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ABSTRACT

Transformers have gained widespread usage in multivariate time series (MTS)
forecasting, delivering impressive performance. Nonetheless, these existing
transformer-based methods often neglect an essential aspect: the incorporation
of uncertainty into the predicted series, which holds significant value in decision-
making. In this paper, we introduce a Transformer-Modulated Diffusion Model
(TMDM), uniting conditional diffusion generative process with transformers into
a unified framework to enable precise distribution forecasting for MTS. TMDM
harnesses the power of transformers to extract essential insights from historical
time series data. This information is then utilized as prior knowledge, capturing
covariate-dependence in both the forward and reverse processes within the dif-
fusion model. Furthermore, we seamlessly integrate well-designed transformer-
based forecasting methods into TMDM to enhance its overall performance. Ad-
ditionally, we introduce two novel metrics for evaluating uncertainty estimation
performance. Through extensive experiments on six datasets using four evalua-
tion metrics, we establish the effectiveness of TMDM in probabilistic MTS fore-
casting.

1 INTRODUCTION

Time series forecasting plays a pivotal role in both the business and scientific domains of ma-
chine learning, serving as a vital tool for supporting decision-making in a wide array of down-
stream applications. These applications encompass, but are not limited to, financial pricing analysis
(Kim), 2003)), transportation planning (Sapankevych & Sankar] 2009)), and weather pattern predic-
tion (Chatfield, 2000), among various other fields (Rasul et al.| [2022). The primary objective of
time series forecasting is to predict the response variable yo.ps € R?*M based on a historical time
series dataset represented as xo.y € R?*N. This prediction process is characterized by the func-
tion f(xo.N) € RY*M where f is a deterministic function that transforms the historical time series
. N into the future time series yo.ns.

Existing time series forecasting methods commonly adopt an additive noise model to represent the
future time series yo.ps as the following: yo.nr = f(xo.n) + Mg, where ng follows a normal
distribution N\ (0, 0'2). Consequently, we can calculate the expected value of yg.ps given xg.n as
E[yo.ar|To.n] = f(xo.n). Classical time series forecasting methods (Liu et al., 2022; Wang et al.,
2022; Zhou et al., [2021)) that rely on this additive noise model typically provide univariate forecasts
by accurately estimating the conditional mean E[yo. s |®o.n]. These models have shown significant
advancements in recent years, particularly with the adoption of transformer-based architectures.
Transformers leverage self-attention mechanisms and designs tailored for handling time series char-
acteristics effectively. This enhancement empowers transformers to excel in modeling long-term
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dependencies within sequential data (Wu et al.| [2021), enabling the development of more potent,
large-scale models (Kenton & Toutanova, [2019).

However, the aforementioned methods pay less attention to whether the noise distribution can ac-
curately capture the uncertainty of yg.p; given xg.y. In time series forecasting, modeling uncer-
tainty holds paramount importance as it directly affects our ability to assess the reliability of pre-
dictions for downstream applications (Rasul et al., 2021b). This uncertainty significantly impacts
decision-making accuracy. For instance, if a point estimation model predicts that the conditional
mean E[yo.as|®o.n] for tomorrow’s temperature is 12 °C, individuals still face a difficult deci-
sion regarding whether to cultivate plants today, as the morning temperature might plummet to
just 4 °C, jeopardizing the plants’ survival. Such models overlook the risks associated with uncer-
tainty, which can be particularly crucial in certain contexts (Kim, [2003}; |Sapankevych & Sankar,
2009). As another example, if we assign the predicted temperature for tomorrow as a Gaussian
distribution, the corresponding uncertainty, represented by N (12,22) or N'(12,82), could directly
influence decision-making processes. The primary objective of this paper is to recover the full
distribution of future time series yg. s, conditioned on the representation captured by existing well-
designed transformer-based models. To achieve this goal,we introduce a novel framework called the
Transformer-Modulated Diffusion Model (TMDM), which unifies the conditional diffusion gen-
erative process (Ho et al.l [2020; [Sohl-Dickstein et al., 2015; [Song et al., 2020) with transformers,
facilitating accurate distribution forecasting for time series.

Recently, diffusion-based generative models have garnered significant attention due to their capacity
to generate high-dimensional data and provide training stability (Han et al.|[2022)). These models can
be viewed from various perspectives, including score matching (Hyvirinen & Dayanl 20055 Vincent,
2011) and Langevin dynamics (Neal et al., 2011} |Welling & Teh, 2011). However, there has been a
recent development in our understanding of these models through the lens of diffusion probabilistic
models (Graikos et al., 2022)). These models initially employ a forward process to transform data
into noise and subsequently use a reverse process to regenerate the data from the noise (Ho et al.
2020).

Current time-series diffusion models (Rasul et al.,|2021a; Tashiro et al.,[2021;|Alcaraz & Strodthoff,
2022; |Shen & Kwokl [2023)) primarily concentrate on crafting effective conditional embeddings to
be fed into the denoising network, which in turn guides the reverse process within the diffusion
model. For instance, TimeGrad (Rasul et al., 2021a) employs the hidden state from an RNN as the
conditional embedding, while TimeDiff (Shen & Kwok, [2023) constructs this embedding based on
two features explicitly designed for time series data. In contrast to prevailing approaches that solely
utilize conditional embeddings during the reverse process, TMDM employs conditional information
as prior knowledge for both the forward and reverse processes. We believe this approach to be a
more efficient means of leveraging the representations captured by existing transformer-based time-
series models (Liu et al.,[2022; Wang et al.,|2022)) as conditions, given their proficiency in estimating
the conditional mean E[yg.rs | 0. ]. Empowered by this potent prior knowledge, TMDM is geared
toward capturing the uncertainty of future time series .y, ultimately providing a comprehensive
estimate of the entire distribution.

