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Abstract

In recent years, the injection of factual knowl-
edge has been observed to have a significant
positive correlation to the downstream task
performance of pre-trained language models.
However, existing work neither demonstrates
that pre-trained models successfully learn the
injected factual knowledge nor proves that there
is a causal relation between injected factual
knowledge and downstream performance im-
provements. In this paper, we introduce a
counterfactual-based analysis framework to ex-
plore the causal effects of factual knowledge
injection on the performance of language mod-
els within pretrain-finetune paradigm. Instead
of directly probing the language model or ex-
haustively enumerating potential confounding
factors, we analyze this issue by perturbing the
factual knowledge sources at different scales
and comparing the performance of pre-trained
language models before and after the perturba-
tion. Surprisingly, throughout our experiments,
we find that although the knowledge seems to
be successfully injected, the correctness of in-
jected knowledge only has a very limited ef-
fect on the models’ downstream performance.
This finding strongly challenges previous as-
sumptions that the injected factual knowledge
is the key for language models to achieve per-
formance improvements on downstream tasks
in pretrain-finetune paradigm.

1 Introduction

In recent years, pre-trained language models
(PLMs) have emerged as the dominant approach
in natural language processing. Through self-
supervised learning on large-scale text corpus,
PLMs can acquire different kinds of knowledge
automatically without additional manual guidance,
which demonstrates significant generalizability and
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Figure 1: This paper explores the impact of factual
knowledge by comparing the downstream task perfor-
mance before and after knowledge perturbation.

transferability improvements across tasks com-
pared with previous architectures (Devlin et al.,
2019; Radford et al., 2019; Liu et al., 2019; Raffel
et al., 2020; Scao et al., 2022; Touvron et al., 2023).

Some previous investigations contribute the su-
periors of pre-trained language models to their en-
tailed various kinds of knowledge learned from
the pre-training stage (Petroni et al., 2019; Lewis
et al., 2020b; Yin et al., 2022; Cao et al., 2023).
Among them, factual knowledge, which reveals the
relationships between real-world entities (e.g., Tim
Cook is the CEO of Apple) and plays a critical role
in human cognition (Unger, 1968), is regarded as
a critical factor for a pre-trained language model
to approach a trusted intelligent agent (Lewis et al.,
2020b; Yin et al., 2022). Consequently, how to
improve the acquisition, modeling, and application
of factual knowledge of pre-training language mod-
els has become a hot research topic. To this end,
many studies have been devoted to further injecting
factual knowledge to enhance the acquisition and
modeling of factual knowledge in pre-trained lan-
guage models (Zhang et al., 2019; Liu et al., 2020;
Sun et al., 2020; Wang et al., 2021a,b), and have
already reported successful performance improve-
ments on specific downstream tasks.

On the contrary, recent studies have found that
pre-trained language models struggle with retaining
factual knowledge, and the retained factual knowl-
edge can exhibit inconsistencies with the original
knowledge sources (Poerner et al., 2020; Elazar



et al., 2021; Cao et al., 2021). Furthermore, the
indirect evaluations through downstream tasks only
reflect that injecting factual knowledge is corre-
lated to performance improvement, but can not
establish the causality between them due to the
existence of many additional potential confound-
ing factors (training data domain, model parameter
size, etc.). Consequently, to identify the impact of
factual knowledge injection on the downstream per-
formance of pre-trained language models, the fol-
lowing two critical questions should be answered:

• Through the existing knowledge injection
methods, is the factual knowledge really in-
jected into pre-trained language models?

• If so, is it indeed the injected knowledge,
rather than other confounding factors, that is
responsible for the observed performance im-
provements in downstream tasks?

Unfortunately, it is infeasible to directly answer
the above-two questions due to the lack of highly
effective language model knowledge probing and
confounding factor identification measurements.
To this end, as shown in Figure 1, this paper in-
troduces a counterfactual-based analysis frame-
work (Veitch et al., 2021; Guidotti, 2022) to ex-
plore the causal effects of injecting factual knowl-
edge in a “what-if” manner. Moreover, Figure 2
illustrates the applied framework. Instead of di-
rectly probing the language model or exhaustively
enumerating potential confounding factors, we an-
alyze the above-two questions by perturbing the
factual knowledge sources at different scales, then
comparing the downstream performance of pre-
trained language models before and after the per-
turbation. The key motivation of our work is that:
1) If the knowledge injection approaches are inef-
fective, the performance of the model injected with
the correct knowledge and perturbed knowledge
should not perform very differently in the knowl-
edge probing evaluation; 2) If the correctness of
injected factual knowledge is indeed essential for
downstream tasks, then injecting perturbed, wrong
knowledge should cause significant performance
decline. Specifically, in order to observe the as-
pect from which factual knowledge affects PLMs,
we conduct two kinds of perturbation on factual
knowledge, including factual substitution, which
replaces an entity in factual knowledge with an-
other entity with the same type (e.g., substitute
“Tim Cook is the CEO of Apple” with “Bill Gates

is the CEO of Apple”), as well as ontological sub-
stitution that thoroughly perturb entities with their
counterparts of another type (e.g., substitute “Tim
Cook is the CEO of Apple” with “Microsoft is the
CEO of Apple”). In addition, to analyze the impact
of perturbation, we investigate three knowledge in-
jection approaches that acquire knowledge from
two types of factual knowledge sources, includ-
ing plain texts containing factual knowledge and
structured factual knowledge bases.

