Cost-Sensitive Algorithms for Imbalanced Text Classification: a study case
in Brazilian legal domain

Anonymous ACL submission

Abstract

This article discusses the challenges of
imbalanced classification in machine learning,
where algorithms often wrongly assume an
even distribution of instances across classes.
This issue is common in real-world scenarios,
leading to poor representation of minority
classes in training data. To combat this,
Cost-Sensitive Learning techniques have been
developed, focusing on minimizing the overall
misclassification cost rather than merely
optimizing accuracy. These techniques
are categorized into three types: Cost-
Sensitive Resampling, Algorithms, and Hybrid
techniques. The research presents a case
study on classifying lawsuits into repetitive
themes in Sao Paulo Court, Brazil, using these
cost-sensitive approaches on an imbalanced
dataset. The goal is to automate the
classification of lawsuits to save time, use
human resources more effectively, and speed
up lawsuit resolution. The study highlights
the effectiveness of cost-sensitive techniques
in handling imbalanced classification and their
benefits in real-world applications, particularly
in the legal field, by enhancing efficiency and
reducing manual workload and processing time
for lawsuits.

1 Introduction

The vast majority of machine learning (ML)
algorithms designed for classification tasks assume
an equal distribution of instances across the
observed classes. However, this assumption
only holds in some practical scenarios. In
most real world situations, classification datasets
are imbalanced. Imbalanced classification,
characterized by skewed class distributions, poses
significant challenges in applied ML, primarily due
to the assumption of balanced class distribution
and uniform prediction errors made by classifiers,
encompassing false negatives and false positives.
Consequently, accurately identifying instances

from the minority class becomes crucial, along
with addressing the under-representation of the
minority class in training data, making Imbalanced
classification stand out as one of the most
challenging predicaments in ML (Thai-Nghe et al.,
2010).

We can deal with imbalanced classification tasks
using several conceptualizations and techniques
developed and employed under the umbrella of
Cost-Sensitive Learning (CSL), which considers
the costs associated with prediction errors, among
other costs, during the training of a ML model.
These costs represent the penalties incurred
from incorrect predictions. In CSL, instead of
classifying instances as correct or incorrect, a
misclassification cost is assigned to each class
or instance. Therefore, the objective shifts
from optimizing accuracy to minimizing the total
misclassification cost (Ma and He, 2013). The
primary aim of CSL is to reduce the overall cost
incurred by a model during its training, assuming
that different types of prediction errors have distinct
and known associated costs (Sammut and Webb,
2011).

In many previous studies, researchers have
focused on modifying the internal structure of
conventional classification procedures to adjust
the algorithm’s sensitivity towards the larger class.
These efforts aimed to address the challenges
posed by class imbalance. On the other hand,
some authors have taken a different approach
by proposing novel methods to alleviate the
imbalanced class distribution. Their work has
explored alternative strategies to tackle the class
imbalance problem (Zhao et al., 2011; Galar et al.,
2011; Pang et al., 2013; Dai, 2015).

In this work, we present a case study that
applies and compares Cost-Sensitive techniques
on an imbalanced dataset of legal texts from
the Sao Paulo Court (Tribunal de Justica de
Sao Paulo or TJSP) in Brazil. The case study

focuses on the classification of lawsuits into
repetitive themes, which refer to sets of lawsuits
on appeal sharing identical legal arguments based
on similar questions of law. At TISP, civil servants
face the daily challenge of manually reading
numerous lengthy lawsuit decisions to determine
their classification as repetitive. By automating
the classification of repetitive themes, the process
can be expedited, saving time and facilitating faster
resolution of lawsuits (de Justica Departamento de
Pesquisas Judiciarias, 2022 [Online].).

The rest of this paper is organised as follows:
Section 2 presents a background and a brief
description of techniques and methodologies
employed; Section 3 describes the environment
of repetitive theme in legal domain and formulates
the problem; Section 4 reports experiments; and,
Section 5 presents our conclusions.

2 Background

This section discusses three Cost-Sensitive
Learning (CSL) approaches for imbalanced
learning: Cost-Sensitive Resampling, Cost-
Sensitive Algorithms, and Cost-Sensitive Hybrid
approaches, as detailed in (Elkan, 2001). These
methods modify training set composition or
algorithm parameters to address the imbalances
in classification tasks.

