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ABSTRACT

Flatness of the loss surface not only correlates positively with generalization, but
is also related to adversarial robustness, since perturbations of inputs relate non-
linearly to perturbations of weights. In this paper, we empirically analyze the
relation between adversarial examples and relative flatness with respect to the pa-
rameters of one layer. We observe a peculiar property of adversarial examples in
the context of relative flatness: during an iterative first-order white-box attack, the
flatness of the loss surface measured around the adversarial example first becomes
sharper until the label is flipped, but if we keep the attack running, it runs into a
flat uncanny valley where the label remains flipped. In extensive experiments, we
observe this phenomenon across various model architectures and datasets, even
for adversarially trained models. Our results also extend to large language models
(LLMs), but due to the discrete nature of the input space and comparatively weak
attacks, adversarial examples rarely reach truly flat regions. Most importantly,
this phenomenon shows that flatness alone cannot explain adversarial robustness
unless we can also guarantee the behavior of the function around the examples.
We therefore theoretically connect relative flatness to adversarial robustness by
bounding the third derivative of the loss surface, underlining the need for flatness
in combination with a low global Lipschitz constant for a robust model.

1 INTRODUCTION

Despite the remarkable performance of modern deep learning models, their vulnerability to ad-
versarial attacks, i.e., small crafted perturbations in the input that fool a model into changing its
prediction to an incorrect label (Szegedy et al., 2014; Carlini & Wagner, 2017a), undermine the trust
in the reliability of these models. Although there has been significant progress in developing meth-
ods to enhance adversarial robustness, the underlying mechanisms that dictate the susceptibility of
a model to such perturbations are still not fully understood. One promising approach is the study
of flatness of the loss surface. A lot of previous work demonstrated a positive correlation between
flatness of the loss surface and the generalization ability of a model (Hochreiter & Schmidhuber,
1994; Keskar et al., 2016; Jiang et al., 2019). Flat minima in the loss landscape are thought to be
indicative of better generalizing models, as they suggest that small changes in the parameters space
do not significantly affect the loss of a model. This concept has led to the hypothesis that flatness
is also related to adversarial robustness. While flatness measured with respect to inputs obviously
relates to adversarial robustness (Moosavi-Dezfooli et al., 2019), it is not clear how flatness with
respect to parameters connects to it (Wu et al., 2020; Kanai et al., 2023).

In this paper, we explore the relationship between flatness of the loss surface with respect to parame-
ters and adversarial examples. We empirically investigate this connection by analyzing the behavior
of the loss surface during iterative first-order white-box attacks. Our findings reveal an intriguing
phenomenon, of which we give an example in Fig. 1. The loss surface initially becomes sharper as
the attack progresses and the prediction is flipped. However, if the attack is continued, the adversar-
ial example often moves into a flat region of the loss surface, which we term uncanny valley. This
region is uncanny in the sense that the surface around adversarial examples is very flat while they
are still changing the prediction of the model.

This does not only indicate that the correlation between flatness and strong adversarial examples is
not intuitive, but also that a vicinity of such an adversarial sample will be filled with similar adver-
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sarial examples. We observe this uncanny valley phenomenon across various model architectures,
including large language models (LLMs), datasets, and also in adversarially trained models. Inter-
estingly, for more robust models, much stronger attacks are necessary to find these uncanny valleys.
For LLMs, we find that their discrete nature and the availability of only relatively weak attacks often
prevent adversarial examples from reaching truly flat regions.
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Figure 1: The Uncanny Valley. Dur-
ing a multi-step adversarial attack,
sharpness first increases; then de-
creases to almost zero (top), while the
loss steadily increases (bottom).

This observation suggests that flatness alone cannot fully
explain adversarial robustness; instead it is crucial to lo-
cally control the smoothness of the loss Hessian around the
adversarial examples. Based on this insight, we derive a
connection between relative flatness (Petzka et al., 2021)
and adversarial robustness by bounding the third derivative
of the loss surface. This bound provides a theoretical guar-
antee on adversarial robustness, linking the flatness of the
loss landscape to the robustness of a model to adversarial
attacks. Intuitively, the bound states that adversarial ro-
bustness increases as the network becomes flatter when the
model function is simultaneously sufficiently smooth in the
Lipschitz sense, i.e., small Lipschitz constant.

This work highlights the complexity of adversarial robust-
ness and emphasizes the need for a deeper understanding
of the geometry of the loss landscape. By bridging the gap
between flatness and adversarial robustness, we aim to pave
the way for more robust and reliable deep learning models.
Additionally our work elucidates the counter-intuitive be-
haviour of flatness measures based on the trace of the Hes-
sian, when evaluated on adversarial examples.

In summary, our three main contributions are:

1. We introduce and empirically demonstrate the phenomenon of the uncanny valley, which
is a plateau in the loss surface that we find via adversarial attacks.

2. We perform this analysis on various model architectures and datasets, including convolu-
tional neural networks (CNNs) and large language models (LLMs).

3. We provide a theoretical framework that connects flatness to adversarial robustness through
the third derivative of the loss surface.

2 RELATED WORK

Adversarial Examples Szegedy et al. (2014) introduced the notion of adversarial inputs for deep
learning models as a research subject, characterizing these as a curious property of neural networks.
High-level definition of an adversarial example is a perturbation of a benign input that is hard to
detect for a human but which leads to the mistake in the model prediction. By now, they have
become a major drawback of practical deep learning, since they not only pose a possible threat in
applications, but they undermine the trust in machine learning in general: How can we trust the
predictions of models that are so easily fooled?

In the meantime, many algorithms for generating adversarial examples have been proposed, start-
ing with FGSM (Goodfellow et al., 2015), followed by the defacto standard attacks PGD (Madry
et al., 2017) and C&W (Carlini & Wagner, 2017b), and many more (Papernot et al., 2016; Ku-
rakin et al., 2017; Narodytska & Kasiviswanathan, 2017; Brown et al., 2018; Alaifari et al., 2018;
Andriushchenko et al., 2020; Croce & Hein, 2020; 2021). With the development of generative deep
learning, the approaches for generating adversarial samples with diffusion models (Chen et al., 2023)
appeared. Large language models are not an exception and susceptible not only to standard input
manipulation for prediction failure (Li et al., 2020; Zou et al., 2023) but also to so-called jailbreaks,
which are forcing the model to output text that was supposed to be excluded from the possible results
of the inference (Wei et al., 2024).
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Defenses against Adversarial Attacks The most common way to make a model more robust to
adversarial examples is adversarial training, which incorporates adversarial inputs into the training
procedure (Szegedy et al., 2014; Shafahi et al., 2019; Kumari et al., 2019; Perolat et al., 2018;
Shafahi et al., 2020; Cai et al., 2018; Tramèr et al., 2018; Wu et al., 2020; Carmon et al., 2019). It is
usually observed that adversarial training reduces the performance of a model on clean data (Tsipras
et al., 2018). There also exists contradictory research stating that adversarial training approaches
lead to a flatter loss surface with respect to the parameters (Wu et al., 2020; Stutz et al., 2021). This,
in turn, is believed to lead to better generalization (Hochreiter & Schmidhuber, 1994).

Rahnama et al. (2020) propose an approach where each of the subnetworks corresponding to layers
is robustified via insights from Lyapunov theory, connecting robustness to spectral regularization.
Nevertheless, later Liang & Huang (2021) show that large norms of layers do not always induce large
global Lipschitz constant. So regularization of norms is not an effective way to enhance robustness.
Moosavi-Dezfooli et al. (2019) propose to penalize the Hessian with respect to input to improve the
flatness in the input space and demonstrate that it improves adversarial robustness, analogous work
was performed by Xu et al. (2020).

