for which we set δ = 10−5.

F.3.2. DATA SYNTHESIS

We considered three representative state-of-the-art private data release methods: PrivBayes (Zhang et al., 2014), GEM (Liu
et al., 2021c) and AIM (McKenna et al., 2022). Each of these synthesizers follows the “Select-Measure-Project” paradigm,
in that they privately select statistical queries (marginals or correlations) to run on a sensitive distribution, privately measure
these queries, and then as post-processing project these measurements onto a synthetic distribution (from which we can
draw arbitrary samples) that approximates the original, sensitive distribution.
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PUMA,AGEP,SEX,MSP,HISP,RAC1P,NOC,NPF,HOUSING TYPE,OWN RENT,DENSITY,INDP,
INDP CAT,EDU,PINCP,PINCP DECILE,POVPIP,DVET,DREM,DPHY,DEYE,DEAR,PWGTP,
WGTP

01-01301,18,2,6,0,9,N,N,3,0,2731.2,N,N,7,0.0,0,N,N,2,2,2,2,79,0
01-01301,27,1,6,0,1,N,N,3,0,2731.2,3291,4,7,15400.0,4,116,N,2,2,2,2,5,0
01-01301,74,2,3,0,2,N,N,2,0,2731.2,N,N,9,12900.0,3,N,N,2,1,2,2,19,0
01-01301,22,1,6,0,1,N,N,3,0,2731.2,N,N,7,0.0,0,N,N,2,2,2,2,10,0
01-01301,18,2,6,0,1,N,N,3,0,2731.2,N,N,7,0.0,0,N,N,2,2,2,2,15,0
01-01301,52,2,1,0,1,N,N,1,1,2731.2,7860,8,10,52000.0,8,433,N,2,2,2,2,25,0
01-01301,54,1,1,0,1,N,N,1,1,2731.2,7860,8,10,55000.0,8,458,N,2,2,2,2,25,0
01-01301,20,2,6,0,1,N,N,3,0,2731.2,N,N,7,35400.0,0,N,N,2,2,2,2,12,0
01-01301,48,2,1,0,1,N,N,1,1,2731.2,8680,9,10,45000.0,7,375,N,2,2,2,2,20,0
01-01301,49,1,1,0,1,N,N,1,1,2731.2,7860,8,9,48000.0,7,400,N,2,2,2,2,20,0
01-01301,15,1,6,0,1,N,N,3,0,2731.2,N,N,6,9300.0,0,N,N,2,2,2,2,18,0
01-01301,45,2,1,0,1,N,N,1,1,2731.2,N,N,5,27860.0,8,N,N,2,1,0,2,1420
01-01.01,27,1,350,1,N,2,2,2,27,1.8,0

Figure 6: The header test output on the ACS dataset on Claude 3.5 Sonnet. The LLM is prompted with the column names
as well as a few first rows of the dataset (black), and its completion is presented. The output is colored according to its
Levenshtein string distance compared to the original records: correct, incorrect, and missing. We observe that the LLM
failed to reproduce the header, as many errors occur within columns with variability.

PrivBayes builds a Bayesian network (BN) and adds noise to all k-way correlations to ensure differential privacy. Despite
having been published in 2017, PrivBayes is still considered state-of-the-art and was chosen to produce the differentially
private release of the Israel National Live Birth Registry (Hod & Canetti, 2025). GEM parameterizes a neural model to
represent a synthetic distribution that approximates the true distribution by minimizing a linear query error based loss
(with linear queries implemented as k-way marginals, where by default k = 3). AIM relies on the Private-PGM graphical
model (McKenna et al., 2021) to parameterize the underlying distribution, and utilizes an iterative process to take advantage
of higher values of ε. Both AIM and GEM are considered the state-of-the-art approaches to generating private synthetic
data (Tao et al., 2021; Rosenblatt et al., 2023). Outside of these methods, we acknowledge that many other methods
exist for generating DP data (Dwork et al., 2009; Hardt et al., 2012; Vietri et al., 2020; McKenna et al., 2023; Xu et al.,
2019; Rosenblatt et al., 2020; Aydöre et al., 2021; Cai et al., 2021), but we believe that PrivBayes, GEM and AIM are a
representative set of what can be currently considered state-of-the-art.

PrivBayes and GEM are ε-DP, whereas AIM is (ε, δ)-DP, for which we set δ = 10−9. All three methods come with
hyperparameters that need to be tuned. Detailed lists of hyperparameters per-synthetic data generator, and their associated
values, are given in Appendix F.4.

27



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Do You Really Need Public Data? Surrogate Public Data for Differential Privacy on Tabular Data

F.4. Hyperparameter Spaces

Table 4: Hyperparameters for FTTransformer Classifier

Hyperparameter Description Values

pre num epochs Number of epochs for pre-training {1, 9}
pre batch size Batch size for pre-training {32, 128}
pre lr Learning rate for pre-training {3× 10−4, 3× 10−5}
dp num epochs Number of epochs for differential private fine-tuning 20
dp batch size Batch size for differential private fine-tuning 128
dp lr Learning rate for differential private fine-tuning {3× 10−3, 3× 10−4}

Table 5: Hyperparameters for GEM

Hyperparameter Description Values

k Maximum degree of measured marginals {2, 3}
T Number of iterations {50, 100}
alpha Learning rate {0.1, 0.5}
ema weights beta EMA weights coefficient {0.1, 0.9}

Table 6: Hyperparameters for AIM

Hyperparameter Description Values

degree Maximum degree of measured marginals {2, 3}
rounds Number of iterations {20, 40}

Table 7: Hyperparameters for PrivBayes

Hyperparameter Description Values

theta SNR heuristic to set max node degree {2, 8, 32, 64}
epsilon split Prop. of privacy budget allocated to structure learning {0.1, 0.5, 0.75}
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Method Class. Corr. Marg.