We summarize our contributions as follows: (1) In the realm of probabilistic multivariate time series
forecasting, we introduce TMDM, a transformer-based diffusion generative framework. TMDM har-
nesses the representations captured by well-designed transformer-based time series models as priors.
We consider the covariate-dependence across both the forward and reverse processes within the dif-
fusion model, resulting in a highly accurate distribution estimation for future time series. (2) TMDM
integrates diffusion and transformer-based models within a cohesive Bayesian framework, employ-
ing a hybrid optimization strategy, it serves as a plug-and-play framework, seamlessly compatible
with existing well-designed transformer-based forecasting models, leveraging their strong capability
to estimate the conditional mean of time series, facilitating the estimation of complete distributions.
(3) In our experimental evaluation, we explore the application of Prediction Interval Coverage Prob-
ability (PICP) (Yao et al.}|2019) and Quantile Interval Coverage Error (QICE) (Han et al.| 2022) as
metrics in the probabilistic multivariate time series forecasting task. These metrics provide valuable
insights into assessing the uncertainty estimation abilities of probabilistic multivariate time series
forecasting models. Our study demonstrates TMDM’s outstanding performance in four distribution
metrics across six real-world datasets, emphasizing its effectiveness in probabilistic MTS forecast-
ing.



Published as a conference paper at ICLR 2024

2 BACKGROUND

2.1 DIFFUSION MODEL

Diffusion probabilistic models (Sohl-Dickstein et al) 2015) take the form pg(yS: M) =
S po(yd%,)dybt,, where yl.,,, ..., yl. ), represent latent variables (Ho et al., 2020). One well-
known diffusmn model is the denoising diffusion probabilistic model (DDPM) (Ho et al., |2020),
which consists of two processes: the forward (diffusion) process and the reverse process. Following
the Markov chain, the forward process gradually adds noise, transforming an input vector ¥, into
a Gaussian noise vector y¢ ,, over T' steps:

q(yéjﬂ ‘ yg:M) = HtT:1 ‘I(Z’Jé:M | 9632)7 q(Yo.nr | yo M) =NH1- ﬁtyo M75t1) (1
where 3! represents a small positive constant denoting the noise level. In practical applications, we
directly sample y¢ ,, from y{.,, as the following: q(y{..; | ¥0.0) = N(Vatyd ., (1 — o)),
where @' :=1— 3! and of := H?:l a'. The reverse process involves denoising y{,. ,, back to y§.,,

and is defined as a Markov chain with a learned Gaussian transition:

pe(ygfﬂ) = p(y({M) Hthl P9(yé;\} | yé:IVI)v p9(l‘/f);\} | yé:M) = N(Na(yé:zm t), UG(yé:IVh t))

(@)
In DDPM (Ho et al.l 2020), the parameterization of py(y},; | ¥b. ) is defined as:
¢ _ 1ot Bt t
Mo Yo: 7t)_§y: _769(y:/7t)>
( 0:M ( 0:M m 0:M ) (3)

Ue(y(t):]\/fvt) = (Bt)l/Qv ift=1: /Bt :ﬁ17 else : Bt 1 at 5

where the €y is denoising function and which can be trained by solving the following optimization
problem:

min L(0) :=Eyo o0, e~n(0,0),t I€— €0 (Yonrs 1)1 )

Using the trained denoising function eg, we can generate samples step by step from N(0, I') ran-
domly. However, in the context of time series forecasting, the objective is to generate the future
time series yq. s conditioned on the historical time series xg. . Several studies (Rasul et al.,2021a;
Tashiro et al.,|2021}; |Alcaraz & Strodthoff, 2022; Shen & Kwokl, [2023) have explored adapting dif-
fusion models for this task by injecting historical conditional information into the reverse process to
guide the generative process.

2.2  PROBABILISTIC MULTIVARIATE TIME SERIES FORECASTING

Given an observed history MTS xg.y = {x1,22,....,aN | 2t € ]Rd}, probabilistic multivariate
time series forecasting tackles the problem of estimating the distribution of the subsequent future
time series Yo.ar = {p(y1),2(¥2), .-, p(yar) | y¢ € R?}. However, it’s essential to note that the
exact distribution of p(y;) is computationally intractable, prompting the development of various
methods for its approximation. From the perspective of diffusion generation (Sohl-Dickstein et al.,
2015), we establish a Markov chain (Geyer, |1992)) with learned Gaussian transitions, initiating from
p(yg.) = N(0,I), to estimate the distribution of yo. 7.

. T _
po(yoiar | Tow) = p(Wanr) [lir po(Uoiar | Ybinss To:w)

)
po(Yi s | Ybar Ton) == N (po (Yl ars o 1), 00 (Yo ar Ton, )

An essential premise of probabilistic multivariate time series forecasting is the continuity and inter-
relation between the observed history x¢.y and the future time series yg. ;. However, two significant
challenges arise: firstly, how to extract valuable time series information from x¢.n (Shen & Kwok,
2023)), and secondly, how to effectively employ this information to guide the generative process.
Existing transformer-based time series forecasting models (Liu et al.| [2022; [Wu et al.| 2021} Wang
et al., [2022; [Zhou et al.,|2021) tend to overlook the estimation of time series uncertainty.However,
they still have specially designed structures to capture information in the time series, which can
be used as conditional information directly. Regarding the second challenge, recent models (Ra-
sul et al., 2021aj |Alcaraz & Strodthoff] |2022) attempt to inject conditional embeddings into the
denoising network during the reverse process. In contrast to these methods, our proposed model,
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Figure 1: An illustration of the proposed TMDM. The left part is the condition generative model,
containing an existing well-designed transformer, used to generate the condition yg.ps. The right
part is the proposed conditional diffusion-based time series generative model that utilizes yg.5s as
the prior and introduces covariate-dependence into both the forward and reverse diffusion chains.

TMDM, employs conditional information as prior knowledge for both the forward and reverse pro-
cesses within the diffusion model. By integrating conditional information into the forward process,
TMDM can consider a richer set of conditional information during the denoising process. This en-
hancement enables TMDM to better learn the inherent time series properties between x. v (captured
by the condition) and yg.,s (the generated target).

2.3 PICP AND QICE FOR ASSESSING UNCERTAINTY ESTIMATION

To enhance the assessment of uncertainty estimation capabilities in probabilistic multivariate time
series forecasting tasks, we introduce two novel metrics: Prediction Interval Coverage Probability
(PICP) (Yao et al., 2019) and Quantile Interval Coverage Error (QICE) (Han et al., 2022). The
computation of PICP is as the following:

PICP := & Y00 Ty s - 1 _ o (6)
where §1°% and gfﬁlgh represent the low and high percentiles, respectively, of our choice for the
predicted yo. s outputs given the same x. 5 input. In cases where the learned distribution accurately
represents the true distribution, this measurement should closely align with the difference between
the selected low and high percentiles (Han et al., [2022). QICE can be viewed as an extension of
PICP with higher granularity and without any uncovered quantile ranges. Its computation is as the
following:

1 M 1 1 N )
QICE = 37 Yy [rm — qg | Where ry = 5 30 1 Spowm + 1 s (7)

With a sufficient number of yg.;; samples, the first step involves dividing them into M quantile
intervals (QIs), each with approximately equal sizes. Subsequently, quantile values corresponding
to each QI boundary are determined. In contrast to PICP, QICE offers a more detailed evaluation.
In cases where fewer true instances fall within one QI, another QI may capture more instances,
potentially leading to increased absolute errors in both QIs. Additionally, we utilize the Continuous
Ranked Probability Score (CRPS) (Matheson & Winkler, (19765 Gneiting & Raftery, [2007) and
CRPSsum for evaluation on each dimension of the time series. CRPSsum represents the CRPS
computed for the sum of all time series dimensions.

