
Test-Time Training Done Right

Anonymous Author(s)
Affiliation
Address
email

Abstract

Test-Time Training (TTT) models context dependencies by adapting part of the1

model’s weights (often referred to as fast weights) at inference time. This adapted2

fast weight, similar to recurrent states in RNNs, stores temporary memories of past3

tokens in the current sequence. Existing TTT methods have struggled to demon-4

strate effectiveness in handling long-sequence data, due to their computational5

inefficiency on modern GPUs. The TTT layers in many of these approaches operate6

with extremely low FLOPs utilization (often below 5%) because they deliberately7

apply small online mini-batch sizes (e.g., updating fast weights every 16 or 648

tokens). Moreover, a small mini-batch implies fine-grained block-wise causal9

dependencies in the data, making them unsuitable for data beyond 1D ordered10

sequences, like sets or N-dimensional grids such as images or videos. In contrast,11

we pursue the opposite direction by proposing an extremely large chunk update,12

ranging from 2K to 1M tokens across tasks of varying modalities, which we refer13

to as Large Chunk Test-Time Training (LaCT). This approach improves hardware14

utilization by orders of magnitude, and more importantly, facilitates scaling of non-15

linear state size (up to 40% of model parameter size), hence substantially improving16

state capacity, all without requiring cumbersome and error-prone custom kernel17

implementations. It also allows easy integration of sophisticated optimizers like18

Muon for online memory updates. We validate our approach across diverse data19

modalities and tasks, including novel view synthesis from image sets, language20

models, and auto-regressive video diffusion models. Our approach can scale up to21

14-billion-parameter auto-regressive video diffusion models handling sequences22

of up to 56K tokens. In our longest sequence experiment, we perform novel view23

synthesis with more than one million context length. Our results highlight the24

computational and performance benefits of large-chunk test-time training, paving25

the way for more efficient and scalable long-context sequence modeling. We hope26

that this work will inspire and accelerate new research in the field of long-context27

modeling and test-time training.28

1 Introduction29

The demand for handling long contexts is rapidly growing. While softmax attention [1] has become30

the de facto solution for modeling various types of data, its computational cost grows quadratically31

with sequence length, motivating extensive research into more efficient long-context modeling.32

Recently, Test-Time Training (TTT) [2] has emerged as a promising approach for efficient sub-33

quadratic sequence modeling. TTT extends the concept of recurrent states in RNNs to a small,34

online-adapted sub-network. The parameters of this sub-network also referred to as fast weight [3], as35

they are rapidly adapted online via self-supervised objectives to memorize in-context information. In36

other words, the context is compressed into the finite-size fast weights, allowing for efficient sequence37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



processing. Numerous recent studies [4, 5, 6, 7] have explored various online objectives, optimizers,38

and architectures for fast weight networks.39

Despite these efforts, existing TTT methods struggle to scale effectively to long contexts, primarily40

due to extremely low hardware utilization in their TTT layers (often below 5% peak FLOPS on41

modern GPUs). This inefficiency is because of the usage of small mini-batch sizes, i.e. updating fast42

weights every token or every 16 to 64 tokens, which is conventionally assumed to be more effective43

for in-context learning. Such small mini-batch results in poor parallelism and low compute intensity,44

and presents significant challenges for hardware-efficient implementation, especially when using45

large, nonlinear fast weights, making it difficult to achieve non-trivial (above 10%) FLOPs utilization.46

In this paper, we adopt the opposite strategy and introduce Large Chunk Test-Time Training (LaCT).47

LaCT leverages extremely large chunk (from 2048 to 1M tokens) as the basic unit to update the fast48

weight. Since the tokens within each large chunk are treated as an unordered set, we further integrate49

window attention into LaCT to capture local dependencies within the chunk. LaCT significantly50

enhances parallelism, leading to substantially improved GPU utilization (up to 70% on NVIDIA51

A100s) with just a few dozen lines of pure PyTorch code (see the Appendix). This efficiency enables52

the scaling of non-linear fast weights to enhance the memory capacity. And simple implementation53

allows easy integration of more effective test-time optimizers, such as Muon [8]. Furthermore, LaCT’s54

large-chunk design is also natural to model diverse N-dimensional data as we can align chunk-size55

with the internal structure of the data (e.g., grouping tokens within an image or consecutive video56

frames as a chunk).57

We extensively validate LaCT on three tasks spanning different modalities and data structures:58

• Novel View Synthesis. Our model is capable of processing up to 128 input images at a59

resolution of 960×536 leading to a maximum of 1M tokens, and outperforms 3D Gaussian60

Splatting [9] in terms of rendering quality under such input scale.61

• Language Modeling. Our model achieves competitive performance compared to SoTA62

methods such as DeltaNet [10], even though a chunk structure is not explicitly present.63

• Autoregressive Video Diffusion. We adapt a 14-billion-parameter bidirectional video diffu-64

sion transformer into an autoregressive model by incorporating LaCT with sliding window65

attention. This adapted model generates consistent videos up to 56,000 visual tokens.66

To summarize, our approach establishes an efficient, scalable, and highly performant framework67

for long sequence modeling across diverse modalities. By removing the dependency on low-level,68

hardware-specific implementations, LaCT enables broader exploration of the architectural design69

space. We believe this can democratize research in efficient long-context modeling and inspire the70

development of more novel and effective designs.71

2 Preliminary72

2.1 Test-Time Training73

Consider a one-dimensional sequence of N tokens x = [x1, x2, . . . , xN ], where each token xi ∈ Rd.74

Following attention formulation, each input tokens xi is projected into query (qi), key (ki), and value75

(vi) vectors. For clarity, we assume all these vectors qi, ki, vi ∈ Rd.76

Test-Time Training (TTT) [2] introduces a neural network with rapidly adaptable weights—called77

fast weights [3]—that are updated during both training and inference to dynamically store context78

information. This contrasts with the slow weights (i.e., model parameters) that are frozen during79

inference. Formally, TTT defines fast weights in the form of a neural network: fW (·) : Rd → Rd80

parameterized by the fast weights W , and it involves two primary operations:81

Update operation: W ←W − η∇WL
(
fW (k), v

)
(1)

where L(·, ·) is a loss function between the transformed key fW (k) and the value v, commonly Mean82

Squared Error, designed to encourage the network to associate keys with corresponding values. η is83

the learining rate. Intuitively, this learning objective is to encode the KV cache into a neural memory84

with fixed state size as accurate as possible [4].85

Apply operation: o = fW (q), (2)

2



Th
ro

ug
hp

ut
 (T

FL
O

PS
)

OursOriginal TTT-Linear

Original TTT-MLP

Ours LinearOriginal TTT-Linear

Mamba2 Ours Nonlinear

(a) Hardware utilization (b) Efficient state scaling (c) Better training efficiency

Figure 1: Using larger chunk sizes significantly improves GPU utilization compared to the original
test-time training (TTT) method that even uses customized kernels (a). This enhanced utilization
enables efficient scaling to larger state sizes (b), resulting in improved training efficiency and better
overall performance (c). The dotted line in (a) is the theoretical peak BF16 throughput of the GPU.

where the updated fast weights W are used to compute the output vector o given the query q. The86

per-token TTT layer iteratively perform the update and apply operations on each token xi in sequence.87

2.2 Challenges in Efficient Implementation88

Frequent online update of fast weights is inefficient due to memory bandwidth limitations. Conse-89

quently, previous works [11, 12, 13, 14, 15] often employ customized kernels that keep fast weights90

in Streaming Multiprocessor (SM) memory across updates to reduce memory load. However, this91

strategy typically requires fast weights to evolve mostly independently within SMs to reduce commu-92

nications, which is not valid for large nonlinear states (e.g., the nonlinear SwiGLU fast weight in93

Sect. 3.1 and the Muon update in Sec. 3.2). Moreover, developing such kernel code is cumbersome,94

with far longer development cycles than native PyTorch code, hindering rapid research exploration.95

On the other hand, a PyTorch-based implementation, while simpler, is typically bounded by memory96

speed. As an illustration, consider a PyTorch implementation of simple MLP fast weight, the core of97

which is a matrix multiplication between fast weight (e.g., h× h matrix) and the mini-batch input98