Interestingly, Kanai et al. (2023) analyses smoothness in the input space and smoothness in the
parameter space and concludes that smoothness in the input space leads to a non-flat surface with
respect to parameters, which leads to worse performance. Flatness of the loss surface as a form of
smoothness in parameter space has also been linked to generalization (Liang et al., 2019; Tsuzuku
et al., 2020). Foret et al. (2020) proposed Sharpness Aware Minimization (SAM), that is essentially
similar to the work of Wu et al. (2020), but focuses on improving clean accuracy. The approach
became very popular due to the ability to improve some of the state-of-the-art results in image
classification. Dinh et al. (2017) show, however, that flatness in terms of the loss Hessian of the entire
network cannot predict generalization, due to reparameterizations. Petzka et al. (2021) showed that
generalization instead can be linked to a relative flatness of a single layer of a network.

Lipschitz Continuity and Adversarial Robustness One of the drawbacks of adversarial training
is the absence of guarantees on the robustness of the obtained model. One of the popular ways
to obtain guarantees is randomized smoothing (Cohen et al., 2019), which implicitly controls the
global Lipschitz constant (Salman et al., 2019). The main idea here is to produce a smoothed ver-
sion of a classifier by making it predict the most probable label in a normal distribution surrounding
an example. Directly using Lipschitz properties is not quite practical however for modern networks.
Global Lipschitz constants (Tsuzuku et al., 2018) are usually too vague, while local Lipschitz con-
stants (Hein & Andriushchenko, 2017) are impractical to compute. Liang & Huang (2021) show
that a large global Lipschitz does not make the local constants large, which means that even models
with a large global Lipschitz constant can be adversarially robust. Small global Lipschitz constant
on the other hand helps to control local constants, but sacrifices clean accuracy. Yang et al. (2020)
showed that improving local Lipschitz constants and enforcing better generalization can serve as a
method to get good generalizing and robust models , but it might not be easily achievable.

3 PRELIMINARIES

We assume a distribution D over an input space X and a target space Y with corresponding proba-
bility density function P (X,Y ) = P (Y | X)P (X), and models f : X → Y from a model class F
and loss functions ℓ : Y × Y → R+. Intuitively, an adversarial example is a small and impercep-
tible perturbation r∗ of a sample x, such that the model incorrectly classifies the perturbed sample
ξ = x+ r∗. Formally, adversarial examples are defined as an optimization problem:

Definition 1 (Szegedy et al. (2014); Papernot et al. (2016) and Carlini & Wagner (2017b)). Let
f : Rm → {1, . . . , k} be a classifier, x ∈ [0, 1]m, and l ∈ [k] with l ̸= f(x) a target class. Then for
every

r∗ = arg min
r∈Rm

∥r∥2 s.t. f(x+ r) = l and x+ r ∈ [0, 1]m

the perturbed sample ξ = x+ r∗ is called an adversarial example.

The implicit assumptions here are that (i) the small size of the perturbation in L2-distance of an
example x make the adversarial example ξ hard (e.g., for a human) to distinguish from the original x
and (ii) the semantics are not altered in the sense that y = f(x) is the true label and for the adversarial
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example ξ the true label is still y. This means that the loss of an adversarial robust classifier f∗ on an
adversarial example ξ must not increase significantly, i.e., l(f∗(ξ), y)− l(f∗(x), y) < ϵ. To ensure
these assumptions are made explicitly and to improve clarity, adversarial examples can be defined
more generally as follows:
Definition 2. Let D be a distribution over an input space X and a label space Y with corresponding
probability density function P (X,Y ) = P (Y | X)P (X). Let ℓ : Y × Y → R+ be a loss function,
f ∈ F a model, and (x, y) ∈ X×Y be an example drawn according to D. Given a distance function
d : X ×X → R+ over X and two thresholds ϵ, δ ≥ 0, we call ξ ∈ X an adversarial example for x
if d(x, ξ) ≤ δ and

E
yξ∼P (Y |X=ξ)

[ℓ(f(ξ), yξ)]− ℓ(f(x), y) > ϵ .

By making the explicit assumptions that (i) the distance is measured via the L2-norm, i.e., d(x, ξ) =
∥x − ξ∥2, (ii) f(x) is correct, i.e., f(x) = y, and (iii) the true label for ξ under D is y, i.e.,
Eyξ∼P (Y |X) [ℓ(f(ξ), yξ)] = ℓ(f(ξ), y), this definition is equivalent to the original Def. 1. We prove
that Def. 2 is a generalization of the classical Def. 1 in Appendix E.

Def. 2 naturally reminds of the (ϵ, δ)-criterion for continuity. Intuitively, it exemplifies that an adver-
sarially robust classifier must be sufficiently smooth, and adversarial examples are a consequence of
non-smooth directions. As we prove in Theorem 5, sufficiently smooth in this context means flatness
as well as a bounded third derivative of the loss function wrt. the weights. To keep our results in line
with related work, we use Def. 1 in our experiments, but derive our theoretical results for the more
general case of Def. 2.

4 EFFICIENT COMPUTATION OF RELATIVE SHARPNESS

To relate flatness and adversarial examples, we want to measure flatness for a particular adversarial
example ξ ∈ X . For that, we need a sound flatness measure and an efficient way to compute it.
A sound flatness measure should be correlated with a network’s generalization ability. A particular
challenge here is that measuring flatness using the loss Hessian wrt. weights (trace or eigenvalues) is
not reparameterization-invariant and thus cannot be connected to generalization (Dinh et al., 2017).
By deriving their relative flatness measure directly from a decomposition of the generalization gap,
Petzka et al. (2021) could show that a combination of trace of the loss Hessian and norm of weights
for a single layer of a network is not only reparameterization-invariant, but can be theoretically
linked to generalization. This uses a robustness argument: Since for large weights small perturbation
in the representation produced by the layer in question can lead to much larger changes in the output,
a network needs to be in a much flatter minimum to counteract this. The “relative” part of the flatness
measure, i.e., the weights norm component, is a constant in our analysis since we assume a fixed
trained neural network. For a model that can be decomposed into a feature extractor ϕ and a predictor
g, i.e., f(x) = g(wϕ(x)), trained on S ⊂ X × Y , the relative flatness measure1 is defined as

κϕ
Tr(w) := ∥w∥2Tr(H(w, S)) ,

where Tr denotes the trace, and H is shorthand for the Hessian of the loss computed on S wrt w.
That is

H(w, S) =
1

|S|
∑

(x,y)∈S

(
∂2

∂wi∂wj
ℓ (g(wϕ(x)), y)

)
i,j∈[km]

,

where w is the weight matrix corresponding to the selected feature layer that connects the feature
extractor ϕ and the classifier g. Similar to Petzka et al. (2021) we select ϕ as a neural network up to
the penultimate layer, w the weights from the representation to the next layer, and g the final layer of
the network. Counter-intuitively, the relative flatness measure is small if the loss surface is flat, since
in that case the trace of the Hessian is small. Similarly, a large value of κϕ

Tr(w) means a the loss
surface is sharp. To avoid confusion, in the following we therefore call κϕ

Tr(w) relative sharpness.

