
Published in Transactions on Machine Learning Research (04/2025)

A functional framework for nonsmooth autodiff with max-
pooling functions

Bruno Després bruno.despres@sorbonne-universite.fr
Sorbonne Université, Université Paris Citée, CNRS, LJLL, F-75005 Paris, France
MEGAVOLT, INRIA, Paris, France

Reviewed on OpenReview: https: // openreview. net/ forum? id= qahoztvThX& noteId= fjpRXQIAli

Abstract

We make a comment on the recent contribution Boustany (2024), by showing that the Murat
& Trombetti (2003) Theorem provides a simple and efficient mathematical framework for
nonsmooth automatic differentiation of maxpooling functions. In particular it gives a the
chain rule formula which correctly defines the composition of Lipschitz-continuous functions
which additionnaly are piecewise-C1. The formalism is applied to four basic examples, with
some tests in PyTorch. A self contained proof of an important Stampacchia formula is in
the appendix.

1 Introduction

In this work we make a comment on the recent contribution by Boustany (2024). We will show that
the Murat & Trombetti (2003) Theorem gives a natural framework for nonsmooth automatic differentiation
(nonsmooth autodiff). More generally we believe that the methods developed hereafter offer a comprehensive
mathematical functional framework for the description of nonsmooth autodiff. Recent contributions on
mathematical issues for nonsmooth autodiff are developed in Bolte & Pauwels (2021); Bertoin et al. (2021;
2023); Boustany (2024) and references therein, based on the Clarke’s generalized derivative (Clarke, 1990).
The historical remark in Bolte & Pauwels (2021) provides insights on related topics.

Notations and developments in this self contained article are kept to the minimum.

The first part introduces the notation and provides two examples which illustrate the apparent paradox
discussed in this work. The second part focuses on a theoretical justification of chain rule manipulations for
non smooth functions. Similar problems have been identified in the past in the partial differential community.
Seminal references are Stampacchia (1963), Ambrosio & Dal Maso (1990) and Kinderlehrer & Stampacchia
(2000). In the context of this work, the most important reference is the Murat & Trombetti (2003) Theorem
which can be very conveniently adapted to describe the mathematics of nonsmooth autodiff. A preliminary
work Berner et al. (2019) has already highlighted the potential interest of the Murat-Trombetti Theorem for
nonsmooth autodiff. However the discussion was restricted to activation functions only, so to the best of our
understanding, the scope in Berner et al. (2019) was limited to fully-connected feed-forward neural network
function where the main difficulty can be ruled out by means of a trivial simplification using R′(0) = 0
where R is the ReLU activation function. Quite surprisingly the main illustrative example in the Murat-
Trombettti contribution has exactly the structure of a modern basic convolutional neural network function
(CNN) (Bengio et al., 2017) with a maxpooling function.

That is why we provide a detailed and self contained proof of the Murat-Trombetti Theorem. The original
part of this work is Theorem 2 and Proposition 1 which explicit the chain rule for composition of many
Lipschitz-continuous and piecewise-C1 functions. We hope that this discussion will contribute to popularize
this approach among the Machine Learning scientific community and to show its potential for the description
of many problems that intervene in nonsmooth automatic differentiation.

1

https://openreview.net/forum?id=qahoztvThX¬eId=fjpRXQIAli

Published in Transactions on Machine Learning Research (04/2025)

The third part is devoted to some structural properties of the set of Lipschitz-continuous functions which are
piecewise-C1. This set is evidently an additive algebra and, more important, it is an associative algebra for
composition and nonsmooth automatic differentiation. In the fourth part, we compare with other frameworks
for nonsmooth differentiation, such as Clarke’s generalized differential and alike and discuss the case of
differentiation with respect the the weights of the Neural Network in view of minimization of a Loss function.
In the fifth part, we will describe the solution of basic problems in the context of the Murat-Trombetti
Theorem. A general conclusion will be that the gradient constructed through nonsmooth autodiff in PyTorch
is systematically equal to an associated gradient in the sense of Murat-Trombetti.

The author warmly thanks François Murat for his deep explanations on mathematical methods for the
differentiation of nonsmooth functions. He also thanks Hervé Le Dret for valuable help in manipulating
Borel sets.

2 Notation and examples

A fully-connected feed-forward neural network function f : Ra0 → Ra`+1 can be written as

f = f` ◦ S` ◦ f`−1 ◦ S`−1 ◦ · · · ◦ f1 ◦ S1 ◦ f0 (1)

where the parameter ` is identified with the number of hidden layers. The functions fi for i = 0, . . . , `
are affine functions with varying input and output dimensions (a0, a1, . . . , a`+1) ∈ N`+2 with ai > 0, for
i = 0 . . . , `. More precisely, fi(xi) = Wixi + bi ∈ Rai+1 for all xi ∈ Rai . The intermediate functions Si
for i = 1, . . . , ` are nonlinear activation functions (Sharma et al., 2017). We adopt the normalization that
0 ≤ S′i(x) ≤ 1 for almost all x ∈ R. The ReLU function Si = R

R(x) = max(0, x)

is an extremely popular activation function used in production codes (Bengio et al., 2017). The mathematical
issues discussed in this work come from the fact that the ReLU function is not differentiable at x = 0.
The point-wise non differentiability is shared with other basic functions in Neural Networks. For example
maxpooling used in convolutional neural networks (Bengio et al., 2017) is based on the maximum function

(a, b) 7→ max(a, b)

which is also not uniquely differentiable for a = b. In practice maxpooling is activated on blocks or windows
of numbers on tensors of arbitrary dimensions. With adapted natural notations from Pintore & Després
(2024), the representation (1) holds for CNN as well by taking f` to be the identity and S` to be a softmax
function (Bengio et al., 2017).

A function f : Ra → Rb is Lipschitz-continuous if there exists L ≥ 0 such that ‖f(x) − f(x′)‖ ≤ L‖x −
x′‖ for all x, x′ ∈ Ra. Therefore all these the activation functions Si, and by extension maxpooling functions
and all similar functions, are Lipschitz-continuous by assumption.

Since linear functions fi are clearly Lipschitz-continuous and the activation functions described above are
also Lipschitz-continuous, then the feed-forward function (1) is Lipschitz-continuous by composition, that is
f ∈ Lip(Ra0 : Ra`+1). Any intermediate step is also Lipschitz-continuous, that is

fr ◦ Sr ◦ · · · ◦ f1 ◦ S1 ◦ f0 ∈ Lip(Ra0 : Rar+1) for 0 ≤ r ≤ `

as well as Sr ◦ · · · ◦ f1 ◦ S1 ◦ f0 ∈ Lip(Ra0 : Rar) for 0 ≤ r ≤ `. The Rademacher (1919) Theorem,
see also Morrey Jr (2009), states that the functions f , fr and Sr for 0 ≤ r ≤ ` are differentiable almost
everywhere (that is up to sets of zero measure). So the gradient of f , written as a matrix, is bounded
∇f ∈ L∞(Ra0 :Ma`+1,a0(R)). Similarly one has

Ar = ∇fr ◦ Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar+1,a0(R))

and
Br = ∇Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar,a0(R)).