3 PROPOSED METHOD

In this section, we present TMDM, a novel framework that combines the diffusion generative pro-
cess (Ho et al., [2020} Sohl-Dickstein et al., [2015) with well-designed transformer structures (Liu
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et al., 2022} |Wang et al.} [2022). These transformer models excel at accurately estimating the con-
ditional mean Elyo.am | @o.n], while TMDM extends this capability to recover the full distribution
of the future time series yo.ps. As depicted in Fig. (I, TMDM consists of two main components:
a transformer-powered conditional distribution learning model (condition generative model) and a
conditional diffusion-based time series generative model. These two models are integrated into a
unified Bayesian framework, leveraging a hybrid optimization approach. From a conceptual stand-
point, TMDM can be viewed as a Bayesian generative model (Tran et al.,[2019), where the generative
process can be expressed as:

yo M) fyl T f p( yo M | Yo:nr) Ht 1 p(yo | Yo.u1» Yo M)p(Go:ns | z)p(z)dzdyéfff ®)

In this paper, we leverage well-designed transformers, including the Non-stationary transformer
(Liu et al., [2022)), Autoformer (Wu et al., [2021)), and Informer (Zhou et al., 2021), to capture the
information embedded within the historical time series aq.5;. We utilize this information to model
a latent variable z, which in turn generates a conditional representation 9g.»s. This representation
serves as a condition for the subsequent forward and reverse processes.

3.1 LEARNING TRANSFORMER POWERED CONDITIONS

Existing time-series diffusion models (Rasul et al.,[2021a; [Tashiro et al.||2021;|Alcaraz & Strodthoff,
2022; |Shen & Kwokl |2023) have primarily focused on designing effective conditional embeddings
to guide the reverse process. In contrast, our approach advocates the utilization of representations
captured by well-established transformer-based time series models. This shift offers several dis-
tinct advantages. Firstly, significant advancements have been made in point estimation time series
forecasting tasks in recent years. Extensive research into time series properties has resulted in the
proposal of dedicated transformers tailored for this purpose (Liu et al.,[2022;|Wu et al.l 2021 Wang
et al., 2022). We contend that employing conditions derived from such transformers is more effi-
cient than relying on self-designed conditioning embeddings. Secondly, these specialized transform-
ers exhibit a strong capability to estimate the conditional mean E[yo.as|xo.n]. By employing this
estimated mean as the condition, the diffusion model can more effectively focus on estimating un-
certainty, simplifying the generative process. Conversely, using other specially designed conditions,
such as future mixup (Shen & Kwok, 2023), may introduce new information but requires the dif-
fusion model to simultaneously estimate both the mean and uncertainty, rendering generation more
complex. Finally, TMDM serves as a versatile plug-and-play framework, bridging the gap between
point estimates and distribution estimates. If improved transformer structures for point estimation
emerge, we can seamlessly integrate these advancements into the distribution estimation domain.

Given the transformer structure .7 (-) and the historical time series ., we can capture the repre-
sentation by .7 (x¢.). This representation serves as the guiding factor for approximating the true
posterior distribution of z. This process is defined as the following:

9(z | T (@o.n)) ~ N (B:2(T (wo:n ), 62(7 (wo:n))) 9
Given a well-learned z, we can generate the conditional representation gg.5s as the following:
ZNN(O,I) and Qo;]u NN([LZ(Z),O'Z) (10)

Here, we model three nonlinearity functions, fi., ., and g, using neural networks. We initialize
o ., representing the covariance matrix, to the identity matrix I. In this manner, we define a latent
variable z to summarize the information captured by well-designed transformers. This latent vari-
able is then used to generate the conditional representation gg.ys for the subsequent forward and
reverse processes in TMDM.

3.2 CONDITIONAL DIFFUSION-BASED TIME SERIES GENERATIVE MODEL

Different from vanilla diffusion models that assume the endpoint of the diffusion process, yZ ;.
adheres to the standard normal distribution A/(0, 1), we incorporate the conditional representation
Yo into p(yd ;) to better account for the conditional information in Eq. Drawing inspiration
from Han et al.| (2022), we model the endpoint of our diffusion process as the following:

P(Yoas | Yo:nr) = N (Gounr, 1) (11)

where yo. s, as defined in Eq. m incorporates the information captured by the transformer. In Eq.
. Yo:m can be viewed as prior knowledge for estimating the conditional mean E[yo.ns | ®o.n]
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Algorithm 1 Training Algorithm 2 Inference

1: Initialize the parameters; 1yl ~ N(@Gouns, I)

2: repeat 0 0 2: fort=T1to1do

3: Draw yo.r ~ q(Yo.ur | Zo:v) 3:  Calculate reparameterize: Y., = (1/a")(y" — (1 —
451 Braw b~ %Morlm({l, 2T} Vab)gor — V1= aleo(y', Gons, t))

: Draw e ~N(0,1) if ¢ > 1: draw € ~ A(0, 1)
6:  Compute the loss in Eq. [T6] L -
7:  Take numerical optimization step Your = 10Yonr + Yo + 290 + \/ Bte

4
5

on: VLeLso 6: else: yi =Yy
7

8: until converged : end for

based on x¢.y. With a diffusion schedule {3'};—1.7 € (0, 1), the conditional distributions for the
forward process at all other time steps can be defined as:

q (y6M I yé;_j\}jvyo:hf) (yO M | \/ ﬁtyo M + -V 1-— ﬁt>QO:M7 6t1—> (12)

In practical applications, we sample y{, ,, directly from y.,, with an arbitrary timestep ¢:
4 (Y6.ar | Y00 Yoins) ~ N (y(t):M | Vatyda + (1= val)goar, (1 — v at)I) (13)

Here, we define & := 1 — 3 and o := H;‘F L@’ InEq. |1 .mean term, the diffusion process can
be conceptuahzed as an interpolation between the true data y0 a and the conditional representa-
tion go.ps. It commences with the true data y3.,, and gradually transitions to .. This approach
effectively leverages the reliable conditional mean estimation E[yo.s|Zo.n] by transformers 7 (+).
In the corresponding reverse process, initiated with 4.5 containing information capable of accu-
rately estimating E[yo.ar|®o.n], the generative process is significantly simplified. If the provided
condition is good enough, the model can then focus exclusively on uncertainty estimation.