Throughout empirical evaluations on a wide
range of representative downstream NLP tasks,
our findings surprisingly deviate from previous hy-
potheses. Although the knowledge injection ap-
proaches seem to inject factual knowledge into
PLMs successfully, we find that factual knowl-
edge perturbation has only a very limited effect
on PLMs’ downstream task performance, i.e., the
correctness of factual knowledge shows a very
limited impact on all evaluated downstream tasks.
Furthermore, although the influence of ontologi-
cal perturbation is slightly stronger than factual
perturbation, it also does not cause statistically
significant performance divergence in most down-
stream tasks. Specifically, our experiments show
that in most downstream tasks, the performance
fluctuation caused by the above-two perturbation is
not greater than the fluctuation caused by random
seeds, and the results of t-test further demonstrate
that there are no statistically significant differences
between the performance before and after pertur-
bation. Through this counterfactual-based analy-
sis, our findings demonstrate that injected factual
knowledge is not the core reason for the perfor-
mance improvements of previous knowledge injec-
tion approaches on pre-trained language models in
the pretrain-finetune paradigm.

The following part of this paper is organized as
follows. In Section 2, we briefly review the related
work about factual knowledge probing and injec-
tion of PLMs. Section 3 presents our proposed
counterfactual-based analysis framework. The ex-
perimental results and the process leading to our
conclusions are presented in Section 4. In Sec-
tion 5, we provide a brief discussion and conclude
our findings1.

1We openly released our source code at https://
github.com/tangqiaoyu/KnowledgeDisturb

https://github.com/tangqiaoyu/KnowledgeDisturb
https://github.com/tangqiaoyu/KnowledgeDisturb
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Figure 2: The illustration of the counterfactual-based knowledge analysis framework. Given factual knowledge
from text corpus or knowledge bases, we first conduct two perturbations to obtain incorrect knowledge instances.
Then we pre-train LMs on the perturbed datasets. Finally, we compare the downstream performance of PLMs before
and after perturbation to explore the causal effects of factual knowledge injection on the performance of PLMs.

2 Related Work

Factual knowledge reveals the relationships be-
tween real-world entities and plays a crucial role
in human cognitive (Unger, 1968). Therefore, lots
of studies devoted to probing the factual knowl-
edge entailed in PLMs on the one hand (Petroni
et al., 2019; Kassner et al., 2021; Sung et al., 2021),
and propose to enhance the factual knowledge in
large-scale LMs to benefit their performance on
downstream tasks on the other (Zhang et al., 2019;
Liu et al., 2020; Wang et al., 2021b).

Factual Knowledge Probing aims to evalu-
ate how well current PLMs are entailing factual
knowledge in parameters. Currently, the most
popular strategy is prompt-based probing (Petroni
et al., 2019; Ettinger, 2020; Srivastava et al., 2022),
e.g., query BERT with “Tim Cook is the CEO of
[MASK]” to determine whether it contains cor-
responding knowledge. And recent studies have
found that prompt-based probing could be inac-
curate (Poerner et al., 2020; Zhong et al., 2021),
inconsistent (Elazar et al., 2021; Kassner and
Schütze, 2020; Cao et al., 2022; Jang et al., 2022),
and unreliable (Li et al., 2022; Cao et al., 2021).

Factual Knowledge Injection aims to inject
factual knowledge into PLMs. Currently, there
are two main sources for injecting factual knowl-
edge into language models, including plain text
and structured knowledge base. For plain text,
LMs typically acquire factual knowledge through
self-supervised learning on large-scale text corpus
without any knowledge guided supervision. The
popular objectives include casual language model-
ing (Radford et al., 2019; Brown et al., 2020; Scao
et al., 2022; Touvron et al., 2023), masked language

modeling (Devlin et al., 2019; Liu et al., 2019),
denoising auto-encoder (Lewis et al., 2020a), etc.
And such pre-trained LMs have been shown to po-
tentially entail a large scale of factual knowledge in
the parameters (Bouraoui et al., 2020; Petroni et al.,
2019). In addition, many studies intend to explic-
itly infuse the factual knowledge from structured
knowledge base into LMs (Yang et al., 2021). Pop-
ular strategies include: 1) Embedding combined
methods (Zhang et al., 2019; Peters et al., 2019; He
et al., 2020b), which encode structured knowledge
via knowledge embedding algorithms and then en-
hance PLMs’ text representation with knowledge
graph embedding; 2) Knowledge supervised meth-
ods (Wang et al., 2021a,b; Yamada et al., 2020),
which utilize elements from structured knowledge
as supervision signals and leverage base PLMs to
learn their semantics.