2

Published in Transactions on Machine Learning Research (04/2025)

If all functions are smooth enough, the matrix-valued functions Ar and Br are defined without ambiguity.
However these matrix-valued functions are ambiguous because the regularity is only Lipschitz-continuous in
our case. Then a natural mathematical question is to interpret the chain the rule

∇f(x) = A`(x)B`(x)A`−1(x)B`−1(x) . . . A1(x)B1(x)A0(x) (2)

which is a product of matrix-valued functions which are ambiguously defined. For feed-forward functions,
our notations imply that Ar(x) = ∇xr (Wrxr+br) = Wr is a constant matrix so it is trivially non ambiguous.
The difficulty is then concentrated in the matrices Br(x).
Remark 1 (On notations). It must be noted that nonsmooth automatic differentiation with respect to the
weights and biases leads to the same difficulties. For example the function x 7→ f(x) in (1) would be noted
x 7→ fθ(x) where the variable θ denotes all the parameters of Neural Network (typically all parameters Wi

and bi of the linear functions). The differentiability must be taken with respect to θ.

Fundamental is the minimization of functions used for the identification of the parameters. Consider that
one knows a finite dataset D ⊂ Ra0 × Ra`+1 made with pairs of input-output variables. Then supervised
learning can be formulated as the minimization problem

θ = argminθJ(θ) where J(θ) =
∑

(x,y)∈D

|fθ(x)− y|2 . (3)

With our hypotheses the function θ 7→ J(θ) is Lipschitz continuous, however it is known to be highly non
convex. The tools developed in this work can be used to describe the differentiability properties of ∇θJ , see
Section 5.2.

For the sake of coherence of the notations of this work, we restrict the notations to differentiability with
respect to the input variable x, and let the reader do the easy generalization to differentiability with respect
to the parameter θ.

To illustrate the issue and the apparent paradox, we consider two examples.

2.1 First example

The first example is degenerate in a sense. We take f0(x) = w0x where the weight is w0 ∈ R and S1(x) =
R(x). Then f(x) = R(w0x) and (2) becomes

f ′(x) = R′(w0x)w0, (4)

where R′(y) = 0 for y < 0, R′(y) = 1 for y > 0, but R′(0) is not defined. A problem shows up if w0 = 0
because the function x 7→ R′(w0x) is not defined in this case. Of course, one can argue that the multiplication
by w0 = 0 is enough to obtain the correct solution f ′ = 0. However this operation is not correct on solid
mathematical grounds because the function x 7→ R′(w0x) is not mathematically defined for w0 = 0.

2.2 Second example

The second example is more problematic. It comes from Murat & Trombetti (2003) but is rewritten here
with Neural Networks notation. Consider two functions f0 and S1. The function f0 : R→ R2 is linear

f0(x) = (x, x) = W0x with W0 = (1, 1)

while the second function S1 is a maxpooling function over two values

S1(y) = max(y1, y2), where y = (y1, y2) ∈ R2. (5)

Then f = S1 ◦ f0 is the identity f(x) = x for all x ∈ R, so that f ′ ≡ 1 is of course bounded. The gradient of
f0 is ∇f0 = W0. The gradient of S1 is defined almost everywhere. There are three cases

if y1 > y2 ∇S1(y) =
(

1
0

)
,

if y1 < y2 ∇S1(y) =
(

0
1

)
,

if y1 = y2 ∇S1(y) is not defined.

(6)

3

Published in Transactions on Machine Learning Research (04/2025)

Now since f(x) = x, the chain rule formula (2) writes

1 = ∇S1(f0(x))W0. (7)

But f0(x) = (x, x) so only the third case matters in (6) therefore ∇S1(f0(x)) is nowhere defined. Since
W0 6= 0, one can not argue as in the first example that the product with W0 is enough to recover the correct
solution. One obtains a paradox since the left hand side equal to 1 is perfectly known while the right hand
side is not even a correctly defined function.

2.3 General case

In general, the chain rule formula (2) does not make sense because the matrix-valued functions in the right
hand side are not defined in a non ambiguous manner. In our opinion, it is related to some seemingly erratic
behavior of nonsmooth autodiff related to the Boustany (2024) example detailed in Section 6.3.

3 The Murat-Trombetti Theorem

The Murat & Trombetti (2003) Theorem offers a natural solution to the apparent paradox explained in
the previous examples. It is written in the sequel for the context of Neural Networks. We slightly adapt
the functional setting and notations from Murat & Trombetti (2003) and use two different notations for the
gradient ∇f and for an associated gradient ∇̃f . The examples will show that associated gradients correspond
to gradients calculated with autodiff.

We will need the notion of Lipschitz and piecewise-C1 functions Ra → Rb which is defined as follows.
Consider a finite decomposition of Ra in Borel sets or Borel pieces Pα

Ra =
⋃
α

Pα, Pα ∩ P β = ∅ for α 6= β

for finite number of values of α, that is 1 ≤ α ≤ αmax <∞.

For simple functions, the pieces Pα are usually piecewise affine with Lipschitz regularity. It means that they
correspond to polygons, polyhedrons, lines, half lines, points and all finite unions and intersections of such
objects in any dimension. This intuitive condition is evident in our examples so we do not detail it.
Definition 1. We say that a Lipschitz-continuous function f : Ra → Rb is piecewise-C1 if there exists Borel
pieces Pα and functions fα ∈ Lip(Ra : Rb) ∩ C1(Ra : Rb) for 1 ≤ α ≤ αmax with the representation

f(x) =
∑
α

1Pα(x)fα(x) ∀x ∈ Ra. (8)

Here the notation 1ω denotes the indicatrix function of a set ω, that is 1ω(x) = 1 for x ∈ ω and 1ω(x) = 0
for x 6∈ ω. By definition fα(x) = f(x) for all x ∈ Pα and ∇fα ∈ L∞(Ra :Mb,a(R)) ∩ C0(Ra :Mb,a(R)).

The main idea in Murat & Trombetti (2003) is the following.
Definition 2. We say that the gradient associated to the representation (8) is

∇̃f(x) =
∑
α

1Pα(x)∇fα(x) ∈Mb,a(R) ∀x ∈ Ra. (9)

In brief we refer to it as an associated gradient.