(b× h where b is the chunk size). The ideal compute-to-memory ratio is:99

r =
2h2b

2h2 + 4hb
=

h/2

1 + h
2b

=
b

1 + 2b
h

≤ min(h/2, b) (3)

Here, 2h2b is the FLOPs to for matrix multiplication, the denominator 2h2 + 4hb is the memory100

workload for two input matrices and the output in BF16 (2 bytes). Small fast weight size (e.g.,101

h = 64) or small chunk size (e.g., b = 16) will bound the ratio r far below the theoretical peak (e.g.,102

290 FLOPs per byte on H100), making the operation memory-bound and limiting compute usage.103

In light of this, we advocate for using large chunk sizes (from 2048 to 1M). This allows us to achieve104

higher throughput (Fig. 1a) with better training efficiency and performance (Fig. 1c). Our design also105

allows the state size to be scaled up efficiently (Fig. 1b), leading to significant results improvement106

with such scaling (Fig. 7a). Our architecture achieves a state-to-parameter size ratio ≥40%, which is107

an order of magnitude larger than previous methods’ ratio of 0.1% to 5%.108

3 LaCT Model Architecture109

As shown in Fig. 2, LaCT block consists of three types of layers: a window attention layer, a large-110

chunk TTT layer, and a feed-forward layer. Each layer is equipped with residual connections [16]111

following the practice in Transformer [1]. The window attention layer performs local self-attention to112

capture the local dependency. In the TTT layer, we split the sequence into large chunks. The history113

context is gradually compressed into the fast weights through an ‘update’ operation (regarding key114

vectors K and value V ), and latest weight is ‘applied’ to the current query vector (Q) for computing115

its corresponding output. The feed-forward layer performs channel mixing as in Transformer. We116

omit several linear and normalization layers in Fig. 2 for clarity and details are in Appendix. Our117

framework offer great flexibility in handling diverse data types. In this section, we present the general118

designs in our approach and later describe data-specific variations in Sec. 4.119

3



Window
Attention

Update

+

Q

K

V

+

Apply

W

Feed-
Forward +

Large-Chunk TTT LayerCausal direction 
(e.g., time)

Split into
large 

chunks

Figure 2: The basic diagram for a LaCT block. The large-chunk TTT layer updates the fast weight W
to store history chunk information, while the window attention handles the internal structures within
the chunk. The solid line denotes the information flow over model depth and the dashed line denotes
the information flow over time (i.e., the fast weight W passing through chunks). Instantiations in
Sec. 4 use different chunk sizes and window attention types according to the specific data structure.

3.1 Large-Chunk TTT Layer120

Different from the per-token update in Eqn. 1, the chunk-wise update computes the gradient of the121

summed loss over all keys {ki} and values {vi} within the chunk. As the chunk size is large, weight122

updates are performed infrequently. This enables more sophisticated weight-update rule designs123

(discussed in Sec. 3.2) and amortizes the update cost. The ‘update’ operation for the fast weight is:124

g = ∇W

b∑
i=1

ηiL
(
fW (ki), vi

)
(4)

W ← weight-update(W, g), (5)

where b is the chunk size, g is the gradient of the fast-weight loss function, and ηi is the learning rate125

of each token (usually predicted from input tokens). The ‘apply’ operation oi = fW (qi) is the same126

as Eqn. 2 and all query vectors {qi} in the chunk share the same updated fast weight W .127

Motivated by recent LLMs [17], we adopt SwiGLU-MLP [18] without bias terms as the fast-weight128

network. Our fast weights consists of three weight matrix W = {W1,W2,W3}, and the network is:129

fW (x) = W2 [SiLU(W1x) ◦ (W3x)] (6)

where ◦ is an elementwise multiplication. We apply a simple dot product loss as our loss function:130

L
(
fW (ki), vi

)
= −fW (ki)

⊤vi (7)

Execution orders for ‘apply’ and ‘update’. Note that the ‘update’ operation and ‘apply’ operation131

of TTT are decoupled, and we can set the chunk size adaptively and apply these operation in different132

orders; this allows us to model diverse kinds of data dependencies, similar to different attention133

masks in self-attention. Figure 3 illustrates this concept. In Figure 3a, when the chunk size equals the134

full sequence length, performing the apply followed by the update operation is conceptually similar135

to full attention. Using update and apply alternately leads to a block-wise causal mask (Fig. 3b),136

where the block size corresponds to the chunk size. Switching the order between the two operations137

results in the a shift in the mask (Fig. 3c). This shifted mask does not leak future information within138

the chunk and is important when building the full causal mask in Language Modeling (Sec. 4.2).139

Moreover, only updating on a subset of chunks and applying to all (Figure 3d) is analogous to strided140

block-wise causal mask.141

3.2 Non-Linear Update of Fast-Weight142

Fast-weight updates in TTT repeatedly accumulate gradients, and thus suffer from magnitude ex-143

plosion or decayed memory. Large-chunk TTT allows non-linear updates to improve stability and144

effectiveness while preserving efficiency. For the ‘weight-update’ operation in Eqn. 5, our vanilla145

implementation involves gradient descent followed by weight normalization:146

weight-update(W, g) = L2-Normalize(W − g). (8)

4



UpdateW

Equivalent
Attention 

Mask

(a) Full Mask

Apply

UpdateW

Apply

Update

Apply

Update

Apply

(b) Block-Wise Causal (c) Shifted Block-Wise Causal

Update

Apply

TTT 
Update-
Apply 
Order

Update

Apply

(d) Strided Block-Wise Causal

Apply

Update

Apply Apply

WW

Figure 3: Different ‘Update’ and ‘Apply’ orders and their equivalent attention mask.

We have also explored a more robust nonlinear Muon [8] update rule 1 with weight normalization:147

weight-update(W, g) = L2-Normalize(W −Muon(g)) (9)

Fast-weight normalization. We apply L2 weight normalization [19] to the updated fast weights along148

the input dimension. We do not use explicit weight-decay term as in previous methods [5, 20, 13, 11].149

When the network is conceptually rotated 90 degrees, treating the sequence dimension as the depth150

of a virtual model, the test-time training updates act as residuals over time [16]. In this view, our151

fast-weight normalization is analogous to the post-layer norm in Transformer architectures, which152

constrains activation scales within the residual path.153

Muon-update rule. Essentially, Muon normalizes the spectral norm of matrix gradient using Newton-154

Schulz iterations. In short, let g = USV T be the Singular Value Decomposition(SVD) of the gradient155

g, then Muon operator approximately converts the gradient as:156

Muon(g) ≃ UV T (10)

Muon also improves the numerical stability in our setup. For example, the learning rate (ηi in Eqn. 4)157

now only reflects the relative importance of tokens within a chunk as Muon normalizes the absolute158

scale. See [8] and Appendix for analysis of its computational cost.159

3.3 Window Attention160

Large-chunk TTT layer models data as a sequence of sets. However, many data modalities are not161

naturally in such a form, and are instead sequences of grids (e.g., videos), sets of grids (e.g., image162

collections), or simple one-dimensional sequences (e.g., text). For such modalities, the dependencies163

within each chunk still matter to capture the structure of the data, thus we apply local window164

attention—either causal or bidirectional—before TTT layers. Hence, LaCT is a hybrid architecture165

with the quadratic-compute attention for local structure and linear-compute TTT for long context.166

3.4 Context Parallelism167

Context Parallelism (CP) partitions the sequence along the context length dimension and distributes168

the shards across multiple devices for parallel computing. The feed-forward layer and window169

attention are local operators thus natively support CP. For TTT layer, small chunks hardly support CP170

thus tensor parallelism (i.e., parallel over the heads) is preferred. Our large-chunk TTT layer allows171

CP by sharding the tokens within a chunk. Suppose each shard contains s tokens, the fast weight172

gradient of the chunk is the sum over all shard’s gradients given the linearity of the gradients:173

g = ∇W

shards∑
j=1

s∑
i=1

ηiLi =

shards∑
j=1

∇W

s∑
i=1

ηiLi (11)

1Muon requires weights in matrix form, and our current fast-weight function SwiGLU-MLP has three
matrices as the weights (i.e., W1,W2,W3 in Eqn. 6).

