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Abstract

Machine learning interatomic potentials (MLIPs) have revolutionized the modeling1

of materials and molecules by directly fitting to ab initio data. However, while2

these models excel at capturing local and semi-local interactions, they often prove3

insufficient when an explicit and efficient treatment of long-range interactions are4

required. To address this limitation, we introduce Reciprocal-Space Attention5

(RSA), designed to capture long-range interactions in the Fourier domain. RSA can6

be seamlessly integrated with any existing local or semi-local MLIP framework.7

Our key contribution is mapping the linear-scaling attention mechanism into Fourier8

space. This technique allows us to effectively capture long-range interactions, such9

as electrostatics and dispersion, without requiring predefined charges or other10

explicit empirical assumptions. We demonstrate the effectiveness of our method11

through a diverse set of benchmarks, including the dimer binding curve, dispersion12

interactions in layered phosphorene exfoliation, and molecular dynamics simulation13

of water. Our results show that RSA successfully captures long-range interactions14

in various such chemical environments.15

1 Introduction16

Machine learning interatomic potentials (MLIPs) are data-driven surrogates for the potential energy17

surface trained on ab initio energies and forces [9, 14]. By directly fitting electronic-structure datasets18

into high-dimensional models containing on the order of 104–106 parameters, MLIPs deliver accuracy19

comparable to density functional theory (DFT) at orders of magnitude lower computational cost per20

step. This efficiency enables molecular dynamics (MD) simulations of systems with thousands of21

atoms over nanosecond to microsecond timescales, extending the reach of atomistic modeling to22

mesoscopic regimes that are otherwise impractical with direct ab initio methods [39, 20, 44].23

Two families of MLIPs have been especially influential. The first employs physics-inspired24

SE(3) invariant local descriptors—such as ACSFs, SOAP, and ACE—within kernels or neural25

networks [10, 4, 23]. The second relies on message-passing graph neural networks with explicit rota-26

tional equivariance, such as NequIP and MACE, which construct features on the fly while respecting27

symmetry constraints [5, 8, 7]. In both cases, representations are fundamentally local: atoms interact28

only within a cutoff radius rcut, and for message passing with L layers, the receptive field extends29

to approximately L× rcut, providing what is effectively a “semi-local” coverage. When trained on30

large and heterogeneous ab initio datasets, these models have demonstrated strong transferability31

across different chemistry and phases [6, 41].32

Local and semi-local MLIPs work remarkably well in homogeneous bulk systems such as crystals33

and simple liquids [43, 35, 24], where slowly varying long-range contributions either cancel by34

symmetry or can be treated in a mean-field sense [47, 48, 29, 17]. However, many application-35

relevant chemical settings—surfaces, interfaces, nanostructures, molecular adsorption, charged or36
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polar media, and systems under external fields—are dominated by intrinsically nonlocal physics,37

including Coulombic interactions, polarization/induction, and dispersion [3, 22]. The nearsightedness38

of electronic matter (NEM) clarifies this distinction: the electronic density at a point is determined39

primarily by the effective potential in its vicinity, which itself contains contributions from long-40

range electric fields [28]. Thus, nearsightedness does not imply locality with respect to atomic41

coordinates. Incorporating explicit long-range interactions into MLIPs is therefore essential for the42

faithful modeling of heterogeneous environments.43

Two broad strategies have been developed to move beyond the strict locality assumptions of MLIPs [3].44

The first relies on charge-augmented schemes, as in PhysNet and its successors [50, 51, 15], which45

predict atomic charges (or charge-like) observables from local neighborhoods and then compute46

electrostatics using Ewald or PME-type solvers [21]. While straightforward to implement, these47

approaches face well-known challenges: atomic “charges” are not observables in ab initio theory;48

different density partitioning schemes yield inconsistent labels; locally predicted charges cannot49

capture physics beyond the cutoff (e.g., long-range charge transfer); and charge-equilibration fixes50

introduce additional, often ad hoc, parameters such as electronegativities [37]. A second line of51

work incorporates global interactions directly through fully long-range ML modules. Examples52

include long-range descriptors (e.g., LODE [33], reciprocal-space neural operators (e.g., Neural-P3M,53