The associated gradient is a real b × a matrix defined everywhere, that is for all x ∈ Ra. It is not unique
since it depends on the representation (8) which is not unique. Corollary 1 will show that it is equal to the
gradient almost everywhere.
Theorem 1 (Murat-Trombetti). Consider two functions. The first one u ∈ Lip(Ra : Rb) is Lipschitz-
continuous. The second one v ∈ Lip(Rb : Rc) is Lipschitz-continuous and piecewise-C1 with a representation
(8) and with an associated gradient (9). Then the chain rule identity holds in L∞(Ra :Mc,a(R))

∇(v ◦ u) = ∇̃v ◦ u ∇u

4

Published in Transactions on Machine Learning Research (04/2025)

where ∇̃v ◦ u denotes the function such that ∇̃v ◦ u(x) = ∇̃v(u(x)) for all x ∈ Ra.

Hint of the proof. The key part of the proof is the third step in (Murat & Trombetti, 2003, page 590) that
we reproduce mutatis mutandi within the convenient functional setting. The two first steps in Murat &
Trombetti (2003) are evident for u and v Lipschitz. The fourth and fifth steps concern additional properties.

• Since v is piecewise-C1, it admits a piecewise smooth approximations denote as vα ∈ C1(Rb) for all α.
Since ∇vα ◦ u ∈ C0(Ra : Rc) is a continuous function, the chain rule is applied without difficulty

∇(vα ◦ u) = ∇vα ◦ u ∇u. (10)

This identity holds almost everywhere (a.e.) with respect to x ∈ Rb. Let Uα be the set

Uα = {x ∈ Ra u(x) ∈ Pα}. (11)

Since Uα is the pre-image of the Borel set Pα by the continuous function u, that is Uα = u−1(Pα), then Uα
is also a Borel set so it is a measurable set.

• One notes that
v(u(x)) = vα(u(x)) a.e. x ∈ Uα. (12)

To use this identity one notes w = v◦u−vα◦u. Then one uses an intuitive but non trivial important property
from Stampacchia (1963); Kinderlehrer & Stampacchia (2000) (a self contained proof is in the appendix). It
writes

∇w(x) = 0 a.e. x ∈ {x ∈ Ra : w(x) = 0}. (13)

Since Uα ⊂ {x ∈ Ra : w(x) = 0}, it yields using (10)

∇(v ◦ u)(x) = ∇vα ◦ u(x) ∇u(x) a.e. x ∈ Uα. (14)

One also has
1Uα(x) = 1Pα(u(x)) a.e. x ∈ Ra. (15)

• Consider the difference of the two terms in the claim A(x) = ∇(v ◦ u)(x)− ∇̃v ◦ u ∇u. It writes also

A(x) = ∇(v ◦ u)− (
∑
α 1Pα(u(x))∇vα(u(x)))∇u(x)

= (
∑
α 1Pα(u(x)))∇(v ◦ u)(x)− (

∑
α 1Pα(u(x))∇vα(u(x))∇u(x))

=
∑
α 1Pα(u(x)) (∇(v ◦ u)(x)−∇vα(u(x))∇u(x))

=
∑
α 1Uα(x) (∇(v ◦ u)(x)−∇vα(u(x))∇u(x)) (use (15))

=
∑
α 1Uα(x) (0) (use (14))

where all manipulations holds a.e. with respect to x. Therefore A(x) = 0 a.e. which is the claim.

Corollary 1. The associated gradient of Definition 2 is equal to the gradient ∇f almost everywhere with
respect to x. That is ∇̃f = ∇f in the space L∞(Ra :Ma,a(R)).

Proof. Write Theorem 1 with v = f and u(x) = x, so that ∇u = I is the identity matrix.

We now consider the composition of Lipschitz-continuous and piecewise-C1 functions, as many as desired.
With respect to the literature on nonsmooth differentiation discussed in Section 5, it seems that the next
result is the first of its kind since it has no equivalent neither in Clarke (1990) nor even in Murat & Trombetti
(2003).
Theorem 2. Consider a Neural Network function f defined by the composition formula (1) where all func-
tions fr and Sr are Lipschitz for 1 ≤ r ≤ `. Assume moreover that all fr and Sr are piecewise-C1 so that
they admit associated gradients (9)

Ãr = ∇̃fr ◦ Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar+1,a0(R))

5

Published in Transactions on Machine Learning Research (04/2025)

and
B̃r = ∇̃Sr ◦ · · · ◦ S1 ◦ f0 ∈ L∞(Ra0 :Mar,a0(R)).

Then the chain rule can be written as a product of associated gradients

∇f = Ã`(x)B̃`(x)Ã`−1(x)B̃`−1(x) . . . Ã1(x)B̃1(x)Ã0(x) a.e. x ∈ Ra (16)

where the right hand side is defined for all x ∈ Ra.

Proof. The proof is based on iterations of Theorem 1.
• The first step is based on f = f` ◦ (S` ◦ f`−1 ◦ . . . f0). It yields

∇f = ∇̃f` ◦ S` ◦ f`−1 ◦ f0 ∇S` ◦ f`−1 ◦ · · · ◦ f0.

The gradient ∇f is expressed as the product of one associated gradient and one gradient.
• The second step is based on S` ◦ f`−1 ◦ . . . f0 = S` ◦ (f`−1 ◦ . . . f0). One obtains

∇S` ◦ f`−1 ◦ · · · ◦ f0 = ∇̃S` ◦ f`−1 ◦ S1 ◦ f0 ∇f`−1 ◦ . . . S1 ◦ f0

One substitutes this expression in the expression for ∇f which is now expressed as the product of two
associated gradients and one gradient.
• Then iterations yields the result. The right hand side of the claim is defined for all x by definition of the
associated gradients.

If the functions fr are linear one can simplify using Ãr(x) = Wr which is a constant matrix. One obtains the
representation ∇f = W`B̃`(x)W`−1B̃`−1(x) . . .W1B̃1(x)W0 a.e. x ∈ Ra where the right hand side is defined
for all x ∈ Ra.

4 The algebra of Lipschitz-continuous and piecewise-C1 functions

We show that the set of functions which are Lipschitz-continuous and piecewise-C1 functions is an algebra for
the operation of composition, provided of course that the dimensions of the functions match. This property
is the consequence of the next Lemma.
Lemma 1. Consider two functions u ∈ Lip(Ra : Rb) and v ∈ Lip(Rb : Rc). Assume u is piecewise-C1 with
a representation u(x) =

∑
α 1Pα(x)uα(x) for all x ∈ Ra. Assume v is piecewise-C1 with a representation

v(x) =
∑
β 1Qα(x)vα(x) for all x ∈ Rb. Then f = u ◦ v ∈ Lip(Ra : Rc) is piecewise-C1 with a representation

f(x) =
∑
α,β

1Rα,β (x)fα,β(x) for all x ∈ Ra, (17)

where Rα,β = {x ∈ Pα, u(x) ∈ Qβ} and fα,β = vβ ◦ uα for all α and β.