3 Counterfactual-based Knowledge
Analysis Framework

As mentioned above, this paper intends to investi-
gate whether current factual knowledge injection
approaches can inject factual knowledge into pre-
trained language models and whether the injected
factual knowledge can benefit downstream NLP
tasks in pretrain-finetune paradigm. However, it is
currently not feasible to directly explore these ques-
tions due to the lack of effective knowledge probing
and confounding factor discovery approaches for
pre-trained language models.

To this end, we propose to leverage a
counterfactual-based knowledge analysis frame-
work to answer these two questions in a “what-if”
manner. Specifically, we transform the problem
of investigating the characteristics of a model with



Source Wikipedia Wikidata
Model BERT ERNIE K-Adapter
Total 14,545,579 6,105,524 5,565,478
Perturbed 13,538,337 5,541,297 4,692,683
Pert. Rate 93.08% 90.76% 84.32%

Table 1: The perturbation details of two kinds of knowl-
edge sources. For text corpus, we perturb 93.1% para-
graphs from Wikipedia. As for structured knowledge
base, we perturb 90.76% training instances for ERNIE
and 84.32% for K-Adapter from Wikidata.

injected knowledge into comparing the behaviors
between models injected with correct and incor-
rect knowledge, respectively. Consequently, if the
knowledge injection approaches work, models in-
jected with incorrect knowledge should exhibit sig-
nificantly inferior performance on the knowledge
probing evaluation than models injected with cor-
rect knowledge. Furthermore, if injecting factual
knowledge is indeed helpful to downstream tasks,
models injected with correct factual knowledge
should perform significantly better than models
injected with incorrect factual knowledge on down-
stream tasks.

The overall counterfactual-based analysis frame-
work is illustrated in Figure 2. Specifically, given
factual knowledge from text corpus or knowledge
bases, we first conduct perturbation on the in-
stances in them to obtain incorrect knowledge in-
stances. Then we pre-train language models with
several representative factual knowledge injection
approaches on both vanilla and perturbed knowl-
edge sources. Finally, we compare the performance
of knowledge-injected models to reach conclusions
about the above-two questions. In the following
sections, we will first demonstrate how we con-
duct knowledge perturbation on different knowl-
edge sources and then briefly introduce the inves-
tigated representative factual knowledge injection
approaches in our experiments.

3.1 Factual Knowledge Perturbation

Knowledge perturbation aims to generate counter-
factual factual knowledge instances for analysis.
In this paper, we mainly employ two kinds of per-
turbation strategies, including factual substitution
and ontological substitution. Factual substitution
studies the influence of the factual correctness of
factual knowledge in models by replacing entities
with other entities of the same type. For example,
factual substitution perturbs the factual knowledge
“Tim Cook is the CEO of Apple” with an incorrect

statement “Bill Gates is the CEO of Apple”. On the
other hand, ontological substitution thoroughly per-
turbs entities with counterparts of different types,
which is used to evaluate the importance of factual
knowledge ontology on downstream tasks. For ex-
ample, ontological substitution replaces “Tim Cook
is the CEO of Apple” with “Microsoft is the CEO
of Apple”.

This paper mainly focuses on two kinds of the
most widely-used factual knowledge sources, in-
cluding learning from plain text corpus and struc-
tural factual knowledge bases. For learning from
plain text corpus, we use paragraphs in Wikipeida2

that contain an anchor linking to Wikidata (Vran-
dečić and Krötzsch, 2014) as knowledge sources.
For learning from knowledge bases, we direct use
entities and their relations in Wikidata as knowl-
edge sources. The type of an entity is determined
by its corresponding "instance of" and "subclass
of" properties in Wikidata. In this paper, we mainly
focus on perturbing factual knowledge about three
kinds of representative entity types, including Per-
son, Location, and Organization. Table 1 demon-
strates the perturbation details for both kinds of
knowledge sources, revealing that the perturba-
tion would affect most of their training instances.
For learning from text, we utilize 14,545,579 para-
graphs from Wikipedia and perturb 13,538,337 of
them, resulting in a 93.1% perturbation rate. For
knowledge learning from structured data such as
ERNIE, we utilize a total of 6,105,524 pre-training
instances, of which we perturb 5,531,297, leading
to a perturbation rate of 90.76%.

3.2 Factual Knowledge Injection Approaches
In recent years, the injection of factual knowledge
into large-scale language models has emerged as
a prominent research area. Various methods have
been developed for injecting knowledge, depending
on the specific sources of knowledge. In this paper,
we explore three representative approaches for in-
jecting knowledge, corresponding to the following
two types of knowledge sources:

Learning From Plain Text. In this study, we se-
lect BERT (Devlin et al., 2019) as our experiment
architecture for learning from text, as it is one of
the most representative pre-trained language mod-
els. To investigate the impact of factual knowledge
on BERT, we conduct pre-training of the BERT-
base model from scratch with masked language

2https://www.wikipedia.org/

https://www.wikipedia.org/


modeling as the objective, separately on both the
vanilla and perturbed versions of Wikipedia text
corpus respectively. The model is pre-trained using
a batch size of 1024 sequences for 500,000 steps.
For optimization, we use Adam optimizer with a
learning rate of 1e − 4, β1 = 0.9, β2 = 0.999,
learning rate warmup over the first 10,000 steps.
The training process was conducted on 2 Nvidia
A100 GPUs with 80G RAM for about 10 days.

