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Abstract

Adequate uncertainty representation and quantifi-
cation have become imperative in various scientific
disciplines, especially in machine learning and arti-
ficial intelligence. As an alternative to representing
uncertainty via one single probability measure, we
consider credal sets (convex sets of probability
measures). The geometric representation of credal
sets as d-dimensional polytopes implies a geomet-
ric intuition about (epistemic) uncertainty. In this
paper, we show that the volume of the geometric
representation of a credal set is a meaningful mea-
sure of epistemic uncertainty in the case of binary
classification, but less so for multi-class classifica-
tion. Our theoretical findings highlight the crucial
role of specifying and employing uncertainty mea-
sures in machine learning in an appropriate way,
and for being aware of possible pitfalls.

1 INTRODUCTION

The notion of uncertainty has recently drawn increasing
attention in machine learning (ML) and artificial intelli-
gence (AI) due to the fields’ burgeoning relevance for prac-
tical applications, many of which have safety requirements,
such as in medical domains [Lambrou et al., 2010, Senge
et al., 2014, Yang et al., 2009] or socio-technical systems
[Varshney, 2016, Varshney and Alemzadeh, 2017]. These
applications to safety-critical contexts show that a suitable
representation and quantification of uncertainty for modern,
reliable machine learning systems is imperative.

In general, the literature makes a distinction between
aleatoric and epistemic uncertainties (AU and EU, respec-
tively) [Hora, 1996]. While the former is caused by the
inherent randomness of the data-generating process, EU
results from the learner’s lack of knowledge regarding the
true underlying model; it also includes approximation uncer-

tainty. Since EU can be reduced per se with further informa-
tion (e.g., via data augmentation using semantic preserving
transformations), it is also referred to as reducible uncer-
tainty. In contrast, aleatoric uncertainty, as a property of
the data-generating process, is irreducible [Hüllermeier and
Waegeman, 2021]. The importance of distinguishing be-
tween different types of uncertainty is reflected in several
areas of recent machine learning research, e.g. in Bayesian
deep learning [Depeweg et al., 2018, Kendall and Gal, 2017],
in adversarial example detection [Smith and Gal, 2018], or
data augmentation in Bayesian classification [Kapoor et al.,
2022]. A qualitative representation of total uncertainty, AU,
and EU, and of their asymptotic behavior as the number of
data points available to the learning agent increases, is given
in Figure 1.

Figure 1: Qualitative behavior of total, aleatoric, and epis-
temic uncertainties depending on the sample size. The dotted
line is the difference between total and epistemic uncertain-
ties. This figure replicates [Hüllermeier, 2022, Figure 3].

Typically, uncertainty in machine learning, artificial intel-
ligence, and related fields is expressed solely in terms of
probability theory. That is, given a measurable space (Ω,A),
uncertainty is entirely represented by defining one single
probability measure P on (Ω,A). However, representing
uncertainty in machine learning is not restricted to classical
probability theory; various aspects of uncertainty representa-
tion and quantification in ML are discussed by Hüllermeier
and Waegeman [2021]. Credal sets, i.e., (convex) sets of
probability measures, are considered to be very popular
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models of uncertainty representation, especially in the field
of imprecise probabilities (IP) [Augustin et al., 2014, Wal-
ley, 1991]. Credal sets are also very appealing from an ML
perspective for representing uncertainty, as they can repre-
sent both aleatoric and epistemic uncertainty (as opposed to
a single probability measure). Numerous scholars empha-
sized the utility of representing uncertainty in ML via credal
sets, e.g., credal classification [Zaffalon, 2002, Corani and
Zaffalon, 2008] based on the Imprecise Dirichlet Model
(IDM) [Walley, 1996], generalizing Bayesian networks to
credal classifiers [Corani et al., 2012], or building credal
decision-trees [Abellán and Moral, 2003].

Uncertainty representation via credal sets also requires a
corresponding quantification of the underlying uncertainty,
referred to as credal uncertainty quantification (CUQ). The
task of (credal) uncertainty quantification translates to find-
ing a suitable measure that can accurately reflect the uncer-
tainty inherent to a credal set. In many ML applications,
such as active learning [Settles, 2009] or classification with
abstention, there is a need to quantify (predictive) uncer-
tainty in a scalar way. Appropriate measures of uncertainty
are often axiomatically justified [Bronevich and Klir, 2008,
2010].