Ewald message passing) [53, 38], attention mechanisms with efficient global reach (e.g., SpookyNet,54

Euclidean Fast Attention) [27, 51], and self-consistent field neural networks (SCFNN) [28].55

From these developments, several key design considerations emerge for incorporating long-range56

physics into MLIPs: (i) end-to-end differentiability with strict energy–force consistency; (ii) a global57

receptive field with favorable scaling; (iii) natural compatibility with periodic boundary conditions;58

(iv) seamless integration with short-range MLIP backbones; and (v) avoidance of non-observables59

such as predefined atomic charges. In this work, we introduce Recriprocal Space Attention (RSA), a60

purely data-driven long-range framework that maps a linear-scaling attention mechanism into Fourier61

space, providing a global interaction channel while preserving end-to-end differentiability. Our RSA62

kernels integrate seamlessly with existing short-range MLIPs; in this study we pair it with MACE to63

construct a unified energy model. By operating directly in the Fourier domain, the module captures64

electrostatics and dispersion without relying on empirical charge partitioning, while remaining65

naturally compatible with periodic boundary conditions. We evaluate the approach on benchmarks66

designed to probe long-range physics - including SN2 reaction system, dimer binding curves, gas of67

random charges, dispersion-controlled exfoliation in layered phosphorene, and molecular dynamics68

of liquid water — demonstrating systematic improvements over local and semi-local baselines in69

energies, forces, and physically relevant observables.70

2 Methods71

2.1 Real Space Attention72

We begin by providing the necessary background for establishing a Reciprocal space–based attention73

mechanism that enables a computationally efficient and accurate treatment of long-range interactions74

in short-range MLIPs. In particular, our methodology extends naturally beyond real space and75

remains applicable to periodic systems.76

The standard dot-product self-attention mechanism, widely used in transformers, processes inputs77

through alternating self-attention and feed-forward blocks, with positional information typically78

introduced via absolute positional embeddings [52]. In this formulation, let m index an item in79

a sequence of length N . The feature at position m is combined with a positional embedding and80

linearly projected to a query vector qm, while tokens at positions n are projected to key vectors kn81

and value vectors vn. The attention output at position m is then given by82

Attentionm(Q,K,V) =

∑N
n=1 exp (⟨qm,kn⟩)vn∑N
n=1 exp (⟨qm,kn⟩)

(1)

where Q ∈ RN×dk , K ∈ RN×dk , and V ∈ RN×dv are the query, key, and value vectors respectively,83

with N tokens and dk features; ⟨qm,kn⟩ = q⊤
mkn denotes the scalar dot product.84
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A key limitation of Eq. 1 is its quadratic complexity, O(N2), both in computation and in memory, as85

each of the N queries attends to all N key vectors. A further limitation is the reliance on absolute86

positional encoding which directly incorporates positional representations.87

To address the latter issue, recent work has introduced relative positional encoding, which better88

reflect the pairwise relationships between tokens. Rotary positional embeddings (RoPE) [49], first89

introduced in ROFORMER, implement this idea by applying position-dependent rotations Rm to the90

query and key vectors. This approach has been shown to improve performance in tasks where relative91

structure is essential. In parallel, efforts to reduce the quadratic computational cost have led to the92

development of linear attention mechanisms, which approximate the softmax kernel using feature93

maps that enable linearization [36].94

To make RoPE compatible with such linear transformers, approximations have been proposed95

that combine position-dependent rotations with kernel feature maps, allowing relative positional96

information to be retained while preserving O(N) complexity. The RoPE integrated linear attention97

is then98

Attentionm(Q,K,V) =

∑N
n=1(Rmϕ(qm))T Rnϕ(kn)vn∑N

n=1 ϕ(qm)T ϕ(kn)
(2)

where ϕ denotes a feature map (typically non-negative). For each query vector qm, the quantity99 ∑N
n=1 ϕ(kn)v

⊤
n is independent of m and can be precomputed. Consequently, Eq. 2 can be written100

as101

Attentionm(Q,K,V) =
(Rmϕ(qm))T

∑N
n=1 Rnϕ(kn)v

T
n

ϕ(qm)T
∑N

n=1 ϕ(kn)
(3)

which makes the overall computation linear via O(N). We encourage the interested reader to102

the original papers for more details on linear attention and rotary embeddings (RoPE) [49, 36].103