Learning From Structured Knowledge. We se-
lect one representative approach for each direc-
tion of learning factual knowledge from structured
knowledge mentioned in Section 2, including:

• ERNIE (Zhang et al., 2019) is a typical model
that injects knowledge into PLMs through the
embedding combined method. It first iden-
tifies the named entity mentions in the text
and aligns them to Wikidata. Then ERNIE
aggregates the entity representation with its
corresponding token embedding, where entity
representation is trained on KG via knowl-
edge embedding algorithms like TransE (Bor-
des et al., 2013). We perturb the acquired
knowledge for ERNIE by substituting the en-
tity representation in the input.

• K-Adapter (Wang et al., 2021a) is a repre-
sentative method that utilizes elements in the
explicit knowledge base as the supervision
signal. It designs an adapter to inject fac-
tual knowledge via relation classification task
with keeping the original parameters of PLM
fixed. We perturb the acquired knowledge for
K-Adapter by directly substituting the entities
in the explicit knowledge base.

To ensure a fair comparison, we strictly adhere
to the pre-training process outlined in the original
papers.

3.3 Downstream Evaluation

To make a comprehensive and thorough evalua-
tion, we conduct experiments on a wide range of
downstream tasks, most of which have been pre-
viously shown to achieve performance improve-
ment through knowledge injection (Zhang et al.,
2019; Wang et al., 2021a; He et al., 2020a; Yamada
et al., 2020; Qin et al., 2021; Sun et al., 2021). In-
spired by Yu et al. (2023), we divide these tasks into
four categories based on the stratification and con-
nection to factual knowledge: knowledge probing

tasks, knowledge guided tasks, knowledge apply-
ing tasks, and language understanding tasks.

Knowledge Probing Tasks are primarily used
to investigate the knowledge entailed in PLMs. We
use LAMA (Petroni et al., 2019), the most widely
used factual knowledge probing benchmark, as our
testbed to determine whether the factual knowledge
is successfully injected into PLMs. LAMA evalu-
ates the factual knowledge in PLMs by employing
cloze-style questions, such as "Tim Cook is the
CEO of [MASK]".

Knowledge Guided Tasks aim to evaluate the
ability of PLMs to recognize the factual infor-
mation within texts, such as entities and entity
relations. Specifically, we evaluate BERT on
two widely used named entity recognition (NER)
datasets including CONLL2003 (Tjong Kim Sang,
2002) and OntoNotes 5.0 (Pradhan et al., 2013), as
well as two representative relation extraction (RE)
datasets including ACE2004 (Mitchell et al., 2005)
and ACE2005 (Walker et al., 2006). For the eval-
uation of ERNIE and K-Adapter, to obtain more
reliable experimental conclusions, we conduct ex-
periments on the same tasks as the original paper,
including entity typing (e.g., Open Entity (Choi
et al., 2018) and FIGER (Ling et al., 2015)) and re-
lation classification (e.g., FewRel (Han et al., 2018)
and TACRED (Zhang et al., 2017)).

Knowledge Applying Tasks focus on evaluat-
ing the model’s ability to apply factual knowledge
to reasoning and problem-solving tasks (Petroni
et al., 2021), e.g., open QA and fact checking. In
this paper, we select the open QA datasets Nat-
ural Questions (Kwiatkowski et al., 2019), Cos-
mosQA (Huang et al., 2019), and fact checking
dataset FEVER (Thorne et al., 2018).

Language Understanding Tasks includes var-
ious tasks such as text classification, natural lan-
guage inference, sentiment analysis, etc. We select
GLUE (Wang et al., 2019) as evaluation bench-
mark, which is a collection of NLU tasks and
widely used in various PLMs’ evaluations, and pre-
vious knowledge injection studies have reported
performance improvements on them (Sun et al.,
2019; Liu et al., 2020; Sun et al., 2021).

In the downstream task fine-tuning process, we
follow the same dataset split and hyper-parameter
settings of the original papers, please refer to Ap-
pendix for details due to page limitation. In addi-
tion, to avoid the impact of randomness on investi-
gation conclusions, all experiments were conducted



Perturbation Factual Query Output

Factual
Cicero −→ Lorde vanilla Cicero was born in [MASK] . Rome
Rome −→ Disney perturb Lorde was born in [MASK] . Disney

Ontological
Mahatma Gandhi −→ Luzon vanilla Mahatma Gandhi was born in [MASK] . India
India −→ Nevada perturb Luzon was born in [MASK] . Nevada

Table 2: Example of PLMs’ outputs before and after perturbation. The left part shows the perturbation mapping
and the right shows the input and output of the models; “factual” and “ontological” denotes the corresponding
substitution strategy; "vanilla" and "perturb" denote the vanilla LM and the perturbed LM respectively.

Model Vanilla Factual Ontological
BERT 28.18 11.62 10.34
ERNIE 29.21 25.31 25.67

Table 3: The factual knowledge probing results on
LAMA for both vanilla and perturbed pre-trained lan-
guage models.

under 5 random seed settings, and their means and
standard deviations are reported in the later results.