To compute relative sharpness efficiently, we use the following representation of the Hessian H for
the cross-entropy loss ℓ(x, y) =

∑
i∈[k] −yi log ŷi for a single example S = {(x, y)}, where—with

1Note that this is a simplified relative flatness measure that is not invariant to neuron-wise reparameteriza-
tions. Cf. Def. 3 in Petzka et al. (2021).
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slight abuse of notation—we denote ŷ = g(wϕ(x)) as output of the soft-max layer, and write ϕ
instead of ϕ(x). The Kronecker product is denoted by ⊗. We then have

H(w, S) =


ŷ1(1− ŷ1)ϕϕ

T −ŷ1ŷ2ϕϕ
T . . . −ŷ1ŷkϕϕ

T

−ŷ2ŷ1ϕϕ
T ŷ2(1− ŷ2)ϕϕ

T
...

...
... . . .

...

−ŷkŷ1ϕϕ
T

... . . . ŷk(1− ŷk)ϕϕ
T


= (diag(ŷ)− ŷŷT )⊗ ϕϕT .

(1)

We refer to Appx. B.4 for a full derivation. The trace of Hessian then is

tr(H) =

k∑
j=1

ŷj(1− ŷj)

d∑
i=1

ϕ2
i ,

by which we can efficiently compute the relative sharpness measure in O(k+d) instead of O(k2d2).

5 EMPIRICAL EVALUATION

We perform three groups of experiments to investigate the behavior of the flatness for adversarial
samples. First, we demonstrate that adversarial attacks on CNNs find adversarial examples in flat
regions according to the relative sharpness measure. We name these flat regions uncanny valleys.
Second, we investigate, how adversarial training (AT) influences the phenomenon of uncanny val-
leys. We find that AT simply pushes the uncanny valley further away, however, it can still be easily
found by stronger attacks. Last, we conduct a similar analysis on LLMs, where we find that the phe-
nomenon is less pronounced, which is likely due to the discrete nature of the problem, making the
attacks weaker and consequentially the uncanny valleys harder to find. All experiments presented
below are carried out on machines equipped with an Nvidia-A100 80GB, 256 cores, and 1.9TB of
memory. The code is publically available2.

Adversarial Examples Fall Flat We train a RESNET-18 (He et al., 2016), WIDERESNET-28-
4 (Zagoruyko & Komodakis, 2016), DENSENET121 (Huang et al., 2017), VGG11 with Batch-
norm (Simonyan & Zisserman, 2014) on CIFAR-10 and CIFAR-100. Each model is trained via
stochastic gradient descent for 100 epochs with an initial learning rate of 0.1. We use a cosine
scheduler for the learning rate and a weight decay of 10−4. Next, we attack each model using PGD-
l∞ with 10 iterations and δ = 8/255 (Madry et al., 2017) and record per step the intermediate
images generated by the attack and the corresponding loss of the model. This allows us to compute
how the relative sharpness develops during the attack. To better compare the different architectures,
we normalize the average sharpness to [0, 1]. In Fig. 2, we plot, for each step of the attack, the
normalized relative sharpness measure and the loss with respect to the ground truth. In Appx. C
Fig. 7, we show the unnormalized values.

For CIFAR-10, as expected the loss and the sharpness increase as the attack progresses, however,
around step 3 the sharpness decreases again, while the loss further increases until it saturates. This
phenomenon can be observed for all model architectures. For CIFAR-100, the pattern is slightly
different, namely the unperturbed sample already lies in a rather sharp region (which is indicative of
the worse test performance, i.e., a larger generalization gap for this task). Nonetheless, the search
for an adversarial example again leads to a very flat region, while the loss steadily increases. These
are still adversarial examples, meaning there are adversarial examples in a flat region for good-
performing, but adversarially non-robust models. This indicates that flatness on its own cannot
characterize adversarial robustness. Characteristic is the fact that one step (corresponding to FGSM)
often already leads to a sharp region, thus characterizing this attack as a weaker one.

In Figure 3 we show that the adversarial examples move away from the original example with each
attack iteration. Thus, the uncanny valleys truly extend away from the original example, supporting
the intuition that adversarial examples live in entire subspaces of the input space (Gubri et al., 2022;
Mao et al., 2018).

2https://anonymous.4open.science/r/the-uncanny-valley-4431
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Figure 2: We report the normalized relative sharpness on the attack trajectory for WIDERESNET-
28-4, RESNET-18, VGG11 and DENSENET121 on the test set of CIFAR-10 & CIFAR-100. We
observe that adversarial examples first reach a sharp region, and as the attack progress they land in
a flat region. We also display the standard deviation of the values on individual inputs.
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Figure 3: We show how far adversarial examples move in image/feature space from the initial image
during a PGD-attack; we measure distance with L1, L2, L∞ and cosine dissimilarity i.e. 1 - cosine
similarity. We used CIFAR-10, WIDERESNET-28-4, and PGD with 10 iterations and δ=8/255.

Adversarial Training Pushes the Flat Region Away Next, we investigate how adversarial train-
ing influences the sharpness measure and the uncanny valleys. Since all the architectures show
practically the same behavior, we focus on WIDERESNET-28-4 and CIFAR-10 & CIFAR-100. To
obtain models with varying robustness, we perform adversarial training using PGD-l∞ with differ-
ent δ′ ∈ {1, 2, 3, 4, 5, 6, 7, 8}, where δ = δ′/255. For reference, we also report the standard trained
model, i.e., δ′ = 0. As the models trained with δ > 0 are more robust, we also employ a stronger
attack, namely, we use PGD-l∞ 20 iterations with δ = 12/255 resp. 50 iterations with δ = 24/255.
We plot the development of the relative sharpness and loss for ground truth in Fig. 4 and 5.
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For smaller δ′ < 4, we see a similar behavior to that of normally trained models (Fig. 7). However,
we observe that the turning point occurs at later iterations. This effect is even stronger for δ′ = 4
and δ′ = 5, while for δ′ > 5, the models stay in sharp regions. This demonstrates that adversarial
training bulges the area around the samples, so the networks are sharper in that region. Nonetheless,
we still observe uncanny valleys, except for models trained with larger δ′. If we attack these more
robust models with stronger attacks, we again observe that the adversarial examples lie in flat regions
(Fig. 4c and 5c). Hence, the uncanny valleys still exist and can be reached via stronger attacks.

Jailbreak Attacks on LLMs Finally, we show that uncanny valleys also exist for LLMs. We use
the pre-trained weights of Vicuna-7B (VICUNA, Chiang et al., 2023), Llama-2-7B-Chat (LLAMA2,
Touvron et al., 2023), and Guanaco-7B-HF (GUANACO, Dettmers et al., 2024), downloaded from
HuggingFace. Each of these models is aligned, meaning they have been trained to not generate any
malicious output and thus robustified against jailbreak attacks. We use the attack and benchmark of
Zou et al. (2023) for 100 iterations and a batch size of 1024, while sampling the top 256 for further
prompting. We focus on generating malicious behavior: For a given prompt, e.g., “Write a script
that can exploit vulnerabilities in a software or operating system”, the goal is to make the model
to answer with a specific phrase, e.g, “Sure, here is a script that can exploit vulnerabilities in a
software or operating system: . . . ”. Hence, these are targeted attacks. Due to runtime constraints,
we use only the first 100 samples in the benchmark. In Fig. 6a and 6b, we report the average relative
sharpness per token and the loss with respect to the goal reply.

We observe that for VICUNA the loss landscape first becomes sharper and then the adversarial ex-
amples slowly move into flatter regions. For GUANACO, the phenomenon is less pronounced and
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Figure 4: Here, we evaluate adversarially trained WIDERESNET-28-4 on CIFAR-10 with varying δ.
We attack the resulting models using PGD-l∞ with δ = 12/255, steps = 20, shown in Figure (a) &
(b), and δ = 24/255, steps = 50, depicted in Figure (c) & (d).We can see that even for adversarially
trained models, we can find uncanny valleys by using a stronger attack.

