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Abstract

Machine learning interatomic potentials (MLIPs) have revolutionized the modeling
of materials and molecules by directly fitting to ab initio data. However, while
these models excel at capturing local and semi-local interactions, they often prove
insufficient when an explicit and efficient treatment of long-range interactions are
required. To address this limitation, we introduce Reciprocal-Space Attention
(RSA), designed to capture long-range interactions in the Fourier domain. RSA can
be seamlessly integrated with any existing local or semi-local MLIP framework.
Our key contribution is mapping the linear-scaling attention mechanism into Fourier
space. This technique allows us to effectively capture long-range interactions, such
as electrostatics and dispersion, without requiring predefined charges or other
explicit empirical assumptions. We demonstrate the effectiveness of our method
through a diverse set of benchmarks, including the dimer binding curve, dispersion
interactions in layered phosphorene exfoliation, and molecular dynamics simulation
of water. Our results show that RSA successfully captures long-range interactions
in various such chemical environments.

1 Introduction

Machine learning interatomic potentials (MLIPs) are data-driven surrogates for the potential energy
surface trained on ab initio energies and forces [9} [14]. By directly fitting electronic-structure datasets
into high-dimensional models containing on the order of 10*~10¢ parameters, MLIPs deliver accuracy
comparable to density functional theory (DFT) at orders of magnitude lower computational cost per
step. This efficiency enables molecular dynamics (MD) simulations of systems with thousands of
atoms over nanosecond to microsecond timescales, extending the reach of atomistic modeling to
mesoscopic regimes that are otherwise impractical with direct ab initio methods [39} 20, 44].

Two families of MLIPs have been especially influential. The first employs physics-inspired
SE(3) invariant local descriptors—such as ACSFs, SOAP, and ACE—within kernels or neural
networks [10l 14} [23]]. The second relies on message-passing graph neural networks with explicit rota-
tional equivariance, such as NequIP and MACE, which construct features on the fly while respecting
symmetry constraints [S} 8, [7]. In both cases, representations are fundamentally local: atoms interact
only within a cutoff radius 7., and for message passing with L layers, the receptive field extends
to approximately L X 7y, providing what is effectively a “semi-local” coverage. When trained on
large and heterogeneous ab initio datasets, these models have demonstrated strong transferability
across different chemistry and phases [0, 41]].

Local and semi-local MLIPs work remarkably well in homogeneous bulk systems such as crystals
and simple liquids [43, [35} 24]], where slowly varying long-range contributions either cancel by
symmetry or can be treated in a mean-field sense [47, 48| 29| [17]. However, many application-
relevant chemical settings—surfaces, interfaces, nanostructures, molecular adsorption, charged or
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polar media, and systems under external fields—are dominated by intrinsically nonlocal physics,
including Coulombic interactions, polarization/induction, and dispersion [322]. The nearsightedness
of electronic matter (NEM) clarifies this distinction: the electronic density at a point is determined
primarily by the effective potential in its vicinity, which itself contains contributions from long-
range electric fields [28]]. Thus, nearsightedness does not imply locality with respect to atomic
coordinates. Incorporating explicit long-range interactions into MLIPs is therefore essential for the
faithful modeling of heterogeneous environments.

Two broad strategies have been developed to move beyond the strict locality assumptions of MLIPs [3]].
The first relies on charge-augmented schemes, as in PhysNet and its successors [S0, (51} [15], which
predict atomic charges (or charge-like) observables from local neighborhoods and then compute
electrostatics using Ewald or PME-type solvers [21]. While straightforward to implement, these
approaches face well-known challenges: atomic “charges” are not observables in ab initio theory;
different density partitioning schemes yield inconsistent labels; locally predicted charges cannot
capture physics beyond the cutoff (e.g., long-range charge transfer); and charge-equilibration fixes
introduce additional, often ad hoc, parameters such as electronegativities [37]. A second line of
work incorporates global interactions directly through fully long-range ML modules. Examples
include long-range descriptors (e.g., LODE [33]], reciprocal-space neural operators (e.g., Neural-P3M,
Ewald message passing) [53}138]], attention mechanisms with efficient global reach (e.g., SpookyNet,
Euclidean Fast Attention) [27,51]], and self-consistent field neural networks (SCFNN) [28]].