Contributions. In this work, we consider the volume of
the geometric representation of a credal set on the label
space as a quite obvious and intuitively plausible measure
of EU. We argue that this measure is indeed meaningful
if we are in a binary classification setting. However, in a
multi-class setting, the volume exhibits shortcomings that
make it unsuitable for quantifying EU associated with a
credal set.

Structure of the paper. The paper is divided as follows.
Section 2 formally introduces the framework we work in,
and Section 3 discusses the related literature. Section 4
presents our main findings, which are further discussed
in Section 5. Proofs of our theoretical results are given
in Appendix ??, and (a version of) Carl-Pajor’s theorem,
intimately related to Theorem 1, is stated in Appendix ??.

2 UNCERTAINTY IN ML AND AI

Uncertainty is a crucial concept in many academic and ap-
plied disciplines. However, since its definition depends on
the specific context a scholar works in, we now introduce
the formal framework of supervised learning within which
we will examine it.

Let (X , σ(X )), and (Y, σ(Y)) be two measurable spaces,
where σ(X ), and σ(Y) are suitable σ-algebras. We will re-
fer to X as instance space (or equivalently, input space) and
to Y as label space. Further, the sequence {(xi, yi)}ni=1 ∈
(X × Y)n, is called training data. The pairs (xi, yi) are re-
alizations of random variables (Xi, Yi), which are assumed
independent and identically distributed (i.i.d.) according to

some probability measure P on (X × Y, σ(X × Y)).

Definition 1 (Credal set). Let (Ω,A) be a generic measur-
able space and denote by M(Ω,A) the set of all (countably
additive) probability measures on (Ω,A). A convex subset
P ⊆ M(Ω,A) is called a credal set.

Note that in Definition 1, the assumption of convexity is
quite natural and considered to be rational (see, e.g., Levi
[1980]). It is also mathematically appealing, since, as shown
by Walley [1991, Section 3.3.3], the “lower boundary” P
of P , defined as P (A) := infP∈P P (A), for all A ∈ A and
called the lower probability associated with P , is coherent
[Walley, 1991, Section 2.5].

Further, in a supervised learning setting, we assume a hy-
pothesis space H, where each hypothesis h ∈ H maps a
query instance xq to a probability measure P on (Y, σ(Y)).
We distinguish between different “degrees” of uncertainty-
aware predictions, which are depicted in Table 1.

Predictor AU aware? EU aware?
Hard label prediction:
h : X −→ Y

✖ ✖

Probabilistic prediction:
h : X −→ M(Y, σ(Y))

✔ ✖

Credal prediction:
h : X −→ Cr(Y)

✔ ✔

Table 1: Aleatoric uncertainty (AU) and epistemic uncer-
tainty (EU) awareness of different predictors.
We denote by Cr(Y) the set of all credal sets on (Y, σ(Y)).
While probabilistic predictions h(xq) = ŷ fail to capture the
epistemic part of the (predictive) uncertainty, predictions in
the form of credal sets h(xq) = P ⊆ M(Y, σ(Y)) account
for both types of uncertainty. It should also be remarked
that representing uncertainty is not restricted to the credal
set formalism. Another possible framework to represent AU
and EU is that of second-order distributions; they are com-
monly applied in Bayesian learning and have been recently
inspected in the context of uncertainty quantification by
Bengs et al. [2022].

In this paper, we restrict our attention to the credal set repre-
sentation. Given a credal prediction set, it remains to prop-
erly quantify the uncertainty encapsulated in it using a suit-
able measure. Credal set representations are often illustrated
in low dimensions (usually d = 2 or d = 3). Examples
of such geometrical illustrations can be found in the con-
text of machine learning in [Hüllermeier and Waegeman,
2021] and in imprecise probability theory in [Walley, 1991,
Chapter 4]. This suggests that a credal set and its geomet-
ric representation are strictly intertwined. We will show in
the following sections that this intuitive view can have dis-
astrous consequences in higher dimensions and that one
should exercise caution in this respect. Furthermore, it re-
mains to be discussed whether a geometric viewpoint on
(predictive) uncertainty quantification is in fact sensible.



3 MEASURES OF CREDAL
UNCERTAINTY

In this section we examine some axiomatically defined prop-
erties of (credal) uncertainty measures. For a more detailed
discussion of various (credal) uncertainty measures in ma-
chine learning and a critical analysis thereof, we refer to
Hüllermeier et al. [2022].