Public 0.008 0.047 0.097
CSV (Claude) 0.033 0.046 0.227
Agent (Claude, Unif.) 0.004 0.134 0.225

Table 1: Pareto Efficient Methods for
PrivBayes on EDAD.

Method Class. Corr. Marg.

CSV (Claude) 0.013 0.002 0.045
Agent (Claude, Max Cov.) 0.010 0.003 0.125
Agent (Claude, Unif.) 0.004 0.003 0.024

Table 2: Pareto Efficient Methods for AIM
on ACS.

Method Class. Corr. Marg.

Arbitrary (Baseline) 0.043 0.052 0.056
Agent (All, Max Cov.) 0.016 0.096 0.172
Agent (Claude, Unif.) 0.019 0.040 0.070

Table 3: Pareto Efficient Methods for
PrivBayes on WE.

Figure 7: Task 1 – Pretraining: (a, b) Comparing the mean AUC on the test subset private split for the Pretraining model vs.
the Fine-tuned model, grouped by generation method (mean calculated across DP finetuning parameter space when the best
configuration is chosen with the validation subset of the public split for the pretraining step, across 10 runs). Note how the
starting point of model AUC differs, while the improvement from private finetuning (i.e. the increase in AUC) is relatively
stable. Task 2 – Hyperparameter tuning: (Tables 1, 2 and 3) show some Pareto frontiers for the performance degradation
metric when hyperparameter tuning using (surrogate) public data methods for tuning relative to tuning on private data. Note
how CSV and Agent methods are competitive with tuning on the regular public data. See Section 4 and Appendix G for
complete results. Note that we adopt the Olympic medal convention in each table in our paper: gold , silver and bronze
cells signify first, second and third best performance, respectively.

G. Additional Result Discussion
In this section, we present the results of our evaluation framework (Section 3) for the following DP auxiliary tasks:
pretraining (Section G.1), hyperparameter tuning (Section G.3), and estimating the privacy-utility trade-off (Section G.4).
Appendix H provides additional results details.

All of the experiments were done with ε ∈ {1, 2, 4, 8, 16}, and each hyperparameter configuration (Appendix F.4) was run
10 times.

G.1. Results for Task 1: Pretraining for DP Classification
In our analysis, the best pretraining hyperparameter configuration was selected based on the public validation subset (see
Figure 15 and Table 22a for full hyperparameter averaging results, which show similar trends).

EDAD and WE. Overall, we find strong evidence that LLM-based methods – both CSV and Agent surrogate public
data generation (particularly with Claude 3.5 Sonnet) – offer a competitive alternative to traditional public data. Figure 8
presents our experimental results on the WE and EDAD (ε = 1), demonstrating how pretraining on the surrogate public data
can vastly improve the starting point of model performance.

Figure 12 shows a diminishing pretraining advantage when increasing ε for both EDAD and WE. This is an expected
behavior: high epsilon allows for the extraction of more signal from the private dataset, and may reduce the usefulness of
public data, regular or surrogate (Thaker et al., 2024).

Under a more granular analysis, the EDAD dataset benefits substantially from pretraining, with average AUC advantages
per method ranging from 0.09 to 0.19. Here, the traditional public dataset delivers the highest improvement across ε
values. When aggregated by generation method, CSV-based methods perform slightly worse than the regular public dataset,
followed by the Agent-based method. A more careful examination of surrogate approaches in Table 8b reveals that the
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Figure 8: Mean AUC on the test subset of the private dataset split for the pretraining model and the fine-tuned model,
grouped by generation method. The mean is calculated across the DP finetuning hyperparameter space when best pretraining
hyperparameter configuration is chosen for the pretraining step, with 10 runs per hyperparameter configuration.

CSV (Claude) (AUC advantages ranging from 0.07-0.17) and CSV (Llama) (ranging from 0.08-0.17) perform on par
with or slightly worse than the regular public data (ranging from 0.09-0.19). For example, at ε = 1, the AUC advantages of
traditional public data, CSV (Claude), CSV (Llama) are 0.19 and 0.17, respectively. As expected, pretraining with
baselines (Uniform and Univariate) and Arbitrary yields almost no benefit, because they contain essentially no
signal about the relationship between the target variable and the features in the classification task.

The WE dataset exhibits trends similar to EDAD. Although the traditional public dataset achieves the best advantage at
ε = 2, its performance is not consistently top-ranked across all privacy levels. In fact, for ε = 1, 4, 16, it is not in the
top three. Notably, the two Claude Agent-based variants have the best performance across most ε values, with AUC
improvements ranging from 0.07 to 0.21.

G.2. ACS and the Role of Dataset Size
For the ACS dataset, we do not observe any benefit from pretraining, either with traditional or surrogate public data (e.g.,
as Figure 13b shows for ε = 1). However, a follow-up analysis reveals that this is due to the relatively large size of
the dataset. Dataset size is a key factor in differentially private mechanisms, as it directly influences the noise level added
to achieve a specific level of privacy protection (Dwork et al., 2016). The relatively large size of the ACS dataset partly
explains why the benefit of regular public data pretraining appears marginal in, e.g., Table 8a; as privacy sensitivity scales
inversely with dataset size, when the private dataset is sufficiently large, the magnitude of noise necessary for a DP guarantee
decreases.