From these developments, several key design considerations emerge for incorporating long-range
physics into MLIPs: (i) end-to-end differentiability with strict energy—force consistency; (ii) a global
receptive field with favorable scaling; (iii) natural compatibility with periodic boundary conditions;
(iv) seamless integration with short-range MLIP backbones; and (v) avoidance of non-observables
such as predefined atomic charges. In this work, we introduce Recriprocal Space Attention (RSA), a
purely data-driven long-range framework that maps a linear-scaling attention mechanism into Fourier
space, providing a global interaction channel while preserving end-to-end differentiability. Our RSA
kernels integrate seamlessly with existing short-range MLIPs; in this study we pair it with MACE to
construct a unified energy model. By operating directly in the Fourier domain, the module captures
electrostatics and dispersion without relying on empirical charge partitioning, while remaining
naturally compatible with periodic boundary conditions. We evaluate the approach on benchmarks
designed to probe long-range physics - including SN2 reaction system, dimer binding curves, gas of
random charges, dispersion-controlled exfoliation in layered phosphorene, and molecular dynamics
of liquid water — demonstrating systematic improvements over local and semi-local baselines in
energies, forces, and physically relevant observables.

2 Methods

2.1 Real Space Attention

We begin by providing the necessary background for establishing a Reciprocal space—based attention
mechanism that enables a computationally efficient and accurate treatment of long-range interactions
in short-range MLIPs. In particular, our methodology extends naturally beyond real space and
remains applicable to periodic systems.

The standard dot-product self-attention mechanism, widely used in transformers, processes inputs
through alternating self-attention and feed-forward blocks, with positional information typically
introduced via absolute positional embeddings [52]. In this formulation, let m index an item in
a sequence of length N. The feature at position m is combined with a positional embedding and
linearly projected to a query vector q,,, while tokens at positions n are projected to key vectors k,,
and value vectors v,,. The attention output at position m is then given by

SN exp ((@m, kn)) Vi

Attention,,, (Q, K, V) =
SN exp (A k)

ey

where Q € RV*d K € RV* and V € RV X4 are the query, key, and value vectors respectively,
with N tokens and d, features; (q,,, k,) = q:nkn denotes the scalar dot product.
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A key limitation of Eq.[1is its quadratic complexity, O(N?), both in computation and in memory, as
each of the N queries attends to all NV key vectors. A further limitation is the reliance on absolute
positional encoding which directly incorporates positional representations.

To address the latter issue, recent work has introduced relative positional encoding, which better
reflect the pairwise relationships between tokens. Rotary positional embeddings (RoPE) [49], first
introduced in ROFORMER, implement this idea by applying position-dependent rotations R,,, to the
query and key vectors. This approach has been shown to improve performance in tasks where relative
structure is essential. In parallel, efforts to reduce the quadratic computational cost have led to the
development of linear attention mechanisms, which approximate the softmax kernel using feature
maps that enable linearization [36].

To make RoPE compatible with such linear transformers, approximations have been proposed
that combine position-dependent rotations with kernel feature maps, allowing relative positional
information to be retained while preserving O(N) complexity. The RoPE integrated linear attention
is then

SN Rid(am)” Rud(ka)vy,
SN d(am)T d(k,)

where ¢ denotes a feature map (typically non-negative). For each query vector q,,, the quantity

Zn 1ok ) v, is independent of m and can be precomputed. Consequently, Eq. [2 can be written
as

Attention,,, (Q, K, V) = 2

(Rm¢(qm))T Zw 1 Rno(k )
$lam)” Yoy $(kn)

which makes the overall computation linear via O(N). We encourage the interested reader to
the original papers for more details on linear attention and rotary embeddings (RoPE) [49, [36]].
In subsequent discussions, we focus on integrating Eq. 3] into atomic systems subject to periodic
boundary conditions.