2.1 Cost-Sensitive Algorithms

Cost-Sensitive Algorithms involve incorporating
cost matrices into machine learning (ML)
algorithms. This requires unique modifications
for each algorithm, such as the Support Vector
Machine (SVM), Decision Tree (DT), and Logistic
Regression (LR) (Quinlan, 1986; Hearst et al.,
1998; M.D., 1944).

2.1.1 Cost-Sensitive SVM

The SVM algorithm can be adapted for imbalanced
datasets by modifying the margin, making it cost-
sensitive. This version, termed weighted SVM,
uses a regularization hyperparameter to prioritize
the minority class (Yang et al., 2007; Kuhn et al.,
2013).

2.1.2 Cost-Sensitive DT

For Decision Trees, modifying the criteria for
evaluating split points can help address class
imbalances, creating a weighted decision tree.

2.1.3 Cost-Sensitive LR

Logistic Regression can be adapted by adjusting
the weights during the training phase, resulting in a
cost-sensitive version better suited for imbalanced
classification tasks.

2.1.4 Cost-Sensitive XGBoost

XGBoost can be made cost-sensitive by adjusting
the ‘scale_pos_weight‘ hyperparameter, improving
its performance on imbalanced datasets.

2.1.5 Cost-Sensitive RF

Random Forest (RF) can be adapted to imbalanced
problems by weighting classes during the
calculation of the impurity score for split points,
resulting in a Weighted Random Forest (Chen et al.,
2004).

2.2 Random Sampling

Random sampling techniques,
oversampling and undersampling, adjust the
class distribution in the training set. These
methods are simple and can be effective, but their
efficiency varies based on the dataset and model
(Ma and He, 2013).

including

2.2.1 Random Oversampling

Random Oversampling can influence models like
SVMs and decision trees. However, it risks
overfitting in severely imbalanced datasets (Branco
et al., 2015).

2.2.2 Random Undersampling

Random Undersampling is suitable when sufficient
minority class examples exist. It involves reducing
instances from the majority class, but may discard
valuable data.

3 Problem Formulation

In this section, we describe the context of our study
case, a real-world classification problem found in
TJSP (Tribunal de Justica de Sao Paulo), and after,
we formulate the mathematical problem and our
fitness function.

3.1 Context

In Brazilian justice courts, a mechanism of
Repetitive Appeal enables the simultaneous
adjudication of multiple special appeals that
address an identical legal dispute. Through
sampling, specific cases are chosen and forwarded
to the Superior Court of Justice, in Brazil, for

allocation. Subsequently, all cases about the same
subject matter are put on hold until the resolution
of the repetitive appeal. Once the repetitive
appeal is decided, the ruling is consolidated as
a “Repetitive Theme”. Upon publication of the
decision regarding the repetitive issue, it becomes
applicable to the other suspended proceedings. It is
important to note that the numbering of these cases
may not follow a sequential order, as the theme is
either pending judgment or invalidated.

Our study case comprises a lawsuit classification
into repetitive theme 929. Theme 929 discusses
the hypotheses for applying the double repetition
provided in art. 42, sole paragraph, of Federal
Law n. 8.078/1990, also known as the Consumer
Defense Code, namely:

Art. 42. In debt collection, the
defaulting consumer will not be exposed
to ridicule, nor will he be subjected to
any embarrassment or threat.

Single paragraph. The consumer
charged an undue amount has the right
to repeat the undue amount for an
amount equal to twice what he paid in
excess, plus monetary correction and
legal interest, except in the case of a
Jjustifiable mistake.

The training set has 13,570 texts of lawsuit
decisions, through which one should infer whether
the lawsuit belongs to repetitive theme 929
(class_1) or not (class_0). This is an imbalanced
classification problem, given that 2,088 lawsuits
belong to the theme repetitive 929 and 11,482 do
not. So, the class distribution of the training set
is about a 1:5 ratio for the minority class to the
majority class. The validation set has 2,560 texts
of lawsuit decisions, 584 of them of theme 929
(class_1) and 1,976 not (class_0). In this case, the
class distribution of the validation set is about a 1:3

ratio for the minority class to the majority class.

Figure 1 shows class distributions of the training
and validation sets.

On the one hand, we want to correct the rare
repetitive themes (true positives) of the production
dataset; on the other hand, we do not want to
erroneously point out legal cases as repetitive
themes (false positives) since the judicial process
has its procedure suspended.