To investigate this effect, we repeated the full pretraining experiment on four ACS subsets obtained by subsampling at 5%,
10%, 20%, and 50%. In these experiments we focus on the AUC advantage at ε = 1, where the benefit of public data is most
pronounced. Figure 13b (in Appendix G.1) shows that with 5% subsampling, the ACS dataset exhibits a similar pattern of
performance to the one we found with the EDAD and WE datasets.
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Figure 12: Mean AUC Advantage of the DP model after pretraining, grouped by generation method. The mean is calculated
across the DP finetuning hyperparameter space when best pretraining hyperparameter configuration is chosen for the
pretraining step, with 10 runs per hyperparameter configuration.

In fact, the LLM-based methods (using Claude Sonnet 3.5) outperformed the traditional public dataset. Figure 14 presents
the relationship between the (subsampled) dataset size and the AUC advantage per generation method category to ε = 1.
As we examine smaller datasets, the differences we observe align with results on the EDAD and WE datasets. Both the
CSV and Agent surrogate datasets perform on average similarly to traditional public data. This observation may also help
explain the negative findings reported by Swanberg et al. (2025) regarding the use of LLM-generated public data for DP
synthetic data generation on the Adult dataset, which is substantially larger than some of the datasets considered here. We
hypothesize that with smaller datasets, LLM-generated public data surrogates could provide some benefit in pretraining
differentially private data synthesizers, but leave a closer examination of that DP auxiliary task to future work.
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Figure 13: Mean AUC on the test subset of the private dataset split for the pretraining model and the fine-tuned model,
grouped by generation method. The mean is calculated across the DP finetuning hyperparameter space when best pretraining
hyperparameter configuration is chosen for the pretraining step, with 10 runs per hyperparameter configuration.
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Figure 14: Mean AUC Advantage of the DP classification model with ε = 1 after pretraining for each subsampled dataset,
grouped by generation method category. The mean is calculated across the DP finetuning hyperparameter space when best
pretraining hyperparameter configuration is chosen for the pretraining step, with 10 runs per hyperparameter configuration.
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Table 8: Mean AUC Advantage (AUC in parentheses) of the DP model after pretraining, grouped by generation method. The
mean is calculated across the DP finetuning hyperparameter space when the best pretraining hyperparameter configuration
is chosen for the pretraining step, with 10 runs per hyperparameter configuration.

(a) ACS

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16

Without pretraining .00 (.74) .00 (.74) .00 (.74) .00 (.75) .00 (.75)

Public .01 (.75) .01 (.76) .01 (.76) .00 (.75) .00 (.75)

Baseline (Domain) -.03 (.71) -.03 (.71) -.03 (.71) -.03 (.72) -.05 (.70)
Baseline (Univariate) -.01 (.73) .00 (.74) -.03 (.71) -.02 (.73) .00 (.75)

Arbitrary .00 (.74) .01 (.75) .00 (.74) .00 (.75) .00 (.75)

CSV (Claude 3.5 Sonnet) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .01 (.76)
CSV (GPT-4o) .01 (.74) .01 (.75) .01 (.76) .00 (.75) .01 (.76)
CSV (Llama 3.3 70B) .01 (.75) .01 (.75) .01 (.75) .00 (.75) .01 (.76)

Agent (Claude 3.5 Sonnet, Unif.) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (Claude 3.5 Sonnet, Max Cov.) .01 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Unif.) .00 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Max Cov.) .00 (.74) .00 (.74) .00 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Unif.) -.01 (.73) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Max Cov.) .00 (.74) .01 (.75) .01 (.75) .00 (.75) .01 (.76)
Agent (All, Unif.) .01 (.75) .01 (.75) .01 (.75) .01 (.76) .01 (.76)
Agent (All, Max Cov.) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)

(b) EDAD

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16

Without pretraining .00 (.65) .00 (.69) .00 (.71) .00 (.74) .00 (.76)

Public .19 (.84) .12 (.81) .13 (.85) .08 (.82) .09 (.85)

Baseline (Domain) .00 (.65) .00 (.69) -.02 (.70) -.04 (.70) .02 (.78)
Baseline (Univariate) .04 (.69) -.06 (.63) .05 (.76) -.07 (.67) .03 (.79)

Arbitrary .04 (.69) .03 (.72) .03 (.75) -.01 (.74) .04 (.80)

CSV (Claude 3.5 Sonnet) .17 (.82) .12 (.80) .10 (.81) .07 (.82) .07 (.83)
CSV (GPT-4o) .15 (.81) .09 (.77) .11 (.83) .07 (.81) .07 (.83)
CSV (Llama 3.3 70B) .17 (.82) .12 (.80) .12 (.83) .08 (.82) .08 (.84)

Agent (Claude 3.5 Sonnet, Unif.) .14 (.79) .10 (.79) .10 (.81) .06 (.81) .07 (.82)
Agent (Claude 3.5 Sonnet, Max Cov.) .16 (.81) .10 (.79) .09 (.81) .06 (.80) .08 (.84)
Agent (GPT-4o, Unif.) .15 (.80) .05 (.74) .10 (.81) .06 (.81) .07 (.83)
Agent (GPT-4o, Max Cov.) .14 (.80) .08 (.77) .07 (.78) .04 (.79) .07 (.83)
Agent (All, Unif.) .13 (.78) .09 (.78) .08 (.79) .07 (.81) .07 (.83)
Agent (All, Max Cov.) .16 (.81) .07 (.76) .12 (.84) .07 (.81) .07 (.83)

(c) WE

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16

Without pretraining .00 (.53) .00 (.55) .00 (.58) .00 (.63) .00 (.66)

Public .11 (.64) .18 (.73) .13 (.71) .06 (.69) .06 (.72)