Let S denote the Shannon entropy [Shannon, 1948], whose
discrete version is defined as

S : M(Y, σ(Y)) → R,

P 7→ S(P ) := −
∑
y∈Y

P ({y}) log2 P ({y}).

A suitable measure of credal uncertainty U : Cr(Y) → R
should satisfy the following axioms proposed by Abellán
and Klir [2005], Jiroušek and Shenoy [2018]:

A1 Non-negativity and boundedness:

(i) U(P) ≥ 0, for all P ∈ Cr(Y);
(ii) there exists u ∈ R such that U(P) ≤ u, for all

P ∈ Cr(Y).

A2 Continuity: U is a continuous functional.

A3 Monotonicity: for all Q,P ∈ Cr(Y) such that Q ⊂ P ,
we have U(Q) ≤ U(P).

A4 Probability consistency: for all P ∈ Cr(Y) such that
P = {P}, we have U(P) = S(P ).

A5 Sub-additivity: Suppose Y = Y1 × Y2, and let P be
a joint credal set on Y such that P ′ is the marginal
credal set on Y1 and P ′′ is the marginal credal set on
Y2, respectively. Then, we have

U(P) ≤ U(P ′) + U(P ′′). (1)

A6 Additivity: If P ′ and P ′′ are independent, (1) holds
with equality.

In axiom A6, independence refers to a suitable notion for
independence of credal sets, see e.g. Couso et al. [1999]. An
axiomatic definition of properties for uncertainty measures
is a common approach in the literature [Pal et al., 1992,
1993]. Examples of credal uncertainty measures that satisfy
some of the axioms A1–A6 are the maximal entropy [Abel-
lan and Moral, 2003] and the generalized Hartley measure
[Abellán and Moral, 2000].

Recall that the lower probability P of P is defined as
P (A) := infP∈P P (A), for all A ∈ σ(Y), and call up-
per probability its conjugate P (A) := 1 − P (Ac) =
supP∈P P (A), for all A ∈ σ(Y). Since we are concerned
with the fundamental question of whether the volume func-
tional is a suitable measure for epistemic uncertainty, we
replace A4 with the following axiom that better suits our
purposes.

A4’ Probability consistency: U(P) reduces to 0 as the
distance between P (A) and P (A) goes to 0, for all
A ∈ σ(Y).

While A4’ addresses solely the epistemic component of
uncertainty assoicated with the credal set P , A4 incorporates
the aleatoric uncertainty. Finally, we introduce a seventh
axiom that subsumes a desirable property of U proposed by
Hüllermeier et al. [2022, Theorem 1.A3-A5].

A7 Invariance: U is invariant to rotation and translation.

Call d the cardinality of the label space Y . In the next sec-
tion, we will note that many of these axioms are satisfied by
the volume operator in the case d = 2 but can no longer be
guaranteed for d > 2.

4 GEOMETRY OF EPISTEMIC
UNCERTAINTY

As pointed out in Section 3, there is no unambiguous mea-
sure of (credal) uncertainty for machine learning purposes.
In this section, we present a measure for EU rooted in the
geometric concept of volume and show how it is well-suited
for a binary classification setting, while it loses its appeal
when moving to a multi-class setting.

Since we are considering a classification setting, we assume
that Y is a finite Polish space so that |Y| = d, for some
natural number d ≥ 2. We also let σ(Y) = 2Y to work with
the finest possible σ-algebra of Y; the results we provide
still hold for any coarser σ-algebra.1 Because Y is Polish,
M(Y, σ(Y)) is Polish as well. In particular, the topology
endowed to M(Y, σ(Y)) is the weak topology, which –
because we assumed Y to be finite – coincides with the
topology τ∥·∥2

induced by the Euclidean norm. Consider a
credal set P ⊂ M(Y, σ(Y)), which can be seen as the out-
come of a procedure involving an imprecise Bayesian neural
network (IBNN) [Caprio et al., 2023a], or an imprecise neu-
ral network (INN) [Caprio et al., 2023b]; an ensemble-based
approach is proposed by Shaker and Hüllermeier [2020].

