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Abstract

This article discusses the challenges of001
imbalanced classification in machine learning,002
where algorithms often wrongly assume an003
even distribution of instances across classes.004
This issue is common in real-world scenarios,005
leading to poor representation of minority006
classes in training data. To combat this,007
Cost-Sensitive Learning techniques have been008
developed, focusing on minimizing the overall009
misclassification cost rather than merely010
optimizing accuracy. These techniques011
are categorized into three types: Cost-012
Sensitive Resampling, Algorithms, and Hybrid013
techniques. The research presents a case014
study on classifying lawsuits into repetitive015
themes in São Paulo Court, Brazil, using these016
cost-sensitive approaches on an imbalanced017
dataset. The goal is to automate the018
classification of lawsuits to save time, use019
human resources more effectively, and speed020
up lawsuit resolution. The study highlights021
the effectiveness of cost-sensitive techniques022
in handling imbalanced classification and their023
benefits in real-world applications, particularly024
in the legal field, by enhancing efficiency and025
reducing manual workload and processing time026
for lawsuits.027

1 Introduction028

The vast majority of machine learning (ML)029

algorithms designed for classification tasks assume030

an equal distribution of instances across the031

observed classes. However, this assumption032

only holds in some practical scenarios. In033

most real world situations, classification datasets034

are imbalanced. Imbalanced classification,035

characterized by skewed class distributions, poses036

significant challenges in applied ML, primarily due037

to the assumption of balanced class distribution038

and uniform prediction errors made by classifiers,039

encompassing false negatives and false positives.040

Consequently, accurately identifying instances041

from the minority class becomes crucial, along 042

with addressing the under-representation of the 043

minority class in training data, making Imbalanced 044

classification stand out as one of the most 045

challenging predicaments in ML (Thai-Nghe et al., 046

2010). 047

We can deal with imbalanced classification tasks 048

using several conceptualizations and techniques 049

developed and employed under the umbrella of 050

Cost-Sensitive Learning (CSL), which considers 051

the costs associated with prediction errors, among 052

other costs, during the training of a ML model. 053

These costs represent the penalties incurred 054

from incorrect predictions. In CSL, instead of 055

classifying instances as correct or incorrect, a 056

misclassification cost is assigned to each class 057

or instance. Therefore, the objective shifts 058

from optimizing accuracy to minimizing the total 059

misclassification cost (Ma and He, 2013). The 060

primary aim of CSL is to reduce the overall cost 061

incurred by a model during its training, assuming 062

that different types of prediction errors have distinct 063

and known associated costs (Sammut and Webb, 064

2011). 065

In many previous studies, researchers have 066

focused on modifying the internal structure of 067

conventional classification procedures to adjust 068

the algorithm’s sensitivity towards the larger class. 069

These efforts aimed to address the challenges 070

posed by class imbalance. On the other hand, 071

some authors have taken a different approach 072

by proposing novel methods to alleviate the 073

imbalanced class distribution. Their work has 074

explored alternative strategies to tackle the class 075

imbalance problem (Zhao et al., 2011; Galar et al., 076

2011; Pang et al., 2013; Dai, 2015). 077

In this work, we present a case study that 078

applies and compares Cost-Sensitive techniques 079

on an imbalanced dataset of legal texts from 080

the São Paulo Court (Tribunal de Justiça de 081

São Paulo or TJSP) in Brazil. The case study 082

1



focuses on the classification of lawsuits into083

repetitive themes, which refer to sets of lawsuits084