Baseline (Domain) -.01 (.53) -.01 (.54) -.06 (.52) -.06 (.57) -.07 (.59)
Baseline (Univariate) .00 (.53) .02 (.58) .00 (.58) .01 (.64) -.05 (.61)

Arbitrary .01 (.55) .01 (.56) .01 (.59) -.02 (.61) -.05 (.61)

CSV (Claude 3.5 Sonnet) .12 (.65) .09 (.65) .09 (.67) .02 (.65) .05 (.70)
CSV (GPT-4o) .05 (.58) .08 (.64) .06 (.64) .05 (.69) .03 (.69)
CSV (Llama 3.3 70B) -.01 (.52) .01 (.57) .04 (.61) .00 (.63) -.04 (.62)

Agent (Claude 3.5 Sonnet, Unif.) .21 (.74) .15 (.70) .17 (.75) .07 (.70) .11 (.77)
Agent (Claude 3.5 Sonnet, Max Cov.) .20 (.73) .17 (.72) .15 (.73) .06 (.69) .07 (.73)
Agent (GPT-4o, Unif.) -.01 (.52) .02 (.58) -.01 (.57) -.04 (.59) -.06 (.60)
Agent (GPT-4o, Max Cov.) -.05 (.48) -.05 (.50) -.07 (.51) -.05 (.58) -.02 (.63)
Agent (Llama 3.3 70B, Unif.) .00 (.54) .03 (.59) .04 (.62) .02 (.66) .02 (.68)
Agent (Llama 3.3 70B, Max Cov.) -.01 (.52) -.01 (.54) .02 (.60) .02 (.65) .02 (.68)
Agent (All, Unif.) .09 (.62) .15 (.71) .12 (.70) .05 (.68) .07 (.73)
Agent (All, Max Cov.) .08 (.61) .14 (.69) .13 (.71) .07 (.71) .06 (.72)
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Table 9: Dataset similarity assessment against the private data for ACS, EDAD and WE. The datasets are evaluated based
on two distance metrics (Section D.3): (1) Total Variation Distance (TVD); and (2) Average error on 3-Way Marginals
(3WM). Both metrics are in range [0, 1], inverted to represent similarity (1− x), and scaled by 100. Zero values (rounded)
are omitted for readability.

ACS EDAD WE

Method 1-TVD 1-3WM 1-TVD 1-3WM 1-TVD 1-3WM

Public 48.5 50.4 4.9 26.1 6.7 34.1

Baseline (Domain) 4.3 0.1 0.2
Baseline (Univariate) 44.6 63.8 7.1 66.7 15.4 78.5

Arbitrary 2.8 0.1

CSV (Claude 3.5 Sonnet) 14.4 15.0 10.9
CSV (GPT-4o) 25.7 30.2 11.5 14.2
CSV (Llama 3.3 70B) 16.6 10.0 2.4

Agent (Claude 3.5 Sonnet, Unif.) 41.5 48.3 5.5 11.7
Agent (Claude 3.5 Sonnet, Max Cov.) 40.1 40.0 6.8 8.0
Agent (GPT-4o, Unif.) 27.3 23.3 7.2
Agent (GPT-4o, Max Cov.) 27.4 20.4 6.9
Agent (Llama 3.3 70B, Unif.) 13.8
Agent (Llama 3.3 70B, Max Cov.) 10.3
Agent (All, Unif.) 30.5 26.6
Agent (All, Max Cov.) 24.6 15.7
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Method Classification Correlation Marginals

CSV (Claude) 0.002 0.033 0.121
CSV (GPT) 0.001 0.149 0.096
CSV (Llama) 0.003 0.052 0.041
Agent (Llama, Unif.) 0.002 0.061 0.086

Table 10: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for PrivBayes on ACS.

Method Classification Correlation Marginals

Public 0.008 0.047 0.097
CSV (Claude) 0.033 0.046 0.227
Agent (Claude, Unif.) 0.004 0.134 0.225

Table 11: Pareto Efficient Methods (Task 2: Hyperparam-
eter tuning for private synthetic data) for PrivBayes on
EDAD.

Method Classification Correlation Marginals

Arbitrary (Baseline) 0.043 0.052 0.056
Agent (All, Max Cov.) 0.016 0.096 0.172
Agent (Claude, Unif.) 0.019 0.040 0.070

Table 12: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for PrivBayes on WE.

Method Classification Correlation Marginals

CSV (Claude) 0.013 0.002 0.045
Agent (Claude, Max Cov.) 0.010 0.003 0.125
Agent (Claude, Unif.) 0.004 0.003 0.024

Table 13: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for AIM on ACS.

G.3. Results for Task 2: Hyperparameter Tuning for DP Synthetic Data Generation
ACS. On ACS, where LLMs are likely to possess well-calibrated priors due to extensive training on U.S. Census data (see
Appendix F.2.4), the AIM synthesizer (Table 13) shows that Agent (Claude, Unif.) is best for both classification
(0.004) and marginal consistency (0.024), while CSV (Claude) has the best correlation metric (0.002) (although the
Agent based Claude methods here are close behind). For the PrivBayes synthesizer (Table 10), the CSV-based approaches
are impressive: CSV (GPT) achieves the best in terms of classification metrics (0.001), CSV (Llama) is best in marginal
metrics (0.041), and CSV (Claude) is best for correlation metrics (0.033). For GEM on ACS, the Agent (Claude,
Max Cov.) approach is dominant along with the Arbitrary baseline. Recall that the Arbitrary baseline directly
encodes relationships into the data (via the Bayesian approach described in Appendix E.1.3). In the case of GEM, whether
relationships between variables are accurate to true relationships in the private data is less important when tuning its
hyperparameters.