In subsequent discussions, we focus on integrating Eq. 3 into atomic systems subject to periodic104

boundary conditions.105

2.2 Reciprocal Space Periodic Attention106

Building on the real-space attention framework discussed in Sec. 2.1, we now extend the formulation107

into reciprocal (Fourier) space, which naturally accommodates periodic boundary conditions and108

long-range interactions. In periodic molecular dynamics (MD) simulations, atoms interact with109

their neighbors not only through real-space short-range interactions but also via reciprocal-space110

long-range interactions, such as electrostatics, dipole–dipole couplings, dispersion, etc. Capturing111

these long-range interactions in a purely real-space setting necessarily incurs O(N2) cost in both112

compute and memory, unless approximations such as multipole expansions are introduced [32, 30].113

In contrast, reciprocal-space methods, such as Ewald summation and its generalizations, treat slowly114

decaying interactions more efficiently by decomposing the potential into short- and long-range115

contributions, making them naturally well suited for a Fourier-space attention mechanism. Following116

the classical Ewald partitioning, the total potential V (r) can be decomposed into a rapidly varying117

Gaussian-truncated short-range and uniformly slowly varying long-range piece [31]118

V (r) = vshort(r) + vlong(r) =
erfc(αr)

r
+

erf(αr)
r

(4)

where erf and erfc denote the error and complementary error functions, respectively, and α is the119

screening parameter that defines the length scale separating short- and long-range contributions. We120

assume that vshort(r) can be fully represented by any modern MLIP such as MACE, and therefore121

focus only on vlong(r). Following Ewald summation, the long-range interaction energy of a charge-122

neutral system can then be written as123

Elong =
2π

V

∑
k ̸=0

e−k2/(4α2)

k2

N∑
m

N∑
n=1

q̃mq̃n e
ik·(rm−rn) =

2π

V

∑
k̸=0

e− k2/(4α2)

k2
∣∣S(k)∣∣2 (5)
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where V indicates the volume of the simulation cell, α is the Ewald screening parameter which124

controls the length-scale of the separation of short and long-range terms, k are the reciprocal lattice125

vectors, and q̃m, rm indicate the atomic charges and positions of the m-th atom respectively. By126

excluding the divergent k = 0 term, the charge neutrality of the system is implicitly enforced. We127

express the Ewald sum in terms of the magnitude of the structure factor, |S(k)|2, in Eq. 5. This128

reformulation is not merely cosmetic: for a fixed reciprocal-space grid, it reduces the complexity129

from O(N2) to O(N) where N is the total number of atoms. Looking closely at the expression for130

Elong in Eq. 5, one can see that the factor S(k)S(−k) is the only term that globally couples all atoms131

through the exponential, eik(rm−rn), and thereby ensures correct treatment of long-range interactions.132

Moreover, the periodicity of the reciprocal lattice vectors ensures that direct position vectors in133

real-space can be used without costly construction of periodicity-aware edge lists. By integrating134

RoPE methodology with the Ewald-sum formalism, we develop a reciprocal space attention kernel135

that inherently satisfies periodic boundary conditions while preserving translational invariance. This136

is achieved through the encoding of pairwise interaction via Bloch-like phase factors. We refer to this137

as Fourier Positional Encoding (FPE), which is defined as138

FPEk(x, r⃗m) = x · eik⃗·⃗rm (6)

where m denotes the m-th atom in the simulation cell. A key advantage of using FPE is its phase139

invariance in the periodic lattice space, which gives the following140

eik·[(rm−rn)+T] = eik·(rm−rn) (7)

where T is a lattice translational vector. This shows that the phase factor is invariant under the141

choice of periodic image T, provided that k is a reciprocal lattice vector of the simulation cell. As a142

consequence, quantities built purely from such phase factors - such as the Fourier-transformed density143

are naturally fully periodic. We can formulate an attention kernel (see Fig. 1) using FPE for query144

and key vectors. Since both query and key vectors are complex, the scalar product is instead defined145

as ⟨q,k⟩ = qT k̄, where k̄ indicates a complex conjugate. The inner product between the query and146

key vectors associated with atoms m and n in a standard attention format can then be written as,147 〈
qmeik·rm ,kne

ik·rn
〉
= ⟨qm, kn⟩eik·(rm−rn) (8)