on appeal sharing identical legal arguments based085

on similar questions of law. At TJSP, civil servants086

face the daily challenge of manually reading087

numerous lengthy lawsuit decisions to determine088

their classification as repetitive. By automating089

the classification of repetitive themes, the process090

can be expedited, saving time and facilitating faster091

resolution of lawsuits (de Justiça Departamento de092

Pesquisas Judiciárias, 2022 [Online].).093

The rest of this paper is organised as follows:094

Section 2 presents a background and a brief095

description of techniques and methodologies096

employed; Section 3 describes the environment097

of repetitive theme in legal domain and formulates098

the problem; Section 4 reports experiments; and,099

Section 5 presents our conclusions.100

2 Background101

This section discusses three Cost-Sensitive102

Learning (CSL) approaches for imbalanced103

learning: Cost-Sensitive Resampling, Cost-104

Sensitive Algorithms, and Cost-Sensitive Hybrid105

approaches, as detailed in (Elkan, 2001). These106

methods modify training set composition or107

algorithm parameters to address the imbalances108

in classification tasks.109

2.1 Cost-Sensitive Algorithms110

Cost-Sensitive Algorithms involve incorporating111

cost matrices into machine learning (ML)112

algorithms. This requires unique modifications113

for each algorithm, such as the Support Vector114

Machine (SVM), Decision Tree (DT), and Logistic115

Regression (LR) (Quinlan, 1986; Hearst et al.,116

1998; M.D., 1944).117

2.1.1 Cost-Sensitive SVM118

The SVM algorithm can be adapted for imbalanced119

datasets by modifying the margin, making it cost-120

sensitive. This version, termed weighted SVM,121

uses a regularization hyperparameter to prioritize122

the minority class (Yang et al., 2007; Kuhn et al.,123

2013).124

2.1.2 Cost-Sensitive DT125

For Decision Trees, modifying the criteria for126

evaluating split points can help address class127

imbalances, creating a weighted decision tree.128

2.1.3 Cost-Sensitive LR 129

Logistic Regression can be adapted by adjusting 130

the weights during the training phase, resulting in a 131

cost-sensitive version better suited for imbalanced 132

classification tasks. 133

2.1.4 Cost-Sensitive XGBoost 134

XGBoost can be made cost-sensitive by adjusting 135

the ‘scale_pos_weight‘ hyperparameter, improving 136

its performance on imbalanced datasets. 137

2.1.5 Cost-Sensitive RF 138

Random Forest (RF) can be adapted to imbalanced 139

problems by weighting classes during the 140

calculation of the impurity score for split points, 141

resulting in a Weighted Random Forest (Chen et al., 142

2004). 143

2.2 Random Sampling 144

Random sampling techniques, including 145

oversampling and undersampling, adjust the 146

class distribution in the training set. These 147

methods are simple and can be effective, but their 148

efficiency varies based on the dataset and model 149

(Ma and He, 2013). 150

2.2.1 Random Oversampling 151

Random Oversampling can influence models like 152

SVMs and decision trees. However, it risks 153

overfitting in severely imbalanced datasets (Branco 154

et al., 2015). 155

2.2.2 Random Undersampling 156

Random Undersampling is suitable when sufficient 157

minority class examples exist. It involves reducing 158

instances from the majority class, but may discard 159

valuable data. 160

3 Problem Formulation 161

In this section, we describe the context of our study 162

case, a real-world classification problem found in 163

TJSP (Tribunal de Justiça de São Paulo), and after, 164

we formulate the mathematical problem and our 165

fitness function. 166

3.1 Context 167

In Brazilian justice courts, a mechanism of 168

Repetitive Appeal enables the simultaneous 169

adjudication of multiple special appeals that 170

address an identical legal dispute. Through 171

sampling, specific cases are chosen and forwarded 172

to the Superior Court of Justice, in Brazil, for 173
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allocation. Subsequently, all cases about the same174