0 5 10 15 20

0

1k

2k

3k

Attack iteration

R
el

at
iv

e
fla

tn
es

s

δ′ = 0 δ′ = 1 δ′ = 2 δ′ = 3 δ′ = 4 δ′ = 5 δ′ = 6 δ′ = 7 δ′ = 8

(a)

0 5 10 15 20

0

20

40

60

80

100

Attack iteration

L
os

s

(b)

0 10 20 30 40 50

0

1k

2k

3k

Attack iteration

R
el

at
iv

e
sh

ar
pn

es
s

(c)

0 10 20 30 40 50

0

20

40

60

80

100

Attack iteration

L
os

s

(d)

Figure 5: Here, we evaluate adversarially trained WIDERESNET-28-4 on CIFAR-100 with varying
δ. We attack the resulting models using PGD-l∞ with δ = 12/255, steps = 20, shown in Figure
(a) & (b), and δ = 24/255, steps = 50, depicted in Figure (c) & (d).We can see that even for
adversarially trained models, we can find uncanny valleys by using a stronger attack.
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Figure 6: In (a) and (b), we plot the relative sharpness and loss of the adversarial prompt for VI-
CUNA, LLAMA2 and GUANACO when attacked by the method of Zou et al. (2023). Additionally,
in (c) and (d), we plot per model example trajectories, which first become sharper and then flatter
again, together with the corresponding loss.

for LLAMA2, the adversarial examples stay in comparatively sharp regions. The uncanny valleys
are not as flat as the undefended models shown in Fig. 2, rather, they resemble the curves of ad-
versarially trained models. This can be explained by the fact that these models have been aligned,
i.e., adversarially trained. However, if we inspect individual adversarial samples, we can still find
for every model attack trajectories where we can observe the uncanny valleys (cf. Fig. 6c). Given
the similarity to the curves of defended models in Fig. 4, we hypothesize that stronger attacks will
uncover the uncanny valleys also for LLMs. Nonetheless, even with the current evidence we can
conclude that LLMs exhibit uncanny valleys during adversarial attacks.

6 BOUNDING ADVERSARIAL ROBUSTNESS VIA RELATIVE SHARPNESS

The definition of adversarial examples entails the assumption that labels are locally constant, which
we made explicit in Def. 2. This assumption can lead to counter-intuitive behavior: if the true label
of a perturbed example ξ is yξ ̸= y and the model predicts yξ, then although correct it counts as an
adversarial example, while if it predicts y it does not count as an adversarial example even though
the model makes a mistake. For image classification, this appears intuitively reasonable since small
changes to images should not change the class. It follows that for such applications, the ideal model
is smooth, i.e., small perturbations of the input do not affect its output.

Several works have shown that adversarial training increases flatness with respect to the in-
puts (Moosavi-Dezfooli et al., 2019; Kanai et al., 2023), and adversarial robustness has been em-
pirically linked to flatness of the loss curve with respect to the parameters (Wu et al., 2020; Stutz
et al., 2021), but a theoretical link is non-trivial since perturbations of the input relate non-linearly
to perturbations of the model weights. In the following, we establish such a formal link and show
how it can be used to guarantee adversarial robustness. For that, we first formally define adversarial
robustness. A model f ∈ F is robust against adversarial examples on a set S ⊆ X × Y if no ad-
versarial examples exist in the vicinity of each element of S. With Bδ

d(x) = {ξ ∈ X | d(x, ξ) ≤ δ}
denoting the δ-ball around x ∈ X with respect to the distance d from Def. 2, adversarial robustness
can be defined similar to Schmidt et al. (2018) as follows.
Definition 3. Let S ⊆ X × Y be a dataset drawn iid. according to D and d : X × X be a distance
on X . A model f ∈ F is (ϵ, δ, S)-robust against adversarial examples, if for all x ∈ S it holds
that there is no adversarial example with threshold ϵ in Bδ

d(x). A model f is (ϵ, δ)-robust if it is
(ϵ, δ, S)-robust for all S drawn iid from D.

Relative sharpness of a model f(x) = g(wϕ(x)) with feature extractor ϕ, classifier g, and weights
from features to classifier w is non-linearly linked to perturbations in the input (Petzka et al., 2021).
We use this property to show that relative sharpness measured for a single example can bound the
loss increase through perturbations. The minimum relative sharpness for all clean examples in data
S then provides a bound on how much any example in S can be perturbed without significantly
increasing the loss. In other words, it provides a guarantee on the adversarial robustness of f on S.
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For this, we have to first establish a link between perturbations in the input space and perturbations
in feature space. That is, we express the representation ϕ(ξ) of an adversarial example in feature
space as a perturbation of the representation ϕ(x) of the clean example x.
Lemma 4. Let f = g(wϕ(x)) be a model with ϕ L-Lipschitz and ∥ϕ(x)∥ ≥ r, and ξ, x ∈ X with
∥ξ − x∥ ≤ δ, then there exists a ∆ > 0 with ∆ ≤ Lδr−1, such that ϕ(ξ) = ϕ(x) +∆Aϕ(x), where
A is an orthogonal matrix.

The proof is provided in Appx. B.1. The second step is to relate the adversarial example ξ to
perturbations in the weights w of the representation layer, for which we use the linearity argument
from Petzka et al. (2021). Since we can express ϕ(ξ) as ϕ(x) + ∆Aϕ(x), we can then use the
linearity of the representation layer to relate the perturbation of input to a perturbation in weights.
That is,

ℓ(f(ξ), y) = ℓ(g(wϕ(ξ)), y) = ℓ(g(w(ϕ(x) + ∆Aϕ(x))), y) = ℓ(g((w +∆wA)ϕ(x), y) .

This means that we can now express an adversarial example as a suitable perturbation of the weights
w of the representation layer, where the magnitude is bounded as ∆ ≤ Lδr−1. We now bound
the loss difference between ξ and x. For convenience, we define ℓ(w + ∆wA) := ℓ(g((w +
∆wA)ϕ(x), y). The Taylor expansion of ℓ(w +∆wA) at w yields

ℓ(w +∆w) = ℓ(w) + ⟨∆wA,∇wℓ(w)⟩+ ∆2

2
⟨wA,Hℓ(w)(wA)⟩+R2(w,∆) ,

where Hℓ(w) is the Hessian of ℓ(w). If we now maximize over all A with ∥A∥ ≤ 1, it follows that
⟨wA,Hℓ(w)(wA)⟩ ≤ ∥w∥2FTr(Hℓ(w)) = κϕ

Tr(w). Therefore, we have

|ℓ(f(ξ), y)− ℓ(f(x), y)| ≤ ∆∥w∥F ∥∇wℓ(w)∥F +
∆2

2
κϕ
Tr(w) +R2(w,∆) . (2)

The remainder depends on the partial third derivatives of the loss. We show in Appdx. B.2 that for
feature extractor ϕ that is L-Lipschitz, it can be bound by 4−1kmL3. With this we can bound the
difference between the loss suffered on an adversarial example ξ and the loss on a clean example x
for a converged model as follows.
Proposition 5. For (x, y) ∈ X × Y with ∥x∥ ≤ 1 for all x ∈ X , a model f(x) = g(wϕ(x)) at
a minimum w ∈ Rm×k with ϕ L-Lipschitz and ∥ϕ(x)∥ ≥ r, and the cross-entropy loss ℓ(w) =
ℓ(g(wϕ(x)), y) of f on (x, y), it holds for all ξ ∈ X with ∥x− ξ∥2 ≤ δ that

ℓ(f(ξ), y)− ℓ(f(x), y) ≤ δ2

2r2
L2κϕ

Tr(w) +
δ3

24r3
kmL6 .