Eq. 8 is one of the key advantages of FPE which enable us to write standard quadratic attention148

operation without normalization and a row-wise softmax as149

RSAm(Q,K,V) = Vm =
∑
k̸=0

N∑
n=1

⟨qm,kn⟩eik·(rm−rn)Vn (9)

where we reduce over the k dimension to get back the final attention outputs Vm. Except for the150

normalizing constants, the above expression strongly resembles the total long-range potential for an151

atom m given by Ewald sum [42, 31]152

V LR
m =

2π

V

∑
k̸=0

N∑
n=1

e−k2/(4α2)

k2
q̃ne

ik(rm−rn) (10)

To ameliorate the cost associated with quadratic attention, we can approximate the above expression153

using a linear attention-like mechanism discussed in Eq.3, the inner summation within the value154

matrix computation (Eq.9) remains constant for a given atom m. This atom-independent property155

enables a significant reduction in computational complexity, reducing it from a quadratic to a linear156

operation. Thus, using a linear attention-like mechanism, the Reciprocal-Space Attention (RSA)157

formulation can be written as158

RSAm(Q,K,V) ≃
∑
k̸=0

FPE(ϕ(qm), rm)T
N∑

n=1

FPE(ϕ(kn), rn)vn
T (11)

where FPE(ϕ(qm), rm) and FPE(ϕ(kn), rn) are feature-mapped FPE rotated query and key vector,159

respectively for atoms m and n, respectively.160
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Figure 1: (a) Overview of the short-range and long-range GNN architecture. Here, Zi denotes the
atomic number of atom i, C are the crystal lattice vectors, Ri is the position of atom i, and Rij is
the displacement vector from atom j to atom i. Each interaction layer couples a short-range message-
passing (SR-MP, blue) block with a long-range message-passing (LR-MP, green) block, resulting in a
complete atomic representation that are passed through a readout head to predict energy and forces.
(b) Schematic depiction of Reciprocal Space Attention (RSA) module, which provides the long-range
message-passing channel. Atomic features hL

m and hL
n are first projected into query, key, and value

vectors through feed-forward layers followed by nonlinearities σ+ to obtain ϕ(Qm) and ϕ(Kn). The
transformed feature vectors are then rotated using Fourier Positional Encodings (FPE), parameterized
by reciprocal lattice vectors k, yielding the rotated Q̃m and K̃n vectors. The rotated keys, K̃n,
are combined with the value vector Vn via an outer product, K̃n ⊗ Vn, to obtain a graph-level
key-value cache. This cache is broadcast back to the node space and contracted (left-multiplied) with
the rotated queries Q̃m at the corresponding k-frequency, producing per-mode interactions for each
node. Summation over reciprocal modes

∑
k yields the long-range message.

3 Results161

Several recent machine learning interatomic potentials [6, 46, 51, 54] replace or augment standard162

message passing updates with self-attention mechanisms over neighboring atoms or edges within local163

atomic environments. While message-passing neural networks (MPNNs) are effective at capturing164

semi-local interactions over a few hops, they are not expected to represent true long-range effects as165

discussed in [3]. In the absence of intermediary nodes connecting distant atoms, no information can166

propagate. In addition, MPNNs often suffer a loss of expressivity as the number of message-passing167

steps increases (e.g. over-smoothing), as discussed in [2, 13].168

3.1 Disconnected Molecular Graphs with Long-range effects169

3.1.1 SN2 Reaction Systems170

The bimolecular nucleophilic substitution (SN2) is a canonical reaction mechanism in organic chem-171

istry. In this process, a strong nucleophile attacks an sp3-hybridized carbon from the backside,172

forming a new bond as the leaving group departs in a single, concerted step. As a representative173

case, we consider reactions involving fluoride and iodide, which are prototypical SN2 systems. These174