subject matter are put on hold until the resolution175

of the repetitive appeal. Once the repetitive176

appeal is decided, the ruling is consolidated as177

a “Repetitive Theme”. Upon publication of the178

decision regarding the repetitive issue, it becomes179

applicable to the other suspended proceedings. It is180

important to note that the numbering of these cases181

may not follow a sequential order, as the theme is182

either pending judgment or invalidated.183

Our study case comprises a lawsuit classification184

into repetitive theme 929. Theme 929 discusses185

the hypotheses for applying the double repetition186

provided in art. 42, sole paragraph, of Federal187

Law n. 8.078/1990, also known as the Consumer188

Defense Code, namely:189

Art. 42. In debt collection, the190

defaulting consumer will not be exposed191

to ridicule, nor will he be subjected to192

any embarrassment or threat.193

Single paragraph. The consumer194

charged an undue amount has the right195

to repeat the undue amount for an196

amount equal to twice what he paid in197

excess, plus monetary correction and198

legal interest, except in the case of a199

justifiable mistake.200

The training set has 13,570 texts of lawsuit201

decisions, through which one should infer whether202

the lawsuit belongs to repetitive theme 929203

(class_1) or not (class_0). This is an imbalanced204

classification problem, given that 2,088 lawsuits205

belong to the theme repetitive 929 and 11,482 do206

not. So, the class distribution of the training set207

is about a 1:5 ratio for the minority class to the208

majority class. The validation set has 2,560 texts209

of lawsuit decisions, 584 of them of theme 929210

(class_1) and 1,976 not (class_0). In this case, the211

class distribution of the validation set is about a 1:3212

ratio for the minority class to the majority class.213

Figure 1 shows class distributions of the training214

and validation sets.215

On the one hand, we want to correct the rare216

repetitive themes (true positives) of the production217

dataset; on the other hand, we do not want to218

erroneously point out legal cases as repetitive219

themes (false positives) since the judicial process220

has its procedure suspended.221

3.2 Mathematical Formulation 222

In CSL, a “cost” is a penalty associated with 223

an incorrect prediction. Minimizing the total 224

cost is the primary goal when using CSL to 225

train a predictive model, by assuming that 226

different types of prediction errors have different 227

and known associated costs. Applying CSL 228

for imbalanced classification problems concerns 229

assigning different costs associated with the 230

different misclassification errors to then using 231

specialized methods to take those costs into 232

account. A cost matrix helps to understand the 233

misclassification of miscellaneous costs. 234

A confusion matrix summarises the 235

classifications made by a model for each 236

class, separated by the class to which each instance 237

belongs. Cell valour in the table refers to the 238

number of samples corresponding to respective 239

rows and columns. The hits are True Positives 240

(TP) and True Negatives (TN). The errors are 241

False Positives (FP) and False Negatives (FN). 242

By assigning a cost to each of the cells of the 243

confusion matrix, we have a cost matrix (Elkan, 244

2001). Table 1 shows a confusion matrix for a 245

binary classification, where the columns refer 246

to the actual classes, and the rows refer to the 247

predicted classes. We use the notation C(i, j) to 248

indicate the cost, the first value, i, represented 249

as the predicted class and the second value, j, 250

represents the actual class.

Table 1: Cost Matrix

Actual
Negative

Actual
Positive

Predicted
Negative

C(0,0),
TN

C(0,1),
FN

Predicted
Positive

C(1,0),
FP

C(1,1),
TP

251

Equation 1 calculates the total cost of 252

misclassification errors. Depending on the problem 253

domain, the cost can be given by a simple 254

function or a complex multi-dimensional function, 255

including monetary costs, reputation costs, and 256

more. For imbalanced classification tasks, the most 257

straightforward approach is to consider C(i, j) as 258

constant, assigning costs based on the inverse class 259

distribution. For our training set, with a 1 to 5 ratio 260

of instances in the minority class to the majority 261

class, the cost of misclassification errors can be the 262

3



Figure 1: Lawsuit Decisions Sets With Class Imbalance.