Since Y = {y1, . . . , yd}, each element P ∈ P can be seen
as a d-dimensional probability vector, P = (p1, . . . , pd)

⊤,
where pj = P ({yj}), j ∈ {1, . . . , d}, pj ≥ 0, for all
j ∈ {1, . . . , d}, and

∑d
j=1 pj = 1. This entails that if we

denote by ∆d−1 the unit simplex in Rd, we have P ⊂ ∆d−1,
which means that P is a convex body inscribed in ∆d−1.2

Intuitively, the “larger” P is, the higher the credal uncer-
tainty. A natural way of capturing the size of P , then, ap-

1Call τ the topology on Y . The ideas expressed in this paper
can be easily extended to the case where Y is not Polish. We
require it to convey our results without dealing with topological
subtleties.

2In the remaining part of the paper, we denote by P both the
credal set and its geometric representation, as no confusion arises.



pears to be its volume Vol(P). Notice that Vol(P) is a
bounded quantity: its value is bounded from below by 0
and from above by

√
d/[(d− 1)!], the volume of the whole

unit simplex ∆d−1. The latter corresponds to the case where
P = ∆d−1, that is, to the case of completely vacuous be-
liefs: the agent is only able to say that the probability of A
is in [0, 1], for all A ∈ F . In this sense, the volume is a mea-
sure of the size of set P that increases the more uncertain the
agent is about the elements of F . This argument shows that
Vol(P) is well suited to capture credal uncertainty. But why
is it appropriate to describe EU?3 Think of the extreme case
where EU does not exist, so that the agent faces AU only. In
that case, they would be able to specify a unique probability
measure P ∈ M(Y, σ(Y)) (or equivalently, P ∈ ∆d−1),
and Vol({P}) = 0. Hence, if Vol(P) > 0, then this means
that the agent faces EU. In addition, let (Pn)n∈N be a se-
quence of credal sets on (Y, σ(Y)) representing successive
refinements of P computed as new data becomes available
to the agent.4 If, after observing enough evidence, the EU is
resolved, that is, if limn→∞[Pn(A)− Pn(A)] = 0 for all
A ∈ F , we see that the following holds. Sequence (Pn)n∈N
converges – say in the Hausdorff metric – as n → ∞ to
P⋆ ⊂ M(Y, σ(Y)) such that |P⋆| = |Pn|, for all n, and all
the elements of P⋆ are equal to P ⋆, the (unique) probability
measure that encapsulates the AU.5 Through the learning
process, we refine our estimates for the “true” underlying
aleatoric uncertainty (pertaining to P ⋆), which is left after
all the EU is resolved. Then, the geometric representation
of P⋆ is a point whose volume is 0. Hence, we have that the
volume of Pn converges from above to 0 (that is, it possesses
the continuity property), which is exactly the behavior we
would expect as EU resolves.

As we shall see, while this intuitive explanation holds if d =
2, for d > 2, continuity fails, thus making the volume not
suited to capture EU in a multi-class classification setting.
We also show in Theorem 1 that the volume lacks robustness
in higher dimensions. Small perturbations to the boundary
of a credal set make its volume vary significantly. This may
seriously hamper the results of a study, leading to potentially
catastrophic consequences in downstream tasks.

4.1 Vol(P): A GOOD MEASURE FOR EU, BUT
ONLY IF d = 2

Let d = 2 so that P is a subset of ∆1, the segment linking
the points (1, 0) and (0, 1) in a 2-dimensional Cartesian

3The concept of volume has been explored in the imprecise
probabilities literature, see e.g., Bloch [1996], [Cuzzolin, 2021,
Chapter 17], and Seidenfeld et al. [2012], but, to the best of our
knowledge, has never been tied to the notion of epistemic uncer-
tainty. More in general, the geometry of imprecise probabilities
has been studied, e.g., by Anel [2021], Cuzzolin [2021].

4Clearly |Pn| = |P|, for all n.
5Technically P⋆ is a multiset, that is, a set where multiple

instances for each of its elements are allowed.

plane. Notice that in this case, the volume Vol(P) corre-
sponds to the length of the segment. In this context, Vol(P)
is an appealing measure to describe the EU associated with
the credal set P .

Proposition 1. Vol(·) satisfies axioms A1–A3, A4’, A5 and
A7 of Section 3.