systems exhibit pronounced long-range electrostatic interactions between the methyl halide (with a175

large dipole moment) and the halide anion (bearing a negative charge), posing a significant challenge176

for strictly local models. We sampled the subset comprising F and I ions from the original SN2177

data set constructed by [50]. We trained a short-ranged (SR) model using MACE [5] with a radial178
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cut-off of 5 Å and two message passing layers, leading to the total receptive field of 10 Å for each179

atom. We use the same architectural settings for the long-range (LR) model and with a smearing180

width (σ = 5 Å). Fig. 2 presents the one-dimensional potential energy surface along the reaction181

coordinate. The short-range model exhibits incorrect asymptotic behavior and unphysical artifacts182

at large ion–molecule separations; once the separation exceeds the cutoff, it predicts a constant183

energy. In contrast, the LR model accurately captures the potential energy surface across the full184

range of separations, including the long-distance tail. These results show that the LR model remains185

sensitive to interactions beyond the local receptive field, whereas purely local models saturate once186

the interatomic separations exceed their receptive cutoffs.

F I

−10 −5 0 5 10
Reaction Coordinate (Å)

−1

0

1
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gy
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)
DFT
SR-MACE
LR-MACE

Figure 2: SN2 binding curves comparing DFT with LR-MACE and SR-MACE models.

187

3.1.2 Dimer Binding Curves188

We next benchmark our LR method on binding curves for dimers of charged (C) and polar (P)189

molecules at varying separations in a periodic cubic box with an edge length of (30 Å). The dataset is190

originally derived from the BioFragment Database [12]. We additionally select a representative CP191

dimer class and recompute the curve with PBE0 plus many-body dispersion at coarser increments192

in interatomic distances of 0.1 Å. We also computed the potential energy curve of the water dimer193

(equivalent to the PP dimer case) as a function of the separation distance between the two molecular194

clusters. These calculations were performed using the SPC/E water model ([11]) with explicit long-195

range Coulomb interactions. Both the SR and LR models use the same architectural settings as in196

the SN2 benchmark. Figs. 3(a) and (b) compare the binding curves for the water and CP dimers,197

respectively. Consistent with the SN2 benchmark, the short-range model saturates once the inter-198

fragment separation exceeds its total receptive field, whereas the long-range model remains sensitive199

to interactions beyond this range and recovers the expected long-distance asymptotic behavior.200

3.2 Periodic Graphs with Long-Range effects201

3.2.1 A gas of Random Charges202

As an initial validation, we consider a toy system comprising randomly distributed point charges203

within a cubic simulation cell with periodic boundary conditions, following the construction by [33].204

Each configuration contains 128 atoms, of which 64 carry a positive charge of +1e and the remaining205

64 carry a negative charge of −1e. The atomic interactions are governed by the Coulomb potential,206

supplemented by the repulsive term of a Lennard-Jones potential. This benchmark is employed to207

assess the performance of our LR model in comparison to the SR model in an environment with208

strong electrostatic interactions. For the SR model, we used a cutoff of 5 Å with two message-passing209

layers. The LR component used the same receptive field and a Gaussian smearing of σ = 5 Å. With210
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Figure 3: Binding curves comparing DFT with LR-MACE and SR-MACE models for (a) CP dimers
(b) Water Dimer.

Table 1: MAEs of Energies and Forces for LR and SR MACE models with corresponding receptive
fields.

Dataset Model Energy MAE (meV/atom) Force MAE (meV/Å)
Random Charges LR MACE (10 Å) 2.5 71.6

SR MACE (10 Å) 3.0 97.1
Liquid NaCl LR MACE (6 Å) 6.8 141.9

SR MACE (6 Å) 8.7 175.1

these settings, the LR model consistently outperformed the SR model, with the improvement most211

pronounced in the Force MAEs, as shown in Table 1. This indicates that the LR formulation captures212

per-atom long-range electrostatics more effectively than its short-range counterpart.213