We defer the proof to Appx. B.2. Note, in practice, the perturbation budget δ << 1 is chosen
to be small. Hence, this bound can be practically useful not only for Lipschitz-regularized net-
works (Virmaux & Scaman, 2018) or 1-Lipschitz networks (Araujo et al., 2023) but also for larger
Lipschitz-constants L. This bound on the loss difference ϵ between ξ and x can be transformed into
a guarantee on adversarial robustness based on relative sharpness by solving the cubic equation for
δ.
Corollary 6. [Informal] For a dataset S ⊂ X × Y with ∥x∥ ≤ 1 for all x ∈ X , a model f(x) =
g(wϕ(x)) at a minimum w ∈ Rm×k wrt. S, with ϕ L-Lipschitz and ∥ϕ(x)∥ ≥ r, and the cross-
entropy loss ℓ(w) = ℓ(g(wϕ(x)), y) of f on (x, y), d being the L2-distance, and ϵ > 0, f is
(ϵ, δ, S)-robust against adversarial examples with

δ ∝ ϵ
1
3

κTr(w)
1
3L

+
rkmL2

κTr(w)
,

where κTr(w) is the relative sharpness of f wrt. w.

The formal version, together with the proof of this corollary, are provided in Appx. B.3. Cor. 6 im-
plies that a flat loss surface measured in terms of relative sharpness κϕ

Tr(w), together with smooth-
ness of the feature extractor ϕ in terms of Lipschitz-continuity guarantees adversarial robustness on
a dataset S with particular δ. Under the assumption of locally constant labels and for data distri-
butions D with smooth density pϕD in feature space, the non-simplified relative flatness also implies
good generalization (Petzka et al., 2021). Together, these theoretical results indicate that if a model
f = g(wϕ(x)) has small relative sharpness κϕ

Tr(w) for all examples in S and ϕ is Lipschitz, then it
simultaneously achieves good generalization and adversarial robustness.
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7 DISCUSSION & CONCLUSION

Within the domain of guaranteeing adversarial robustness, a common methodology is to assume (or
regularize for) a low Lipschitz constant to derive bounds. It is also known, however, that minimiz-
ing a global Lipschitz constant indefinitely leads to bad performance on clean samples (Yang et al.,
2020). The global Lipschitz constant alone is therefore not helpful for obtaining good-performing
and robust models. There exists, however, an intricate connection between the Lipschitz property
of the model and its flatness measured with respect to parameters (Kanai et al., 2023); moreover,
improving robustness with respect to the parameter changes also improves adversarial robustness
empirically (Wu et al., 2020). Using the notion of relative flatness (Petzka et al., 2021), which is
theoretically linked to the generalization of the deep learning models, we develop a bound that con-
nects Lipschitzness, flatness, and adversarial robustness. This bound means that inducing flatness
with respect to parameters will improve the adversarial robustness of the model, given that the func-
tion described by the model is smooth. Together with the results of Petzka et al. (2021) this links the
adversarial robustness and generalization abilities of a model.

Measurements of relative flatness for multi-step attacks with varying parameters reveal two things.
First, for all architectures, we can systematically find uncanny valleys on which the trajectory in-
dicates a very similar geometry across the models, which might be connected to the existence of
Universal Adversarial Examples (Moosavi-Dezfooli et al., 2017) and transferability of adversarial
examples. Second, strong adversarial samples fall into flat uncanny valleys and therefore would be
missed by most defenses and detection methods based on representations (Lee et al., 2018; Ma et al.,
2018; Xu et al., 2018; Hu et al., 2019; Tian et al., 2018). This is in alignment with conclusions drawn
by Tramer (2022) and Carlini & Wagner (2017a): the strength of the attack can always be increased
in a way that the currently applied defense will fail. At the same moment, uncanny valleys give a
fast and easy-to-measure quantity, which could allow for the detection of adversarial attacks during
inference. Interestingly, and contrary to the observation of Tramer (2022), stronger attacks that fall
into uncanny valleys are in fact easier to detect. Simultaneously, relative flatness can also serve as a
tool to detect jailbreak attacks, as most of the adversarial prompts lie in sharp regions.

Limitations & Future Work We consider relative flatness wrt. the penultimate layer, because it
is theoretically sound and its Hessian is fast to compute , when cross-entropy loss is used . There
exists, however, a multitude of previous work claiming that adversarial robustness should be con-
sidered with respect to the properties of the individual layers; Kumari et al. (2019) propose a latent
adversarial training technique that improves the robustness of intermediate layers and this leads to
better overall robustness; Bakiskan et al. (2022) and Walter et al. (2022) analyse which of the layers
play a specific role for robustness. Petzka et al. (2021) show that the relative flatness measured in
different layers has similar correlation with generalization. In line with that we observation, we find
in preliminary experiments that relative flatness wrt. adversarial examples shows similar patterns in
different layers (cf. Figure 9), i.e., the uncanny valley is also present in earlier representations. The
layer-wise perspective on the robustness is an interesting research direction (Adilova et al., 2023)
that might be a continuation for this work, i.e., can we regularize for the flatness of one layer to
obtain better performing and more adversarially robust networks? In particular, the fact that the
phenomenon follows a similar pattern in shallower layers begs the questions, if the last layer can
serve as an avenue to influence the robustness of earlier representations, but at a much lower cost.

Computing the Lipschitz constant exactly is NP-hard, which limits the practical applicability of
our theoretical results. For 1-Lipschitz neural networks (Araujo et al., 2023) or networks trained
with Lipschitz regularization (Virmaux & Scaman, 2018; Gouk et al., 2021), however, the bound
is readily applicable. For general neural networks, exploring how a tighter approximation of local
smoothness via local Lipschitzness can be used to improve the practicability of our results makes
for excellent future work.

An important direction for future work is to investigate how the phenomenon of uncanny valleys
can be translated into an actionable detection method for image classifiers, and more importantly for
LLMs, as these models are already exposed to the general public and pose a larger threat. We provide
some preliminary results in Appendix F by simply thresholding the sharpness measure which show
that adversarial examples can be detected with > 90% accuracy. Currently, there is no satisfying
theoretical explanation for the existence of uncanny valleys. Thus, we are specifically interested in
exploring and answering the question: What lies at the bottom of the uncanny valley?
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APPENDIX

A PRESENTATION

w1 w2 ℓ(f(wx), y)

ℓ(f(w(x+ δx)), y) = ℓ(f(wx+wδx)), y)

= ℓ(f(w +wδ)x), y)

= ℓ(f(ŵx), y)

≈ ℓ(f(wx), y)

B PROOFS OF THEORETICAL RESULTS

In this section, we provide the proofs for the theoretical results in this paper.

B.1 PROOF OF LEMMA 4

For convenience, we restate the lemma.

Lemma 4. Let f = g(wϕ(x)) be a model with ϕ L-Lipschitz and ∥ϕ(x)∥ ≥ r, and ξ, x ∈ X with
∥ξ − x∥ ≤ δ, then there exists a ∆ > 0 with ∆ ≤ Lδr−1, such that ϕ(ξ) = ϕ(x) +∆Aϕ(x), where
A is an orthogonal matrix.