Similar to many diffusion models designed for time series (Rasul et al.,[2021a;|Shen & Kwokl [2023)),
it is crucial for the reverse process to incorporate the conditional representation gg.y;. Considering
the forward process in Eq. the corresponding manageable posterior for the forward process is:

0 (Ybar | Yoonr» Yborss Gooma) ~ N (y(t);_z\}[ | YoyS.ar + MYb s + ’Yzﬁo:M,BtI)

14
_ BWat-1 (1—a’~ 1)\/07 (14)

Vat-1)(Vat+vat-1) 3 —att
Y= T 01 = T—o , Y2 =1+ ( 1)(1_at+ )aﬂt = (ll_at )/Bt

The derivation can be find in Appendix [D}

3.3 HYBRID OPTIMIZATION

In this paper, we integrate the condition generative model and denoising model into a unified opti-
mization objective. The condition generative model incorporates transformer 7 (-) structures and
networks associated with the latent variable z. Within the diffusion model component, a denoising
model is trained. As specified in Eq. |8} TMDM’s optimization objective is to maximize the evidence
lower bound (ELBO) of the log marginal likelihood, formulated as:

2T |~ ~
P L 190:m)P (@001 12)p(2) ]
a(ydi =190 arvB0:m5 7 (0:N))

10gp (Yo.u | ®ov) 2 108E (17 ivo o0 7@l

P(yo'M\yo M)
1:T |,,0 0 log —— A=<
Q(yon‘yo:M’ymM)[ g a(bi3r190: ar-B0:01)

=K P(f/o:M\Z)P(Z)}

|+ Eq(217 (20,00 108 2P0
15)
In Eq. the first term, denoted as Laifiusion, guides the denoising model to predict uncertainty
while subtly adjusting the condition generative model to offer a more suitable conditional represen-
tation. We view this as an advantage of hybrid optimization. The second term, Lcond, is introduced
to maintain the capacity for accurate estimation of the conditional mean E[yo.as|2o.n] by the con-
dition generative model. It also facilitates the generation of improved conditional representations
by leveraging the capabilities of a well-designed transformer. Here, D i1, (¢||p) represents the Kull-
back-Leibler (KL) divergence from distribution p to distribution gq. The aforementioned objective
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can be expressed as:
Letso = Eq[—log p(yo.ar | Yo-nr, o:a1)] + D (q(Yo.nr | Younss Go:nr) [Py s | Goinr))
+ Zfzz Dxr(q (yé;\} | yg:ny(t):Mv'!)O:M) ||p(y(t);71\}1 | yé:M7Q0:M)) (16)

+Ey(z1 7 @o.n)) [~ log P(Go:v | 2)] + Dir(q(z | T (zo:n)) Ip(2))

In Eq. [16] the first two rows originate from Laifusion, while the last rows stem from Leona. As depicted
in Algorithm (I} the model parameters are optimized through stochastic gradient descent in an end-
to-end manner. The inference process is outlined in Algorithm 2}

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset: Six real-world datasets with diverse Table 1: Summary of dataset statistics.
.SanOtempO.ra] dynamlcs were chosen, compris- Dataset Dimension Freq. Time steps Pred. steps
ing Electricity, ILI, ETT, Exchange, Traffic, and
Weather. Table [I] presents basic statistical infor- Exchange 8 1 Day = 7,588 192
cather. p : ILI 7 1 Week 966 36
mation about these datasets. Further details can ETTm?2 7 15Min 69,680 192
be found in Appendix Electricity ~ 321  1Hour 26,304 192
. Traffic 862 1 Hour 17,544 192
Implementation details: In our experiments, we Weather 21 10Min 52,695 192

set the number of timesteps as 7" = 1000 and em-
ployed a linear noise schedule with 31 = 10~ and 87" = 0.02, consistent with the setup in|Ho et al.
(2020). For the PICP, we selected the 2.5th and 97.5th percentiles. Therefore, an ideal PICP value
for the learned model should be 95%. We employed 100 samples to approximate the estimated dis-
tribution, and all experiments were repeated 10 times, with mean and standard deviation recorded.
More details can be find in Appendix [B]

4.2 MAIN RESULT
4.2.1 BASELINES

We extensively compare our model with 14 baselines with different experiment settings. Including
diffusion-based time series models: TimeGrad (Rasul et al., 2021a), CSDI (Tashiro et al., 2021),
SSSD (Alcaraz & Strodthoff], 2022), D>VAE (Li et al.| [2022) and TimeDiff (Shen & Kwok,[2023);
Transformer-based models: Transformer-MAF (Rasul et al.l 2021b), Transformer (Vaswani et al.,
2017), Informer (Zhou et al., [2021)), Autoformer (Wu et al., 2021) and NSformer (Liu et al.,[2022);
VAE-based models: VAE (Higgins et al.,[2016), cST-ML (Zhang et al.,2020) and DAC-ML (Zhang
et al.,[2021); and one additional well-designed method: GP-Copula (Salinas et al., 2019).

4.2.2 QUALITATIVE ANALYSIS

To emphasize our distribution estimation capabilities, we present the predicted median and visualize
the 50% and 90% distribution intervals in Fig. 2] We compare TMDM with three other models:
TMDM-min: A simplified version of TMDM that employs a basic transformer in the condition gen-
erative model. TimeDiff: A recent time series prediction model that operates in a non-autoregressive
setting. However, it was primarily designed for point-to-point forecasting tasks, which may not pri-
oritize probabilistic forecasting. TimeGrad: A well-known diffusion-based autoregressive model.