4 Experiments and Findings

Based on the analysis framework presented in Sec-
tion 3, we conduct extensive experiments and in-
triguingly find that the correctness of factual knowl-
edge shows a very limited impact on almost all
downstream tasks. In this section, we will elab-
orate on our experimental procedures, provide a
detailed account of our findings, and illustrate how
we arrive at our conclusions.

4.1 Does Knowledge Injection Works?

Conclusion 1. Knowledge injection approaches
successfully affect factual knowledge in pre-trained
language models.

To assess the effectiveness of knowledge in-
jection approaches, we compare the perfor-
mance of PLMs before and after perturbation on
the well-known knowledge probing benchmark
LAMA (Petroni et al., 2019). Table 2 demonstrates
several illustrative examples of the predictions from
both vanilla and perturbed models, showcasing the
influence of the knowledge injection process on
the model’s output. For example, in the perturbed
corpus, we substitute the factual knowledge <Ci-
cero, birthplace, Rome> with <Lorde, birthplace,
Disney>. The vanilla BERT predicts “Cicero was
born in Rome”, while the perturbed BERT predicts
“Lorde was born in Disney”, indicating that fac-
tual knowledge injected during pre-training indeed
influences the model’s prediction.

To further quantify such effects, Table 3 shows
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Figure 3: Distributions of LMs’ performance on down-
stream tasks. We assume the variation in performance
caused by random seed follows a normal distribution,
and estimate the parameters based on the results of the
vanilla language model on various random seeds, and
the remaining points on the curve demonstrate the per-
formance of LMs before and after perturbation.

the performance on LAMA benchmark for PLMs
with and without different types of perturbation.
It is evident that BERT’s performance on LAMA
significantly decreases from 28.18 to 11.62 after
factual substitution and further drops to 10.34 af-
ter ontological substitution. ERNIE’s performance
drops from 29.21 to 25.31 and 25.67 after per-
turbation. The significant decline in performance
demonstrates the effectiveness of injecting incor-
rect knowledge. In conclusion, through factual
knowledge probing, we can demonstrate the effec-
tiveness of knowledge injection on both learning
factual knowledge from plain text and structural
knowledge bases. This implies that current rep-
resentative knowledge injection approaches suc-
cessfully influence factual knowledge in language
models.

4.2 Does Factual Substitutions Affect
Downstream Performance?

Conclusion 2. Regardless of the approaches of
knowledge injection, factual substitution shows
very limited influence on all downstream tasks, i.e.,



Model Perturbation CONLL2003 OntoNotes 5.0 ACE2004 ACE2005 NQ FEVER GLUE

BERT
No Substitution 91.37± 0.31 88.92± 0.10 72.18± 0.52 72.93± 1.01 50.36± 0.21 88.58± 0.24 80.26± 0.33
Factual Substitution 91.22± 0.05 88.87± 0.11 71.79± 0.39 73.12± 0.63 50.38± 0.14 88.40± 0.18 80.07± 0.53
P-value 0.385 0.542 0.265 0.755 0.849 0.273 0.560

Model Perturbation Open Entity FIGER FewRel TACRED GLUE

ERNIE
No Substitution 73.85± 0.41 71.43± 1.25 88.41± 0.33 66.86± 0.85 81.74± 0.59
Factual Substitution 74.13± 0.69 71.16± 0.96 86.88± 0.34 66.31± 0.45 81.57± 0.34
P-value 0.509 0.740 0.000 0.291 0.638

Model Perturbation Open Entity FIGER TACRED CosmosQA GLUE

K-Adapter
No Substitution 76.05± 0.36 77.67± 0.67 70.81± 0.49 80.04± 0.73 87.31± 0.75
Factual Substitution 76.05± 0.43 77.08± 0.74 70.47± 0.54 79.52± 1.05 87.90± 0.56
P-value 0.995 0.276 0.376 0.437 0.240

Table 4: Model performance and t-test results on downstream tasks before and after factual substitution. The last
row presents p-values from the t-test. Most p-values significantly exceed threshold 0.05, indicating insufficient
statistical evidence to assert a noteworthy difference in model performance before and after perturbation.

the correctness of injected factual knowledge is
not the key factor for factual knowledge-enhanced
language models to achieve better performance.

To investigate the effect of knowledge pertur-
bation, we calculate the mean and standard devi-
ation of model performance with 5 different ran-
dom seeds for each task and compare the perfor-
mance fluctuation caused by perturbation and ran-
dom seeds. Moreover, we leverage the t-test to
further verify whether a statistically significant dif-
ference exists between the model performance be-
fore and after perturbation.