Moreover the gradient ∇̃f associated to the representation (17) satisfies

∇̃f(x) = ∇̃v ◦ u(x)∇̃u(x) for all x ∈ Ra. (18)

Proof. One has Rα,β = Pα ∩u−1(Qβ). Since u is continuous, then Rα,β is the intersection of two Borel sets,
so it is also a a Borel set.

A proof that Rα,β ∩ Rα′,β′ = ∅ for (α, β) 6= (α′, β′) is by contrapositive. Assume Rα,β ∩ Rα′,β′ 6= ∅. Then
there exists x ∈ Ra such that x ∈ Rα,β and x ∈ Rα′,β′ . Therefore x ∈ Pα ∩Pα′ so α = α′. Denote y = u(x).
One has y ∈ Qβ ∩Qβ′ so β = β′. So Rα,β ∩Rα′,β′ 6= ∅ ⇒ (α, β) = (α′, β′) which is the contrapositive.

Therefore the sets Rα,β are a piecewise decomposition of Ra.

Consider the function g(x) = f(x) −
∑
α,β 1Rα,β (x)vβ ◦ uα(x) and let us show it vanishes. Take x ∈ Rα,β ,

then g(x) = f(x) − vβ ◦ uα(x). Since x ∈ Pα, then uα(x) = u(x). Moreover y = uα(x) = u(x) ∈ Qβ , so

6

Published in Transactions on Machine Learning Research (04/2025)

vβ(y) = v(y). It yields that g(x) = f(x)− v ◦ u(x). Since it holds for all α and β, then g is the null function
which is the first part of the claim.

The final part is shown as follows. Consider the difference B(x) = ∇̃f(x)−∇̃v(x)∇̃u(x) where the associated
gradients are defined from their corresponding representation. One has

B(x) =
∑
α,β

1Rα,β (x)∇fα,β(x)−
∑
β

1Qβ (u(x))∇vβ(u((x))
∑
α

1Pα(x)∇uα(x).

For x ∈ Rα,β then
B(x) = ∇fα,β(x)−∇vβ(u((x))∇uα(x)

= ∇(vβ ◦ uα)(x)−∇vβ(u((x))∇uα(x)
= ∇vβ ◦ uα(x)∇uα(x)−∇vβ ◦ u((x)∇uα(x).

But Rα,β ⊂ Pα so uα(x) = u(x). Therefore B(x) = 0 for x ∈ Rα,β . Since it is true for all α and β, one
obtains the second part (18) of the claim.

The next Lemma shows that the previous algebra is associative. We need some notations to state the result.

We consider three functions u ∈ Lip(Ra : Rb), v ∈ Lip(Rb : Rc) and v ∈ Lip(Rc : Rd), all of them being
piecewise-C1

u(x) =
∑
α 1Pα(x)uα(x) x ∈ Ra,

v(x) =
∑
β 1Qβ (x)vβ(x) x ∈ Rb,

w(x) =
∑
γ 1Rγ (x)wγ(x) x ∈ Rc,

with their corresponding associated gradient. For these functions and for the other ones below, we only write
the representation of the functions since the representation of their gradient is immediate.

The function w ◦ v ◦ u admits two formally different representations, the first one assembled in the order
w◦ (v ◦u), the second one assembled in the order (w◦v)◦u. It might yield two different associated gradients.
Actually this not the case and both representations and their associated gradients are the same as shown in
Lemma 2 for which we need some preliminary notations.

Let us firstly detail the representation (17) of f = v ◦ u. We write it

f(x) =
∑
α,β

1Sα,β (x)fα,β(x) for all x ∈ Ra

where Sα,β = {x ∈ Pα, u(x) ∈ Qβ} and fα,β = vβ ◦ uα. Invoking one more time Lemma 1, the function
g = w ◦ (v ◦u) = w ◦ f is Lipschitz-continuous and piecewise-C1 with a representation deduced from the one
of w and the one of f . We write it

g(x) =
∑
α,β,γ

1S(α,β),γ (x)wγ ◦ fα,β(x) (19)

where S(α,β),γ = {x ∈ Sα,β , fα,β(x) ∈ Rγ}.

The second possibility is to start from p = w ◦ v which admits the representation (17) with an associated
gradient (18). We write it

p(x) =
∑
β,γ

1Tβ,γ (x)pβ,γ(x) for all x ∈ Rb

where T β,γ = {x ∈ Qβ , v(x) ∈ Rγ} and pβ,γ = wγ ◦ vβ . Finally q = (w ◦ v) ◦u = p ◦u has the representation

q(x) =
∑
α,β,γ

1Tα,(β,γ)(x)pβ,γ ◦ uα(x) (20)

where Tα,(β,γ) = {x ∈ Pα, u(x) ∈ Tα,β}.

7

Published in Transactions on Machine Learning Research (04/2025)

Lemma 2. The representation of g (19) and the representation of q (20) are identical. More precisely :

the Borel sets are equal S(α,β),γ = Tα,(β,γ) for all α, β, γ;

the composed functions are equal wγ ◦ fα,β = pβ,γ ◦ uα for all α, β, γ;

and the functions are equal g(x) = q(x) for all x ∈ Ra.

The associated gradients of g and q are identical as well.

Proof. Expansion of all terms shows that S(α,β),γ = Tα,(β,γ) = {x ∈ Pα, u(x) ∈ Qβ , v ◦ u(x) ∈ Rγ} and that
wγ ◦ fα,β = pβ,γ ◦uα = wγ ◦ vβ ◦uα, so the representations are the same. The associated gradients are equal
as a consequence of (18).

The previous results are used to propose another version of Theorem 2.
Proposition 1. Make the assumptions of Theorem 2. Then two properties hold:

function f itself is continuous-Lpischitz and piecewise-C1;

the left hand side of (16) can be written

∇̃f = Ã`(x)B̃`(x)Ã`−1(x)B̃`−1(x) . . . Ã1(x)B̃1(x)Ã0(x) for all x ∈ Ra (21)

where a representation formula for the associated gradient ∇̃f is determined from the multiplication in any
order of the associated gradients in the right hand side.

Proof. Use Lemma 1 and Lemma 2.

Note that the addition of two Lipschitz-continuous and piecewise-C1 functions is also a Lipschitz-continuous
and piecewise-C1 function. This evident property will be used in the numerical Section.
Lemma 3. Consider two functions u, v ∈ Lip(Ra : Rb) where u is piecewise-C1 with a representation
u(x) =

∑
α 1Pα(x)uα(x) for all x ∈ Ra and v is piecewise-C1 with a representation v(x) =

∑
β 1Qα(x)vα(x)

for all x ∈ Rb. Then f = u+ v ∈ Lip(Ra : Rb) is piecewise-C1 with a representation

f(x) =
∑
α,β

1Rα,β (x)fα,β(x) for all x ∈ Ra,

where Rα,β = Pα ∩ Qβ and fα,β = uα + vβ for all α and β, and the associated gradients are additive
∇̃f = ∇̃u+ ∇̃v.