Overall, TMDM demonstrates superior distribution estimation performance compared to the other
three models. While TMDM-min exhibits worse mean and uncertainty estimates than TMDM, we
attribute this to the use of a different transformer in the condition generative model. The NSformer
employed in TMDM is more powerful for mean estimation, facilitating better overall distribution
estimation. TimeDiff, designed for point-to-point forecasting tasks, generates distribution intervals
with varying width. Consequently, sample points generated farther away from the true value are
sparse. In challenging scenarios (columns 3, 4, and 5), the 50% distribution intervals abruptly
expand due to the absence of points in the middle section. This highlights the limitation of point-
to-point forecasting in capturing real multivariate time series data, making it less practical in real-
world applications. TimeGrad, which relies on an RNN to capture timing information, exhibits
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Figure 2: Comparison of prediction intervals for the Exchange dataset. We display the predicted
median and visualize the 50% and 90% distribution intervals, the black line representing the test set
ground-truth.

Table 2: Performance comparisons on six real-world datasets in terms of QICE and CRPS. The best
results are boldfaced.

Dataet | Exchange | ILI | ETTm2 | Electricity | Traffic | Weather
Method | QICE CRPS | QICE CRPS | QICE CRPS | QICE CRPS | QICE CRPS | QICE CRPS
VAE | 82840590 1.02:+0.112] 9.1340.492 2.41:£0.185] 8.99:£0.121 0.79+0.057| 7.0420.080 0.51:£0.162| 5.37£0.197 0.67+0.139] 9.07+0.669 0.47+0.155
cST-ML 7.94£0.786 0.94:£0.264| 9.0240.570 1.94:£0.198 7.29+0.161 0.64:£0.122| 5.99+0.167 0.470.181 | 5.24+0.134 0.60:£0.115| 8.29+0.760 0.51::0.120
DAC-ML | 7.3640.709 0.85:+0.183| 8.7140.586 1.23+0.114| 6.60+0.191 0.59+0.109| 5.76+£0.153 0.43+0.147 | 4.31£0.165 0.50:£0.088| 7.91:£0.823 0.46+0.115
GP-Copula 7710763 0.88+0.201] 8.95+0.756 1.43+0.305 6.86+0.080 0.59+0.187| 5.85+0.192 0.86:0.160| 4.82£0.165 0.53+0.037| 8.10+0.545 0.84+0.275
Transformer-MAF | 6.85+0.818 0.7140.202| 8.19+0.669 0.98+0.149| 5.60+0.110 0.6640.123| 5.6640.118 0.46+0.132| 3.95+0.086 0.45+0.125| 7.40+0.777 0.45+0.152
TimeGrad 5.32:+0.826 0.66£0.192| 7.86:£1.126 0.92:+0.142 5.37+0.187 0.54:£0.184| 5.34:£0.197 0.40+0.176| 3.80+0.150 0.39:£0.166| 7.36::0.871 0.43+0.116
SSSD | 6.204£0.569 0.56+0.174] 7.60+0.739 0.94:£0.195| 4.88:£0.166 0.57+0.179] 5.2640.177 0.46::0.266 | 3.88:£0.140 0.41+0.114] 7.1940.674 0.44:£0.125
CSDI 5.49+0.606 0.45+0.138] 7.7540389 1.1040.144 5.07+0.132 0.50:£0.112| 4.7440.175 0.420.094 | 3.5040.271 0.37:0.121] 5.14+0.700 0.370.086
D’VAE  |13.5120.602 0.41:£0.069 | 15.8240.190 0.97:£0.072|13.4820.111 0.44:£0.014| 13.41£.117 0.36:£0.120| 12.60£0.113 0.31:£0.114| 14.6420.607 0.39::0.026
TimeDiff 13.34:0610 0.38:£0.036 | 15.50+0.098 1.08:£0.063 14.22+0.164 0.40::0.003 | 12.74:40.105 0.38::0.097 | 13.53+0.175 0.28:£0.115] 13.18+0.788 0.33+0.016

ours | 4.38+0.417 0.3240.016| 6.74+0.082 0.92+0.071 | 3.75+0.138 0.3740.007 | 3.8140.133 0.33+0.085 | 2.36+0.117 0.26+0.091 | 3.87+0.681 0.36+0.038

poor performance when estimating longer time series. For more detailed results, please refer to the
Appendix [E]and [F

4.2.3 QUANTITATIVE COMPARISON

Probabilistic multivariate time series forecasting: To assess the performance of TMDM in prob-
abilistic multivariate time series forecasting, we applied our model to six datasets alongside several
competitive baselines. Four metrics (QICE, PICP, CRPS, and CRPSy,,,,) were employed as perfor-
mance indicators for probabilistic forecasting. Additionally, we used two metrics (MSE and MAE)
to evaluate other aspects of model performance. As shown in Table [2] the NSformer integrated
with our framework consistently achieved state-of-the-art (SOTA) performance across all bench-
mark datasets. Notably, when compared to previous SOTA results, TMDM achieved a remarkable
17% reduction in QICE (from 5.32 to 4.38) for the Exchange dataset, 11% reduction (from 7.6 to
6.74) for ILI, 23% reduction (from 4.88 to 3.75) for ETTm2, 27 % reduction (from 5.26 to 3.81) for
Electricity, 32% reduction (from 3.5 to 2.36) for Traffic, and 24 % reduction (from 5.14 to 3.87) for
Weather. It is worth noting that models like D*VAE and TimeDiff
2023)) were originally designed for point-to-point forecasting tasks, where probabilistic forecasting
was not their primary focus. Consequently, their performance on QICE and PICP was suboptimal.
However, they still demonstrated competitive performance in CRPS, CRPS, (see Appendix [C),
MSE, and MAE (refer to Table[3). As CRPS may not effectively evaluate the quality of distribution
range, this underscores the importance of introducing new metrics (QICE and PICP) in the evalua-
tion of probabilistic multivariate time series forecasting models. For additional results, please refer
to the Appendix[C]
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Table 3: Performance comparisons on six real-world datasets regarding MSE and MAE. The best
results are boldfaced.