3.2 Mathematical Formulation

In CSL, a “cost” is a penalty associated with
an incorrect prediction. Minimizing the total
cost is the primary goal when using CSL to
train a predictive model, by assuming that
different types of prediction errors have different
and known associated costs. Applying CSL
for imbalanced classification problems concerns
assigning different costs associated with the
different misclassification errors to then using
specialized methods to take those costs into
account. A cost matrix helps to understand the
misclassification of miscellaneous costs.

A confusion matrix summarises the
classifications made by a model for each
class, separated by the class to which each instance
belongs. Cell valour in the table refers to the
number of samples corresponding to respective
rows and columns. The hits are True Positives
(TP) and True Negatives (TN). The errors are
False Positives (FP) and False Negatives (FN).
By assigning a cost to each of the cells of the
confusion matrix, we have a cost matrix (Elkan,
2001). Table 1 shows a confusion matrix for a
binary classification, where the columns refer
to the actual classes, and the rows refer to the
predicted classes. We use the notation C'(7, j) to
indicate the cost, the first value, i, represented
as the predicted class and the second value, j,
represents the actual class.

Table 1: Cost Matrix

Actual Actual

Negative Positive
Predicted C(0,0), C(0,1),
Negative TN FN
Predicted C(1,0), C(1,1),
Positive FP TP

Equation 1 calculates the total cost of
misclassification errors. Depending on the problem
domain, the cost can be given by a simple
function or a complex multi-dimensional function,
including monetary costs, reputation costs, and
more. For imbalanced classification tasks, the most
straightforward approach is to consider C(z, j) as
constant, assigning costs based on the inverse class
distribution. For our training set, with a 1 to 5 ratio
of instances in the minority class to the majority
class, the cost of misclassification errors can be the

Train Dataset

Class_0

0.4 H Class_1

0.2

0.0

-0.4

0.4 0.5 0.6 0.7 0.8

Validation Dataset

Class_0
H Class_1
0.4

0.2

0.0

-0.2

-0.4

0.4 0.5 0.6 0.7 0.8

Figure 1: Lawsuit Decisions Sets With Class Imbalance.

inverse: the cost of a False Negative is five and the
cost of a False Positive is 1.

TotalCost = C(0,1)* FN + C(1,0)x FP (1)

Thus, the problem can be formulated as: fo
find out the cost-sensitive technique that better
minimises the total cost of misclassification errors
in the repetitive theme 929.

4 Study Case

In this section, we report our experiment with a
real study case from lawsuit decisions classification
from Court Sdo Paulo. These decisions are
classified into two distinct categories: classifying
whether a lawsuit belongs to a collection of
lawsuits that pertain to the repetitive theme
(class_1), or if it does not (class_0).Our primary
objective is to address the research query: which
learning cost-sensitive algorithm better minimize
the total misclassification cost in lawsuit decisions
classification task using our imbalanced dataset?

Our imbalanced dataset, described in Section3,
was vectorization by TF-IDF technique(Salton and
Buckley, 1988), using 3,000 features, formatted
by n-grams with n ranging from 1 to 5. We
use a transformer to perform linear dimensionality
reduction by means of truncated singular value
decomposition, in order to show how the lawsuits
decisions texts of both classes are spreed in our
dataset. We compare five classifiers: Support
Vector Machine (SVM), Decision Tree (DT),
Logistic Regression (LR), Extreme Gradient
Boosting algorithm (XGBoost) and Random Forest
(RF).

4.1 Weightings Tuning

We use the scikit-learn Python ML
library (Pedregosa et al., 2011) to implement the
cost-sensitive SVM, DT, and LR. This library
provide the class_weight argument that defines
each class label and the weighting to apply to the A
value in the calculation of the soft margin. In case
of XGBoost (Chen and Guestrin, 2016), scikit-
learn fits the scale_pos_weight hyperparameter to
to implement the cost-sensitive XGBoost. We use
repeated cross-validation to evaluate the model,
with three repeats of 10-fold cross-validation. The
mode performance is reported using the mean
ROC area under curve (ROC AUC) averaged over
repeats and all folds. We test a range of different
class weightings for weighted SVM, DT, and LR
to find out which results in the best ROC AUC
score.