Proof. Rα,β is the intersection of two Borel sets, so it is also a a Borel set. The rest of the proof is evident.

The multiplication of a Lipschitz-continuous and piecewise-C1 function f by a real number λ ∈ R gives a
function λf which evidently is also Lipschitz-continuous and piecewise-C1.

5 Additional theoretical considerations

This Section contains some reflexions about the positioning of the previous results with respect to the
literature on non smooth differentiation. The discussion below does not pretend to be exhaustive.

5.1 Comparison with other nonsmooth differentiation frameworks

We base the discussion on two corpus of references, which are on the one hand the works issued from Clarke’s
generalized gradients (Clarke, 1975; 1990) and on the other hand the recent contribution Li et al. (2020)
and references therein which compare different notion of gradients for the characterization of stationary

8

Published in Transactions on Machine Learning Research (04/2025)

points in nonsmooth optimization. We restrict the discussion to functions which are Lipschitz-continuous
and piecewise-C1.

Non smooth optimization has a rich mathematical history concerning the development of generalized gradi-
ents beyond the classical derivative. The first notion is sub-differential for convex functions (Clarke, 1990),
where typically the sub-gradient at x = 0 of the absolute value function x 7→ f(x) = |x| is the closed interval
∂f(0) = [−1, 1] ⊂ R. This interval contains all slopes α ∈ R such that αx ≤ f(x) for all x. The definition
of sub-differential is restricted to convex functions.

A more general notion is the generalized gradient in the sense of Clarke (Clarke, 1990), also referred to as
Clarke’s subdifferential. It can be shown that the Clarke’s generalized gradient is the convexification of the
local directions of differentiability (called the Bouligand differential), that is (Li et al., 2020)

∂Cf(x) = conv (∂Bf(x)) .

This definition applies to concave functions such as x 7→ g(x) = −|x|. It has the important interest that
∂Cg(0) = [−1, 1] so 0 ∈ ∂Cg(0) which is a characterization of the fact that x = 0 is an stationary point (i.e.
extremal point) of g.

However Clarke’s generalized gradients are not the panacea to treat all situations. A paradoxical situation
taken from Li et al. (2020) is for the function x 7→ h(x) = x + x2 sin(1/x). The derivative is 1 for x < 0,
and is equal to 1 + 2x sin(1/x) − cos(1/x) for x > 0. The classical derivative at x = 0 is clearly h′(0) =
limy→x, y 6=x

h(y)−h(x)
y = 1 while it can be checked that the Clarke’s gradient is ∂Cf(0) = [0, 2] which is of

course not satisfactory. Also Clarke’s gradient does not satisfy the sum rule but only an embedding rule

∂C(f1 + f2) ⊂ ∂Cf1 + ∂Cf2. (22)

The example in Li et al. (2020) is as follows. Take f1(x) = max(x, 0) (the ReLU function) and f2(x) =
min(x, 0). Then (f1 + f2)(x) = x so one can check that ∂C(f1 + f2)(0) = {1} while ∂Cf1(0) + ∂Cf2(0) =
[01] + [0, 1] = [0, 2]. So the embedding (22) is loose even in elementary situations. Clarke’s generalized
gradients of product of functions is also a loose embedding (Clarke, 1990, Proposition 2.3.13).

Another point is that Clarke’s generalized gradients can be used for the composition of two functions but
with restrictions. Typically at least one over the two functions must be either smooth (that is differentiable
in the classical sense) or regular which boils down to be essentially either concave or convex (Clarke, 1990,
Theorem 2.3.10 Chain II). Up to the knowledge of the author of this contribution, Clarke’s generalized
gradient does not manage to describe the gradient of the composition of more than two nonsmooth general
functions. The partial-differential-equation based theory Ambrosio & Dal Maso (1990) is also restricted to
the composition of two functions.

On the contrary the associated gradient in the sense of Murat-Trombetti is a function defined everywhere
which is equal the gradient in the sense of distribution. This equality holds up to a set of measure zero since it
holds in the sense of distribution. With respect to the examples just discussed above in the Section, striking
properties are that the Murat-Trombetti itself, formula (16) in Theorem 2 and formula (21) in Proposition
1 are all equalities. The set of Lipschitz-continuous and piecewise-C1 functions introduced in this work is
an algebra. Of course this theoretical gain has its own price, typically an associated gradient is not unique.
However the applicative examples in next Section will show that this non uniqueness can also be seen as an
excellent property, because it corresponds to what is observed in non smooth automatic differentiation in
standard softwares (such as Pytortch, Tensorflow, Jax, . . .).

5.2 Differentiation with respect to the weights and application to minimization

All previous considerations about differentiation with respect to the input variable x have immediate ge-
neralization for differentiation with respect to the parameters θ of the Neural Network, see Remark 1. The
main difference concerns the sets of measure zero evoked for example either in the proof of Theorem 1 or in
in Formula (16). Indeed these sets of measure zero are now to be considered as embedded in the parameter
space. Since it is theoretically difficult to determine the influence of these sets in general, let us consider
instead a practical scenario.

9

Published in Transactions on Machine Learning Research (04/2025)

This practical scenario is a basic gradient descent method for the Loss function (3)

θ′(t) = −∇̃J(θ(t)) (23)

where we assume that the gradient of the Loss is a certain type of modified gradient (note that softwares
necessarily provide a numerical gradient for all θ, if not the code would not run in all situations). We write
the modified gradient as

∇̃J(θ) = 2
∑

(x,y)∈D

〈
fθ(x)− y, ∇̃θfθ(x)

〉
.

Clearly the history of the gradient descent (23) depends on the initial guess θ(0) = θ0 and on the choice of
the modified gradient because a modified gradient is not unique.

Being able to reach any conclusion on the influence of modified gradients on training sessions is a task of
formidable importance for the theoretical study of practical training sessions.

6 Examples

We illustrate the interest of the Murat-Trombetti Theorem on simple examples where the number of layers
is limited for the sake of simplicity and the differentiation is taken with respect to a given variable which
can represent either the input x or the parameter θ.

6.1 Back to the first example

The issue is the value of the derivative of the ReLU function at the origin.

One can simply use three Borel pieces P 1 = (−∞, 0), P 2 = (0,∞) and P 3 = {0} to construct the associated
derivative R̃′. The three smooth functions are f1, f2 and f3. By definition f1(x) = R(x) = 0 for x ∈ P 1,
then (f1)′(x) = 0 for x ∈ P 1. Similarly f2(x) = R(x) = x for x ∈ P 2, then (f2)′(x) = 1 for x ∈ P 2. The
only constraint on f3 is f3(0) = 0, so (f3)′(0) can be any real number. Let us note (f3)′(0) = z ∈ R.