EDAD. We now turn to the EDAD dataset (a Spanish disability survey); EDAD was published after many LLMs’ training
cutoffs, so we expect the LLMs to have less, if any, prior exposure to tabular data in the same domain as the schema we
present. For the AIM synthesizer (Table 14), several agent-based methods (e.g., Agent (All, Unif.)) are similarly
strong for classification metrics (0.001). Although the correlation metrics are tightly grouped (ranging from 0.014 to 0.019),
the overall Pareto frontier is defined by a mix of the CSV and Agent approaches. For the PrivBayes synthesizer (Table 11), the
agent-based method Agent (Claude, Unif.) again leads on classification (0.004) while CSV (Claude) remains
on the Pareto frontier for correlation (0.046); meanwhile, the real Public data yields the best marginal consistency (0.097).

WE. For WE – the Workplace Equity survey dataset, also from a period after many LLM training cutoffs – for the
AIM synthesizer (Table 15) the best-performing methods are exclusively Agent-based methods. Here, Agent (Claude,
Unif.) leads in classification metrics (0.016), Agent (GPT, Unif.) attains the best correlation metrics (0.007),
and Agent (GPT, Max Cov.) provides the strongest marginal consistency (0.025). In contrast, for the PrivBayes
synthesizer (Table 12), although the Arbitrary baseline dominates on marginal consistency (0.056) and is competi-
tive on correlation (0.052), agent-based methods (both All, Max Cov. and Claude, Unif.) yield a substantial
improvement in classification performance (0.016 - 0.019).
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Method Classification Correlation Marginals

CSV (Claude) 0.004 0.014 0.037
CSV (Llama) 0.003 0.018 0.010
Agent (All, Max Cov.) 0.001 0.019 0.013
Agent (All, Unif.) 0.001 0.018 0.040
Agent (Claude, Max Cov.) 0.004 0.014 0.010
Agent (Claude, Unif.) 0.003 0.014 0.025
Agent (GPT, Max Cov.) 0.003 0.017 0.012
Agent (GPT, Unif.) 0.003 0.015 0.011

Table 14: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for AIM on EDAD.

Method Classification Correlation Marginals

Agent (Claude, Unif.) 0.016 0.016 0.198
Agent (GPT, Max Cov.) 0.033 0.013 0.025
Agent (GPT, Unif.) 0.020 0.007 0.030
Agent (Llama, Unif.) 0.017 0.010 0.047

Table 15: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for AIM on WE.

Method Classification Correlation Marginals

Arbitrary (Baseline) 0.002 0.023 0.043
Agent (Claude, Max Cov.) 0.002 0.039 0.072

Table 16: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for GEM on ACS.

Method Classification Correlation Marginals

Public 0.008 0.222 0.146
CSV (GPT) 0.004 0.172 0.166
Agent (Claude, Max Cov.) 0.007 0.104 0.147

Table 17: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for GEM on EDAD.

Method Classification Correlation Marginals

CSV (LLaMA) 0.025 0.057 0.521
Agent (All, Unif.) 0.007 0.071 0.059
Agent (GPT, Unif.) 0.028 0.056 0.058

Table 18: Pareto Efficient Methods (Task 2: Hyperparame-
ter tuning for private synthetic data) for GEM on WE.
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G.4. Results for Task 3: Privacy-Utility Trade-off Estimation for DP Synthetic Data Generation
As shown in Table 19, Table 20, and Table 21, the distances between the performance vectors – measured in both ℓ1 and
ℓ2 norms – vary considerably across datasets and synthesizers. For example, in the AIM synthesizer (Table 19), methods
such as Agent (All, Max Cov.) achieve an ACS ℓ1 of 0.039 and an ACS ℓ2 of 0.023, while CSV (Llama) attains
similar values (ACS ℓ1: 0.044, ACS ℓ2: 0.023). In the GEM setting (Table 20), a similar trend is observed. Here, the
Arbitrary baseline exhibits impressively low EDAD ℓ1 (0.028) and EDAD ℓ2 (0.013) distances, while other methods,
such as Agent (All, Unif.) and CSV (GPT), also display competitive performance on certain metrics. For the
PrivBayes synthesizer (Table 21), CSV (GPT) achieves an ACS ℓ1 of 0.091 and an ACS ℓ2 of 0.042 – values that are
generally lower than those produced by several agent-based approaches on other metrics.

Method ACS ℓ1 EDAD ℓ1 WE ℓ1 ACS ℓ2 EDAD ℓ2 WE ℓ2

Arbitrary (Baseline) 0.353 0.510 0.367 0.184 0.231 0.166
Agent (All, Max Cov.) 0.364 0.258 0.330 0.186 0.116 0.148
Agent (All, Unif.) 0.519 0.126 0.373 0.274 0.057 0.168
Agent (Claude, Unif.) 0.705 0.257 0.254 0.355 0.115 0.124
Agent (Llama, Max Cov.) 0.543 0.559 0.260 0.288 0.251 0.119
Agent (Llama, Unif.) 0.337 0.696 0.295 0.176 0.312 0.133

Table 19: Priv/Util Pareto Efficient Methods (Task 3: Priva-
cy/utility tradeoff estimation) for AIM.