Attention,, (Q,K, V) = 3

2.2 Reciprocal Space Periodic Attention

Building on the real-space attention framework discussed in Sec. 2.1} we now extend the formulation
into reciprocal (Fourier) space, which naturally accommodates periodic boundary conditions and
long-range interactions. In periodic molecular dynamics (MD) simulations, atoms interact with
their neighbors not only through real-space short-range interactions but also via reciprocal-space
long-range interactions, such as electrostatics, dipole—dipole couplings, dispersion, etc. Capturing
these long-range interactions in a purely real-space setting necessarily incurs O(N?) cost in both
compute and memory, unless approximations such as multipole expansions are introduced [32,[30].
In contrast, reciprocal-space methods, such as Ewald summation and its generalizations, treat slowly
decaying interactions more efficiently by decomposing the potential into short- and long-range
contributions, making them naturally well suited for a Fourier-space attention mechanism. Following
the classical Ewald partitioning, the total potential V' (r) can be decomposed into a rapidly varying
Gaussian-truncated short-range and uniformly slowly varying long-range piece [31]]

erfc(ar) n erf(ar)

V(T) = Ushort( ) + Ulong( ) (4)

T T
where erf and erfc denote the error and complementary error functions, respectively, and « is the
screening parameter that defines the length scale separating short- and long-range contributions. We
assume that vgen () can be fully represented by any modern MLIP such as MACE, and therefore
focus only on wjeng (7). Following Ewald summation, the long-range interaction energy of a charge-
neutral system can then be written as

o —k /(4a2) o e k?/(40?)

7 ZZQMQH e(rm—rn) = 7 T |S(k)|2 Q)

k£0 m n=1 k£0

Elong =
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where V indicates the volume of the simulation cell, « is the Ewald screening parameter which
controls the length-scale of the separation of short and long-range terms, k are the reciprocal lattice
vectors, and ¢,,, ', indicate the atomic charges and positions of the m-th atom respectively. By
excluding the divergent k = 0 term, the charge neutrality of the system is implicitly enforced. We
express the Ewald sum in terms of the magnitude of the structure factor, |S(k)|?, in Eq.[5| This
reformulation is not merely cosmetic: for a fixed reciprocal-space grid, it reduces the complexity
from O(N?) to O(N) where N is the total number of atoms. Looking closely at the expression for
FElong in Eq.[5] one can see that the factor S(k)S(—k) is the only term that globally couples all atoms
through the exponential, e’(*= =) and thereby ensures correct treatment of long-range interactions.
Moreover, the periodicity of the reciprocal lattice vectors ensures that direct position vectors in
real-space can be used without costly construction of periodicity-aware edge lists. By integrating
RoPE methodology with the Ewald-sum formalism, we develop a reciprocal space attention kernel
that inherently satisfies periodic boundary conditions while preserving translational invariance. This
is achieved through the encoding of pairwise interaction via Bloch-like phase factors. We refer to this
as Fourier Positional Encoding (FPE), which is defined as

FPEj (X, Fyy) = X - €57 (6)

where m denotes the m-th atom in the simulation cell. A key advantage of using FPE is its phase
invariance in the periodic lattice space, which gives the following

eik-[(rm—rn)+T] — eik'(rm—rn) (7)

where T is a lattice translational vector. This shows that the phase factor is invariant under the
choice of periodic image T, provided that k is a reciprocal lattice vector of the simulation cell. As a
consequence, quantities built purely from such phase factors - such as the Fourier-transformed density
are naturally fully periodic. We can formulate an attention kernel (see Fig.[I)) using FPE for query
and key vectors. Since both query and key vectors are complex, the scalar product is instead defined
as (q,k) = q”k, where k indicates a complex conjugate. The inner product between the query and
key vectors associated with atoms m and n in a standard attention format can then be written as,