Dataet | Exchange | ILI | ETTm2 | Electricity | Traffic | ‘Weather
Method | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
TimeGrad | 2.4340.229  0.90+0.232 | 2.65+0.164 1.15+0.172 | 1.36+0.133  0.74+0.123 | 0.69+0.188  0.74+0.109 | 0.96+0.104 0.81+0.141 | 0.90+0.139  0.5740.136
CSDI | 1.6740.162 0.75+0.058 | 2.54£0.098 1.21+0.128 | 1.28+0.074 0.67+0.064 | 0.56+0212 0.8140.150 | 0.94+0.093 0.68+0.176 | 0.86+0.073 0.56::0.096
SSSD | 0.90+0.171 ~ 0.86+0.127 | 2.5240.118 1.08+0.131 | 0.9740.043 0.56+0.060 | 0.47+0.129  0.60£0.207 | 0.81+£0.084 0.500.128 | 0.6740.159  0.49+0.106
D’VAE | 0.76+0.118 0.62:£0.108 | 2.4420.115 1.1140.127 | 0.794£0.038 0.46£0.047 | 0.3320.194 0.49+0.119 | 0.794£0.122  0.43+£0.126 | 0.43%0.139  0.34+0.131
TimeDiff | 0.48+0.095 0.43+0.109 | 2.46+0.148  1.09:£0.064 | 0410014  0.42+0.013 | 0.27+£0024 0.3240.131 | 0.68+0.113  0.47+0.052 | 0.36+0.146 0.37:£0.052
ours | 0.26+£0.019 0.37£0015 | 1.99:£0.085 0.85:+0.026 | 0.27£0.023 0.35+0.015 | 0.19£0.007 0.2740.008 | 0.60+0.008 0.35:0.009 | 0.28:0.095 0.25::0.103

Ablation study: To assess the impact of each Table 4: QICE and CRPS scores for different variants

component within our proposed framework, of the TMDM

we conducted a comparative analysis of pre- Dataset Exchange | ETTm2 Wether
diction results across three datasets using five Metric QICE CRPS|QICE CRPS|QICE CRPS
models. Presented in Table [ MLP-cond MLP-cond |7.86 0.64 |9.61 1.14|5.06 0.50
and Autoformer-cond serve as baseline mod- Autoformer—gond 6.77 040 | 476 0.56 | 455 0.46
els, employing a simple MLP or Autoformer NISI?)’_Q;:;&M ggg 8‘:2 ijg 8% i?g 83‘;
in the condition generative model of TMDM. TMDM 438 032|375 037|387 036

N (0, I)-Prior leverages NSformer to generate
conditional embeddings while assuming yZ ,, ~ A(0, I') as a prior. When comparing our proposed
model, TMDM, with MLP-cond and Autoformer-cond, we observed a substantial improvement,
achieving an average QICE reduction of 42% and 23% respectively. This emphasizes the effec-
tiveness of utilizing representations captured by existing well-designed transformer-based models
as conditions. Furthermore, it demonstrates our capability to seamlessly integrate advancements in
transformer structures for point estimation into the domain of distribution estimation. Comparing
N(0, I)-Prior with TMDM, we noted an average 19% reduction in QICE, highlighting the advan-
tage of considering condition information as a prior for both the forward and reverse processes.
Finally, comparing No-hybrid with TMDM, we observed a significant 16% reduction in QICE, un-
derscoring the effectiveness of our proposed hybrid optimization method.

Table 5: Performance promotion by applying the proposed framework to transformer and its vari-
ants.

Dataet | Exchange | ILI (36) | ETTm2 | Electricity | Traffic | Weather
Method | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Transformer | 1.2040.129 0.84+0.0414.93+0.277 1.4840.082 |4.76+1.214 1.76+0.256 | 0.26+0.016 (].36i0.015‘().67i0.0]4 0.3610.016 | 0.57+0.045 0.53+0.024
+ Ours 1.16+0.023 0.82+0.015 | 4.48+0.180 1.41+0.039 | 1.18+0.186 0.86:0.065 | 0.27+0.009 0.33+0.009 0.62-0.009 0.33+0.010 | 0.55+0.038 0.49+0.015
Informer |1.31+0.154 0.85+0.021]5.3340.177 1.5940.078 | 5.74+0.475 1.99+0.181 | 0.35+0.012 0.43:&0.020‘ 0.754+0.017 0.4240.019 | 0.48+0.078 0.47+0.045
+Ours | 1.1240.085 0.83+0.014 | 4.82+0.089 1.4940.041 | 1.25:+0.264 0.90+:0.096 | 0.34::0.010 0.40-+0.013 0.69+0.007 0.40+0.011 |0.41:+0.044 0.45:+0.027
Autoformer | 0.44+0.146 0.48+0.082|3.26+0.180 1.25+0.066 | 0.47+0.032 0.4640.021| 0.224+0.019 0.33+0.015 ‘ 0.65+0.048 0.4140.028 | 0.3140.018 0.37+0.025
+Ours | 0.43+0.027 0.47-+0.016 | 3.03+0.101 1.18-0.045 | 0.33:£0.028 0.40::0.018 | 0.20-:0.009 0.29-+0.010 0.63+-0.022 0.38--0.014 | 0.31+£0.011 0.34::0.019
NSformer |0.25:0.088 0.36+0.091 | 1.93+0.157 0.87+0.058 | 0.534:0.042 0.48+:0.016| 0.18+0.012 0.28-+0.012 | 0.62+0.015 0.34-:0.013 | 0.25+0.016 0.2940.020
+Ours | 0.2640.019 0.37+0.015|1.9940.085 0.85::0.026 | 0.27+0.023 0.35+0.015 | 0.19:0.007 0.27+0.008 0.60+0.008 0.35:+0.009 | 0.26+0.010 0.27+0.009

Framework generality: Diffusion models have gained widespread attention owing to their capac-
ity to generate high-dimensional data and their training stability (Han et al.,2022)). In the context
of point-to-point forecasting tasks, TMDM operates as a versatile framework that enhances train-
ing stability when paired with various transformers. We apply our framework to four prominent
transformers, showcasing the performance enhancements achieved by each model in Table[5} Our
method consistently reduces variance across multiple experiments and enhances the point-to-point
forecasting ability of most transformers.