Let us now discuss additivity (axiom A6 of Section 3). Sup-
pose the label space Y = {(y1, y2), (y3, y4)} can be written
as Y1 × Y2, where Y1 = {y1, y3} and Y2 = {y2, y4}. Let
P be a joint credal set on Y such that P ′ is the marginal
credal set on Y1 and P ′′ is the marginal credal set on Y2.
In the proof of Proposition 1, we show that if y1 ̸= y3
and y2 ̸= y4,6 then the volume is sub-additive. Suppose
instead now that y1 = y3 = y⋆, so that |Y| = |Y2| = 2
and |Y1| = 1.7 Then, the marginal margY1

(P ) = P ′ of any
P ∈ P on Y1 will give probability 1 to y⋆; in formulas,
P ′(y⋆) = 1. This entails that P ′ = {P ′} is a singleton and
that its geometric representation is a point.8 Then, for all
P ∈ P , P ((y1, y2)) = P ′′(y2) and P ((y3, y4)) = P ′′(y4),
where margY2

(P ) = P ′′ is the marginal of any P ∈ P on
Y2.

In turn, this line of reasoning implies that Vol(P ′) +
Vol(P ′′) = 0 + Vol(P) = Vol(P), which shows that the
volume is additive in this case.

This situation corresponds to an instance of strong indepen-
dence (SI) [Couso et al., 1999, Section 3.5]. We have SI if
and only if

P = Conv({P ∈ M(Y, σ(Y)): margY1
(P ) ∈ P ′

and margY2
(P ) ∈ P ′′}).

(2)

In other words, there is complete lack of interaction between
the probability measure on Y1 and those on Y2. To see that
this is the case, recall that P is a credal set, and so is convex;
recall also that P ′ = {P ′} is a singleton. Then, pick any
P ex ∈ ex(P), where ex(P) denotes the set of extreme
elements of P . We have that margY1

(P ex) = P ′, and so
margY2

(P ex) ∈ ex(P ′′). With a slight abuse of notation,
we can write ex(P) = {P ′} × ex(P ′′). This immediately
implies that the equality in (2) holds. As pointed out in
[Couso et al., 1999, Section 3.5], SI implies independence
of the marginal sets, epistemic independence of the marginal
experiments, and independence in the selection [Couso et al.,
1999, Sections 3.1, 3.4, and 3.5, respectively]. It is, therefore,
a rather strong notion of independence.

The volume is also trivially additive if (y1, y2) = (y3, y4),
but in that case Y would be a multiset.

The argument put forward so far can be summarized in the
following proposition.

6This implies that |Y| = |Y1| = |Y2| = 2.
7A similar argument will hold if we assume y2 = y4 = y⋆, so

that |Y| = |Y1| = 2 and |Y2| = 1.
8Or, alternatively, P ′ is a multiset whose elements are all equal.



Proposition 2. Let Y = {(y1, y2), (y3, y4)}. Vol(·) satisfies
axiom A6 if we assume the instance of SI given by either of
the following

• y1 = y3,

• y2 = y4,

• y1 = y3 and y2 = y4.

If d > 2, the volume ceases to be an appealing measure for
EU. This is because quantifying the uncertainty associated
with a credal set becomes challenging due to the dependency
of the volume on the dimension. So far, we have written
Vol in place of Vold−1 to ease notation, but for d > 2
the dimension with respect to which the volume is taken
becomes crucial. Let us give a simple example to illustrate
this.

Example 1. Let d = 3, so that the unit simplex is ∆3−1 =
∆2, the triangle whose extreme points are (1, 0, 0), (0, 1, 0),
and (0, 0, 1) in a 3-dimensional Cartesian plane (the purple
triangle in Figure 2). Consider a sequence (Pn) of credal
sets whose geometric representations are triangles, and
suppose their height reduces to 0 as n → ∞, so that the
(geometric representation of) P∞ – the limit of (Pn) in
the Hausdorff metric – is a segment. The limiting set P∞,
then, is not of full dimensionality that is, its geometric rep-
resentation is a proper subset of ∆1, while the geometric
representation of Pn is a proper subset of ∆2, for all n. This
implies that Vol2(P∞) = 0, but – unless P∞ is a degener-
ate segment, i.e. a point – Vol1(P∞) > 0. As we can see,
the EU has not resolved, yet P∞ has a zero 2-dimensional
volume; this is clearly undesirable. It is easy to see how this
problem exacerbates in higher dimensions.