Table 2 shows the results in the ROC AUC
score to each class_weightg and scale_pos_weight
for weighted SVM, DT, LR, XGBoost, and RF.
For SVM, DT, and LR algorithms, the best ROC
AUC score was with class weightings {0: 5, 1:
1}, whereas for RF, with class weightings {0: 1,
1: 1}. The weighted XGBoost achieved its best
ROC AUC score using scale_pos_weight equal 5.
Considering all ROC AUC scores, the best was
0.999107 with a standard deviation of 0.000807
using SVM, followed by 0.999083 with a standard
deviation of 0.000984 using LR, 0.998924 with
a standard deviation of 0.001016 using XGBoost,
0.998797 with standard deviation 0.000956 using
RF, and, lastly, DT achieved 0.968991 in ROC
AUC score with standard deviation 0.005106.

Table 2: ROC AUC Score of Cost-Sensitive Algorithms.

Table 3: Cost-sensitive Algorithms - Training.

Algor. Mean SD Weightings Algorithm bal_acc precision recall fl-score g-mean Kkappa
; SVM 09990 09997 0.9997 09997 0.9990 0.9989

0.999107 0.000807 classqught.{o. 5.0, 1: 1.0} DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0999101 0.000809 class_weight:{0: 2.5, 1: 1.0} LR 09930 09945 09945 09945 09930 09789

SVM 0.999061 0.000836 class_weight:{0: 1.0, 1: 1.0} XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.999064 0.000827 class_weight:{0: 1.0, 1: 2.5} RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.999064 0.000827 class_weight:{0: 1.0, 1: 5.0}
0.968991 0.005106 class_weight:{0: 5.0, 1: 1.0} . . . X
0.968107 0.007710 class_weight:{O: 2.5,1: 1.0} Table 4: Cost-sensitive Algorlthms - Validation.

DT 0.967528 0.007746 class_weight:{0: 1.0, 1: 1.0}

0.967547 0.007170 class_weight:{0: 1.0, 1: 2.5} Algorithm bal_acc precision recall fl-score g-mean kappa
0.963844 0.010183 class_weight:{0: 1.0, I 5.0} SVM 09811 09867 09867 09867 09811 0.9622
= DT 09759 09783 09777 09779 09759 0.9377
0.999083 0.000984 classfwe}ght:{O: 5.0, 1: 1.0} LR 09842 0.9863 09867 09868 09841 0.9625
0.999068 0.000961 class_weight:{0: 2.5, 1: 1.0} XGBoost 09876 09885 09883 09883 09876 0.9670
LR 0.999027 0.000940 class_weight:{0: 1.0, 1: 1.0} RF 09872 09870 09867 09868 09872 0.9627
0.999065 0.000946 class_weight:{0: 1.0, 1: 2.5}
0.999079 0.000944 class_weight:{0: 1.0, 1: 5.0} . L
0.998914 0.001245 scale_pos_weight:{1} Table 5: Oversampling Method - Training
0.998901 0.001185 scale_pos_weight:{2}
XGBoost 0.998898 0.001103 scale_pos_weight:{3} Algorithm bal_acc precision recall fl-score g-mean Kkappa
0.998919 0.001070 scale_pos_weight: {4} SVM 0.9981 09982 09982 09982 0.9981 0.9932
- DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0998924 0.001016 scale_pos_weight:{5} LR 09916 09933 09932 09932 09916 0.9742
0.998695 0.000949 class_weight:{0: 5.0, 1: 1.0} XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.998744 0.000915 class_weight:{0: 2.5, 1: 1.0} RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RF 0.998797 0.000956 class_weight:{0: 1.0, 1: 1.0}
0.998774 0.000957 class_weight:{0: 1.0, 1: 2.5} . L
0.998771 0.000947 class_weight:{0: 1.0, 1: 5.0} Table 6: Oversampling Method - Validation.
Algorithm bal_acc precision recall fl-score g-mean kappa
SVM 09825 09878 09878 09878 09824 0.9655
4.2 Model Training DT 0.9764 0.9790 0.9785 0.9786 0.9764 0.9398
LR 09831 09853 09851 09852 09831 0.9582
Various performance metrics have been used for XGB 09855 09879 0.9878 ~0.9879 0.9855 ~ 0.9658
. . . . RF 09871 09870 09867 09867 09871 0.9627
imbalance classification tasks. In this study,
we use the most pOplﬂan of them, balanced Table 7: Undersampling Method - Training.
accuracy fl-score, geometric mean (g-mean) and
Cohen’s kappa (kappa) to assess the predictive Algorithm bal_acc precision recall fl-score g-mean kappa
; . A SVM 0.9981 09982 09982 09982 0.9981 0.9932
performance of the imbalanced -classification DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
. : LR 0.9916 09933 09932 09932 09916 0.9742
approaches using random res§mp ling methods.. We XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
report the performance obtained for the training RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
and validation sets.