So the associated derivative is

R̃′(x) = 0 for x < 0, R̃′(x) = 1 for x > 0, R̃′(x) = z for x = 0.

Clearly the associated derivative depends on the choice of z.

Most of the studies about the influence of the derivative of the ReLU at the origin are restricted to z = 0
that is to R̃′(0) = 0, see Boustany (2024); Berner et al. (2019); Bertoin et al. (2021). The previous detailed
analysis shows that z 6= 0 is also possible.

Whatever the value of z, then (4) becomes f̃ ′ = R̃′w0 which is non ambiguous for w0 = 0 since R̃′ is correctly
defined. Note that the derivative of f is written as an associated gradient (associated derivative in this case)
thanks to Lemma 1. However, once again, the use of an associated gradient is not mandatory in this case
since there is no real difficulty for w0 = 0.

6.2 Back to the second example

To construct an associated gradient for the maxpooling function S1 (5), one can distinguish three Borel
pieces which are P 1 = {(y1, y2) ∈ R2 : y1 < y2}, P 2 = {(y1, y2) ∈ R2 : y1 > y2} and P 3 = {(y1, y2) ∈
R2 : y1 = y2}. Then the smooth functions are f1, f2 and f3. Clearly f1(y1, y2) = y1 in P 1, so that
∇f1(y1, y2) = (1, 0) in P 1. For similar reasons, ∇f2(y1, y2) = (0, 1) in P 2.

The critical situation concerns P 3. The construction principle (8) yields that y1 = y2 = f3(y1, y2) in P 3.
It can be written y = f3(y, y) for all y ∈ R. The function f3 being continuously differentiable, one has
necessarily 1 = ∂y1f

3(y, y) + ∂y2f
3(y, y) for all y, that is

1 = ∂y1f
3(y1, y2) + ∂y2f

3(y1, y2) on P 3. (24)

10

Published in Transactions on Machine Learning Research (04/2025)

Let us now examine what is the meaning of the modified chain rule formula which replaces the initial one
(7). This modified chain rule formula can be taken from Theorem 2

1 = ∇̃S1(f0(x))W0 for all x ∈ R. (25)

The key observations are that W0 = (1, 1) and that ∇̃S1(f0(x)) = ∇f3(f0(x)) since f0(x) ∈ P 3. Then (25)
reduces to the identity (24) which holds by definition. So the paradox does not show up again.

Remark 2. A simple geometrical interpretation emerges from the fact that (25) reduces to (24). Actually
the gradient of f3 can take any value in the direction normal to the line P 3 while it takes the correct value
in the direction tangent to P 3.

6.3 The Boustany example

This example is proposed in Boustany (2024) to exemplify the issues at stake with nonsmooth autodiff with
maxpoooling functions. The example is directly implemented in PyTorch. One defines a first maximum
function max1 for a vector x ∈ Ra of arbitrary size a ≥ 1, together with a second maximum function max2
which is a PyTorch function. The scripts taken from Boustany (2024) are in Table 1. Then for given x ∈ Ra,
one defines the function t 7→ f(t) = max1(tx)−max2(tx).

def max1(x):
res = x[0]
for i in range(1, a):
if x[i] > res: res = x[i]
return res

def max2(x):
return torch.max(x)

Table 1: Script of the functions max1 and max2

By construction f is the null function.

However it is reported (Boustany, 2024, Table 1) that the derivative calculated with autodiff in PyTorch is
not zero. More precisely take x = (1, 2, 3, 4), then f ′(t) is (numerically) zero everywhere except at t = 0
where the derivative is ≈ −1.5. Our own tests reported in Table 2 confirm this observation.

t -1 -0.5 -0.01 0 0.01 0.5 1
derivative of f 0 0 0 -1.5 0 0 0

Table 2: Values of the derivative of f calculated with autodiff within PyTorch

The explanation in the context of the Murat-Trombetti representation formula (9) is as follows. The function
max1 calculated with autodiff is given in Table 1. It yields that the associated gradient of max1 is calculated
accordingly to the decomposition of the space in Borel pieces

P 1 = {x ∈ R4| x1 ≥ max(x2, x3, x4)}, f1(x) = x1,
P 2 = {x ∈ R4| x1 < x2 and x2 ≥ max(x3, x4)}, f2(x) = x2,
P 3 = {x ∈ R4| max(x1, x2) < x3 and x3 ≥ x4}, f3(x) = x3,
P 4 = {x ∈ R4| max(x1, x2, x3) < x4}, f4(x) = x4

(26)

where x = (x1, x2, x3, x4). Then the associated gradient is

∇̃max1(x) = (1, 0, 0, 0) in P 1, (0, 1, 0, 0) in P 2, (0, 0, 1, 0) in P 3, (0, 0, 0, 1) in P 4. (27)

11

Published in Transactions on Machine Learning Research (04/2025)

The representation that we propose for max2 is different. It is based on different Borel pieces

Qi = {x ∈ R4| xi > max(xi)j 6=i}, f i(x) = xi, i = 1, 2, 3, 4,
Q5 = {x ∈ R4| x1 = x2 > max(x3, x4)}, f5(x) = (x1 + x2)/2,
Q6 = {x ∈ R4| x1 = x3 > max(x2, x4)}, f6(x) = (x1 + x3)/2,
Q7 = {x ∈ R4| x1 = x4 > max(x2, x3)}, f7(x) = (x1 + x4)/2,
Q8 = {x ∈ R4| x2 = x3 > max(x1, x4)}, f8(x) = (x2 + x3)/2,
Q9 = {x ∈ R4| x2 = x4 > max(x1, x3)}, f9(x) = (x2 + x4)/2,
Q10 = {x ∈ R4| x3 = x4 > max(x1, x2)}, f10(x) = (x3 + x4)/2,
Q11 = {x ∈ R4| x1 = x2 = x3 > x4}, f11(x) = (x1 + x2 + x3)/3,
Q12 = {x ∈ R4| x1 = x2 = x4 > x3}, f12(x) = (x1 + x2 + x4)/3,
Q13 = {x ∈ R4| x1 = x3 = x4 > x2}, f13(x) = (x1 + x3 + x4)/3,
Q14 = {x ∈ R4| x2 = x3 = x4 > x1}, f14(x) = (x2 + x3 + x4)/3,
Q15 = {x ∈ R4| x1 = x2 = x3 = x4}, f15(x) = (x1 + x2 + x3 + x4)/4.

(28)

It yields
∇̃max2(x1, x2, x3, x4) = 1

N(x1, x2, x3, x4) (y1, y2, y3, y4) (29)

where

• N(x1, x2, x3, x4) is the number of xi (1 ≤ i ≤ 4) equal to the maximum value,

• yi = 1 if xi = max(x1, x2, x3, x4), and xi = 0 if ai < max(x1, x2, x3, x4).