inverse: the cost of a False Negative is five and the263

cost of a False Positive is 1.264

TotalCost = C(0, 1) ∗FN +C(1, 0) ∗FP (1)265

Thus, the problem can be formulated as: to266

find out the cost-sensitive technique that better267

minimises the total cost of misclassification errors268

in the repetitive theme 929.269

4 Study Case270

In this section, we report our experiment with a271

real study case from lawsuit decisions classification272

from Court São Paulo. These decisions are273

classified into two distinct categories: classifying274

whether a lawsuit belongs to a collection of275

lawsuits that pertain to the repetitive theme276

(class_1), or if it does not (class_0).Our primary277

objective is to address the research query: which278

learning cost-sensitive algorithm better minimize279

the total misclassification cost in lawsuit decisions280

classification task using our imbalanced dataset?281

Our imbalanced dataset, described in Section3,282

was vectorization by TF-IDF technique(Salton and283

Buckley, 1988), using 3,000 features, formatted284

by n-grams with n ranging from 1 to 5. We285

use a transformer to perform linear dimensionality286

reduction by means of truncated singular value287

decomposition, in order to show how the lawsuits288

decisions texts of both classes are spreed in our289

dataset. We compare five classifiers: Support290

Vector Machine (SVM), Decision Tree (DT),291

Logistic Regression (LR), Extreme Gradient292

Boosting algorithm (XGBoost) and Random Forest293

(RF).294

4.1 Weightings Tuning 295

We use the scikit-learn Python ML 296

library (Pedregosa et al., 2011) to implement the 297

cost-sensitive SVM, DT, and LR. This library 298

provide the class_weight argument that defines 299

each class label and the weighting to apply to the λ 300

value in the calculation of the soft margin. In case 301

of XGBoost (Chen and Guestrin, 2016), scikit- 302

learn fits the scale_pos_weight hyperparameter to 303

to implement the cost-sensitive XGBoost. We use 304

repeated cross-validation to evaluate the model, 305

with three repeats of 10-fold cross-validation. The 306

mode performance is reported using the mean 307

ROC area under curve (ROC AUC) averaged over 308

repeats and all folds. We test a range of different 309

class weightings for weighted SVM, DT, and LR 310

to find out which results in the best ROC AUC 311

score. 312

Table 2 shows the results in the ROC AUC 313

score to each class_weightg and scale_pos_weight 314

for weighted SVM, DT, LR, XGBoost, and RF. 315

For SVM, DT, and LR algorithms, the best ROC 316

AUC score was with class weightings {0: 5, 1: 317

1}, whereas for RF, with class weightings {0: 1, 318

1: 1}. The weighted XGBoost achieved its best 319

ROC AUC score using scale_pos_weight equal 5. 320

Considering all ROC AUC scores, the best was 321

0.999107 with a standard deviation of 0.000807 322

using SVM, followed by 0.999083 with a standard 323

deviation of 0.000984 using LR, 0.998924 with 324

a standard deviation of 0.001016 using XGBoost, 325

0.998797 with standard deviation 0.000956 using 326

RF, and, lastly, DT achieved 0.968991 in ROC 327

AUC score with standard deviation 0.005106. 328
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Table 2: ROC AUC Score of Cost-Sensitive Algorithms.

Algor. Mean SD Weightings

SVM

0.999107 0.000807 class_weight:{0: 5.0, 1: 1.0}
0.999101 0.000809 class_weight:{0: 2.5, 1: 1.0}
0.999061 0.000836 class_weight:{0: 1.0, 1: 1.0}
0.999064 0.000827 class_weight:{0: 1.0, 1: 2.5}
0.999064 0.000827 class_weight:{0: 1.0, 1: 5.0}

DT

0.968991 0.005106 class_weight:{0: 5.0, 1: 1.0}
0.968107 0.007710 class_weight:{0: 2.5, 1: 1.0}
0.967528 0.007746 class_weight:{0: 1.0, 1: 1.0}
0.967547 0.007170 class_weight:{0: 1.0, 1: 2.5}
0.963844 0.010183 class_weight:{0: 1.0, 1: 5.0}

LR

0.999083 0.000984 class_weight:{0: 5.0, 1: 1.0}
0.999068 0.000961 class_weight:{0: 2.5, 1: 1.0}
0.999027 0.000940 class_weight:{0: 1.0, 1: 1.0}
0.999065 0.000946 class_weight:{0: 1.0, 1: 2.5}
0.999079 0.000944 class_weight:{0: 1.0, 1: 5.0}

XGBoost

0.998914 0.001245 scale_pos_weight:{1}
0.998901 0.001185 scale_pos_weight:{2}
0.998898 0.001103 scale_pos_weight:{3}
0.998919 0.001070 scale_pos_weight:{4}
0.998924 0.001016 scale_pos_weight:{5}

RF

0.998695 0.000949 class_weight:{0: 5.0, 1: 1.0}
0.998744 0.000915 class_weight:{0: 2.5, 1: 1.0}
0.998797 0.000956 class_weight:{0: 1.0, 1: 1.0}
0.998774 0.000957 class_weight:{0: 1.0, 1: 2.5}
0.998771 0.000947 class_weight:{0: 1.0, 1: 5.0}

4.2 Model Training329

Various performance metrics have been used for330

imbalance classification tasks. In this study,331

we use the most popular of them, balanced332

accuracy f1-score, geometric mean (g-mean) and333

Cohen’s kappa (kappa) to assess the predictive334

performance of the imbalanced classification335

approaches using random resampling methods. We336

report the performance obtained for the training337

and validation sets.338

First, we use train the models for the339

classification tasks using cost-sensitive340

algorithms, unsetting the class_weight and341

the scale_pos_weight hyperparameters, which342

provide the best ROC AUC score for each343

algorithm. After, we train the models for the344

classification tasks using random resampling345

methods. Afterwards, we evaluate performance346

metrics to classification using training and347

validation sets using cost-sensitive algorithms,348

c.f. shown in Table 3 and Table 4. Table 5 and349

Table 6 show metrics using the oversampling350

method. Table 7 and Table 8 show metrics using351

undersampling method. Table 9 and Table 10352

show metrics using the combination of over and353

undersampling.354

In the training set, all cost-sensitive algorithms355

tested achieved good predictive performance356

(above 99%), c.f. shown in Table 3. In the357

Table 3: Cost-sensitive Algorithms - Training.

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9990 0.9997 0.9997 0.9997 0.9990 0.9989
DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LR 0.9930 0.9945 0.9945 0.9945 0.9930 0.9789
XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4: Cost-sensitive Algorithms - Validation.