First’ we use train the models for the Table &: Undersampling Method - Validation.
ClaSSl.ﬁCathn tasks using COSt.-SCHSlthC Algorithm bal_acc precision recall fl-score g-mean kappa
algorithms, unsetting the class_weight and SVM 09825 09878 09878 09878 09824 0.9655
h | ioht h hich DT 09764 09790 09785 09785 09764 0.9398
the scale_pos_weig yperparameters, whic LR 09831 09853 09851 09851 09831 0.9582
provide the best ROC AUC score for each XGB 0.9855 0.9879 0.9878 0.9878 0.9855 0.9658

RF 09871 09870 09867 09867 09871 0.9627

algorithm. After, we train the models for the
classification tasks using random resampling
methods. Afterwards, we evaluate performance
metrics to classification using training and
validation sets using cost-sensitive algorithms,
c.f. shown in Table 3 and Table 4. Table 5 and
Table 6 show metrics using the oversampling
method. Table 7 and Table 8 show metrics using
undersampling method. Table 9 and Table 10
show metrics using the combination of over and
undersampling.

In the training set, all cost-sensitive algorithms
tested achieved good predictive performance
(above 99%), c.f. shown in Table 3. In the

Table 9: Over and Undersampling Method - Training.

Algorithm bal_acc precision recall fl-score g-mean Kkappa
SVM 0.9981 0.9982 0.9982 0.9982 0.9981 0.9932
DT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LR 0.9916 0.9933 0.9932 09932 0.9916 0.9742
XGBoost 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 10: Over and Undersampling Method - Validation.

Algorithm bal_acc precision recall fl-score g-mean kappa
SVM 0.9825 0.9878 0.9878 0.9878 0.9824 0.9655
DT 0.9764 0.9790 0.9785 0.9786 0.9764 0.9398
LR 0.9831 0.9853 0.9851 0.9852 0.9831 0.9582
XGB 0.9855 0.9879 0.9878 0.9879 0.9855 0.9658
RF 0.9871 0.9870 0.9867 0.9867 0.9871 0.9627

98%

¢ bal_acc

precision
recall

¢ fl

¢ gmean

+ kappa

KU NN S S SR NP XN SN
S & S o8 2 S & 2 QS &
& @] @] +(, O 06 Q Q +C9 Q
& &

99% ¢ bal_acc
precision
— recall
: ’ ¢ fl
A =& A
4 — ~—— 96% _~ —¢ ¢ gmean
96% \
; / + kappa
95% 049 4
~’, &
93%
N ,0& N & & S ,O/\ N & &
S o g7 o & SR 7L P
& O (@ O < & Q NS Q
& N

Figure 3: Comparison between Cost-sensitive(CS) and Data Sampling (DS) Methods for Validation set.

validation set, all cost-sensitive algorithms also
achieved good results (above 97%), highlighting
XGBoost, which obtained the highest scores,
namely: balance accuracy equal 98.76%, precision
equal 98.85%, recall equal 98.83%, fl-score
equal 98.83%, g-mean equal 98.76% , and kappa
equal 98.70%. The oversampling, undersampling,
and the oversamplingundersampling combination
methods achieved the same results in performance
metrics, both in training and validation sets, c.f.
we can note in Tables 5, 6, 7, 8, 9, and 10. In the
training set, oversampling, undersampling, and the
oversamplingundersampling combination methods
achieved results (above 99%) in performance
metrics. In the validation set, the three data
sampling tested also achieved good results (above
97%), highlighting RF, which obtained the highest
balance accuracy (98.71%) and g-mean (98.71%);
and SVM and XGBoost, which obtained the

highest precision (98.78%), recall (98.78%), f1-
score(98.78%), and kappa (96.55%).

In the Figure 2 and 3 are showed the comparison
of the metric performance results of cost-sensitive
algorithms and of the data sampling methods,
respectively. Both achieved good results and
although the results of cost-sensitive algorithms
were subtly higher than the data sampling methods
results, statistical tests are needed to claim if there
is a significant difference between them.