Method ACS ℓ1 EDAD ℓ1 WE ℓ1 ACS ℓ2 EDAD ℓ2 WE ℓ2

Univariate (Baseline) 0.321 0.028 0.294 0.144 0.013 0.133
CSV (GPT) 0.091 0.155 0.402 0.042 0.070 0.180
Agent (All, Max Cov.) 0.094 0.071 0.318 0.043 0.033 0.144
Agent (All, Unif.) 0.112 0.051 0.280 0.051 0.024 0.126
Agent (GPT, Max Cov.) 0.127 0.061 0.232 0.058 0.027 0.105

Table 20: Priv/Util Pareto Efficient Methods (Task 3: Priva-
cy/utility tradeoff estimation) for GEM.

Method ACS ℓ1 EDAD ℓ1 WE ℓ1 ACS ℓ2 EDAD ℓ2 WE ℓ2

CSV (Llama) 0.044 0.387 0.376 0.023 0.188 0.171
Agent (All, Max Cov.) 0.039 0.100 0.191 0.023 0.051 0.092
Agent (All, Unif.) 0.082 0.091 0.167 0.041 0.056 0.081
Agent (Claude, Max Cov.) 0.068 0.152 0.111 0.033 0.085 0.063
Agent (Claude, Unif.) 0.070 0.151 0.114 0.035 0.082 0.059
Agent (GPT, Max Cov.) 0.065 0.164 0.194 0.034 0.099 0.092
Agent (Llama, Max Cov.) 0.048 0.332 0.158 0.024 0.180 0.073
Agent (Llama, Unif.) 0.042 0.442 0.177 0.023 0.216 0.082

Table 21: Priv/Util Pareto Efficient Methods (Task 3: Priva-
cy/utility tradeoff estimation) for PrivBayes.

G.5. Dataset Similarity May Be Less Important Than You’d Think
By using public data in DP auxiliary tasks, we implicitly assume statistical similarity to the private, sensitive data. Our results
generally back this up; in pretraining (Task 1) and privacy-utility trade-off estimation (Task 3), we observe consistently better
traditional public data performance. To explore whether the traditional public data dominance (and the relative performance
rankings of the surrogate public data) could be explained by dataset similarity, we measure the similarity between all datasets
using two common metrics from the DP literature (see Appendix D.3): Total Variation Distance (TVD) and average error
across all 3-way marginal queries (3WM) (Liu et al., 2021c; McKenna et al., 2022).

Comparing Private vs. Public. The first dataset similarity question we ask is: how similar is a public data variant to
the true, private data? Both traditional and surrogate private vs. public data similarity results are shown in Table 9. In
general, our metrics suggest that the traditional public dataset and the Univariate baseline (recall, this baseline samples
independently with a little noise from the true private distribution) are most similar to the private data. For EDAD and WE
datasets, we can explain the lower overall similarity scores due to their higher dimensionality (defined as the Cartesian
product of possible unique variable values; see the “× Dims” column in Table 1); the dataset distance is exacerbated
by sparsity (particularly for TVD). However, even accounting for the limitations of these metrics, we did not observe a
clear relationship between the similarity rankings of public datasets and their usefulness rankings in the pretraining and
privacy-utility tasks. Our explanatory hypothesis: common similarity metrics, like TVD and 3WM, may not adequately
capture dataset characteristics relevant to the DP auxiliary tasks we frame. We leave further exploration of suitable metrics
to future research.

Comparing Among (Traditional or Surrogate) Public Data. The second dataset similarity question we ask is: how
similar are public data variants to each other, and does this partially explain their relative performance rankings?
To this end, we compared similarity metrics among traditional and surrogate public data, with heatmap plots provided in
Appendix I. The most consistent pattern observed across datasets and metrics is the strong similarity between Agent pairs
using the same LLM but differing only in mixing methods (Unif. vs. Max Cov.) (this is barring TVD for EDAD and
WE, where most entries are zero due to the aforementioned dimensionality constraints). This pattern extends to similarities
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between the overall mixing datasets and individual Agent datasets (with the exception of the Llama datasets on EDAD).
This is expected since these pairs share the same underlying source of sampled records. Interestingly, we did not find stable
similarities across generated data between different LLMs within either Agent or CSV methods, or between the same LLM
across these two methods. Again, this could be an artifact of the metrics we use, but we leave a deeper exploration of this for
future work.
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H. Additional Detailed Results
In this section, we present additional detailed results of our evaluation framework (Section 3 and Appendix F) for the
following DP auxiliary tasks: pretraining, hyperparameter tuning, and estimating the privacy-utility trade-off.

H.1. Results for Task 1: Private Pretraining for Classification
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Figure 15: Mean AUC Advantage of the DP model after pretraining, grouped by generation method. The mean is calculated
across the hyperparameter space, with 10 runs per hyperparameter configuration.
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Figure 16: Mean AUC Advantage of the DP model after pretraining, grouped by generation method for the sub-sampled
ACS dataset. The mean is calculated across the DP finetuning hyperparameter space when best pretraining hyperparameter
configuration is chosen for the pretraining step, with 10 runs per hyperparameter configuration.
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Table 22: Mean AUC Advantage (AUC in parentheses) of the DP model after pretraining, grouped by generation method.
The mean is calculated across the hyperparameter space, with 10 runs per hyperparameter configuration.