5



This can be implemented through distributed all-reduce-sum and is logically the same as Distributed174

Data Parallelism (DDP), except that the parameters are the fast weights and input data are the tokens175

in the chunk. We adopt such parallelism in training the novel view synthesis task (see Sec. 4.1) and176

observe minimal throughput overheads (1% to 3%). LaCT architecture is compatible with other177

parallelism strategies (e.g., data parallelism, pipeline parallelism, and tensor parallelism).178

4 LaCT for N-Dimensional Data179

In this section, we introduce the three tasks we address using LaCT—novel view synthesis, language180

modeling, and autoregressive video generation. These tasks have different inherent data structures181

and we address them with corresponding design choices.182

4.1 Novel View Synthesis - Image Set183

Novel view synthesis (NVS)[21, 22] aims to render images of a static scene from previously unseen184

viewpoints. Formally, given a set of N input posed images {(Ii, Pi)}Ni=1 of a static scene, where185

Ii ∈ RH×W×3 is an RGB image and Pi is its corresponding camera pose, the model needs to186

synthesize new images from novel camera poses that typically do not overlap with the input views.187

We find that NVS is an effective test bench for evaluating a model’s online memory and compression188

capabilities. Firstly, NVS is challenging as it requires spatial compression, dense retrieval, and basic189

physical reasoning. Secondly, NVS can be formulated as a non-generative task, significantly reducing190

training computation and the need for extensive model parameters to store world knowledge, thereby191

enabling rapid experimentation. Thirdly, the substantial redundant information in dense input views192

incentivizes the model to learn effective compressions. Given these observations, we use NVS for our193

initial research iterations. We find that some of the insights gained are transferrable to other tasks.194

Our NVS model follows the basic LaCT diagram in Sec. 3. Both the posed input images and poses of195

the target novel views are tokenized by patchify and linear layers, following LVSM [23]. The window196

attention exactly covers the tokens from a single image. The LaCT layer adapts a single-round of197

strided block-wise causal mask (Fig. 3d), which updates the fast weight using all input image tokens,198

and applies to both the input and target tokens. The update step resembles a prefill stage, while the199

apply operation resembles parallel decoding. During rendering of novel views, each test-time training200

layer functions as a static weight layer, making the entire model a static vision transformer [24].201

4.2 Language Modeling - Text Sequence202

Autoregressive language models predict the probability distribution of the next token given preceding203

tokens, pθ(xn|x1, . . . , xn−1). Text sequences lack inherent chunk structures, so for LaCT, we define204

chunk size as a hyperparameter (e.g., 2048 or 4096 tokens). We utilize the shifted block-wise causal205

mask as in Fig. 3(c) for the TTT apply-update sequence to avoid seeing future tokens in a chunk.206

Since LaCT lacks per-token causality within each chunk, we employ sliding window attention—with207

window size equal to the chunk size—to efficiently model per-token causal dependencies.208

4.3 Autoregressive Video Diffusion - Image Sequences209

Chunkwise autoregressive video diffusion iteratively denoises a number of subsequent video frames,210

conditioned on the previously generated clean frames, where each chunk can contain thousands211

of visual tokens. We use teacher-forcing training by interleaving noisy and clean frame chunks.212

Specifically, a video of N frame chunks is structured as:213

S = [Xnoise
1 , X1, X

noise
2 , X2, . . . , X

noise
N ] (12)

where each noisy chunk Xnoise
i is produced by adding unit Gaussian noise ϵ to the i-th clean video214

chunk as Xnoise
i = Xi(1− ti) + ϵti and ti ∈ [0, 1] denotes the strength of chunk-independent noise.215

To handle such a data structure, we employ the strided block-wise causal mask in Fig. 3d for LaCT.216

Specifically, it applies fast weights to each chunk sequentially while only updating fast weights on217

clean chunks. This simple strategy ensures that each denoising operation only accesses previously218

cleaned frames. The windowed attention uses a non-overlapping window with 2 consecutive chunks219

6



Table 1: Summary of our experiments on three different data structures. ‘d’ denotes model dimension.

Task name Data Structure Chunk Size State Size Model Size Max Length Context Parallelism

Novel View Synthesis Image set Full sequence 6d2 0.3B 1M Within-chunk parallel
AR Video Diffusion Image sequence Three frames 3d2 1.3B, 14B 56160 Head-dim parallel
Language Models 1D Sequence 2K, 4K tokens 0.75d2 0.7B, 3B 32768 N/A

Table 2: Complexities of methods on novel view synthesis w/ n input. Prefill and rendering speed are
measured on A100 with 48 512×512 input images (196K input tokens, 4K decoding tokens).

State Size Prefill Compute Decoding Compute # Params Prefill speed Rendering FPS

Full attention O(n) O(n2) O(n) 284M 16.1 s 2.3 FPS
Perceiver Attention O(1) O(n2) O(1) 287M 16.8 s 34.4 FPS
Ours O(1) O(n) O(1) 312M 1.4 s 38.7 FPS

(i.e., [Xi, X
noise
i+1 ]) to build temporal and spatial locality. Within each window, the attention from Xi220

to Xnoise
i+1 is excluded. We incorporate the first noisy chunk by shifting all attention and TTT masking221

patterns similar to Fig. 3c. The details of this hybrid architecture and more efficient trainings are in222

the Appendix.223

5 Experiments224

In this section, we present our experiment results on novel view synthesis (Sec. 5.1), language model-225

ing (Sec.5.2), and autoregressive video generationo (Sec. 5.3), and an in-depth analysis (Sec. 5.4) of226

different design choices. Tab. 1 summarizes key factors in each experiment. When comparing with227

linear-cost baselines, we augmented them with the same window attention for fair comparisons.228

5.1 Novel View Synthesis229

Datasets & metric. We evaluate our approach on both object-level and scene-level datasets. We use230

Objaverse dataset [25] for object-level training, following the setup from LVSM [23] and GS-LRM231

[26]. After training, we perform evaluations on the Google Scanned Objects (GSO) dataset [27], at232

resolutions of 256×256 and 512×512. Each evaluation involves 4–48 input views and 8 novel views233

per object. For scene-level evaluations, we adopt the challenging DL3DV scene dataset [28], with234

over 11K training scenes and 140 testing scenes, each with approximately 300 views. Evaluations are235

at a resolution of 536 × 960. Performance is measured by Peak Signal-to-Noise Ratio (PSNR) at236

novel views, with additional metrics provided in the supplementary material.237

Model details. Each block of model has a per-image window attention layer, a SwiGLU-MLP large-238

chunk TTT layer, and a feed-forward layer. The default model totals 312M parameters, including239

84M fast weights (6d2 per block). See Appendix for more details.240

Baselines. For object-level evaluation, we use two baselines: a full-attention model and a Perceiver-241

style register-attention model [29]. The full-attention baseline replaces TTT layers with block-wise242

causal attention layers, enabling bidirectional interaction among input tokens and cross-attention243

from novel views. The Perceiver-style baseline compresses input tokens into 4096 registers, decoding244

novel views via cross-attention to these registers. For scene-level evaluation, we compare with245

LongLRM [30], a state-of-the-art model combining Mamba [12] and full attention for 3D Gaussian246

splat predictions, as well as pure optimization-based 3D Gaussian splatting methods. Table 2247

summarizes the computational complexities of all models.248

Training details. For object dataset, we train all models with 1.25 trillion tokens with progressive249

resolutions. For scene dataset, we train our model with 1.8 trillion tokens with progressively higher250

resolutions and more views, at a maximal sequence length of 1 million tokens. High-resolution251

models are trained with inner-chunk context parallelism (Sec. 3.4). See Appendix for details.252

Results. Experimental results and analysis are presented in Figure 4.253

5.2 Language Modeling254

Datasets & Metrics. We train our models on the Long-Data-Collections dataset [31], using ap-255

proximately 60B tokens from its total 68.8B tokens. For evaluation, we employ the per-token loss256

metric from [32], assessing models’ ability to effectively use the full context. A monotonically257

7



48 views
48 views

8 views
8 views

GSO 256×256 GSO 512×512 DL3DV 536×960

(a) Object dataset (b) Performance v.s. Prefill speed (c) Scene dataset with 1M tokens

Figure 4: (a, b) our method achieves quality comparable to full-attention models with significantly
lower prefill latency, and it clearly outperforms perceiver-attention baselines. (c) On the high
resolution scene dataset, our approach surpasses LongLRM, limited to 32 views, and outperforms 3D
Gaussian Splatting with sparse views, remaining competitive up to 128 input views (1M total tokens).