3.2.2 Liquid sodium chloride214

After validating the model on systems governed by 1/r interactions, we subsequently assessed its215

performance on a realistic molten salt system. Liquid sodium chloride (NaCl) was selected as the216

initial benchmark because of the pronounced electronegativity contrast between Na and Cl atoms,217

which is expected to induce substantial long-range Coulombic interactions. We employed the dataset218

of Ref. [26], comprising 1,014 configurations of 128 atoms (64 Na and 64 Cl) each, divided into 80%219

training and 20% validation splits. Table 1 compares the LR and SR MACE models evaluated with a220

6 Å receptive field (single message passing layer with rcutoff = 6 Å). The LR model consistently221

achieves lower MAEs for both energies and forces, reflecting clear relative reductions and indicating222

that explicit treatment of long-range interactions, absent in the SR formulation, improves predictive223

accuracy at the same cutoff.224

3.2.3 Exfoliation of Phosphorene225

We next consider the exfoliation behavior of black phosphorus, focusing on the interaction between226

pairs of phosphorene layers, building upon the work of [19]. In their study, the exfoliation curve227

was constructed by starting from the bulk crystal structure of black phosphorus and systematically228

varying the interlayer distance along the [010] crystallographic direction, while preserving the internal229

geometry of the puckered monolayers. The interlayer separation was defined as the distance between230

these layers, and the corresponding energies were computed using density functional theory with231

many-body dispersion (DFT+MBD). To develop a MLIP, [19] employed a Gaussian Approximation232

Potential (GAP) model augmented with an explicit long-range R6 dispersion term. Their analysis233

revealed that a short-range GAP model lacking the R6 correction failed to reproduce the exfoliation234

energy profile, especially at large interlayer separations, highlighting the necessity of explicitly235

including long-range interactions alongside local atomic descriptors. In this work, we leverage236

the original dataset from their study to evaluate our long-range machine learning framework. For237
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the short-range (SR) component, we used a cutoff of 6 Å with two message-passing layers. The238

long-range (LR) component employed a Gaussian smearing of σ = 5 Å. The exfoliation energy239

curve obtained using our method is shown in Fig. 4. This plot illustrates the energetic response as the240

interlayer distance increases, capturing the essential features of van der Waals interactions between241

phosphorene sheets. Notably, our approach achieves accuracy comparable to DFT+MBD without242

requiring empirical parameterization of long-range interactions, demonstrating its effectiveness for243

layered materials.244
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Figure 4: Inter-layer interaction dominated by dispersion. (a) Illustration of Phosphorene sheet
exfoliation based on the original work of Deringer et al. [19] with the corresponding exfoliation curve
shown in (b)

3.2.4 Effect of long-range beyond energies — The dynamics of the bulk water245

To assess the capability of the LR MACE framework in representing complex molecular liquids, a246

data set comprising 1593 liquid water configurations [16], each containing 64 molecules, was used.247

Reference configurations were generated with the CP2K software [40] package at the revPBE0-D3248

level [45] of the density functional theory. For the short-range (SR) component, we used a cutoff249

of 6 Å with two message-passing layers. The long-range (LR) component employed a Gaussian250

smearing of σ = 5 Å. Using these models, we performed MD simulations of bulk water with a251

density of 1 g/mL at 300 K. Consistent with previous observations[15, 55], Fig. 5a shows excellent252

agreement with the corresponding SR-MACE baseline, suggesting that our LR model provides253

stable continuous trajectories, crucial for MD simulations. Although the overall structure of liquid254

water is largely insensitive to long-range interactions, the dipolar correlations within the bulk are255

not [17, 15, 29]. To examine this, we evaluated χzz(k) for both the SR and LR water models. The256

longitudinal dipole–density correlations, shown in Fig. 5b, exhibit excellent agreement for both the257

models across most k values, except at long wavelengths (small k), where SR models diverge. We258

employed a semi-local two-layer model for bulk water, which exhibits a slightly delayed onset of259

divergence in the dipole–density correlations due to its larger receptive field compared to a fully260

local, non–message-passing model. However, as demonstrated previously [15, 28, 17], all SR models261

ultimately fail to capture the correct asymptotic screening behavior. In contrast, the LR model262

accurately reproduces the long-wavelength behavior of the dipole–density correlations, consistent263

with physical expectations for a properly screened polar liquid.264

4 Discussion265

The current RSA framework can be extended in several ways. In this work, we restrict the short-range266