(a) ACS

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16

Without pretraining .00 (.74) .00 (.74) .00 (.74) .00 (.75) .00 (.75)

Public .01 (.75) .01 (.75) .01 (.75) .00 (.75) .00 (.75)

Baseline (Domain) -.03 (.71) -.02 (.72) -.01 (.73) -.01 (.74) -.01 (.74)
Baseline (Univariate) -.02 (.72) -.02 (.73) -.01 (.73) -.01 (.74) -.01 (.74)

Arbitrary .00 (.74) .00 (.74) .00 (.74) .00 (.75) .00 (.75)

CSV (Claude 3.5 Sonnet) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
CSV (GPT-4o) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
CSV (Llama 3.3 70B) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)

Agent (Claude 3.5 Sonnet, Unif.) .01 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (Claude 3.5 Sonnet, Max Cov.) .01 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Unif.) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
Agent (GPT-4o, Max Cov.) .00 (.74) .00 (.74) .00 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Unif.) .00 (.74) .00 (.74) .00 (.75) .00 (.75) .00 (.75)
Agent (Llama 3.3 70B, Max Cov.) .00 (.74) .00 (.74) .01 (.75) .00 (.75) .00 (.75)
Agent (Allm Unif.) .01 (.74) .01 (.75) .01 (.75) .00 (.75) .00 (.75)
Agent (All, Max Cov.) .00 (.74) .00 (.75) .01 (.75) .00 (.75) .00 (.75)

(b) EDAD

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16

Without pretraining .00 (.65) .00 (.69) .00 (.71) .00 (.74) .00 (.76)

Public .11 (.76) .09 (.78) .07 (.79) .06 (.80) .06 (.82)

Baseline (Domain) -.02 (.63) -.01 (.67) -.02 (.69) -.02 (.73) -.01 (.75)
Baseline (Univariate) -.03 (.62) -.01 (.68) -.02 (.70) -.03 (.71) -.02 (.74)

Arbitrary .01 (.66) .01 (.69) .00 (.71) -.01 (.74) .01 (.77)

CSV (Claude 3.5 Sonnet) .11 (.76) .09 (.78) .08 (.79) .07 (.81) .06 (.82)
CSV (GPT-4o) .09 (.74) .08 (.77) .06 (.78) .06 (.80) .05 (.81)
CSV (Llama 3.3 70B) .11 (.76) .09 (.78) .08 (.79) .07 (.81) .05 (.81)

Agent (Claude 3.5 Sonnet, Unif.) .08 (.73) .07 (.76) .06 (.77) .05 (.80) .04 (.81)
Agent (Claude 3.5 Sonnet, Max Cov.) .09 (.74) .07 (.76) .06 (.78) .04 (.79) .05 (.81)
Agent (GPT-4o, Unif.) .07 (.72) .06 (.74) .05 (.77) .04 (.78) .04 (.80)
Agent (GPT-4o, Max Cov.) .07 (.72) .06 (.75) .04 (.76) .04 (.79) .04 (.80)
Agent (All, Unif.) .08 (.73) .07 (.75) .05 (.77) .05 (.79) .04 (.81)
Agent (All, Max Cov.) .09 (.74) .07 (.76) .06 (.78) .05 (.79) .05 (.81)

(c) WE

Method ε = 1 ε = 2 ε = 4 ε = 8 ε = 16

Without pretraining .00 (.53) .00 (.55) .00 (.58) .00 (.63) .00 (.66)

Public .06 (.59) .06 (.61) .05 (.63) .03 (.66) .03 (.69)

Baseline (Domain) -.02 (.51) -.03 (.52) -.02 (.56) -.04 (.59) -.04 (.62)
Baseline (Univariate) .00 (.53) -.01 (.55) .01 (.58) -.02 (.61) -.03 (.63)

Arbitrary .00 (.53) .01 (.56) .00 (.58) .00 (.63) -.01 (.65)

CSV (Claude 3.5 Sonnet) .06 (.59) .06 (.61) .06 (.64) .03 (.66) .02 (.68)
CSV (GPT-4o) .04 (.58) .05 (.60) .04 (.62) .03 (.66) .02 (.67)
CSV (Llama 3.3 70B) .00 (.53) .00 (.56) .02 (.59) -.01 (.62) -.02 (.64)