Table 3: Comparison of baseline methods in terms of state size, training throughput (measured in
tokens per second, TPS), update rules, and memory read-out mechanisms. Training throughput is
evaluated using a 3B-parameter model with 32K-sequence length on A100-40GB GPUs.

State size Train TPS Update Rule Memory read-out
Transformer – 4.1K – –
Transformer SWA – 6.4K – –

Per-token recurrence
GLA SWA 384d 5.0K St ← St−1Diag(αt) + vtk

⊤
t ot = Stqt

DeltaNet SWA 128d 5.1K St ← St−1(I− βtktk
⊤
t ) + βtvtk

⊤
t ot = Stqt

Large-chunk recurrence
Ours GD 2304d 5.0K W ← L2norm(W −

∑b
i ηi∇WLi) ot = fW (qt)

Ours Momentum 2304d 4.9K M ← βM +
∑b

i ηi∇WLi; W ← L2norm(W −M) ot = fW (qt)

Ours Muon 2304d 4.3K M ← βM +
∑b

i ηi∇WLi; W ← L2norm(W −Muon(M)) ot = fW (qt)

decreasing loss indicates successful context utilization, whereas plateauing suggests limited context258

usage. Additionally, we report retrieval accuracy [33] at various sequence lengths.259

Model details. We remove the window-attention layer from the original the LaCT block, integrating a260

sliding window-attention(SWA) layer directly into the Large-Chunk TTT layer. Following GAU [34],261

SWA shares Q, K, and V vectors with the fast-weight network, with additional per-channel scaling262

and shifting on Q and K. See supplementary for pseudocode.263

Baselines. We compare against full attention, Gated Linear Attention (GLA) [13], DeltaNet [3, 15].264

To ensure fairness, we enhance both GLA and DeltaNet with the same sliding window attention.265

Based on prior work [32, 35, 36] highlighting the importance of a large RoPE [37] base for long-266

context transformer training, we adopt a RoPE base of 1 million for training with 32K token contexts.267

Tab. 3 summarize the mechanism and training throughput of all methods.268

Training details. We trained models at two scales using a 32768-token sequence length: a 760M-269

parameter model trained for 40B tokens with a 2048-token sliding window, and a 3B-parameter270

model trained for 60B tokens with a 4096-token sliding window. Further details are in the Appendix.271

Results. Please refer to Fig. 5 for experiment results and analysis.272

5.3 Autoregressive Video Diffusion273

We fine-tune the pretrained Wan 2.1 [38] text-to-video diffusion model into an autoregressive video274

diffusion model. Specifically, we replace all bidirectional attention layers with our LaCT layers275

combined with sliding window attention. The sliding window attention uses a window size spanning276

two autoregressive chunks.277

Datasets. We fine-tune the model using an internal, filtered proprietary collection of videos, each278

accompanied by a short text prompt generated by a visual language model.279

Training details. Following [39, 38], we employ time-step shifting and denoising loss weighting280

using a logit-normal distribution. we train on 5-second videos at 16 FPS and 480×832 resolution,281

8



Transformer Transformer SWA GLA SWA DeltaNet SWA Ours MounOurs Momentum

(a) 760M Validation loss (b) 760M S-NIAH-1 (c) 3B Validaiton loss (d) 3B S-NIAH-2

Figure 5: Language Model results. (a, c) Our model achieves lower per-position loss at larger token
indices compared to GLA and DeltaNet at both 760M and 3B scale, indicating stronger long-context
modeling capability. (b, d) Our model consistently outperforms GLA and DeltaNet in retrieval
accuracy. Furthermore, our Muon variant consistently outperforms our Momentum variant.

Transformer OursMamba SWATransformer SWA

6 frames per window

4 frames per window

(a) Comparison with baselines (b) Ablate on window size (c) Eval on longer videos

Figure 6: (a) We achieve comparable validation loss to the full-attention baseline and outperform
both Mamba with sliding window and sliding window attention baselines. This improvement over
SWA is consistent across different window sizes (b) and when evaluating on longer videos (c).

autoregressively denoising in 3 latent-frame chunks. Later we fine-tune the model with 8.8 second282

videos. See supplementary for details.283

Baselines. We compare our method against three baselines: sliding window attention (SWA) alone,284

Mamba2 [20] combined with SWA (using a similar parallel combination strategy as our method), and285

full block-wise causal attention. Additional details are in the supplementary material.286

Evaluation. We evaluate all models on a collection of 2,000 videos after 5,000 training iterations287

by computing the denoising loss at five timesteps (550, 650, 750, 850, 950). Figure 6 plots the288

chunk-wise denoising loss across evaluated video frames.289

5.4 Analysis on Design Choices290

In this section, we analyze several key design choices in our model, focusing on both the novel view291

synthesis and language modeling tasks. Specifically, we evaluate the impact of state size (Fig. 7a),292

test-time optimizers (Fig. 7b), linear versus nonlinear fast weights(Fig. 8a), and per-token recurrence293

versus chunk-wise recurrence (Fig. 8b). Please refer to section A.1 for results and conclusions.294

6 Conclusion295

We presented LaCT, a novel model architecture that integrates large-chunk test-time training for296

capturing long context with window attention for modeling local structure. We validated LaCT297

across three diverse tasks spanning different modalities—novel view synthesis, language modeling,298

and autoregressive video diffusion—and demonstrate its effectiveness by achieving superior or299

competitive performance when compared to state-of-the-art baselines. LaCT achieves high GPU300

efficiency even with native PyTorch implementation with dozens of lines of code and supports efficient301

scaling up of the state size and more flexible designs in test-time training models and optimizers. By302

open-sourcing the code and weights, we hope that LaCT can advocate future research explorations303

into more performant architectures for long-context modeling.304

9



References305

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz306

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,307

30, 2017.308

[2] Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen,309

Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive hidden states.310

arXiv preprint arXiv:2407.04620, 2024.311

[3] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight312

programmers. In International Conference on Machine Learning, pages 9355–9366. PMLR, 2021.313

[4] Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework for314

designing sequence models with associative memory, 2025.315

[5] Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv preprint316

arXiv:2501.00663, 2024.317

[6] Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It’s all connected: A journey318

through test-time memorization, attentional bias, retention, and online optimization, 2025.319

[7] Mahdi Karami and Vahab Mirrokni. Lattice: Learning to efficiently compress the memory. arXiv preprint320

arXiv:2504.05646, 2025.321

[8] Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy322

Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.323

[9] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for324

real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.325

[10] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers with326

the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.327

[11] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei.328

Retentive network: A successor to transformer for large language models. arXiv preprint arXiv:2307.08621,329

2023.330

[12] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint331

arXiv:2312.00752, 2023.332

[13] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention333

transformers with hardware-efficient training. In International Conference on Machine Learning, pages334

56501–56523. PMLR, 2024.335

[14] Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Various lengths, constant336

speed: Efficient language modeling with lightning attention. In Forty-first International Conference on337

Machine Learning, 2024.338

[15] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers339

with the delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural Information340

Processing Systems, 2024.341

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.342

arxiv e-prints. arXiv preprint arXiv:1512.03385, 10:9, 2015.343

[17] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay344

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton345

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,346

Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan347

Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh348

Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,349

Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy350

Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan351

Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin352

Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien353

Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned354

chat models, 2023.355

10



[18] Noam Shazeer. Glu variants improve transformer, 2020.356

[19] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate357

training of deep neural networks. Advances in neural information processing systems, 29, 2016.358