(@me™ ™ K™ ) = (g, kel ®)

Eq. [8]is one of the key advantages of FPE which enable us to write standard quadratic attention
operation without normalization and a row-wise softmax as

N
RSA,(Q K, V) =V, =3 > (qm, kn)e™ v, ©)
k#0 n=1

where we reduce over the k dimension to get back the final attention outputs V,,,. Except for the
normalizing constants, the above expression strongly resembles the total long-range potential for an
atom m given by Ewald sum [42,[31]

N 2 2
2m 67k /(4 )~ ik(ry, —r
Vit =7 20— e (10)
k#0n=1

To ameliorate the cost associated with quadratic attention, we can approximate the above expression
using a linear attention-like mechanism discussed in Eq[3] the inner summation within the value
matrix computation (Eq[9) remains constant for a given atom m. This atom-independent property
enables a significant reduction in computational complexity, reducing it from a quadratic to a linear
operation. Thus, using a linear attention-like mechanism, the Reciprocal-Space Attention (RSA)
formulation can be written as

N
RSA,,(Q, K, V)~ > FPE(¢(qm), tm)” > FPE(¢(kn), Tn)Va" (1)
k+#0 n=1

where FPE(¢(Q., ), m) and FPE(é(ky,), ry) are feature-mapped FPE rotated query and key vector,
respectively for atoms m and n, respectively.
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Figure 1: (a) Overview of the short-range and long-range GNN architecture. Here, Z; denotes the
atomic number of atom ¢, C are the crystal lattice vectors, R; is the position of atom 7, and R;; is
the displacement vector from atom j to atom ¢. Each interaction layer couples a short-range message-
passing (SR-MP, blue) block with a long-range message-passing (LR-MP, green) block, resulting in a
complete atomic representation that are passed through a readout head to predict energy and forces.
(b) Schematic depiction of Reciprocal Space Attention (RSA) module, which provides the long-range
message-passing channel. Atomic features hZ and hZ are first projected into query, key, and value
vectors through feed-forward layers followed by nonlinearities ot to obtain ¢((Q),,) and ¢(K,,). The
transformed feature vectors are then rotated using Fourier Positional Encodings (FPE), parameterized
by reciprocal lattice vectors k, yielding the rotated Q. and K,, vectors. The rotated keys, K,,
are combined with the value vector V,, via an outer product, K, ® V,,, to obtain a graph-level
key-value cache. This cache is broadcast back to the node space and contracted (left-multiplied) with
the rotated queries Q,, at the corresponding k-frequency, producing per-mode interactions for each
node. Summation over reciprocal modes ) -, yields the long-range message.

3 Results

Several recent machine learning interatomic potentials [6, 146 51} 54] replace or augment standard
message passing updates with self-attention mechanisms over neighboring atoms or edges within local
atomic environments. While message-passing neural networks (MPNNs) are effective at capturing
semi-local interactions over a few hops, they are not expected to represent true long-range effects as
discussed in [3]. In the absence of intermediary nodes connecting distant atoms, no information can
propagate. In addition, MPNNSs often suffer a loss of expressivity as the number of message-passing
steps increases (e.g. over-smoothing), as discussed in [2} [13]].