Remark 3. The examination of (28) shows that ∇̃max2 is symmetrized. One has for example

∇̃max2(0) = 1
4(1, 1, 1, 1), 0 = (0, 0, 0, 0). (30)

This value corresponds to the piece Q15 which is a line in a space of dimension 4.

More precisely, the associated gradient ∇̃max2 is invariant under the action of permutations among the values
equal to the maximum. This is confirmed by numerical evidence based on elementary tests in PyTorch.

Now let us calculate the associated derivative of f at t = 0 with the rules of automatic differentiation
f̃ ′(0) = d

dtmax1(t, 2t, 3t, 4t)|t=0 − d
dtmax2(t, 2t, 3t, 4t)|t=0 that is f̃ ′(0) = ∇̃max1(0) · (1, 2, 3, 4)− ∇̃max2(0) ·

(1, 2, 3, 4), where the notation of the associated derivative is justified using Lemmas 1 and 3. One obtains
f̃ ′(0) = (1, 0, 0, 0) · (1, 2, 3, 4) − 1

4 (1, 1, 1, 1) · (1, 2, 3, 4) = 1 − 10/4 = −1.5 which is the value reported in
Boustany (2024) and in Table 2.

6.4 A simplified Boustany example

Finally we prepare another simple example in the spirit of Boustany (2024), but where the maximum is
calculated with the MaxPool1d function of PyTorch. Maxpooling is an important and popular operation in
modern neural networks.

We assemble the function f(t) = maxpool1d(t, 4t)−maxpool1d(4t, t). Some values implemented in PyTorch
are given in Table 3. The explanation of the value of f̃ ′(0) is as follows. Actually all numerical test show that
the PyTorch function maxpool1d = torch.nn.MaxPool1d(2, stride = 1) with a window of 2 elements has the
same associated gradient as the function max1 presented in Table 1. Therefore ∇̃maxpool1d(0, 0) = (1, 0).
Then f̃ ′(0) = (1, 0) · (1, 4)− (4, 1)(1, 0) · (1, 4) = −3 which is the value in Table 3 observed in the numerical
tests.

7 Conclusion

The Murat-Trombetti Theorem provides a simple functional framework which allows to manipulate composi-
tion of Lipschitz-continuous and piecewise-C1 functions. It constructs an associated gradient which is defined

12

Published in Transactions on Machine Learning Research (04/2025)

t -1 -0.5 -0.01 0 0.01 0.5 1
derivative of f 0 0 0 -3 0 0 0

Table 3: Values of the derivative calculated with autodiff within PyTorch

for all values of the input variable. An associated gradient is not unique nevertheless. We have observed
that the gradient obtained from nonsmooth autodiff in PyTorch is systematically equal to an associated
gradient in the sense of Murat-Trombetti. This approach also provides a non ambiguous chain rule formula,
that was actually the key in the original paper Murat & Trombetti (2003). Then we defined the framework
of Lipschitz-continuous and piecewise-C1 functions which is an associative algebra for the composition of
functions. Connections with the method of breakpoints described in Daubechies et al. (2019) is a priori
possible. We mention some problems which could be the subject for future research. Some of them are
already evoked in Berner et al. (2019).

Evaluation of the Lipschitz constant of a function modeled with Neural Network: The numerical
evaluation and use of the Lipschitz constant of a given Neural Network function where the weights Wr and
the biaises br are given has the subject of recent research (Combettes & Pesquet, 2020; Virmaux & Scaman,
2018; Pintore & Després, 2024; Béthune, 2024). More solid foundations for these works can be obtained with
associated gradients.

More variables and training: The associated gradient has been introduced and studied in this work on
examples with limited number of layers and with limited number of variables. In practice a Neural Network
function is defined with respect to space variables (typically x in (1)) and to parameters (typically Wr and
br in (1)). Then it raises the mathematical question of the definition of an associated gradient with respect
to all variables. There is major practical interest in designing an associated gradient with respect to the
parameters Wr and br only. This has been evoked in Section 5.2. It can be used to describe a functional
setting for training sequences and to compare with the numerical tests in Boustany (2024).

SciML: SciML is a new discipline that seeks to use ML for solving PDE (partial differential equation)
models that show up in physics and engineering (Klawonn & al., 2024, EMS TAG), (Després et al., 2024, is
a recent event). An important example is PINNs (Physically Informed Neural Networks), we refer to Mishra
& Molinaro (2023) and references therein. It is reasonable to foresee that some integral formulations used
in SciML can be justified with Theorem 1.

Acknowledgments

This work received fundings by Agence Nationale de la Recherche, program France 2030, reference ANR-23-
PEIA-0004.

References
Luigi Ambrosio and Gianni Dal Maso. A general chain rule for distributional derivatives. Proceedings of the
American Mathematical Society, 108(3):691–702, 1990.

Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. MIT press, 2017.

Julius Berner, Dennis Elbrächter, Philipp Grohs, and Arnulf Jentzen. Towards a regularity theory for relu
networks–chain rule and global error estimates. In 2019 13th International conference on Sampling Theory
and Applications (SampTA), pp. 1–5. IEEE, 2019.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Numerical influence of relu’(0)
on backpropagation. Advances in Neural Information Processing Systems, 34:468–479, 2021.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Erratum: Numerical influence
of relu’(0) on backpropagation. Technical report, 2023. URL https://hal.science/hal-03265059/
file/Impact_of_ReLU_prime.pdf.

Louis Béthune. Deep learning with Lipschitz constraints. PhD thesis, Université de Toulouse, 2024.

13

https://hal.science/hal-03265059/file/Impact_of_ReLU_prime.pdf
https://hal.science/hal-03265059/file/Impact_of_ReLU_prime.pdf

Published in Transactions on Machine Learning Research (04/2025)

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation, stochastic
gradient methods and deep learning. Mathematical Programming, 188:19–51, 2021.

Ryan Boustany. On the numerical reliability of nonsmooth autodiff: a maxpool case study. Transactions on
Machine Learning Research, 2024. URL https://arxiv.org/abs/2401.02736.

Frank H. Clarke. Generalized gradients and applications. Transactions of the American Mathematical Society,
205:247–262, 1975.

Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

Patrick L Combettes and Jean-Christophe Pesquet. Lipschitz certificates for layered network structures
driven by averaged activation operators. SIAM J. on Math. of Data Science, 2(2):529–557, 2020.

Ingrid Daubechies, Ronald A. DeVore, Simon Foucart, Boris Hanin, and Guergana Petrova. Nonlinear
approximation and (deep) relu neural networks. Constructive Approximation, 55:127–172, 2019.

Bruno Després, Victorita Dolean, Emmanuel Franck, Stéphane Lanteri, Victor Michel-Dansac, and Laurent
Navoret. Sciml 2024, 2024. URL https://irma.math.unistra.fr/~micheldansac/SciML2024/index.
html.