[20] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through359

structured state space duality. arXiv preprint arXiv:2405.21060, 2024.360

[21] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system. In Seminal361

Graphics Papers: Pushing the Boundaries, Volume 2, pages 433–440. 2023.362

[22] Marc Levoy and Pat Hanrahan. Light field rendering. In Seminal Graphics Papers: Pushing the Boundaries,363

Volume 2, pages 441–452. 2023.364

[23] Haian Jin, Hanwen Jiang, Hao Tan, Kai Zhang, Sai Bi, Tianyuan Zhang, Fujun Luan, Noah Snavely,365

and Zexiang Xu. Lvsm: A large view synthesis model with minimal 3d inductive bias. arXiv preprint366

arXiv:2410.17242, 2024.367

[24] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas368

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth369

16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.370

[25] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,371

Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects. In372

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 13142–13153,373

2023.374

[26] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu. Gs-lrm:375

Large reconstruction model for 3d gaussian splatting. In European Conference on Computer Vision, pages376

1–19. Springer, 2024.377

[27] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,378

Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of 3d379

scanned household items. In 2022 International Conference on Robotics and Automation (ICRA), pages380

2553–2560. IEEE, 2022.381

[28] Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo, Zixun Yu,382

Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d vision. In Proceedings383

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22160–22169, 2024.384

[29] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. Perceiver:385

General perception with iterative attention. In International conference on machine learning, pages 4651–386

4664. PMLR, 2021.387

[30] Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yicong Hong, Li Fuxin, and Zexiang Xu.388

Long-lrm: Long-sequence large reconstruction model for wide-coverage gaussian splats. arXiv preprint389

arXiv:2410.12781, 2024.390

[31] Together AI. Long data collections database, 2024.391

[32] Zhixuan Lin, Evgenii Nikishin, Xu He, and Aaron Courville. Forgetting transformer: Softmax attention392

with a forget gate. In The Thirteenth International Conference on Learning Representations, 2025.393

[33] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and Boris394

Ginsburg. Ruler: What’s the real context size of your long-context language models? In First Conference395

on Language Modeling, 2024.396

[34] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In International397

conference on machine learning, pages 9099–9117. PMLR, 2022.398

[35] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi399

Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar Mehdad, Sharan400

Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis, Sinong Wang, and Hao401

Ma. Effective long-context scaling of foundation models, 2023.402

[36] Xin Men, Mingyu Xu, Bingning Wang, Qingyu Zhang, Hongyu Lin, Xianpei Han, and Weipeng Chen.403

Base of rope bounds context length. arXiv preprint arXiv:2405.14591, 2024.404

11



[37] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced405

transformer with rotary position embedding, 2023.406

[38] Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao407

Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models. arXiv preprint408

arXiv:2503.20314, 2025.409

[39] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,410

Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution411

image synthesis, 2024. URL https://arxiv. org/abs/2403.03206, 2, 2024.412

[40] Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It’s all connected: A journey413

through test-time memorization, attentional bias, retention, and online optimization. arXiv preprint414

arXiv:2504.13173, 2025.415

[41] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time, 2022.416

[42] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May,417

and Luke Zettlemoyer. Mega: Moving average equipped gated attention. In The Eleventh International418

Conference on Learning Representations, 2023.419

[43] Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, LILI YU, Hao Zhang, Jonathan May, Luke420

Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient LLM pretraining and inference with421

unlimited context length. In The Thirty-eighth Annual Conference on Neural Information Processing422

Systems, 2024.423

[44] Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient infinite424

context transformers with infini-attention, 2024.425

[45] DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-recurrent426

transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances427

in Neural Information Processing Systems, 2022.428

[46] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren429

Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,430

65(1):99–106, 2021.431

[47] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-432

1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF international conference on433

computer vision, pages 9298–9309, 2023.434

[48] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor,435

Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as436

world simulators. 2024.437

[49] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi438

Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert439

transformer. arXiv preprint arXiv:2408.06072, 2024.440

[50] A Polyak, A Zohar, A Brown, A Tjandra, A Sinha, A Lee, A Vyas, B Shi, CY Ma, CY Chuang, et al.441

Movie gen: A cast of media foundation models, 2025. URL https://arxiv. org/abs/2410.13720, page 51,442

2024.443

[51] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben444

Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint445

arXiv:2011.13456, 2020.446

[52] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for447

generative modeling. arXiv preprint arXiv:2210.02747, 2022.448

[53] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,449

Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling. arXiv450

preprint arXiv:2410.05954, 2024.451

[54] David Ruhe, Jonathan Heek, Tim Salimans, and Emiel Hoogeboom. Rolling diffusion models. In452

International Conference on Machine Learning, pages 42818–42835. PMLR, 2024.453

[55] Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and Xun454

Huang. From slow bidirectional to fast causal video generators. arXiv preprint arXiv:2412.07772, 2024.455

12



[56] Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.456

Diffusion forcing: Next-token prediction meets full-sequence diffusion. Advances in Neural Information457

Processing Systems, 37:24081–24125, 2024.458

[57] Sand-AI. Magi-1: Autoregressive video generation at scale, 2025.459

13



A Appendix460

A.1 Analysis on Design Choices461

In this section, we analyze several key design choices in our model, focusing on both the novel view462

synthesis and language modeling tasks. Specifically, we evaluate the impact of state size (Fig. 7a),463

test-time optimizers (Fig. 7b), linear versus nonlinear fast weights (Fig. 8a), and per-token recurrence464

versus chunk-wise recurrence (Fig. 8b). Overall, we find that a large state size, advanced optimizers465

such as Muon, and nonlinear fast weights significantly improve our model’s performance. In a466

controlled NVS experiment, our linear large-chunk recurrence strategy outperforms linear per-token467

recurrence with the same state. For language modeling, where chunk structures are not inherent, our468

linear large-chunk recurrence variant—while initially underperforming per-token methods like GLA469

and DeltaNet—surpasses them when combined with a large nonlinear state and the Muon optimizer.470

We refer the readers to each figure and its caption for more detailed analysis.471

Experiment details. The analyses in this section used the following experiment configurations:472

For the NVS analysis, we utilized an object dataset, training all compared approaches for 167 billion473

tokens. All evaluated approaches consisted of 14 stacked blocks with a model dimension of 768.474

Language modeling analyses were performed at a 760M parameter scale, training for 40 billion475

tokens. Both the sliding window attention (SWA) window size and LaCT chunk size were set to 2048476

tokens.477

For the state size scaling experiments, we keep model dimension fixed(d = 768) and increase the478

intermediate multiplier of the fast weight SwiGLU MLP. For example, w an intermediate multiplier479

of 2 results in a hidden dimension of the fast weight SwiGLU MLP of 1536, and a total state size per480

block of 6d2 ≃ 3.37 MB.481

For experiment with different test-time optimizer, our “momentum" variant follows Titans [5]. We482

predict a scalar momentum term βi from each token:483

βi = σ(Linear(xi)), (13)

where σ is the sigmoid function. This βi is then averaged over all tokens in the chunk, and the average484

momentum is applied as follows:485

g ←
b∑
i

ηi∇WL(fW (ki), vi),

M ←M(

b∑
i

βi/b) + g,

W ←weight-update(W,M),

(14)

where the weight-update can be simple subtraction followed by L2 normalization normalization(as in486

Equation 8. ) or Muon update before subtraction(as in Equation 9.)487

Experiment details for Large-Chunk v.s. Per-token Recurrence . In Figure 8(b) includes488

controlled experiments for a fair comparison between our large-chunk recurrence and per-token489

recurrence strategies. In the novel view synthesis (NVS) task, “Our Linear" variant employs a linear490

fast weight: fW (q) = Wq and is benchmarked against a Mamba-2 baseline (a linear per-token491

recurrence model) with an identical state size. To accommodate the bidirectional context required by492

NVS over input image tokens, the Mamba-2 baseline uses two Mamba-2 layers applied in opposite493

directions within each model block. Both our linear variant and this bidirectional Mamba-2 have494

state size of d2 per block. Both of these two approaches employs a per-image window attention495

within each model block. Under this fair comparison, our linear large-chunk recurrence achieves496

significantly better view synthesis performance.497

For the language modeling experiments also shown in Figure 8(b), the blue line “Our Linear"498

variant uses the same state size (0.25d2) as the GLA SWA baseline. It initially underperforms GLA499

SWA (blue line underperforms yellow line), likely because language data lacks the inherent chunk500

structures that benefit our basic linear chunk recurrence. However, when LaCT is equipped with501

14



a larger nonlinear state (1.5d2) and Muon updates, we significantly outperforms these per-token502

recurrence baselines.503

1.5𝑑! 3𝑑! 6𝑑! 12𝑑!0.75𝑑!0.375𝑑! Momentum MuonVanilla Gradient Descent

novel view synthesis language model novel view synthesis language model

(a) State Size Scaling (b) Different Test-Time optimizer

Figure 7: (a) Scaling up the state size consistently improves performance in both novel view synthesis
and language modeling tasks. Note, the largest version has state size of 12d2 per block, totaling
40% of model weights as fast weights. (b) Comparison of test-time optimizers demonstrates Muon’s
surprising effectiveness over Vanilla Gradient Descent and Momentum.