3.1 Disconnected Molecular Graphs with Long-range effects
3.1.1 SN2 Reaction Systems

The bimolecular nucleophilic substitution (SN2) is a canonical reaction mechanism in organic chem-
istry. In this process, a strong nucleophile attacks an sp?-hybridized carbon from the backside,
forming a new bond as the leaving group departs in a single, concerted step. As a representative
case, we consider reactions involving fluoride and iodide, which are prototypical Sx2 systems. These
systems exhibit pronounced long-range electrostatic interactions between the methyl halide (with a
large dipole moment) and the halide anion (bearing a negative charge), posing a significant challenge
for strictly local models. We sampled the subset comprising F and I ions from the original Sx2
data set constructed by [S0]. We trained a short-ranged (SR) model using MACE [3]] with a radial
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cut-off of 5 A and two message passing layers, leading to the total receptive field of 10 A for each
atom. We use the same architectural settings for the long-range (LR) model and with a smearing
width (¢ =5 A). Fig. presents the one-dimensional potential energy surface along the reaction
coordinate. The short-range model exhibits incorrect asymptotic behavior and unphysical artifacts
at large ion—molecule separations; once the separation exceeds the cutoff, it predicts a constant
energy. In contrast, the LR model accurately captures the potential energy surface across the full
range of separations, including the long-distance tail. These results show that the LR model remains
sensitive to interactions beyond the local receptive field, whereas purely local models saturate once
the interatomic separations exceed their receptive cutoffs.
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Figure 2: SN2 binding curves comparing DFT with LR-MACE and SR-MACE models.

3.1.2 Dimer Binding Curves

We next benchmark our LR method on binding curves for dimers of charged (C) and polar (P)
molecules at varying separations in a periodic cubic box with an edge length of (30 A). The dataset is
originally derived from the BioFragment Database [12]]. We additionally select a representative CP
dimer class and recompute the curve with PBEO plus many-body dispersion at coarser increments
in interatomic distances of 0.1 A. We also computed the potential energy curve of the water dimer
(equivalent to the PP dimer case) as a function of the separation distance between the two molecular
clusters. These calculations were performed using the SPC/E water model ([[L1]) with explicit long-
range Coulomb interactions. Both the SR and LR models use the same architectural settings as in
the Sny2 benchmark. Figs. [3(a) and (b) compare the binding curves for the water and CP dimers,
respectively. Consistent with the Sy2 benchmark, the short-range model saturates once the inter-
fragment separation exceeds its total receptive field, whereas the long-range model remains sensitive
to interactions beyond this range and recovers the expected long-distance asymptotic behavior.

3.2 Periodic Graphs with Long-Range effects
3.2.1 A gas of Random Charges

As an initial validation, we consider a toy system comprising randomly distributed point charges
within a cubic simulation cell with periodic boundary conditions, following the construction by [33].
Each configuration contains 128 atoms, of which 64 carry a positive charge of +1e and the remaining
64 carry a negative charge of —1e. The atomic interactions are governed by the Coulomb potential,
supplemented by the repulsive term of a Lennard-Jones potential. This benchmark is employed to
assess the performance of our LR model in comparison to the SR model in an environment with
strong electrostatic interactions. For the SR model, we used a cutoff of 5 A with two message-passing
layers. The LR component used the same receptive field and a Gaussian smearing of 0 = 5 A. With
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Figure 3: Binding curves comparing DFT with LR-MACE and SR-MACE models for (a) CP dimers
(b) Water Dimer.

Table 1: MAEs of Energies and Forces for LR and SR MACE models with corresponding receptive
fields.

Dataset Model Energy MAE (meV/atom) | Force MAE (meV/A)
Random Charges | LR MACE (10 A) 2.5 71.6
SR MACE (10 A) 3.0 97.1
Liquid NaCl LR MACE (6 A) 6.8 141.9
SR MACE (6 A) 8.7 175.1

these settings, the LR model consistently outperformed the SR model, with the improvement most
pronounced in the Force MAEs, as shown in Table|l| This indicates that the LR formulation captures
per-atom long-range electrostatics more effectively than its short-range counterpart.