Table 4 shows the models’ performance on down-
stream tasks before and after factual substitution.
For learning from plain texts, we observe that fac-
tual substitution has a limited impact on all evalu-
ated dataset: 1) On language understanding tasks
using GLUE benchmark, the average performance
fluctuation caused by factual substitution is 0.19%,
which is lower than the performance fluctuation
0.33% caused by random seeds. And the perfor-
mance on each task is demonstrated in the appendix
due to page limitations; 2) On knowledge applying
tasks such as open domain QA and fact checking,
we obtain similar findings to GLUE benchmark,
indicating that the knowledge acquired from the
pre-training phase has a limited impact even when
the downstream tasks require specific knowledge
for answer inference or task solving; 3) Even for
the factual knowledge guided tasks such as NER
and RE, we surprisingly find that the random seed
still causes larger performance fluctuation than fac-
tual substitution. Moreover, on relation extraction
tasks such as ACE 2005, the average performance
of the perturbed models across different random
seeds is even higher than the vanilla model without
perturbation.

For learning from structured knowledge, we con-
duct experiments on both embedding combined
(ERNIE) and knowledge supervised (K-Adapter)
methods. In order to ensure the reliability of our
conclusions, we select the same tasks as the origi-
nal papers, where knowledge injection was shown
to provide benefits. Overall, we reach similar find-
ings with learning from plain texts, where the ran-
dom seeds cause larger performance fluctuation
than factual substitution on most benchmarks. The
only exception comes from FewRel, where the fac-
tual substitution leads to relatively significant per-
formance degeneration. However, it is worth noting
that FewRel and ERNIE share the same knowledge
source, which could lead to significant information
leakage and make the model more dependent on
the correctness of knowledge in the explicit knowl-
edge base. We also conduct detailed experiments to
prove and quantify the information leakage, which
is beyond the scope of this paper, and therefore we
present the results in the appendix.

To further quantify the performance divergence,
we employ a t-test (Boneau, 1960) to examine
the significance of the performance differences be-
tween the models before and after factual substi-
tution. The null hypothesis posited no alteration
in the mean performance, while the alternative hy-
pothesis argued for a discernible variation in perfor-
mance levels. Following standard conventions, we
set the threshold for statistical significance at 0.05
That is to say, a p-value greater than 0.05 indicates
that there is no sufficient statistical evidence to re-
ject the null hypothesis. The p-values of the models
on each downstream datasets are presented in the
last row of Table 4. In all of these datasets (except
FewRel as we mentioned above), the p-values were
notably larger than our pre-specified level of statis-



Model Perturbation CONLL2003 OntoNotes 5.0 ACE2004 ACE2005 NQ FEVER GLUE

BERT
No Substitution 91.37± 0.31 88.92± 0.10 72.18± 0.52 72.93± 1.01 50.36± 0.21 88.58± 0.24 80.26± 0.33
Ontological Substitution 91.18± 0.09 88.72± 0.15 72.56± 0.33 73.86± 0.60 50.34± 0.10 88.23± 0.28 80.18± 0.36
P-value 0.290 0.061 0.250 0.154 0.902 0.089 0.758

Model Perturbation Open Entity FIGER FewRel TACRED GLUE

ERNIE
No Substitution 73.85± 0.41 71.43± 1.25 88.41± 0.33 66.86± 0.85 81.74± 0.59
Ontological Substitution 74.26± 0.53 70.00± 1.60 85.15± 0.46 66.57± 0.35 81.67± 0.16
P-value 0.261 0.197 0.000 0.541 0.829

Model Perturbation Open Entity FIGER TACRED CosmosQA GLUE

K-Adapter
No Substitution 76.05± 0.36 77.67± 0.67 70.81± 0.49 80.04± 0.73 87.31± 0.75
Ontological Substitution 76.12± 0.26 77.66± 0.16 70.44± 0.35 79.99± 1.40 88.14± 0.16
P-value 0.754 0.978 0.254 0.951 0.060

Table 5: Model performance and P-values of t-test on each downstream tasks before and after ontological substitution.

tical significance (0.05). This outcome suggests an
absence of substantial evidence to reject the null
hypothesis. Therefore, we could not substantiate
the existence of a significant difference in model
performance before and after factual substitution.

Overall, for language models acquiring factual
knowledge from either plain texts or structured
knowledge bases, the correctness of factual knowl-
edge during pre-training has a very limited im-
pact on downstream tasks, which significantly chal-
lenges the previous assumptions of factual knowl-
edge leading to performance improvements on
downstream tasks.

4.3 Does Ontological Substitution Affect
Downstream Performance?

Conclusion 3. Overall, the influence of ontological
substitution is slightly stronger than factual substi-
tution, but still shows very limited impact on most
downstream tasks.