SwiGLU MLP 6𝑑!
Linear 9𝑑!

Ours SwiGLU + Large State + Muon
Ours Linear

DeltaNet SWA
GLA SWAMamba2

SwiGLU MLP 0.375𝑑!
Linear 0.5𝑑!

novel view synthesis language model novel view synthesis language model

(a) Linear v.s. NonLinear Fast weight (b) Large-Chunk v.s. Per-token Recurrence

Figure 8: (a) Nonlinear fast weights consistently outperform linear fast weights despite using smaller
state sizes. (b) Our linear large-chunk recurrence approach significantly outperforms linear per-token
recurrence (bidirectional Mamba2) for view synthesis tasks at the same state sizes. In language
tasks, linear large-chunk recurrence of the same state size underperforms the GLA baseline, but
when combined with larger nonlinear states and Muon test-time optimizer, it surpasses all per-token
recurrence methods.

A.2 Related Work504

Test-time training. Test-Time Training (TTT) [2] is an emerging concept in sequence modeling505

that extends the concept of recurrent states in RNNs to online-adapted neural network components.506

In TTT models, a subset of weights, termed "fast weights," are updated online to store in-context507

information. Existing methods typically employ a self-supervised loss that encourages these fast508

weights to memorize key-value associations from in-context tokens, using variants of gradient descent509

for online adaptation.510

TTT [2] [4] has opened a vast design space for new recurrent model architectures. For instance, many511

recent works have developed novel test-time optimizers [5, 7] and online training objectives [40].512

However, current TTT approaches often suffer from low hardware utilization and limited state sizes,513

and consequently have not yet demonstrated their full potential. Our work primarily addresses these514

challenges by advocating for a new paradigm of using extremely large online minibatch (chunk)515

sizes for updating the fast weights. This paradigm can achieve orders-of-magnitude higher hardware516

utilization without relying on error-prone custom kernel implementations. Furthermore, it enables517

efficient scaling of nonlinear state sizes and offers the flexibility to use diverse fast weight neural518

networks and optimizers, thereby accelerating research progress in this area.519

15



Combining chunk attention with recurrence. Several recent models combine local chunk atten-520

tion with linear recurrence, such as Gated Attention Unit (GAU) [41], MEGA [42], MEGALODON521

[43], and InfiniAttention [44]. Among these, InfiniAttention is conceptually closest to our work,522

as it incorporates recurrence at the chunk level using the delta rule—interpreted as an online linear523

regression objective from the perspective of Test-Time Training (TTT). However, this update rule is524

limited in expressivity. In contrast, we employ a significantly more expressive update mechanism525

derived from a more general TTT framework, and demonstrate the substantial gains this brings.526

Block-Recurrent Transformer [45] also explores large chunk memory updates, where memory tokens527

act as recurrent states that can self-attend and cross-attend with input tokens during each chunk528

update via attention mechanisms. The Perceiver-style register-token attention baseline used in our529

novel view synthesis experiments (Sec. 5.1, Table 2) is conceptually similar to the Block-Recurrent530

Transformer in its use of register tokens for context compression. As shown in Figure 4, our method531

significantly outperforms this approach in both speed and quality, with a comparable state size.532

Novel view synthesis. Novel view synthesis (NVS) is a long-standing task at the intersection of533

computer vision, graphics, and computational photography, requiring algorithms to render images534

of a static scene from previously unobserved viewpoints. Optimization-based approaches, such as535

NeRF [46] and 3D Gaussian Splatting [9], have achieved significant breakthroughs. These methods536

optimize a set of parameterized graphics primitives (i.e., explicit or implicit representations of537

radiance fields) through differentiable volumetric rendering to minimize reconstruction loss on input538

images. After an optimization process typically lasting tens of minutes, these approaches can render539

novel views photorealistically, and the optimized parameters form a 3D representation of the input540

scene.541

Recently, data-driven approaches [26, 23, 30, 47] have also shown promising results. These methods542

can either directly render novel views or predict 3D representations given input images. Although543

successful on simpler object datasets, these methods often struggle with densely sampled scenes (e.g.,544

scenes with over 100 input images). Our experiments demonstrate that our large-chunk test-time545

training approach outperforms or achieves comparable performance to 3D Gaussian Splatting on546

challenging scene datasets with up to 128 input images with 536 × 960 resolution at challenging547

scene datasets.We hope our method will inspire further research into effectively scaling data-driven548

NVS methods to longer and more complex input sequences.549

Autoregressive video generation. Current state-of-the-art video generation is dominated by bidi-550

rectional diffusion transformers operating in latent space [48, 49, 50, 38]. These models typically551

factorize the video distribution into a sequence of conditional distributions based on noise levels,552

following diffusion processes [51] or flow matching [52]. Autoregressive video generation introduces553

an additional temporal dimension to this factorization, where video chunks are generated iteratively,554

each conditioned on previously generated (and denoised) chunks.555

During training, some autoregressive methods employ teacher forcing, using clean context frames556

and noisy subsequent frames as input [53], though this can lead to low token utilization, i.e. only a557

small portion of tokens get supervision. To improve token efficiency, other techniques such as pro-558

gressive noise injection [54] or the use of frame-independent noises (sometimes in a diffusion-forcing559

style) [55, 56, 57] have been proposed. When applying our large-chunk design to autoregressive video560

generation, we format the input sequence with interleaved clean and noisy chunks (see Equation 12).561

This strategy achieves over 50% token utilization and integrates effectively with our large-chunk TTT562

implementation, by only changing a few lines to constrain fast-weights are only updated on clean563

frame chunks.564

A.3 Limitation565

We conduct our experiments on three tasks. Although the tasks are diverse and cover different566

modalities, the effectiveness of our method would request of more tasks. For example, the novel-view567

synthesis task is essentially a 3D reconstruction with input pose information. The task of unposed568

reconstruction is more challenging and is not explored in this paper.569

On the language modeling task, some key aspects are not explored due to computation limitation.570

These aspects include the reasoning capacity of our LaCT model and also the scalability regarding571

the parameter size. Previous papers showed that a main weakness of the state-based model (where572

16



LaCT belongs to) is its reasoning ability. However, the reasoning ability is only gained with certain573

amount of training compute thus it is beyond our budget.574

Lastly, for the autoregressive video diffusion, it is hard to find a reliable and distinguishable metric to575

measure the model’s scalability. It is in contrast to the language modeling with perplexity (i.e., log576

likelihood loss) and the novel-view synthesis with PSNR. We show the validation loss in our paper577

and it is a common choice in evaluating the scalability of video generation. This is a general problem578

for the video generation evaluation and is not specific to our paper.579

17



NeurIPS Paper Checklist580

The checklist is designed to encourage best practices for responsible machine learning research,581