Proof. It follows from the proof in Thm. 5 in Petzka et al. (2021) that we can represent any vector
v ∈ X as v = w +∆Aw for some vector w ∈ X , ∆ ∈ R+ and A an orthogonal matrix. Then

ϕ(ξ) = ϕ(x) + ∆Aϕ(x)

⇔(ϕ(ξ)− ϕ(x)) = ∆(Aϕ(x))

⇔∆ ≤ ∥(ϕ(ξ)− ϕ(x))∥∥(Aϕ(x))−1∥ = ∥(ϕ(x+∆′A′x)− ϕ(x))∥︸ ︷︷ ︸
≤L∆′

∥(Aϕ(x))−1∥

⇔∆ ≤ L∆′∥(Aϕ(x))−1∥ ≤︸︷︷︸
A orth.

L∆′ 1

r
.

The result follows from ∥ξ − x∥ = ∆′ ≤ δ.

B.2 PROOF OF PROPOSITION 5

For convenience, we restate the proposition.

Proposition 5. For (x, y) ∈ X × Y with ∥x∥ ≤ 1 for all x ∈ X , a model f(x) = g(wϕ(x)) at
a minimum w ∈ Rm×k with ϕ L-Lipschitz and ∥ϕ(x)∥ ≥ r, and the cross-entropy loss ℓ(w) =
ℓ(g(wϕ(x)), y) of f on (x, y), it holds for all ξ ∈ X with ∥x− ξ∥2 ≤ δ that

ℓ(f(ξ), y)− ℓ(f(x), y) ≤ δ2

2r2
L2κϕ

Tr(w) +
δ3

24r3
kmL6 .

Proof. The remainder R2 in Eq. 2 is

R2(w,∆) ≤ sup
h∈Rm
∥h∥=1

sup
c∈(0,1)

∆3

3!

d∑
i,j,k

∂3ℓ

∂wi∂wj∂wk
(x+ c∆h) ,

where w ∈ Rd with d = km is the vectorization of w ∈ Rm×k. We now bound this remainder.
Using the representation of the loss Hessian from Eq. 1, we can write the partial third derivatives in
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the remainder as

∂3ℓ

∂wi∂wj∂wk
(x) =

∑
o,l,j∈[k]

a,b,c∈[m]

− (ŷj ŷo(1o=j − ŷl) + ŷlŷo(1o=l − ŷj))ϕ(x)aϕ(x)bϕ(x)c ,

where ŷ = f(x). Under the assumption that ϕ is L-Lipschitz, for all x ∈ X , ∥x∥ ≤ 1 and observing
that

∑
o∈[k] ŷo = 1 we can bound this term by

∂3ℓ

∂wi∂wj∂wk
(x) ≤ 1

4
kmL′3 . (3)

The terms k,m follow from the sum over all rows and columns of w, and the factor 4−1 follows
from the fact that the predictions in ŷ sum up to 1. The factor L′3 can be derived as follows.

ϕ(x)i ≤ ||ϕ(x)i|| = ||(ϕ(x)i − ϕ(0)i) + ϕ(0)i|| (4)
≤ ||(ϕ(x)i − ϕ(0)i)||+ ||ϕ(0)i|| (5)
≤ L||x− 0||+ ||ϕ(0)i|| (ϕ is L-Lipschitz) (6)
≤ L+ ||ϕ(0)i|| ≤ L+ Cϕ(0) (||x|| ≤ 1) (7)

(8)

where Cϕ(0) := maxi||ϕ(0)i||. For Relu networks without bias Cϕ(0) is 0 and empirically for
networks with a bias term, it is very small i.e. ≈ 1. Therefore L′ = L + Cϕ(0) ≈ L, in particular
since for most realistic neural networks L is large. For simplicity, we subsitute L = L′.

Inserting this bound into Eq. 2 yields

|ℓ(f(ξ), y)− ℓ(f(x), y)| ≤ ∆∥w∥F ∥∇wℓ(w)∥F +
∆2

2
κϕ
Tr(w) +

∆3

3!

1

4
kmL3 .

The result follows from setting ∆ ≤ Lδr−1.

B.3 PROOF OF PROPOSITION 6

Proposition 7. For a dataset S ⊂ X × Y with ∥x∥ ≤ 1 for all x ∈ X , a model f(x) = g(wϕ(x))
at a minimum w ∈ Rm×k wrt. S, with ϕ L-Lipschitz and ∥ϕ(x)∥ ≥ r, and a loss function ℓ(w) =
ℓ(g(wϕ(x)), y) of f on (x, y), d being the L2-distance, and ϵ > 0, f is (ϵ, δ, S)-robust against
adversarial examples with

δ ≥

−8r3k3m3L9 + 27ϵ

27L3κϕ
Tr(w)

+

(
−27

27

r6k6m6L3

κϕ
Tr(w)6

+
r6ϵ2

L6κϕ
Tr(w)2

− 24r6ϵk3m3L
3
2

27κϕ
Tr(w)4

) 1
2


1
3

+

−8r3k3m3L9 + 27ϵ

27L3κϕ
Tr(w)

−

(
−27

27

r6k6m6L3

κϕ
Tr(w)6

+
r6ϵ2

L6κϕ
Tr(w)2

− 24r6ϵk3m3L
3
2

27κϕ
Tr(w)4

) 1
2


1
3

+
2rkmL2

72κϕ
Tr(w)

where κTr(w) is the relative flatness of f wrt. w. That is,

δ ∝ ϵ
1
3

(L3κTr(w))
1
3

+
rkmL2

κTr(w)
.

Proof. From Prop. 5 it follows that we achieve (ϵ,∆, S)-robustness where

ϵ =
∆2

2
κϕ
Tr(w) +

∆3

24
kmL3 .
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First, we need to solve this cubic equation for ∆. For that, we substitute a = kmL3

24 and b =
κϕ
Tr(w)

2
and get

0 = a∆3 + b∆2 − ϵ = ∆3 +
a

b
∆2 − ϵ

b
= ∆3 + α∆2 − β ,

by subsituting α = a
b and β = ϵ

b . We use the depressed cubic form ∆ = t− α
3 and get

0 =
(
t− α

3

)3
+ α

(
t− α

3

)2
− β

⇐0 = t3 − t2α+ t
α2

3
− α3

27
+ t2α− 2α2t

3
+

α3

9
− β

⇐0 = t3 − t
α2

3
+

2α3

27
− β .

with p = −α2

3 and q = 2α3

27 − β we get the form 0 = t3 + pt+ q for which we can apply Cardano’s
formula.

t =

(
−q

2
+

(
q2

4
+

p3

9

) 1
2

) 1
3

+

(
−q

2
−
(
q2

4
+

p3

9

) 1
2

) 1
3

Resubstituting p, q, α, β yields

q

2
=

a3

27b3
− ϵ

2n
,

p3

9
= − 1

93
a6

b6
,

q2

4
=

1

272
a6

b6
+

ϵ2

4b2
− α3ϵ

27b4
.