5 CONCLUSION

In this paper, we present TMDM, an innovative framework that merges diffusion generative process
with existing well-designed transformer models. Our approach leverages the strengths of transform-
ers, particularly their accuracy in estimating conditional means, and extends this capability as priors
across both forward and reverse processes within the diffusion model. By employing this estimated
mean as the condition, the diffusion model can more effectively focus on estimating uncertainty,
simplifying the generative process. TMDM stands out as a versatile plug-and-play framework, ef-
fectively closing the gap between point estimates and distribution estimates. It enables seamless
integration with advanced transformer models for point estimation, promising even better forecast-
ing accuracy. We introduce two novel evaluation metrics, enriching the toolbox for assessing uncer-
tainty in probabilistic multivariate time series forecasting models. Our comprehensive experiments
on six real-world datasets consistently demonstrate TMDM’s superior performance, underscoring
its effectiveness in enhancing probabilistic prediction quality.
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A DATASETS

Six real-world datasets with diverse spatiotemporal dynamics are selected, including: (1) Electricity[ﬂ
- records the hourly electricity consumption of 321 clients from 2012 to 2014. (2) IL%— collects the
ratio of influenza-like illness (ILI) patients versus the total patients in one week, which is reported
weekly by the Centers for Disease Control and Prevention of the United States from 2002 to 2021.
(3) ETT(Zhou et al., 2021) - contains the data collected from electricity transformers, including
load and oil temperature that are recorded every 15 minutes between July 2016 and July 2018. (4)
Exchange(Lai et al., |2018)) - records the daily exchange rates of eight different countries ranging
from 1990 to 2016. (5) Traﬁ‘icﬂ - contains hourly road occupancy rates measured by 862 sensors
on San Francisco Bay area freeways from January 2015 to December 2016. (6) Weatherﬂ] - includes
meteorological time series with 21 weather indicators collected every 10 minutes from the Weather
Station of the Max Planck Biogeochemistry Institute in 2020. Table (1| provides basic statistical
information about these datasets.

B IMPLEMENTATION DETAILS

In our experiments, we set the number of timesteps as 7' = 1000 and employed a linear noise
schedule with 3' = 10~* and 87 = 0.02, consistent with the setup in Ho et al.[(2020). The latent
states z were configured to have a dimension of 512 for all datasets. For the diffusion model, we
adopted a simplified network architecture compared to prior work Xiao et al.| (2021);|Zheng| (2022).
Initially, we replaced the transformer’s sinusoidal position embedding with a linear embedding for
the timestep. We concatenated y0 : M" and 90 : M and passed the resulting vector through three
fully-connected layers, each with an output dimension of 128. We performed a Hadamard product
between each output vector and the corresponding timestep embedding, followed by a Softplus
non-linearity, before forwarding the resulting vector to the next fully-connected layer. Finally, we
applied a fourth fully-connected layer to map the vector to a one-dimensional output for the forward
diffusion noise prediction. We utilized the Adam optimizer with a learning rate of 0.0001 and a
batch size of 32. All experiments were implemented in PyTorch (Paszke et al.l | 2019) and conducted
on an NVIDIA RTX 3090 24GB GPU. The prediction length can be found in Table |I} The input
sequence length for ILI is set to 36, while for other datasets, it is set to 96. For the Prediction Interval
Coverage Probability (PICP), we selected the 2.5th and 97.5th percentiles. Therefore, an ideal PICP
value for the learned model should be 95%. We employed 100 samples to approximate the estimated
distribution, and all experiments were repeated 10 times, with mean and standard deviation recorded.

C MORE QUANTITATIVE RESULT

To assess the performance of TMDM in probabilistic multivariate time series forecasting, we applied
our model to six datasets alongside several competitive baselines. Four metrics (QICE, PICP, CRPS,

"https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
*https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
Shttp://pems.dot.ca.gov/

Ihttps://www.bgc-jena.mpg.de/wetter/
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and CRPSy,,,) were employed as performance indicators for probabilistic forecasting. Additionally,
we used two metrics (MSE and MAE) to evaluate other aspects of model performance. As shown
in Table [6] and Table [7], the NSformer integrated with our framework consistently achieved state-
of-the-art (SOTA) performance across all benchmark datasets. Notably, when compared to previous
SOTA results, TMDM achieved a remarkable 3.42 (from 71.12 to 74.54) improvement in PCIP for
the Exchange dataset, 8.26 (from 79.57 to 87.83) improvement for ILI, 0.62 (from 72.58 to 73.2)
improvement for ETTm?2, 3.01 (from 79.34 to 82.35) improvement, b[i] for Electricity, 2.53 (from
84.3 to 86.83) improvement for Traffic, and 6.05 (from 66.92 to 72.97) improvement for Weather. It
is worth noting that models like D3VAE (Li et al.,|12022) and TimeDiff (Shen & Kwok, [2023)) were
originally designed for point-to-point forecasting tasks, where probabilistic forecasting was not their
primary focus. Consequently, their performance on QICE and PICP was suboptimal. However, they
still demonstrated competitive performance in CRPS, CRPS,n, (see Appendix [C), MSE, and MAE
(refer to Table [3). This underscores the importance of introducing new metrics (QICE and PICP)
into the evaluation of probabilistic multivariate time series forecasting models.

Table 6: Performance comparisons on six real-world datasets in terms of CRPS-sum. The best results
are boldfaced.

Method Exchange ILI ETTm2 Electricity Traffic Weather
VAE 7.1940.178 9.84+0.289 7.9140.150 9.56+0.235 7.65+0.119 8.98+0.142
GP-Copula 4.78+0.092 7.8740.148 4.53+0.227 8.36+0.128 6.29+0.172 6.98+0.089
Transformer-MAF 4.2140.162 6.28+0.248 3.57+0.390 6.27+0.177 5.234+0.128 6.1940.281
TimeGrad 3.9240.238 6.06+£0.212 3.13£0.227 5.46+0.111 4.67+0.078 6.01+0.193
CSDI 4.20+0.153 6.98+0.065 3.07+0.130 4.5440.368 3.98+0.136 5.3940.183
SSSD 3.3140.174 6.3040.127 2.2840.061 4.5040.297 3.10£0.308 4.9410.238
D3VAE 2.0540.197 6.50+0.138 1.9340.066 3.80+0.290 3.23+0.136 3.8240.196
TimeDiff 2.46+0.342 7.0140.126 1.924+0.019 3.08+0.151 2.474+0.204 3.16+0.271
ours 1.87+0.072 6.02+0.109 1.75+0.044 2.87+0.118 2.10+0.185 1.79+0.086

Table 7: Performance comparisons on six real-world datasets in terms of PICP. The best results are
boldfaced.