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove582

the checklist: The papers not including the checklist will be desk rejected. The checklist should583

follow the references and follow the (optional) supplemental material. The checklist does NOT count584

towards the page limit.585

Please read the checklist guidelines carefully for information on how to answer these questions. For586

each question in the checklist:587

• You should answer [Yes] , [No] , or [NA] .588

• [NA] means either that the question is Not Applicable for that particular paper or the589

relevant information is Not Available.590

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).591

The checklist answers are an integral part of your paper submission. They are visible to the592

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it593

(after eventual revisions) with the final version of your paper, and its final version will be published594

with the paper.595

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.596

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a597

proper justification is given (e.g., "error bars are not reported because it would be too computationally598

expensive" or "we were unable to find the license for the dataset we used"). In general, answering599

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we600

acknowledge that the true answer is often more nuanced, so please just use your best judgment and601

write a justification to elaborate. All supporting evidence can appear either in the main paper or the602

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification603

please point to the section(s) where related material for the question can be found.604

IMPORTANT, please:605

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",606

• Keep the checklist subsection headings, questions/answers and guidelines below.607

• Do not modify the questions and only use the provided macros for your answers.608

1. Claims609

Question: Do the main claims made in the abstract and introduction accurately reflect the610

paper’s contributions and scope?611

Answer: [Yes]612

Justification: We discuss how to improve GPU utilization and achieve better performance613

with large-chunk TTT layer.614

Guidelines:615

• The answer NA means that the abstract and introduction do not include the claims616

made in the paper.617

• The abstract and/or introduction should clearly state the claims made, including the618

contributions made in the paper and important assumptions and limitations. A No or619

NA answer to this question will not be perceived well by the reviewers.620

• The claims made should match theoretical and experimental results, and reflect how621

much the results can be expected to generalize to other settings.622

• It is fine to include aspirational goals as motivation as long as it is clear that these goals623

are not attained by the paper.624

2. Limitations625

Question: Does the paper discuss the limitations of the work performed by the authors?626

Answer: [Yes]627

18



Justification: We have a limitation section.628

Guidelines:629

• The answer NA means that the paper has no limitation while the answer No means that630

the paper has limitations, but those are not discussed in the paper.631

• The authors are encouraged to create a separate "Limitations" section in their paper.632

• The paper should point out any strong assumptions and how robust the results are to633

violations of these assumptions (e.g., independence assumptions, noiseless settings,634

model well-specification, asymptotic approximations only holding locally). The authors635

should reflect on how these assumptions might be violated in practice and what the636

implications would be.637

• The authors should reflect on the scope of the claims made, e.g., if the approach was638

only tested on a few datasets or with a few runs. In general, empirical results often639

depend on implicit assumptions, which should be articulated.640

• The authors should reflect on the factors that influence the performance of the approach.641

For example, a facial recognition algorithm may perform poorly when image resolution642

is low or images are taken in low lighting. Or a speech-to-text system might not be643

used reliably to provide closed captions for online lectures because it fails to handle644

technical jargon.645

• The authors should discuss the computational efficiency of the proposed algorithms646

and how they scale with dataset size.647

• If applicable, the authors should discuss possible limitations of their approach to648

address problems of privacy and fairness.649

• While the authors might fear that complete honesty about limitations might be used by650

reviewers as grounds for rejection, a worse outcome might be that reviewers discover651

limitations that aren’t acknowledged in the paper. The authors should use their best652

judgment and recognize that individual actions in favor of transparency play an impor-653

tant role in developing norms that preserve the integrity of the community. Reviewers654

will be specifically instructed to not penalize honesty concerning limitations.655

3. Theory Assumptions and Proofs656

Question: For each theoretical result, does the paper provide the full set of assumptions and657

a complete (and correct) proof?658

Answer: [Yes]659

Justification: Yes, we do have. For most of the results in our papers, they are emperical. The660

formulas are mostly used to present the implementation concisely.661

Guidelines:662

• The answer NA means that the paper does not include theoretical results.663

• All the theorems, formulas, and proofs in the paper should be numbered and cross-664

referenced.665

• All assumptions should be clearly stated or referenced in the statement of any theorems.666

• The proofs can either appear in the main paper or the supplemental material, but if667

they appear in the supplemental material, the authors are encouraged to provide a short668

proof sketch to provide intuition.669

• Inversely, any informal proof provided in the core of the paper should be complemented670

by formal proofs provided in appendix or supplemental material.671

• Theorems and Lemmas that the proof relies upon should be properly referenced.672

4. Experimental Result Reproducibility673

Question: Does the paper fully disclose all the information needed to reproduce the main ex-674

perimental results of the paper to the extent that it affects the main claims and/or conclusions675

of the paper (regardless of whether the code and data are provided or not)?676

Answer: [Yes]677

Justification: Yes, we provided. We will also release the code and model checkpoints for678

some of the tasks.679

Guidelines:680

19



• The answer NA means that the paper does not include experiments.681

• If the paper includes experiments, a No answer to this question will not be perceived682

well by the reviewers: Making the paper reproducible is important, regardless of683

whether the code and data are provided or not.684

• If the contribution is a dataset and/or model, the authors should describe the steps taken685

to make their results reproducible or verifiable.686

• Depending on the contribution, reproducibility can be accomplished in various ways.687

For example, if the contribution is a novel architecture, describing the architecture fully688

might suffice, or if the contribution is a specific model and empirical evaluation, it may689

be necessary to either make it possible for others to replicate the model with the same690

dataset, or provide access to the model. In general. releasing code and data is often691

one good way to accomplish this, but reproducibility can also be provided via detailed692

instructions for how to replicate the results, access to a hosted model (e.g., in the case693

of a large language model), releasing of a model checkpoint, or other means that are694

appropriate to the research performed.695

• While NeurIPS does not require releasing code, the conference does require all submis-696

sions to provide some reasonable avenue for reproducibility, which may depend on the697

nature of the contribution. For example698

(a) If the contribution is primarily a new algorithm, the paper should make it clear how699

to reproduce that algorithm.700

(b) If the contribution is primarily a new model architecture, the paper should describe701

the architecture clearly and fully.702

(c) If the contribution is a new model (e.g., a large language model), then there should703

either be a way to access this model for reproducing the results or a way to reproduce704

the model (e.g., with an open-source dataset or instructions for how to construct705

the dataset).706

(d) We recognize that reproducibility may be tricky in some cases, in which case707

authors are welcome to describe the particular way they provide for reproducibility.708

In the case of closed-source models, it may be that access to the model is limited in709

some way (e.g., to registered users), but it should be possible for other researchers710

to have some path to reproducing or verifying the results.711

5. Open access to data and code712

Question: Does the paper provide open access to the data and code, with sufficient instruc-713

tions to faithfully reproduce the main experimental results, as described in supplemental714

material?715

Answer: [Yes]716

Justification: We present pseudo code in supp and will release the code once acceptance.717

Guidelines:718

• The answer NA means that paper does not include experiments requiring code.719

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/720

public/guides/CodeSubmissionPolicy) for more details.721

• While we encourage the release of code and data, we understand that this might not be722

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not723

including code, unless this is central to the contribution (e.g., for a new open-source724

benchmark).725

• The instructions should contain the exact command and environment needed to run to726

reproduce the results. See the NeurIPS code and data submission guidelines (https:727

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.728

• The authors should provide instructions on data access and preparation, including how729

to access the raw data, preprocessed data, intermediate data, and generated data, etc.730

• The authors should provide scripts to reproduce all experimental results for the new731

proposed method and baselines. If only a subset of experiments are reproducible, they732

should state which ones are omitted from the script and why.733

• At submission time, to preserve anonymity, the authors should release anonymized734

versions (if applicable).735

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the736

paper) is recommended, but including URLs to data and code is permitted.737

6. Experimental Setting/Details738

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-739

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the740

results?741

Answer: [Yes]742

Justification: Yes, please see the experimental section.743

Guidelines:744

• The answer NA means that the paper does not include experiments.745

• The experimental setting should be presented in the core of the paper to a level of detail746

that is necessary to appreciate the results and make sense of them.747

• The full details can be provided either with the code, in appendix, or as supplemental748

material.749

7. Experiment Statistical Significance750

Question: Does the paper report error bars suitably and correctly defined or other appropriate751

information about the statistical significance of the experiments?752

Answer: [No]753

Justification: No, most of the experiments are too expensive to repeat.754

Guidelines:755

• The answer NA means that the paper does not include experiments.756

• The authors should answer "Yes" if the results are accompanied by error bars, confi-757

dence intervals, or statistical significance tests, at least for the experiments that support758

the main claims of the paper.759

• The factors of variability that the error bars are capturing should be clearly stated (for760

example, train/test split, initialization, random drawing of some parameter, or overall761

run with given experimental conditions).762

• The method for calculating the error bars should be explained (closed form formula,763

call to a library function, bootstrap, etc.)764

• The assumptions made should be given (e.g., Normally distributed errors).765

• It should be clear whether the error bar is the standard deviation or the standard error766

of the mean.767

• It is OK to report 1-sigma error bars, but one should state it. The authors should768