Agent (Claude 3.5 Sonnet, Unif.) .10 (.64) .10 (.65) .10 (.68) .06 (.69) .05 (.71)
Agent (Claude 3.5 Sonnet, Max Cov.) .11 (.64) .11 (.66) .09 (.67) .07 (.70) .05 (.71)
Agent (GPT-4o, Unif.) -.01 (.53) .00 (.55) .01 (.59) -.01 (.62) -.02 (.64)
Agent (GPT-4o, Max Cov.) -.04 (.49) -.03 (.52) -.03 (.55) -.03 (.60) -.03 (.62)
Agent (Llama 3.3 70B, Unif.) .00 (.53) .01 (.56) .02 (.60) .00 (.63) -.01 (.65)
Agent (Llama 3.3 70B, Max Cov.) -.01 (.52) -.01 (.55) .01 (.59) -.01 (.62) -.02 (.64)
Agent (All, Unif.) .06 (.59) .06 (.61) .06 (.64) .03 (.66) .02 (.68)
Agent (All, Max Cov.) .03 (.56) .03 (.59) .05 (.63) .01 (.64) .01 (.67)
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H.2. Results for Task 2: Hyperparameter Tuning for Private Synthetic Data
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Figure 17: Granular hyperparameter tuning results for ACS on PrivBayes. Note the poor relative performances of the
Baselines relative to the other methods; encoding relationships between variables is clearly very important to tuning
hyperparameters on the PrivBayes Classifier.
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Figure 18: Granular hyperparameter tuning results for EDAD on PrivBayes. Note that the agent-based method Agent
(Claude, Unif.) leads in classification (0.004) while CSV (Claude) dominates the correlation metric (0.046);
meanwhile, real public data yields the best marginal consistency (0.097).
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Figure 19: Granular hyperparameter tuning results for WE on PrivBayes. Observe that although the Arbitrary baseline
excels in marginal consistency (0.056) and is competitive on correlation (0.052), Agent-based approaches (e.g., All,
Max Cov. and Claude, Unif.) offer improvement in classification performance (0.016–0.019).
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Figure 20: Granular hyperparameter tuning results for ACS on the AIM synthesizer. Here, Agent (Claude, Unif.)
outperforms on both classification (0.004) and marginal consistency (0.024), while CSV (Claude) is best on correlation
(0.002).
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Figure 21: Granular hyperparameter tuning results for EDAD on the AIM synthesizer. Several agent-based methods, such as
Agent (All, Unif.), deliver strong classification performance (0.001), with the Pareto frontier defined by a mix of
CSV and agent-based approaches (correlation metrics ranging from 0.014 to 0.019).
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Figure 22: Granular hyperparameter tuning results for WE on the AIM synthesizer. Exclusively agent-based methods
dominate, with Agent (Claude, Unif.) leading in classification (0.016), Agent (GPT, Unif.) achieving the
best correlation (0.007), and Agent (GPT, Max Cov.) strong marginal consistency (0.025).
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Figure 23: Granular hyperparameter tuning results for ACS on the GEM synthesizer. The Agent (Claude, Max
Cov.) method, alongside the Arbitrary baseline that directly encodes variable relationships, is dominant – reinforcing
that structure in the data is beneficial.
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Figure 24: Granular hyperparameter tuning results for EDAD on the GEM synthesizer. As in ACS, both the agent-based
approach and the Arbitrary baseline perform competitively.
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Figure 25: Granular hyperparameter tuning results for WE on the GEM synthesizer. The trends mirror those in ACS, with
the Arbitrary baseline maintaining strong performance and Agent-based methods showing similar competitiveness.
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H.3. Results for Task 3: Estimating the Privacy/Utility Tradeoff
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Figure 26: Privacy/utility tradeoff estimation results in terms of ℓ1 distance from the true sensitive data tradeoff. Note the
relatively consistent performance across synthesizers for each dataset between some methods (e.g., poor privacy/utility
tradeoff estimation for CSV on WE), while other methods have higher variance (e.g., Agent (Claude 3.5 Sonnet,
Max Cov. on ACS, between GEM and AIM).
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Figure 27: Privacy/utility tradeoff estimation results in terms of ℓ2 distance from the true sensitive data tradeoff. These results
largely mirror the ℓ1 distance results, although the increased sensitivity to outliers leads to some interchanges of ranking
(e.g., Agent (Claude 3.5 Sonnet, Unif.) and CSV (GPT-4o) interchange places on ACS PrivBayes).
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Figure 28: To provide intuition for exactly what the ℓ1 and ℓ2 scores in Figures 26 and 27 attempt to capture, we plot the
average performance across epsilon that constitutes each vector, relative to the true performance of the sensitive data (which,
in these plots, is the black dotted line). Ideally, for privacy/utility estimation, any public data (surrogate or otherwise) would
match the performance of the private data across privacy loss budget parameters. This would allow a practitioner to, say,
choose the correct ϵ based on a performance threshold in absolute terms. Clearly, given the noisiness of the lines (which
generally cluster around, but inconsistently track, the black dotted line for private data performance), this is a difficult
estimation problem.
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I. Details of Dataset Similarity
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Figure 29: Heatmap of similarity metrics based on the Total Variation Distance (TVD) between the datasets based on the
ACS data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by 100, and rounded to a single
digit.
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Figure 30: Heatmap of similarity metrics based on the Average Error on 3-Way Marginals (3WM) between the datasets
based on the ACS data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by 100, and rounded
to a single digit.
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Figure 31: Heatmap of similarity metrics based on the Total Variation Distance (TVD) between the datasets based on the
EDAD data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by 100, and rounded to a single
digit.
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Figure 32: Heatmap of similarity metrics based on the Average Error on 3-Way Marginals (3WM) between the datasets
based on the EDAD data. The metric is in range [0, 1], inverted to represent similarity (1 − x), and scaled by 100, and
rounded to a single digit.
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Figure 33: Heatmap of similarity metrics based on the Total Variation Distance (TVD) between the datasets based on the
WE data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by 100, and rounded to a single
digit.
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Figure 34: Heatmap of similarity metrics based on the Average Error on 3-Way Marginals (3WM) between the datasets
based on the WE data. The metric is in range [0, 1], inverted to represent similarity (1− x), and scaled by 100, and rounded
to a single digit.
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J. Compute and Resources
Benchmarking DP synthesizers and training models for differentially private tasks is computationally intensive (Rosenblatt
et al., 2023). We executed our experiments on a combination of high-performance GPU and CPU clusters hosted on
AWS EC2. Specifically, we utilized three g4dn.12xlarge instances – each equipped with NVIDIA T4 GPUs – for
approximately 17.3 days of continuous up-time per instance, amounting to roughly 52 GPU-days in total (although it is
hard to assess the true GPU utilization). In addition to local compute, we used LLM APIs provided by OpenAI, Anthropic,
and TogetherAI (for the Llama 3 model) for both our direct CSV generation and multi-step Agent-based approaches. We
conducted substantial inference for our experiments; as an example, during January, our queries to Claude alone amounted
to a total of 38,092,225 input tokens and produced 7,099,403 output tokens, in February, we recorded 11,922,046 input
tokens and 226,998 output tokens, and in March, 9,027,827 input tokens and 124,484 output tokens were consumed
(imbalance between input output due to re-inputting previously generated tokens as context on each call in the state machine
for the Agent). These resources allowed for extensive hyperparameter searches, multiple runs per privacy setting, and a
comprehensive evaluation across DP auxiliary tasks.
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