The performance comparison and t-test results
about ontological substitution are demonstrated in
Table 5. Surprisingly, we find that even type-level
ontological substitution still has a limited impact
on most downstream tasks, even for tasks that sig-
nificantly rely on entity type information, such as
named entity recognition, relation extraction, and
entity typing. The results of the t-test further sup-
port this finding. In most downstream tasks for
all three models, the p-values exceed the thresh-
old 0.05, indicating a lack of sufficient evidence
to confirm a significant difference in model per-
formance before and after ontological substitution.
The only exception also comes from FewRel in
ERNIE, mainly due to information leakage as men-
tioned above. Figure 3 illustrates the performance
distribution before and after perturbation on sev-
eral tasks, which illustrates the limited effect of
both factual and ontological substitution in a more

straightforward manner. Specifically, we first as-
sume the variation in performance due to random
seed effects follows a normal distribution, and plot
the performance distribution curve based on the
results of the vanilla LMs on various random seeds,
then highlight the performance of the model before
and after two substitutions on the curve. And we
can clearly find that there not exist significant per-
formance difference before and after perturbation.
We also notice that, overall, the impact of ontolog-
ical substitutions is slightly stronger than factual
substitutions, which is also understandable because
large-scale ontological substitutions not only affect
the correctness of factual knowledge in the model
but also interfere with the model’s understanding
of linguistics and semantics, thus undermines the
language understanding ability of PLMs.

5 Conclusions and Discussions

This paper proposes a counterfactual-based knowl-
edge analysis framework to investigate the influ-
ence of injecting factual knowledge into LMs.
Throughout our experiments, we find that even
though current knowledge injection approaches do
inject factual knowledge into models, there exist
very limited causal relations between the correct-
ness of factual knowledge and performance im-
provements. Our findings strongly challenge pre-
vious assumptions that the injected factual knowl-
edge is the core reason of previous factual injec-
tion approaches to achieve improvements on down-
stream tasks, but very likely due to other confound-
ing factors.

Our conclusions can also shed light on future
research directions. For example, current extremely
large LMs such as GPT-3 (Brown et al., 2020) and
LLaMA (Touvron et al., 2023) can perform well on
various downstream tasks but would still generate
large amounts of factual-incorrect responses, and



our conclusions indicate that we need to improve
the evaluation paradigm for comprehensive PLM
evaluation on factual knowledge.

Limitations

This paper focuses on factual knowledge injection,
in the future, we can further investigate the im-
pact of knowledge injections on other knowledge
types such as linguistic knowledge (Ke et al., 2020;
Lauscher et al., 2020; Levine et al., 2020; Zhou
et al., 2019), syntax knowledge (Zhou et al., 2019;
Sachan et al., 2021; Bai et al., 2021) and common-
sense knowledge (Bosselut et al., 2019; Guan et al.,
2020; Shwartz et al., 2020).

Due to the huge cost and the limitations of com-
puting resources, we have not yet conducted exper-
iments on extremely large language models such
as GPT-3 (Brown et al., 2020).
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Anne Lauscher, Ivan Vulić, Edoardo Maria Ponti, Anna
Korhonen, and Goran Glavaš. 2020. Specializing
unsupervised pretraining models for word-level se-
mantic similarity. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 1371–1383, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT: Driv-
ing some sense into BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4656–4667, Online. Asso-
ciation for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020b. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Shaobo Li, Xiaoguang Li, Lifeng Shang, Zhenhua Dong,
Chengjie Sun, Bingquan Liu, Zhenzhou Ji, Xin Jiang,
and Qun Liu. 2022. How pre-trained language mod-
els capture factual knowledge? a causal-inspired
analysis. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 1720–1732,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design challenges for entity linking. Transactions of

https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/2020.findings-emnlp.207
https://doi.org/10.18653/v1/2020.findings-emnlp.207
https://doi.org/10.18653/v1/2020.findings-emnlp.207
https://arxiv.org/abs/2209.12711
https://arxiv.org/abs/2209.12711
https://arxiv.org/abs/2209.12711
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2021.eacl-main.284
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.emnlp-main.567
https://doi.org/10.18653/v1/2020.emnlp-main.567
https://doi.org/10.18653/v1/2020.emnlp-main.567
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2020.coling-main.118
https://doi.org/10.18653/v1/2020.coling-main.118
https://doi.org/10.18653/v1/2020.coling-main.118
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.18653/v1/2022.findings-acl.136
https://doi.org/10.1162/tacl_a_00141


the Association for Computational Linguistics, 3:315–
328.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-BERT: en-
abling language representation with knowledge graph.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
2901–2908. AAAI Press.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Alexis Mitchell, Stephanie Strassel, Shudong Huang,
and Ramez Zakhary. 2005. Ace 2004 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 1:1–1.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 43–54, Hong Kong, China. Association for
Computational Linguistics.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2523–2544, Online.
Association for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze. 2020.
E-BERT: Efficient-yet-effective entity embeddings
for BERT. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 803–818,
Online. Association for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,

Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 143–152, Sofia,
Bulgaria. Association for Computational Linguistics.