There are two possible ways one could try to circumvent the
issue in Example 1; alas, both exhibit shortcomings, that is,
at least one of the axioms A1–A3, A4’, A5–A7 in Section
3 is not satisfied. The first one is to consider the volume
operator Vol(P) as the volume taken with respect to the
space in which set P is of full dimensionality. In this case,
we immediately see how A2 fails. Considering again the
sequence in Example 1, we would have a sequence (Pn)
whose volume Vol2(Pn) is going to zero. However, in the
limit, its volume Vol1(P∞) would be positive. Axiom A3
fails as well: consider a credal set P whose representation
is a triangle having base b and height h and suppose h < 2.
Consider then a credal set Q ⊊ P whose representation is a
segment having length ℓ = b. Then, Vol2(P) = b · h/2 < b,
while Vol1(Q) = ℓ = b.

The second one is to consider lift probability sets; let us
discuss this idea in depth. Let d, d′ ∈ N, and let d′ < d. Call

O(d′, d) := {V ∈ Rd′×d : V V ⊤ = Id′},

where Id′ is the d′-dimensional identity matrix. That is,
O(d′, d) is the Stiefel manifold of d′ × d matrices with

orthonormal rows [Cai and Lim, 2022]. Then, for any V ∈
O(d′, d) and any b ∈ Rd′

, define

φV,b : Rd → Rd′
, x 7→ φV,b(x) := V x+ b.

Suppose now that, for some n, (the geometric representation
of) Pn is a proper subset of ∆d−1, while (the geometric
representation of) Pn+1 is a proper subset of ∆d′−1. Pick
any V ∈ O(d′, d) and any b ∈ Rd′

; an embedding of Pn+1

in ∆d−1 is a set K such that for all x ∈ K, there exists a
probability vector p ∈ Pn+1 such that φV,b(x) = p. Call
Φ+(Pn+1, d) the set of embeddings of Pn+1 in ∆d−1, and
assume that it is nonempty.

Then, define

P̆n+1 := argmin
K∈Φ+(Pn+1,d)

|Vold−1(K)− Vold′−1(Pn+1)| ;

we call it the lift probability set for the heuristic similarity
with lift zonoids [Mosler, 2002]. We define it in this way be-
cause we want the d-dimensional set whose (full dimension-
ality) volume is the closest possible to the (d′-dimensional)
volume of Pn+1. A simple example is the following. Sup-
pose the geometric representation of Pn is a proper subset
of ∆2, and that the geometric representation of Pn+1 is a
proper subset of ∆1. So the former is a subset of R2, and
the latter is a segment in R. Then, a possible P̆n+1 is any
triangle in ∆2 whose height h is 2 and whose base length b
is equal to the length ℓ of the segment representing Pn+1.
This because the area of such P̆n+1 is b · h/2; if h = 2 and
b = ℓ, then Vol2(P̆n+1) = Vol1(Pn+1), which is what we
wanted. A visual representation is given in Figure 2.

Figure 2: A visual representation of a lift probability set.



Notice that P̆n+1 is well defined because Φ+(Pn+1, d) ⊂
2∆

d−1

, and ∆d−1 is compact.9 We can then compare
Vold−1(Pn) and of Vold−1(P̆n+1), and also compute the
relative quantity∣∣∣Vold−1(Pn)− Vold−1(P̆n+1)

∣∣∣
Vold−1(Pn)

that captures the variation in volume between Pn and P̆n+1.
Alas, in this case, too, it is easy to see how A2 fails. Consider
the same sequence as in Example 1. We would have that
Vol2(Pn) goes to zero as n → ∞, but Vol2(P̆∞) > 0.
Axiom A3 may fail as well since we could find credal sets
P ⊂ ∆d−1 and Q ⊂ ∆d′−1 such that Q ⊊ P , but Q̆ ̸⊂ P .

4.2 LACK OF ROBUSTNESS IN HIGHER
DIMENSIONS

In this section, we show how, if we measure the EU associ-
ated with a credal set on the label space using the volume,
as the number of labels grows, “small” changes of the uncer-
tainty representation may lead to catastrophic consequences
in downstream tasks.