MACE model to scalar features (ℓmax = 0), but it can also be naturally extended to higher-order267

tensors. The exponential factor eik·r is invariant with respect to rotations of r (where r ∈ R3 is a268

real-space lattice vector), since k · r is a scalar dot product and k (k ∈ R3 is a reciprocal-space269

wavevector) undergoes the same rotation as r. So for a feature T
(ℓ)
m (r) one may write270

T̃ (ℓ)
m (r,k) = eik·r T (ℓ)

m (r), (12)
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Figure 5: (a) Oxygen–oxygen radial distribution function (gOO(r)) comparing the SR-MACE and
LR-MACE models. (b) Longitudinal dipole–density correlation function, χzz(k), for bulk water at
300 K obtained from the two-layer short-range (SR-MACE) and long-range (LR-MACE) models.
The inset highlights the low-k regime, which is most sensitive to long-range electrostatics.

where T
(ℓ)
m (r) and T̃

(ℓ)
m (r,k) denotes the rank-ℓ spherical-tensor feature at r with component m ∈271

{−ℓ, . . . , ℓ}. As mentioned above, the exponential factor is invariant under rotation, so the tensor rank272

ℓ is preserved. This irrep-preserving form is the simplest extension to higher-order tensor features273

when rank-mixing is not required. Although the above method generalizes to equivariant features,274

[42] observed that invariant descriptors are sufficient to capture long-range pairwise interactions.275

Likewise, Kosmala et. al. [38] reported significant improvements when only the scalar embedding276

was upgraded within an equivariant architecture like PaiNN. For these reasons, in this work we focus277

on a MACE model with invariant (scalar) features only. Potentially, it is also interesting to explore the278

hybrid framework in which invariant long-range messages are passed through to the equivariant short-279

range messages. Another possible avenue for extending our framework is to adopt mesh-based Ewald280

techniques, such as Particle–Mesh Ewald (PME) [18], smooth PME (SPME) [25] or Particle–Particle281

Particle–Mesh (PPPM) [34, 21]. In the current formulation, despite the reciprocal-space attention282

being linear in the number of k-vectors, summing over the full set of reciprocal lattice vectors incurs283

the classical O(N3/2) [1] scaling of direct Ewald methods when system size is increased at fixed284

density. In practice, restricting the sum to a fixed set of top-K k-vectors (i.e. top-K low frequency285

wave-vectors) for relatively similar lattice sizes works well and reduces the cost to O(N), with286

minimal impact on the accuracy for many systems. The FPE combined with the attention kernel287

presents a promising method for data-driven learning of long-range interactions without invoking288

any ad hoc intermediate observables like classical electronegativities [37] or scalar/vector atomic289

charges [50, 15]. While accurate, the reciprocal space attention framework comes with limitations.290

The usage of reciprocal lattice vectors during training can cause the model to be dependent on the291

k-grid, and thus in turn, on the lattice boxes used during training. For most cases, we have tested we292

have found this dependence to be minimal, and the model can generalize to much larger simulation293

cells (as shown in the case of bulk water) and denser k-grids during inference.294

5 Conclusion295

We introduced Reciprocal Space Attention (RSA), a k-space attention framework for machine296

learning interatomic potentials that captures long-range interactions without relying on intermediate297

observables like charges or empirical corrections. A core component of RSA is Fourier Positional298

Encoding (FPE), which inherently encodes periodicity and relative atomic positions via Bloch phase299

factors. FPE when combined with linear attention-like mechanism arrives at the RSA method which300

respects translational invariance of the atomic system. Benchmarks on SN2 reactions, pair of charged301

& polar dimers, random charge systems, and layered phosphorene demonstrate that RSA consistently302

recovers correct long-range asymptotics absent in local and semi-local models. These long-range303

effects are common in atomistic simulations of molecules and materials, particularly in organic304

electrolytes, aqueous solutions, and interfacial systems. Our results highlight RSA as a general305

strategy for integrating long-range interactions into MLIPs such as MACE, thereby extending their306

applicability to heterogeneous chemical and materials systems.307
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