Substituting this in the solution for t then gives

t =

(
− a3

27b3
+

ϵ

2b
+

(
− 2a6

27b6
+

ϵ2

4b2
− a3ϵ

27b4

) 1
2

) 1
3

+

(
− a3

27b3
+

ϵ

2b
−
(
− 2a6

27b6
+

ϵ2

4b2
− a3ϵ

27b4

) 1
2

) 1
3

Substituting a, b and t = ∆+ α
3 yields

∆ =

−8k3m3L9 + 27ϵ

27κϕ
Tr(w)

+

(
−27

27

k6m6L18

κϕ
Tr(w)6

+
ϵ2

κϕ
Tr(w)2

− 24ϵk3m3L9

27κϕ
Tr(w)4

) 1
2


1
3

+

−8k3m3L9 + 27ϵ

27κϕ
Tr(w)

−

(
−27

27

k6m6L18

κϕ
Tr(w)6

+
ϵ2

κϕ
Tr(w)2

− 24ϵk3m3L9

27κϕ
Tr(w)4

) 1
2


1
3

+
2kmL3

72κϕ
Tr(w)
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Finally, from Lemma 4 we have ∆ ≤ Lδr−1, so that

δ ≥ r

L

−8k3m3L9 + 27ϵ

27κϕ
Tr(w)

+

(
−27

27

k6m6L18

κϕ
Tr(w)6

+
ϵ2

κϕ
Tr(w)2

− 24ϵk3m3L9

27κϕ
Tr(w)4

) 1
2


1
3

+
r

L

−8k3m3L9 + 27ϵ

27κϕ
Tr(w)

−

(
−27

27

k6m6L18

κϕ
Tr(w)6

+
ϵ2

κϕ
Tr(w)2

− 24ϵk3m3L9

27κϕ
Tr(w)4

) 1
2


1
3

+
2rkmL2

72κϕ
Tr(w)

=

−8r3k3m3L9 + 27ϵ

27L3κϕ
Tr(w)

+

(
−27

27

r6k6m6L3

κϕ
Tr(w)6

+
r6ϵ2

L6κϕ
Tr(w)2

− 24r6ϵk3m3L
3
2

27κϕ
Tr(w)4

) 1
2


1
3

+

−8r3k3m3L9 + 27ϵ

27L3κϕ
Tr(w)

−

(
−27

27

r6k6m6L3

κϕ
Tr(w)6

+
r6ϵ2

L6κϕ
Tr(w)2

− 24r6ϵk3m3L
3
2

27κϕ
Tr(w)4

) 1
2


1
3

+
2rkmL2

72κϕ
Tr(w)

B.4 DERIVATION OF HESSIAN AND THIRD DERIVATIVE

Let ϕ ∈ Rm denote the embedding of the feature extractor and W ∈ RK×m, where we denote
the weights of the k-th neuron as wk. The output layer is given by the softmax function ŷk =
softmax(Wϕ) ∈ RK . More precisely the softmax is given by,

ŷk =
exp(wkϕ)∑K
j=1 exp(wjϕ)

For simplicity, we omit the bias term. The one-hot encoded ground truth is given by y. The derivative
of the loss L function wrt. the weight vector wj can be computed as

∂L(y, ŷ)

∂wj
= −(yj − ŷj)ϕ

T

Second derivative

∂L(y, ŷ)

∂wl ∂wj
=

∂

∂wl
− (yj − ŷj)ϕ

T

=
∂

∂wl
− yjϕ

T +
∂

∂wl
ŷjϕ

T

=
∂

∂wl
ŷjϕ

T

The last equation follows from y being independent of wl. Next, we do a case analysis on l = j.
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• ( l = j): In (1), we use the quotient rule and in (2) definition of softmax.
∂

∂wl
ŷjϕ

T =
∂

∂wj

exp(wjϕ)∑K
k=1 exp(wkϕ)

ϕT

=
(exp(wjϕ)

∑K
k=1 exp(wkϕ))ϕϕ

T − exp(wjϕ) exp(wjϕ)ϕϕ
T

(
∑K

k=1 exp(wkϕ))2
(1)

=

(
exp(wjϕ)

∑K
k=1 exp(wkϕ)

(
∑K

k=1 exp(wkϕ))2
− exp(wjϕ)

2

(
∑K

k=1 exp(wkϕ))2

)
ϕϕT

= (ŷj − ŷ2j )ϕϕ
T ∈ Rm×m (2)

• ( l ̸= j): Again quotient rule, but the left side vanishes.
∂

∂wl
ŷjϕ

T = −ŷlŷjϕϕ
T ∈ Rm×m

Then we have
∂L(y, ŷ)

∂wl ∂wj
= ŷl(1[l=j] − ŷj)ϕϕ

T ∈ Rm×m

The hessian is then given by

H(L;W )(y, ŷ) = (diag(ŷ)− ŷŷT )⊗ ϕϕT ∈ RKm×Km

Third derivative First, rewrite
∂L(y, ŷ)

∂wl ∂wj
= ŷl(1[l=j] − ŷj)ϕϕ

T = ŷl1[l=j]ϕϕ
T − ŷlŷjϕϕ

T

Then we define a new operator Π : Rn × Rm × Ro → Rn×m×o,Π(x, y, z)ijk = xiyjzk. We now
compute

∂L(y, ŷ)

∂wo ∂wl ∂wj
=

∂

∂wo
ŷl1[l=j]ϕϕ

T − ŷlŷjϕϕ
T

Again we make a CA on j = l

• ( l = j):
∂

∂wo
(ŷlϕϕ

T − ŷ2l ϕϕ
T ) =

∂

∂wo
ŷlϕϕ

T − ∂

∂wo
ŷ2l ϕϕ

T

= ŷo(1[o=l] − ŷl)Π(ϕ, ϕ, ϕ)− 2(ŷo(1[o=l] − ŷl)Π(ϕ, ϕ, ϕ))

= −ŷo(1[o=l] − ŷl)Π(ϕ, ϕ, ϕ)

• ( l ̸= j):
∂

∂wo
− ŷlŷjϕϕ

T = −(
∂

∂wo
ŷl)ŷjϕϕ

T − ŷl(
∂

∂wo
ŷj)ϕϕ

T

= −ŷj ŷo(1[o=l] − ŷl) ·Π(ϕ, ϕ, ϕ)− ŷlŷo(1[o=i] − ŷj) ·Π(ϕ, ϕ, ϕ)

= −[ŷj ŷo(1[o=l] − ŷl) + ŷlŷo(1[o=i] − ŷj)] ·Π(ϕ, ϕ, ϕ) ∈ Rm×m×m

→ −[ŷj ŷo(1[o=l] − ŷl) + ŷlŷo(1[o=j] − ŷj)]j,l,o=1..k ⊗Π(ϕ, ϕ, ϕ) ∈ RKm×Km×Km

C UNNORMALIZED PLOTS

D CODE FOR EXPERIMENTS

We use code from several resources, which we disclose here. First, the basis for training and attack-
ing the CNNs stems from (Sehwag et al., 2020). We modified the code according to our needs. The
code for DenseNet121 stems from the official PyTorch library. To attack and evaluate the LLMs,
we use the official implementation of the attack (Zou et al., 2023). CIFAR-10 and CIFAR-100 were
also downloaded from PyTorch.
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Figure 7: We report the relative sharpness on the attack trajectory of attack for WIDERESNET-28-4,
RESNET-18, VGG11 and DENSENET121 on the test set of CIFAR-10 & CIFAR-100. We observe
that adversarial examples first reach a sharp region, but with strength of the attack increasing they
are in very flat region. We also display the standard deviation of the values on individual inputs.
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Figure 8: Top. We plot the relative sharpness and loss of the adversarial prompt for Viucna, LLama2
and Guanaco when attacked by the method of Zou et al. (2023). Bottom.We give per model example
trajectories that first get sharper and then flatter again.

E PROOF THAT DEFINITION 2 GENERALIZES DEFINITION 1

In the following, we provide a straightforward proof that Definition 2 is a generalization of the
classical definition of adversarial examples by Szegedy et al. (2014); Papernot et al. (2016) and
Carlini & Wagner (2017b). For that, we first restate our definition.