Lawrence Craig Evans. Measure theory and fine properties of functions. Routledge, 2018.

David Kinderlehrer and Guido Stampacchia. An introduction to variational inequalities and their applica-
tions. SIAM, 2000.

Axel Klawonn and al. Topical Activity Group Scientific Machine Learning of the EMS, 2024. URL https:
//ems-tag-sciml.github.io.

Jialin Li, Anthony Man-Cho So, and Wing-Kin Ma. Understanding notions of stationarity in nonsmooth
optimization: A guided tour of various constructions of subdifferential for nonsmooth functions. IEEE
Signal Processing Magazine, 37:18–31, 2020.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed neural
networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1–43, 2023.

Charles Bradfield Morrey Jr. Multiple integrals in the calculus of variations. Springer, 2009.

François Murat and Cristina Trombetti. A chain rule formula for the composition of a vector-valued function
by a piecewise smooth function. Bollettino dell’Unione Matematica Italiana, 6(3):581–595, 2003.

Moreno Pintore and Bruno Després. Computable lipschitz bounds for deep neural networks. Technical
report, 2024. URL https://inria.hal.science/hal-04756410.

Hans Rademacher. Über partielle und totale differenzierbarkeit von funktionen mehrerer variabeln und über
die transformation der doppelintegrale. Mathematische Annalen, 79(4):340–359, 1919.

Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks. Towards
Data Sci, 6(12):310–316, 2017.

Guido Stampacchia. Equations elliptiques du second ordre à coefficients discontinus. Séminaire Jean Leray,
(3):1–77, 1963.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

14

https://arxiv.org/abs/2401.02736
https://irma.math.unistra.fr/~micheldansac/SciML2024/index.html
https://irma.math.unistra.fr/~micheldansac/SciML2024/index.html
https://ems-tag-sciml.github.io
https://ems-tag-sciml.github.io
https://inria.hal.science/hal-04756410

Published in Transactions on Machine Learning Research (04/2025)

A A self contained proof of the Stampacchia property

The Stampacchia property Stampacchia (1963); Kinderlehrer & Stampacchia (2000) states that a function
w ∈ Lip(Ra) is such that

∇w(x) = 0 a.e. x ∈ {x ∈ Ra : w(x) = 0}. (31)
A simple proof comes from a regularization technique. See also Evans (2018).
First regularization. Consider x 7→ |x|ε =

√
x2 + ε for ε > 0. The derivative is d

dx |x|ε = x√
x2+ε .

Thanks to the Rademacher (1919) Theorem, w admits a gradient ∇w ∈ L∞(Ra : Ra). Also |w| admits a
gradient ∇|w| ∈ L∞(Ra : Ra) as well because |w| is also Lipschitz. Take a vectorial smooth test function
with compact support ϕ ∈ C1

0 (Ra : Ra). The integration by part formula holds∫
∇|w|(x) · ϕ(x)dx = −

∫
|w|(x)∇ · ϕ(x)dx = − lim

ε→0+

∫
|w|ε(x)∇ · ϕ(x)dx.

There is no difficulty in passing to the limit because w is continuous. A reverse integration by parts shows
that
−
∫
|w|ε(x)∇ · ϕ(x)dx =

∫
∇|w|ε(x) · ϕ(x)dx =

∫ w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx

=
∫
w(x)>0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)<0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)=0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx.

In the right hand side, the last integral vanishes of course. In the first integral one has the boundedness∣∣∣∣ w(x)√
w(x)2+ε

∇w(x) · ϕ(x)
∣∣∣∣ ≤ |∇w(x) · ϕ(x)| where on the right hand side the function x 7→ |∇w(x) · ϕ(x)|

defines a function in L1(Ra). One also has pointwise convergence almost everywhere with respect to x
w(x)√
w(x)2+ε

∇w(x) · ϕ(x) → sign(w(x))∇w(x) · ϕ(x) a.e. x. Therefore the Lebesgue dominated convergence
Theorem yields

lim
ε→0+

∫
w(x)>0

w(x)√
w(x)2 + ε

∇w(x) · ϕ(x)dx =
∫
w(x)>0

∇w(x) · ϕ(x)dx.

Similarly limε→0+
∫
w(x)<0

w(x)√
w(x)2+ε

∇w(x) · ϕ(x)dx = −
∫
w(x)<0∇w(x) · ϕ(x)dx. It yields the formula∫

∇|w|(x) · ϕ(x)dx =
∫
w(x)>0

∇w(x) · ϕ(x)dx−
∫
w(x)<0

∇w(x) · ϕ(x)dx. (32)

Second regularization. Let us now redo the calculation but starting from a different regularization of the
absolute value. We take x 7→ |x|ε =

√
(x+

√
ε)2 + ε for ε > 0, with derivative d

dx |x|
ε = x+

√
ε√

(x+
√
ε)2+ε

.

One has
∫
∇|w|(x) · ϕ(x)dx = −

∫
|w|(x)∇ · ϕ(x)dx = − limε→0+

∫
|w|ε(x)∇ · ϕ(x)dx and

−
∫
|w|ε(x)∇ · ϕ(x)dx =

∫
∇|w|ε(x) · ϕ(x)dx =

∫ w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx

=
∫
w(x)>0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)<0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx

+
∫
w(x)=0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx

=
∫
w(x)>0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx+
∫
w(x)<0

w(x)+
√
ε√

(w(x)+
√
ε)2+ε

∇w(x) · ϕ(x)dx
+ 1√

2

∫
w(x)=0∇w(x) · ϕ(x)dx

The Lebesgue dominated convergence Theorem yields the same limit as before for the two first integrals.
However the third integral remains. One obtains∫
∇|w|(x) ·ϕ(x)dx =

∫
w(x)>0

∇w(x) ·ϕ(x)dx−
∫
w(x)<0

∇w(x) ·ϕ(x)dx+ 1√
2

∫
w(x)=0

∇w(x) ·ϕ(x)dx. (33)

Final part of the proof. Comparison of (32) and (33) yields
∫
w(x)=0∇w(x) · ϕ(x)dx = 0 for all ϕ ∈

C1
0 (Ra : Ra). This is equivalent to the Stampacchia property (31) because the test function ϕ is arbitrary.

15

	Introduction
	Notation and examples
	First example
	Second example
	General case

	The Murat-Trombetti Theorem
	The algebra of Lipschitz-continuous and piecewise-C1 functions
	Additional theoretical considerations
	Comparison with other nonsmooth differentiation frameworks
	Differentiation with respect to the weights and application to minimization

	Examples
	Back to the first example
	Back to the second example
	The Boustany example
	A simplified Boustany example

	Conclusion
	A self contained proof of the Stampacchia property