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9811 0.9867 0.9867 0.9867 0.9811 0.9622
DT 0.9759 0.9783 0.9777 0.9779 0.9759 0.9377
LR 0.9842 0.9868 0.9867 0.9868 0.9841 0.9625
XGBoost 0.9876 0.9885 0.9883 0.9883 0.9876 0.9670
RF 0.9872 0.9870 0.9867 0.9868 0.9872 0.9627

Table 5: Oversampling Method - Training

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9981 0.9982 0.9982 0.9982 0.9981 0.9932
DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LR 0.9916 0.9933 0.9932 0.9932 0.9916 0.9742
XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6: Oversampling Method - Validation.

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9825 0.9878 0.9878 0.9878 0.9824 0.9655
DT 0.9764 0.9790 0.9785 0.9786 0.9764 0.9398
LR 0.9831 0.9853 0.9851 0.9852 0.9831 0.9582
XGB 0.9855 0.9879 0.9878 0.9879 0.9855 0.9658
RF 0.9871 0.9870 0.9867 0.9867 0.9871 0.9627

Table 7: Undersampling Method - Training.

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9981 0.9982 0.9982 0.9982 0.9981 0.9932
DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LR 0.9916 0.9933 0.9932 0.9932 0.9916 0.9742
XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 8: Undersampling Method - Validation.

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9825 0.9878 0.9878 0.9878 0.9824 0.9655
DT 0.9764 0.9790 0.9785 0.9785 0.9764 0.9398
LR 0.9831 0.9853 0.9851 0.9851 0.9831 0.9582
XGB 0.9855 0.9879 0.9878 0.9878 0.9855 0.9658
RF 0.9871 0.9870 0.9867 0.9867 0.9871 0.9627

Table 9: Over and Undersampling Method - Training.

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9981 0.9982 0.9982 0.9982 0.9981 0.9932
DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LR 0.9916 0.9933 0.9932 0.9932 0.9916 0.9742
XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 10: Over and Undersampling Method - Validation.

Algorithm bal_acc precision recall f1-score g-mean kappa
SVM 0.9825 0.9878 0.9878 0.9878 0.9824 0.9655
DT 0.9764 0.9790 0.9785 0.9786 0.9764 0.9398
LR 0.9831 0.9853 0.9851 0.9852 0.9831 0.9582
XGB 0.9855 0.9879 0.9878 0.9879 0.9855 0.9658
RF 0.9871 0.9870 0.9867 0.9867 0.9871 0.9627
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Figure 2: Comparison between Cost-sensitive(CS) and Data Sampling (DS) Methods for Training set.

Figure 3: Comparison between Cost-sensitive(CS) and Data Sampling (DS) Methods for Validation set.

validation set, all cost-sensitive algorithms also358

achieved good results (above 97%), highlighting359

XGBoost, which obtained the highest scores,360

namely: balance accuracy equal 98.76%, precision361

equal 98.85%, recall equal 98.83%, f1-score362

equal 98.83%, g-mean equal 98.76% , and kappa363

equal 98.70%. The oversampling, undersampling,364

and the oversamplingundersampling combination365

methods achieved the same results in performance366

metrics, both in training and validation sets, c.f.367

we can note in Tables 5, 6, 7, 8, 9, and 10. In the368

training set, oversampling, undersampling, and the369

oversamplingundersampling combination methods370

achieved results (above 99%) in performance371

metrics. In the validation set, the three data372

sampling tested also achieved good results (above373

97%), highlighting RF, which obtained the highest374

balance accuracy (98.71%) and g-mean (98.71%);375

and SVM and XGBoost, which obtained the376

highest precision (98.78%), recall (98.78%), f1- 377

score(98.78%), and kappa (96.55%). 378

In the Figure 2 and 3 are showed the comparison 379

of the metric performance results of cost-sensitive 380

algorithms and of the data sampling methods, 381

respectively. Both achieved good results and 382

although the results of cost-sensitive algorithms 383

were subtly higher than the data sampling methods 384

results, statistical tests are needed to claim if there 385

is a significant difference between them. 386

5 Conclusion 387

This paper investigated the distribution of 388

classes in imbalanced classification problems and 389

how it affects data preparation and modelling 390

algorithms. We described the concept of 391

cost-sensitive algorithms, which consider the 392

imbalanced class distribution and aim to provide 393

equitable treatment to both majority and minority 394

classes. These algorithms enhance the accuracy of 395

6



predictions on imbalanced datasets by capturing396

their intricacies. We presented a pipeline for397

configuring hyperparameters and training models398

to identify the best cost-sensitive algorithm for a399

specific study case. The cost-sensitive Extreme400

Gradient Boosting algorithm is highlighted as an401

effective solution for mitigating the impact of class402

imbalance and reducing misclassification costs403

in a lawsuit decision classification task using an404

imbalanced dataset.405
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