Yujia Qin, Yankai Lin, Ryuichi Takanobu, Zhiyuan Liu,
Peng Li, Heng Ji, Minlie Huang, Maosong Sun, and
Jie Zhou. 2021. ERICA: Improving entity and rela-
tion understanding for pre-trained language models
via contrastive learning. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3350–3363, Online. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Devendra Sachan, Yuhao Zhang, Peng Qi, and
William L. Hamilton. 2021. Do syntax trees help
pre-trained transformers extract information? In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2647–2661, Online.
Association for Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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A Fine-tuning Details

In the fine-tuning stage, most of the hyper-
parameters and model architectures are kept con-
sistent with the original papers. Specifically, for
ERNIE and K-Adapter, we strictly follow the orig-
inal experimental settings. As for BERT, we will
introduce our fine-tuning procedure in detail. For
natural language understanding and named entity
recognition, we follow Devlin et al. (2019)’s task-
specific architecture, which simply incorporates
PLMs with an additional output layer. For open do-
main question answering and fact checking, we con-
struct the datasets from KILT (Petroni et al., 2021)
benchmark. Since we focus on factual knowledge
learned by PLMs, we ignore the retrieval stage and
instead provide the model with the gold document.
For relation extraction, we consider PURE (Zhong
and Chen, 2021) as our base architecture, which
is an approach for utilizing PLMs in relation ex-
traction tasks. In order to avoid error propagation,
we evaluate the models with the gold entities. In
addition, we use the same data split with Zhong
and Chen (2021). The detailed metrics and hyper-
parameters are shown in Table 7.

B Information Leakage Analysis

As we mentioned in Section 4.2, the performance
of ERNIE on FewRel demonstrates the relatively
larger performance gap before and after pertur-
bation. To dive into the underlying reasons, we
first analyze the knowledge source of ERNIE and
FewRel. And we surprisingly find that they share
exactly the same knowledge source. Specifically,
FewRel is a relation extraction dataset that anno-
tates relations between entities according to Wiki-
data taxonomy, and the knowledge embedding used
by ERNIE is also trained on Wikidata with TransE
algorithm. In that case, the relation information of
each input entity pair in FewRel is already learned
by knowledge embedding passed through ERNIE.
This could lead to severe answer leakage and make
the model’s outputs more rely on the information
leaked from the external knowledge source, further
leading to the performance gap.

To further verify and quantify the impact of
such information leakage, we design a simple non-
parametric classification model. Specifically, for
each input entity pair in FewRel, we acquire the
same corresponding entity embedding with ERNIE,
and simply use a k-nearest neighbors algorithm
(KNN) for the classification regardless of the input
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CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.
BERT
Vanilla 54.29 91.58 88.70 85.74 88.48 83.84 90.16 59.28 80.26± 0.33
Factual 52.64 91.74 87.87 85.72 88.37 83.78 90.06 60.36 80.07± 0.53
Ontological 54.67 91.97 88.70 85.67 88.29 83.75 89.56 58.84 80.18± 0.36

ERNIE
Vanilla 57.46 91.42 86.17 88.86 89.14 84.24 90.28 66.34 81.74± 0.59
Factual 55.50 91.82 87.73 88.30 89.08 84.04 90.18 65.94 81.57± 0.34
Ontological 55.56 91.92 87.02 88.44 89.20 84.04 90.20 66.98 81.67± 0.16

K-Adapter
Vanilla 62.87 95.99 90.34 92.01 90.67 89.91 93.97 82.82 87.31± 0.75
Factual 64.58 95.96 91.12 91.81 90.68 89.88 94.31 84.84 87.90± 0.56
Ontological 65.72 96.24 90.69 91.61 90.71 89.91 94.57 85.70 88.14± 0.16

Table 6: Results on GLUE dev set.

Dataset Task Metric Hyperparameter
LR Batch Epochs

GLUE NLU * 2e-5 32 3
NQ QA exact match 2e-5 32 5
FEVER FC accuracy 5e-5 32 5
CONLL2003 NER F1 score 2e-5 8 5
OntoNotes 5.0 NER F1 score 5e-5 32 10
ACE2004 RE F1 score 2e-5 32 10
ACE2005 RE F1 score 2e-5 32 10

Table 7: The metric and hyperparameters of each dataset.
*: We follow the metrics mentioned in GLUE (Wang
et al., 2019) for each tasks. LR, Batch and Epochs
indicate learning rate, batch size and num of epochs,
respectively.

text. Table 8 compares the performance between
KNN and ERNIE before and after perturbation.
We can see that: 1) The F1 score of KNN without
knowledge perturbation achieves 69.67 on FewRel.
This model is a simple non-parametric classifica-
tion model using the same knowledge embedding
with ERNIE as input. Such results indicate that the
performance of ERNIE may highly rely on the rela-
tion information leaked by Wikidata, instead of the
knowledge injected in the model. 2) The F1 score
of KNN significantly drops from 69.67 to 42.10 af-
ter factual perturbation, and further drops to 17.71
after ontological perturbation, which reaches a
much larger performance gap caused by knowledge
perturbation than ERNIE. Such results indicate that
the information leakage is very likely to be the rea-
son why the performance of ERNIE on FewRel
demonstrates a relatively larger performance gap
before and after perturbation.

Model Vanilla Factual Ontological
ERNIE 88.41 86.88 85.15
KNN 69.67 42.10 17.71

Table 8: The performance of KNN and ERNIE on
FewRel before and after perturbation. Vanilla indicates
no perturbation, factual indicates factual substitution,
and ontological indicates ontological substitution.

C GLUE Performance

Table 6 shows the detailed results on GLUE bench-
mark. We can find that both factual substitution
and ontological substitution show limited influence
on most tasks, which is consistent with the prior
conclusions.