3.2.2 Liquid sodium chloride

After validating the model on systems governed by 1/r interactions, we subsequently assessed its
performance on a realistic molten salt system. Liquid sodium chloride (NaCl) was selected as the
initial benchmark because of the pronounced electronegativity contrast between Na and Cl atoms,
which is expected to induce substantial long-range Coulombic interactions. We employed the dataset
of Ref. [26], comprising 1,014 configurations of 128 atoms (64 Na and 64 Cl) each, divided into 80%
training and 20% validation splits. Table|I|compares the LR and SR MACE models evaluated with a
6A receptive field (single message passing layer with 7cy0g = 6 A). The LR model consistently
achieves lower MAEs for both energies and forces, reflecting clear relative reductions and indicating
that explicit treatment of long-range interactions, absent in the SR formulation, improves predictive
accuracy at the same cutoff.

3.2.3 Exfoliation of Phosphorene

We next consider the exfoliation behavior of black phosphorus, focusing on the interaction between
pairs of phosphorene layers, building upon the work of [19]. In their study, the exfoliation curve
was constructed by starting from the bulk crystal structure of black phosphorus and systematically
varying the interlayer distance along the [010] crystallographic direction, while preserving the internal
geometry of the puckered monolayers. The interlayer separation was defined as the distance between
these layers, and the corresponding energies were computed using density functional theory with
many-body dispersion (DFT+MBD). To develop a MLIP, [19] employed a Gaussian Approximation
Potential (GAP) model augmented with an explicit long-range RS dispersion term. Their analysis
revealed that a short-range GAP model lacking the R correction failed to reproduce the exfoliation
energy profile, especially at large interlayer separations, highlighting the necessity of explicitly
including long-range interactions alongside local atomic descriptors. In this work, we leverage
the original dataset from their study to evaluate our long-range machine learning framework. For
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the short-range (SR) component, we used a cutoff of 6 A with two message-passing layers. The
long-range (LR) component employed a Gaussian smearing of 0 = 5 A. The exfoliation energy
curve obtained using our method is shown in Fig.[d This plot illustrates the energetic response as the
interlayer distance increases, capturing the essential features of van der Waals interactions between
phosphorene sheets. Notably, our approach achieves accuracy comparable to DFT+MBD without
requiring empirical parameterization of long-range interactions, demonstrating its effectiveness for
layered materials.
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Figure 4: Inter-layer interaction dominated by dispersion. (a) Illustration of Phosphorene sheet
exfoliation based on the original work of Deringer et al. [19] with the corresponding exfoliation curve
shown in (b)

3.2.4 Effect of long-range beyond energies — The dynamics of the bulk water

To assess the capability of the LR MACE framework in representing complex molecular liquids, a
data set comprising 1593 liquid water configurations [16l], each containing 64 molecules, was used.
Reference configurations were generated with the CP2K software [40] package at the revPBE(Q-D3
level [45] of the density functional theory. For the short-range (SR) component, we used a cutoff
of 6 A with two message-passing layers. The long-range (LR) component employed a Gaussian
smearing of 0 = 5 A. Using these models, we performed MD simulations of bulk water with a
density of 1 g/mL at 300 K. Consistent with previous observations[[I5} 55]], Fig.[5h shows excellent
agreement with the corresponding SR-MACE baseline, suggesting that our LR model provides
stable continuous trajectories, crucial for MD simulations. Although the overall structure of liquid
water is largely insensitive to long-range interactions, the dipolar correlations within the bulk are
not [17,[15,29]. To examine this, we evaluated . (k) for both the SR and LR water models. The
longitudinal dipole—density correlations, shown in Fig. [5p, exhibit excellent agreement for both the
models across most k values, except at long wavelengths (small k), where SR models diverge. We
employed a semi-local two-layer model for bulk water, which exhibits a slightly delayed onset of
divergence in the dipole—density correlations due to its larger receptive field compared to a fully
local, non—message-passing model. However, as demonstrated previously [15} 128, [17], all SR models
ultimately fail to capture the correct asymptotic screening behavior. In contrast, the LR model
accurately reproduces the long-wavelength behavior of the dipole—density correlations, consistent
with physical expectations for a properly screened polar liquid.