Method Exchange ILI ETTm2 Electricity Traffic Weather
VAE 64.62+3.060 68.31+£2.365 67.18+1.648 70.56+2.362 78.50+5.538 58.92+3.215
GP-Copula 66.86+8.737 70.40+£3.263  70.94+5.104  70.89+4.881  80.33+3.780  60.72+6.892
Transformer-MAF 69.74+10.706 73.68+6.853 71.23+1.106 73.89+6.111 80.96+1.585 61.30£7.185
TimeGrad 69.16+£10.254  74.29+6.325  71.6245.999  75.93+2.182  82.28+1.102  62.79+7.962
CSDI 69.21+9.997 76.18+4.932 71.78+2.686 78.94+3.574 83.51+6.593 62.71+4.832
SSSD 71.12+7.330 79.57+£3.366  72.58+3.736  79.34+5.166  84.30+4.721  66.92+5.828
D*VAE 21.38+5.034 5.20+0.723 13.20+1.401 33.96+1.411 7.1242.882 20.44+5.575
TimeDiff 20.80+7.528 3.69+0.620 13.16+£1.246  32.37+1.105 9.11+£1.170 21.60+6.345
ours 74.54+2.046 87.83+7.215 73.20+£2.776 82.35+3.538 86.83+4.027 72.97+2.583

Evaluating model performance with time-series data at different granularities is of significant impor-
tance in real-world applications. Our proposed TMDM can excel in such scenarios for the following
reasons:

1. Similar to most time series forecasting models |Zhou et al.| (2021); |Wu et al.| (2021)); |[Liu et al.
(2022), we incorporate the actual timestamps as learnable time embeddings for each data point.
Leveraging a well-designed Transformer, we can effectively capture the temporal correlations within
the data. This design ensures that TMDM can adapt to various granularities of time-series data.

2. Within the diffusion model component, we also account for the time embedding in the data.
This allows the model to generate multivariate time series with information from these embeddings,
accommodating time series data at different granularities.

3. As shown in Table 1 in our paper, the selected datasets covered different granularities ranging
from 10 minutes to 1 day, and TMDM demonstrated competitive performance across all databases.
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This confirms the model’s ability to handle situations where time-series data is available at different
granularities.

4. To further evaluate TMDM'’s ability to handle varying time-series granularities, we conducted an
experiment where we randomly removed D data points from a given time series yo.ps and used this
modified dataset to test TMDM with the same settings as described in the paper. This challenging
experiment simulates scenarios where the time intervals in multivariate time series vary, making it a
rigorous test of the model’s performance under changing granularities.

Table 8: Performance of TMDM on the time-series in different granularities.

Dataset Exchange ETTm?2 Electricity Traffic Wether
Metric |QICE CRPS|QICE CRPS|QICE CRPS |QICE CRPS |QICE CRPS

TMDM-60| 478 032 | 372 039 [ 3.73 031 [ 236 028 391 037
TMDM-30| 4.14 030 [ 3.93 038 [ 3.85 035 [234 0.25]3.79 0.34
TMDM | 438 032 ]3.75 037381 033 [236 026|387 036

As depicted in the table above (Table [§), TMDM-60 denotes our model with a prediction length of
192 + 60, where we randomly remove 60 samples from the data. In this setting, TMDM is challenged
to forecast multivariate time series (MTS) with varying granularities based on the time embedding.
The results obtained from the 30 and 60 settings exhibit similar scores compared to the original
setting, demonstrating the effectiveness of the proposed TMDM in accommodating time-series data
with differing granularities.

The variation in the C RP Sy, results of the baseline models compared to the published results is
primarily due to differences in the experimental settings, specifically concerning the history length
and prediction length. We have included the experiments on the settings in TimeGrand and CSDI in
our paper, and the results can also be found as follows (Table E] and Table(10]):

Table 9: TimeGrand setting result.
Dataset ‘ Exchange ‘ Electricity

Traffic

Metric  |QICE CRPSsym |QICE CRPSsym |QICE CRPSsym
TimeGrand | 3.63 0.006 251 0.0206 | 1.91 0.044

TMDM | 2.48 0.004 1.31 0.016 1.07 0.013

Table 10: CSDI setting result.

Dataset Exchange Electricity Traffic

Metric |QICE CRPSgyum |QICE CRPSsym |QICE CRPSsym
TimeGrand| - - 2.59 0.021 2.02 0.044

CSDI - - 2.28 0.017 1.60  0.020

TMDM - - 1.36 0.014 1.23 0.015

CSDI occasionally matches or slightly surpasses TimeGrand, yet TMDM consistently outperforms
both models across various datasets and metrics. TMDM showcases superior performance in prob-
abilistic forecasting, reflected in its lower QICE and C RPSsy ) values. These results emphasize
TMDM'’s significant advancements in predictive accuracy and distributional modeling compared to
TimeGrand and CSDI across diverse datasets and evaluation metrics.
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D DERIVATION FOR FORWARD PROCESS POSTERIORS:

In thi§ sectilon, we derive the mean and variance of the forward process posteriors
q (Younr | Yooars Y0ar> Yo:ar) in Eq.
1 (yhar — (1= Vahgon — Valyi)®
x exp(—i( -
5
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coefficient in Ay by A;
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which together give us the posterior mean

B(Y0 01> Yo nrs D0:01) = YoYounr + MYbr + V2P0:0s
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Figure 3: The prediction intervals in different predict lengths of the proposed TMDM

E DIFFERENT PREDICT LENGTHS COMPARISON OF PREDICTION INTERVALS

As shown in Fig. [3] we have presented prediction intervals generated by TMDM for various predic-
tion lengths. In this experiment, we maintained a consistent history length, and it becomes evident
that the prediction intervals widen as the prediction length extends. This indicates TMDM’s abil-

ity to provide different levels of uncertainty when dealing with more challenge prediction tasks, a

valuable characteristic for real-world applications.

F MORE COMPARISON OF PREDICTION INTERVALS FOR THE EXCHANGE
AND WEATHER DATASET

Fig. [ Fig. 5 and Fig. [f] offer further comparisons of prediction intervals for the Exchange and
Weather Datasets. These figures include examples of both successful and challenging prediction

cases.
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Figure 4: More comparison of prediction intervals for the Exchange Dataset. We display the pre-
dicted median and visualize the 50% and 90% distribution intervals, the black line representing the
test set ground-truth.
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Figure 5: More comparison of prediction intervals for the Weather Dataset. We display the predicted
median and visualize the 50% and 90% distribution intervals, the black line representing the test set
ground-truth.
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Figure 6: More comparison of prediction intervals for the Weather Dataset. We display the predicted
median and visualize the 50% and 90% distribution intervals, the black line representing the test set
ground-truth.
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