For a generic compact set K ∈ Rd and a positive real r, the
r-packing of K, denoted by Packr(K), is the collection of
sets K ′ that satisfy the following properties

(i) K ′ ⊂ K,

(ii) ∪x∈K′Bd
r (x) ⊂ K, where Bd

r (x) denotes the ball of
radius r in space Rd centered at x,

(iii) the elements of {Bd
r (x)}x∈K′ are pairwise disjoint,

(iv) there does not exist x′ ∈ K such that (i)-(iii) are satis-
fied by K ′ ∪ {x′}.

The packing number of K, denoted by N pack
r (K), is

given by maxK′∈Packr(K) |K ′|. We also let K⋆
r :=

argmaxK′∈Packr(K) |K ′| and K̃r := ∪x∈K⋆
r
Bd

r (x). Notice
that

Vol(K̃r) = c(r, d,K)Vol(K), (3)

where

c(r, d,K) ∈ (0, 1], for all r > 0,

and c(r, d,K) ≤ c(r − ϵ, d, Ǩ), for all ϵ > 0,
(4)

where Ǩ is any compact set in Rd, possibly different than
K. That is, we can always find a real number c(r, d,K)
depending on the dimension d of the Euclidean space, on the
radius r of the balls, and on the set K of interest, that relates
the volume of K and that of K̃r. Being in (0, 1], it takes
into account the fact that since K̃r is a union of pairwise
disjoint balls within K, its volume cannot exceed that of

9If the argmin is not a singleton, pick any of its elements.

K. This is easy to see in Figure 3. The second condition in
(4) states that irrespective of the compact set of interest, we
retain more of the volume of the original set if we pack it
using balls of a smaller radius.

To give a simple illustration, consider r1, r2 > 0 such that
r1 ≤ r2. Then, by (3) and (4), we have that Vol(K) −
Vol(K̃r2) = Vol(K)[1 − c(r2, d,K)] ≥ Vol(K)[1 −
c(r1, d,K)] = Vol(K) − Vol(K̃r1). This means that the
difference in volume between K and K̃r2 is larger than that
between K and K̃r1 .

Let K(Rd) be the class of compact sets in Rd, and call
c(r, d) := maxK∈K(Rd) c(r, d,K). As r goes to 0, c(r, d)
increases to its optimal value that we denote as c⋆(d). The
values of c⋆(d) have only been found for d ∈ {1, 2, 3, 8, 24}
[Cohn et al., 2017, Viazovska, 2017]. The fact that c(r, d)
increases as r decreases to 0 captures the idea that using
balls of smaller radius leads to a better approximation of the
volume of the compact set K in Rd that is being packed.

Figure 3: A representation of K̃r, for some r > 0, where
K is a parallelepiped in R3. This figure replicates [Hifi and
Yousef, 2019, Figure 4].
Suppose our credal set P is compact, so to be able to use
the concepts of r-packing and packing number. Consider
then a set Q ⊂ M(Ω,F) that satisfies the following three
properties:

(a) Q ⊊ P , so that Q′ := P \ Q ̸= ∅,

(b) dH(P,Q) = ϵ, for some ϵ > 0,

(c) ϵ is such that we can find r > 0 for which N pack
r (P) ≥

N pack
r−ϵ (Q′).

Property (a) tells us that Q is a proper subset of P . Let d2
denote the metric induced by the Euclidean norm ∥ · ∥2.
Property (b) tells us that the Hausdorff distance

dH(P,Q) = max

{
max
P∈P

d2(P,Q),max
Q∈Q

d2(P, Q)

}
(5)

between P and Q is equal to some ϵ > 0. Property (c)
ensures that ϵ is “not too large”. To understand why, notice



that if ϵ is “large”, that is, if it is close to r, then the packing
number of Q′ ⊊ P using balls of radius r − ϵ can be larger
than the packing number of P using balls of radius r.10

Requiring (c) ensures us that this does not happen, and
therefore that ϵ is “small”. A representation of P and Q
satisfying (a)–(c) is given in Figure 4. A (possibly very
small) change in uncertainty representation is captured by a
situation in which the agent specifies credal set Q in place
of P . We are ready to state the main result of this section.

ϵ

!
"

!′ := #∖!

Figure 4: A representation of P (the orange pentagon) and Q
(the green pentagon) satisfying (a)-(c) when the dimension
of state space Ω is d = 3. The unit simplex ∆2 in R3 is
given by the purple triangle whose vertices are the elements
of the basis of R3, i.e., e1 = (1, 0, 0), e2 = (0, 1, 0), and
e2 = (0, 0, 1).