4 Discussion

The current RSA framework can be extended in several ways. In this work, we restrict the short-range
MACE model to scalar features (¢,,,, = 0), but it can also be naturally extended to higher-order
tensors. The exponential factor e’ is invariant with respect to rotations of r (where r € R? is a
real-space lattice vector), since k - r is a scalar dot product and k (k € R3 is a reciprocal-space

wavevector) undergoes the same rotation as r. So for a feature T,gf ) (r) one may write

T (r, k) = e*T T (r), (12)

m
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Figure 5: (a) Oxygen—oxygen radial distribution function (goo(r)) comparing the SR-MACE and
LR-MACE models. (b) Longitudinal dipole-density correlation function, ¥ (k), for bulk water at
300 K obtained from the two-layer short-range (SR-MACE) and long-range (LR-MACE) models.
The inset highlights the low-k regime, which is most sensitive to long-range electrostatics.

where T\ (r) and s (r, k) denotes the rank-¢ spherical-tensor feature at r with component m €
{—¢,...,¢}. As mentioned above, the exponential factor is invariant under rotation, so the tensor rank
¢ is preserved. This irrep-preserving form is the simplest extension to higher-order tensor features
when rank-mixing is not required. Although the above method generalizes to equivariant features,
[42] observed that invariant descriptors are sufficient to capture long-range pairwise interactions.
Likewise, Kosmala et. al. [38]] reported significant improvements when only the scalar embedding
was upgraded within an equivariant architecture like PaiNN. For these reasons, in this work we focus
on a MACE model with invariant (scalar) features only. Potentially, it is also interesting to explore the
hybrid framework in which invariant long-range messages are passed through to the equivariant short-
range messages. Another possible avenue for extending our framework is to adopt mesh-based Ewald
techniques, such as Particle-Mesh Ewald (PME) [18], smooth PME (SPME) [25] or Particle—Particle
Particle-Mesh (PPPM) [34} 21]]. In the current formulation, despite the reciprocal-space attention
being linear in the number of k-vectors, summing over the full set of reciprocal lattice vectors incurs
the classical O(N3/2) [1]] scaling of direct Ewald methods when system size is increased at fixed
density. In practice, restricting the sum to a fixed set of top- K k-vectors (i.e. top-K low frequency
wave-vectors) for relatively similar lattice sizes works well and reduces the cost to O(N), with
minimal impact on the accuracy for many systems. The FPE combined with the attention kernel
presents a promising method for data-driven learning of long-range interactions without invoking
any ad hoc intermediate observables like classical electronegativities [37] or scalar/vector atomic
charges [50,[15]]. While accurate, the reciprocal space attention framework comes with limitations.
The usage of reciprocal lattice vectors during training can cause the model to be dependent on the
k-grid, and thus in turn, on the lattice boxes used during training. For most cases, we have tested we
have found this dependence to be minimal, and the model can generalize to much larger simulation
cells (as shown in the case of bulk water) and denser k-grids during inference.

5 Conclusion

We introduced Reciprocal Space Attention (RSA), a k-space attention framework for machine
learning interatomic potentials that captures long-range interactions without relying on intermediate
observables like charges or empirical corrections. A core component of RSA is Fourier Positional
Encoding (FPE), which inherently encodes periodicity and relative atomic positions via Bloch phase
factors. FPE when combined with linear attention-like mechanism arrives at the RSA method which
respects translational invariance of the atomic system. Benchmarks on Sny2 reactions, pair of charged
& polar dimers, random charge systems, and layered phosphorene demonstrate that RSA consistently
recovers correct long-range asymptotics absent in local and semi-local models. These long-range
effects are common in atomistic simulations of molecules and materials, particularly in organic
electrolytes, aqueous solutions, and interfacial systems. Our results highlight RSA as a general
strategy for integrating long-range interactions into MLIPs such as MACE, thereby extending their
applicability to heterogeneous chemical and materials systems.
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