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis769

of Normality of errors is not verified.770

• For asymmetric distributions, the authors should be careful not to show in tables or771

figures symmetric error bars that would yield results that are out of range (e.g. negative772

error rates).773

• If error bars are reported in tables or plots, The authors should explain in the text how774

they were calculated and reference the corresponding figures or tables in the text.775

8. Experiments Compute Resources776

Question: For each experiment, does the paper provide sufficient information on the com-777

puter resources (type of compute workers, memory, time of execution) needed to reproduce778

the experiments?779

Answer: [Yes]780

Justification: We provided such information in the Appendix.781

Guidelines:782

• The answer NA means that the paper does not include experiments.783

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,784

or cloud provider, including relevant memory and storage.785

21



• The paper should provide the amount of compute required for each of the individual786

experimental runs as well as estimate the total compute.787

• The paper should disclose whether the full research project required more compute788

than the experiments reported in the paper (e.g., preliminary or failed experiments that789

didn’t make it into the paper).790

9. Code Of Ethics791

Question: Does the research conducted in the paper conform, in every respect, with the792

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?793

Answer: [Yes]794

Justification: Yes, we do.795

Guidelines:796

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.797

• If the authors answer No, they should explain the special circumstances that require a798

deviation from the Code of Ethics.799

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-800

eration due to laws or regulations in their jurisdiction).801

10. Broader Impacts802

Question: Does the paper discuss both potential positive societal impacts and negative803

societal impacts of the work performed?804

Answer: [NA]805

Justification: This is a general method paper and it does not have specific concerns regarding806

societal impacts comparing with other papers.807

Guidelines:808

• The answer NA means that there is no societal impact of the work performed.809

• If the authors answer NA or No, they should explain why their work has no societal810

impact or why the paper does not address societal impact.811

• Examples of negative societal impacts include potential malicious or unintended uses812

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations813

(e.g., deployment of technologies that could make decisions that unfairly impact specific814

groups), privacy considerations, and security considerations.815

• The conference expects that many papers will be foundational research and not tied816

to particular applications, let alone deployments. However, if there is a direct path to817

any negative applications, the authors should point it out. For example, it is legitimate818

to point out that an improvement in the quality of generative models could be used to819

generate deepfakes for disinformation. On the other hand, it is not needed to point out820

that a generic algorithm for optimizing neural networks could enable people to train821

models that generate Deepfakes faster.822

• The authors should consider possible harms that could arise when the technology is823

being used as intended and functioning correctly, harms that could arise when the824

technology is being used as intended but gives incorrect results, and harms following825

from (intentional or unintentional) misuse of the technology.826

• If there are negative societal impacts, the authors could also discuss possible mitigation827

strategies (e.g., gated release of models, providing defenses in addition to attacks,828

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from829

feedback over time, improving the efficiency and accessibility of ML).830

11. Safeguards831

Question: Does the paper describe safeguards that have been put in place for responsible832

release of data or models that have a high risk for misuse (e.g., pretrained language models,833

image generators, or scraped datasets)?834

Answer: [NA]835

Justification: The NVS model is a non-generative model and only repeat the input informa-836

tion. The LM model is with small size.837

22

https://neurips.cc/public/EthicsGuidelines


Guidelines:838

• The answer NA means that the paper poses no such risks.839

• Released models that have a high risk for misuse or dual-use should be released with840

necessary safeguards to allow for controlled use of the model, for example by requiring841

that users adhere to usage guidelines or restrictions to access the model or implementing842

safety filters.843

• Datasets that have been scraped from the Internet could pose safety risks. The authors844

should describe how they avoided releasing unsafe images.845

• We recognize that providing effective safeguards is challenging, and many papers do846

not require this, but we encourage authors to take this into account and make a best847

faith effort.848

12. Licenses for existing assets849

Question: Are the creators or original owners of assets (e.g., code, data, models), used in850

the paper, properly credited and are the license and terms of use explicitly mentioned and851

properly respected?852

Answer: [Yes]853

Justification: Yes, we give credit to the data, model, and code that we used.854

Guidelines:855

• The answer NA means that the paper does not use existing assets.856

• The authors should cite the original paper that produced the code package or dataset.857

• The authors should state which version of the asset is used and, if possible, include a858

URL.859

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.860

• For scraped data from a particular source (e.g., website), the copyright and terms of861

service of that source should be provided.862

• If assets are released, the license, copyright information, and terms of use in the863

package should be provided. For popular datasets, paperswithcode.com/datasets864

has curated licenses for some datasets. Their licensing guide can help determine the865

license of a dataset.866

• For existing datasets that are re-packaged, both the original license and the license of867

the derived asset (if it has changed) should be provided.868

• If this information is not available online, the authors are encouraged to reach out to869

the asset’s creators.870

13. New Assets871

Question: Are new assets introduced in the paper well documented and is the documentation872

provided alongside the assets?873

Answer: [NA]874

Justification: No new asssets released.875

Guidelines:876

• The answer NA means that the paper does not release new assets.877

• Researchers should communicate the details of the dataset/code/model as part of their878

submissions via structured templates. This includes details about training, license,879

limitations, etc.880

• The paper should discuss whether and how consent was obtained from people whose881

asset is used.882

• At submission time, remember to anonymize your assets (if applicable). You can either883

create an anonymized URL or include an anonymized zip file.884

14. Crowdsourcing and Research with Human Subjects885

Question: For crowdsourcing experiments and research with human subjects, does the paper886

include the full text of instructions given to participants and screenshots, if applicable, as887

well as details about compensation (if any)?888

23

paperswithcode.com/datasets


Answer: [NA]889

Justification: NA890

Guidelines:891

• The answer NA means that the paper does not involve crowdsourcing nor research with892

human subjects.893

• Including this information in the supplemental material is fine, but if the main contribu-894

tion of the paper involves human subjects, then as much detail as possible should be895

included in the main paper.896

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,897

or other labor should be paid at least the minimum wage in the country of the data898

collector.899

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human900

Subjects901

Question: Does the paper describe potential risks incurred by study participants, whether902

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)903

approvals (or an equivalent approval/review based on the requirements of your country or904

institution) were obtained?905

Answer: [NA]906

Justification: NA907

Guidelines:908

• The answer NA means that the paper does not involve crowdsourcing nor research with909

human subjects.910

• Depending on the country in which research is conducted, IRB approval (or equivalent)911

may be required for any human subjects research. If you obtained IRB approval, you912

should clearly state this in the paper.913

• We recognize that the procedures for this may vary significantly between institutions914

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the915

guidelines for their institution.916

• For initial submissions, do not include any information that would break anonymity (if917

applicable), such as the institution conducting the review.918

24


	Introduction
	Preliminary
	Test-Time Training
	Challenges in Efficient Implementation

	LaCT Model Architecture
	Large-Chunk TTT Layer
	Non-Linear Update of Fast-Weight 
	Window Attention
	Context Parallelism

	LaCT for N-Dimensional Data
	Novel View Synthesis - Image Set
	Language Modeling - Text Sequence
	Autoregressive Video Diffusion - Image Sequences

	Experiments
	Novel View Synthesis
	Language Modeling
	Autoregressive Video Diffusion
	Analysis on Design Choices

	Conclusion
	Appendix
	Analysis on Design Choices
	Related Work
	Limitation