Theorem 1. Let Ω be a finite Polish space so that |Ω| = d,
and let F = 2Ω. Pick any compact set P ⊂ M(Ω,F), and
any set Q that satisfies (a)-(c). The following holds

Vol(P)− Vol(Q′)

Vol(P)
≥ 1−

(
1− ϵ

r

)d

. (6)

Notice that we implicitly assumed that at least a Q satisfying
(a)-(c) exists. We have that [Vol(P)− Vol(Q′)]/Vol(P) ∈
[0, 1]; in light of this, since 1− (1− ϵ/r)d → 1 as d → ∞,
Theorem 1 states that as d grows, most of the volume of P
concentrates near its boundary.

As a result, if we use the volume operator as a metric for
the EU, this latter is very sensitive to perturbations of the
boundary of the (geometric representation of the) credal
set; this is problematic for credal sets in the context of ML.
Suppose we are in a multi-classification setting such that the
cardinality of Y is some large number d. Suppose that two
different procedures produce two different credal sets on Y ;
call one P and the other Q, and suppose Q satisfies (a)-(c).
This means that the uncertainty representations associated
with the two procedures differ only by a “small amount”.
For instance, this could be the result of an agent specifying
“slightly different” credal prior sets. This may well happen

10Because Q ⊊ P and dH(P,Q) = ϵ, packing using balls of
radius r − ϵ is a sensible choice.

since defining the boundaries of credal sets is usually quite
an arbitrary task to perform. Then, this would result in a
(possibly massive) underestimation of the epistemic uncer-
tainty in the results of the analysis, which would potentially
translate in catastrophic consequence in downstream tasks.
In Example 2, we describe a situation in which Theorem 1
is applied to credal prior sets.

Example 2. Assume for simplicity that the parameter space
Θ is finite and that its cardinality is c. Suppose an agent
faces complete ignorance regarding the probabilities to as-
sign to the elements of 2Θ. Although tempting, there is a
pitfall in choosing the whole simplex ∆c−1 as the credal
prior set. As shown by Walley [1991, Chapter 5], completely
vacuous beliefs – captured by choice of ∆c−1 as a credal
prior set – cannot be Bayes-updated. This means that the
posterior credal set will again be ∆c−1: no large amount
of data is enough to swamp the prior. Instead, suppose that
the agent considers a credal prior set ∆c−1

ϵ that satisfies
(a)–(c). If c is large enough, this would mean that Vol(∆c−1

ϵ )
is much smaller than Vol(∆c−1).

Two remarks are in order. First, in the binary classification
setting (that is, when d = 2), the lack of robustness of
the volume highlighted by Theorem 1 is not an issue since
1− (1− ϵ/r)d is approximately 1 only when the cardinality
|Y| = d is large. Second, Theorem 1 is intimately related to
Carl-Pajor’s Theorem [Ball and Pajor, 1990, Theorem 1];
this implies that in the future, more techniques from high-
dimensional geometry may become useful in the study of
epistemic, and potentially also aleatoric, uncertainties.11

5 CONCLUSION

Credal sets provide a flexible and powerful formalism for
representing uncertainty in various scientific disciplines. In
particular, uncertainty representation via credal sets can cap-
ture different degrees of uncertainty and allow for a more nu-
anced representation of epistemic and aleatoric uncertainty
in machine learning systems. Moreover, the corresponding
geometric representation of credal sets as d-dimensional
polytopes enables a thoroughly intuitive view of uncertainty
representation and quantification.

In this paper, we showed that the volume of a credal set
is a sensible measure of epistemic uncertainty in the con-
text of binary classification, as it enjoys many desirable
properties suggested in the existing literature. On the other
side, the volume forfeits these properties in a multi-class
classification setting, despite its intuitive meaningfulness.

In addition, this work stimulates a fundamental question as
to what extent a geometric approach to uncertainty quantifi-
cation (in ML) is sensible.

11We state (a version of) Carl-Pajor’s Theorem in Appendix ??.



This is the first step toward studying the geometric properties
of (epistemic) uncertainty in AI and ML. In the future, we
plan to explore the geometry of aleatoric uncertainty and
introduce techniques from high-dimensional geometry and
high-dimensional probability to enhance and deepen the
study of EU and AU in the contexts of AI and ML.
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