5 Conclusion

This paper investigated the distribution of
classes in imbalanced classification problems and
how it affects data preparation and modelling
algorithms. We described the concept of
cost-sensitive algorithms, which consider the
imbalanced class distribution and aim to provide
equitable treatment to both majority and minority
classes. These algorithms enhance the accuracy of

predictions on imbalanced datasets by capturing
their intricacies. We presented a pipeline for
configuring hyperparameters and training models
to identify the best cost-sensitive algorithm for a
specific study case. The cost-sensitive Extreme
Gradient Boosting algorithm is highlighted as an
effective solution for mitigating the impact of class
imbalance and reducing misclassification costs
in a lawsuit decision classification task using an
imbalanced dataset.

References

Paula Branco, Luis Torgo, and Rita P. Ribeiro.
2015. A survey of predictive modelling under
imbalanced distributions. arxiv.org/abs/1505.01658,
abs/1505.01658.

Chao Chen, Andy Liaw, Leo Breiman, et al. 2004.
Using random forest to learn imbalanced data.
University of California, Berkeley, 110(1-12):24.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
785-794.

Hong-Liang Dai. 2015. Class imbalance learning via
a fuzzy total margin based support vector machine.
Applied Soft Computing, 31:172-184.

Conselho Nacional de Justica Departamento de
Pesquisas Judicidrias. 2022 [Online]. Justica em
ndmeros 2022. Justica em nimeros 2022.

Charles Elkan. 2001. The foundations of cost-sensitive
learning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence - Volume
2, page 973-978. Morgan Kaufmann Publishers Inc.

Mikel Galar, Alberto Fernandez, Edurne Barrenechea,
Humberto Bustince, and Francisco Herrera. 2011.
A review on ensembles for the class imbalance
problem: bagging-, boosting-, and hybrid-based
approaches. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
42(4):463-484.

M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and
B. Scholkopf. 1998. Support vector machines. /IEEE
Intelligent Systems and their Applications, 13(4):18—
28.

Max Kuhn, Kjell Johnson, et al. 2013.
predictive modeling, volume 26. Springer.

Applied

Yunqgian Ma and Haibo He. 2013. Imbalanced learning:
foundations, algorithms, and applications. John
Wiley & Sons.

Joseph Berkson M.D. 1944. Application of the logistic
function to bio-assay. Journal of the American
Statistical Association, 39(227):357-365.

Shaoning Pang, Lei Zhu, Gang Chen, Abdolhossein
Sarrafzadeh, Tao Ban, and Daisuke Inoue. 2013.
Dynamic class imbalance learning for incremental
Ipsvm. Neural Networks, 44:87-100.

Fabian Pedregosa, Ga&l Varoquaux, Alexandre
Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. J. of Machine Learning
Research, 12:2825-2830.

J. Ross Quinlan. 1986. Induction of decision trees.
Machine learning, 1(1):81-106.

Gerard Salton and Chris Buckley. 1988. Term-
weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513—
523.

Claude Sammut
Encyclopedia of machine learning.
Science & Business Media.

and Geoffrey I Webb. 2011.
Springer

Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-
Thieme. 2010. Cost-sensitive learning methods for
imbalanced data. In The 2010 International joint
conference on neural networks), pages 1-8. IEEE.

Xulei Yang, Qing Song, and Yue Wang. 2007.
A weighted support vector machine for data
classification. International Journal of Pattern
Recognition and Artificial Intelligence, 21(05):961—
976.

Zhuangyuan Zhao, Ping Zhong, and Yaohong Zhao.
2011. Learning svm with weighted maximum
margin criterion for classification of imbalanced
data. Mathematical and Computer Modelling, 54(3-
4):1093-1099.

http://arxiv.org/abs/1505.01658
http://arxiv.org/abs/1505.01658
http://arxiv.org/abs/1505.01658
https://doi.org/10.1109/5254.708428
https://doi.org/10.1080/01621459.1944.10500699
https://doi.org/10.1080/01621459.1944.10500699
https://doi.org/10.1080/01621459.1944.10500699

	Introduction
	Background
	Cost-Sensitive Algorithms
	Cost-Sensitive SVM
	Cost-Sensitive DT
	Cost-Sensitive LR
	Cost-Sensitive XGBoost
	Cost-Sensitive RF

	Random Sampling
	Random Oversampling
	Random Undersampling

	Problem Formulation
	Context
	Mathematical Formulation

	Study Case
	Weightings Tuning
	Model Training

	Conclusion