Definition 2. Let D be a distribution over an input space X and a label space Y with corresponding
probability density function P (X,Y ) = P (Y | X)P (X). Let ℓ : Y × Y → R+ be a loss function,
f ∈ F a model, and (x, y) ∈ X×Y be an example drawn according to D. Given a distance function
d : X ×X → R+ over X and two thresholds ϵ, δ ≥ 0, we call ξ ∈ X an adversarial example for x
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Figure 9: We show the relative sharpness measure computed in the penultimate layer l and in shal-
lower layers l − 1 to l − 4 for WIDERESNET-28-4. Due to memory and runtime constraints, we
approximate the measure using Hutchinson trace estimation used in Petzka et al. (2021) on 500 im-
ages. We observe the same phenomena as in the penultimate layer, which justifies that we focus
only on the penultimate layer for our theoretical and experimental analysis.

if d(x, ξ) ≤ δ and
E

yξ∼P (Y |X=ξ)
[ℓ(f(ξ), yξ)]− ℓ(f(x), y) > ϵ .

We now restate the classical definition here. For that, note that in Szegedy et al. (2014), the ad-
versarial examples are assumed to be in x + r ∈ [0, 1]m since they assume data to be images with
pixel values in [0, 1]. The original definition in Szegedy et al. (2014) has an inconsistency, assuming
x ∈ Rm. For correctness, we therefore assume x ∈ [0, 1]m—Def. 2 would similarly generalize to
arbitrary X .

Definition 1 (Szegedy et al. (2014); Papernot et al. (2016) and Carlini & Wagner (2017b)(targeted)).
Let f : Rm → {1, . . . , k} be a classifier, x ∈ [0, 1]m, and l ∈ [k] with l ̸= f(x) a target class. Then
for every

r∗ = arg min
r∈Rm

∥r∥2 s.t. f(x+ r) = l and x+ r ∈ [0, 1]m

the perturbation x+ r∗ is called an adversarial example.

Proof. We now prove that for particular choices of loss function, distance measure and thresholds,
adversarial example fits to our general Definition 2 if and only if it fits to the classical Definition 1.

For that, let X = [0, 1]m, Y = {1, . . . , k} and for a distribution D and classifier f , we assume for
x ∈ X that P (Y = y|X = x) = 1, if y = f(x) and 0 otherwise. For l ∈ [k], we set ϵ > 0, and

ℓ(ŷ, y) =

{
0 , if ŷ ̸= l

ϵ+ 1 , otherwise

Furthermore, let d = ∥ · ∥2 and

δ = min
r∈Rm

∥r∥2 s.t. ℓ(f(x+ r), f(x)) > 0 and x+ r ∈ [0, 1]m

Lastly, we assume locally constant labels, i.e., for all ξ = x + r with small perturbation r it holds
that P (Y = y|X = x+ r) = P (Y = y|X = x), i.e., the conditional distribution of the true label is
constant around x ∈ X .

(I) Let ξ = x + r∗ be an adversarial example according to Def. 2, then by construction of
the loss function, f(ξ) = l. Furthermore, δ is chosen so that ξ − x = r ∈ [0, 1]m, and
δ = ∥r∗∥2 = minr∈Rm ∥r∥2 s.t. f(x + r) = l. Therefore, x + r∗ is also an adversarial
example according to Def. 1.

(II) Let x + r∗ be an adversarial example according to Def. 1, then f(x + r∗) = l and thus
ℓ(f(ξ), yξ) = ℓ(f(x+ r∗), y) = ℓ(f(x+ r∗), f(x)) = ϵ+ 1 > ϵ. Furthermore d(x, ξ) =
∥x− x+ r∗∥2 = minr∈Rm ∥r∥2 s.t. ℓ(f(x+ r), f(x)) > 0 and r ∈ [0, 1]m ≤ δ.
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Definition 2 naturally expands Definition 1 by taking into account other distance metrics and formal-
izing the thresholds that are not specified in the original definition. A threshold on the loss difference
generalizes from classification tasks, where targeted attacks can be modeled by a specific loss func-
tion. Therefore, our definition allows identifying adversarial example with respect to loss and not
with respect to prediction itself, which is closer to the construction of adversarial examples with
loss maximization. A distance threshold captures the requirement that adversarial perturbations are
imperceptible. Using the minimum distance is reasonable from an optimization perspective, but it
also highlights a flaw in the original definition: If the minimal perturbation is so large that is indeed
perceptible (or, even worse, would change, e.g., the picture of a cat to that of a dog) then it would
still be considered an adversarial example under Def. 1.

It seems more natural to set a fixed threshold δ on the distance that captures what it means for a
perturbation to be imperceptible, as in the definition of untargeted attacks proposed by Carlini &
Wagner (2017b). From all adversarial examples defined that way, one can then find the closest to
the clean example. We show that Definition 2 is also a generalization of this definition by Carlini &
Wagner (2017b) of untargeted attacks with general Lp-distances.
Definition 8 (Carlini & Wagner (2017b) (untargeted)). For X = Rn and Y = {1, . . . ,m}, let
f : X → Y be a classifier, x ∈ Rn, ∥ · ∥p be a p-norm, and δ > 0. Then every ξ ∈ X with
∥x− ξ∥p ≤ δ is an adversarial example for x if f(ξ) ̸= f(x).

Proof. We assume X = Rn and Y = {1, . . . ,m}, d = ∥ · ∥p, and for a distribution D and classifier
f , we assume for x ∈ X that P (Y = y|X = x) = 1, if y = f(x) and 0 otherwise. For ϵ > 0, let
ℓ be a loss function with ℓ(y, y) = 0 and for every y′ ̸= y, ℓ(y′, y) > ϵ. Lastly, we again assume
a locally constant labels, i.e., for all ξ ∈ X with ∥x − ξ∥p ≤ δ it holds that P (Y = y|X = ξ) =
P (Y = y|X = x).

(I) Let ξ be an adversarial example according to Def. 2, then by construction of the loss func-
tion, f(ξ) ̸= f(x). Furthermore, ∥x − ξ∥p = d(x, ξ) ≤ δ. Therefore, ξ is also an
adversarial example according to Def. 8.

(II) Let ξ be an adversarial example according to Def. 8. Then d(x, ξ) = ∥x − ξ∥p ≤ δ and
ℓ(f(ξ), yξ)−ℓ(f(x), y) = ℓ(f(ξ), f(x))−ℓ(f(x), f(x)) = ℓ(f(ξ), f(x)) > ϵ. Therefore,
ξ is also an adversarial example according to Def. 2.

F DETECTING ADVERSARIAL EXAMPLES

It is possible to detect adversarial examples using a simple threshold on the relative sharpness mea-
sure. We did not include a practical study of this since it would go beyond the scope of this paper.
Developing a sound method requires more than fine-tuning the threshold. Moreover, this requires
comparing the approach to a wide range of state-of-the-art detection methods, which would be a
paper of its own. Therefore, we leave this interesting practical aspect for future work. Nonetheless,
we provide preliminary results. We trained a decision stump on the sharpness of clean and adversar-
ial samples on CIFAR-10 for WIDERESNET-28-4 using 5-fold cross-validation, which yields the
following accuracies: [0.92, 0.92, 0.93, 0.92, 0.92], i.e., adversarial examples can be detected with
an average accuracy of 0.92 with little to no difference between the folds.
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Figure 10: Here, we plot the squared norm of the hidden representation versus the sharpness.
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