
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFER LEARNING FOR CONTROL SYSTEMS VIA
NEURAL SIMULATION RELATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer learning is an umbrella term for machine learning approaches that leverage
knowledge gained from solving one problem (the source domain) to improve speed,
efficiency, and data requirements in solving a different but related problem (the
target domain). The performance of the transferred model in the target domain
is typically measured via some notion of loss function in the target domain. This
paper focuses on effectively transferring control logic from a source control sys-
tem to a target control system while providing approximately similar behavioral
guarantees in both domains. However, in the absence of a complete characteriza-
tion of behavioral specifications, this problem cannot be captured in terms of loss
functions. To overcome this challenge, we use (approximate) simulation relations
to characterize observational equivalence between the behaviors of two systems.
Simulation relations ensure that the outputs of both systems, equipped with their
corresponding controllers, remain close to each other over time, and their closeness
can be quantified a priori. By parameterizing simulation relations with neural
networks, we introduce the notion of neural simulation relations, which provides
a data-driven approach to transfer any synthesized controller, regardless of the
specification of interest, along with its proof of correctness. Compared with prior
approaches, our method eliminates the need for a closed-loop mathematical model
and specific requirements for both the source and target systems. We also introduce
validity conditions that, when satisfied, guarantee the closeness of the outputs of
two systems equipped with their corresponding controllers, thus eliminating the
need for post-facto verification. We demonstrate the effectiveness of our approach
through case studies involving a vehicle and a double inverted pendulum.

1 INTRODUCTION

Humans exhibit remarkable capabilities in transferring expertise (Kendler, 1995) across different
tasks where performance in one task is significantly better, having learned a related task. Transfer
learning (Weiss et al., 2016) is a sub-field of AI that focuses on developing similar capabilities in ma-
chine learning problems; aimed towards improving learning speed, efficiency, and data requirements.
Unlike conventional machine learning algorithms, which typically focus on individual tasks, transfer
learning approaches focus on leveraging knowledge acquired from one or multiple source domains
to improve learning in a related target domain (Weiss et al., 2016). Recently, transfer learning has
been successfully applied in designing control logic for dynamical systems (Christiano et al., 2016;
Salvato et al., 2021; Nagabandi et al., 2018). However, for safety-critical dynamical systems, the
design of the control must provide correctness guarantees on its behavior. In this work, we develop
a transfer learning approach for control systems, with formal guarantees on behavior transfer, by
learning simulation relations that characterize similarity between the source and target domains. We
dub these relations neural simulation relations.

This work focuses on controller synthesis for continuous-space control systems described by differ-
ence equations. Examples of such systems include autonomous vehicles, implantable medical devices,
and power grids. The safety-critical nature of these systems demands formal guarantees—such as
safety, liveness, and more expressive logic-based requirements—on the behavior of the resulting con-
trol. While deploying the classic control-theoretic approaches may not require mathematical model of
the system, and use search (Prajna & Jadbabaie, 2004) and symbolic exploration (Tabuada, 2009) to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The proposed behavior transfer framework for controller synthesis. The existence of a
relation and a interface function between source and target systems imply closeness of their behavior.

synthesize controllers, many of these approaches still depend on a mathematical model to provide for-
mal guarantees of correctness. These symbolic approaches typically face the curse-of-dimensionality
where the systems with high dimensions become exceedingly cumbersome and time-consuming
to design. To overcome these challenges, machine learning based approaches (Zhao et al., 2020;
Abate et al., 2022), among others, have been proposed to synthesize control for high-dimensional
and complex systems. By making reasonable assumptions (such as Lipschitz continuity) regarding
the system, these approaches are able to provide guarantees about their performance. More recently,
transfer learning has shown promise (Christiano et al., 2016; Fu et al., 2016; Bousmalis et al., 2018)
in transferring controller from a source domain (a low-fidelity model or a simulation environment) to
a target domain (high-fidelity model or real system). Some of these approaches (Nadali et al., 2023;
2024) also aim to transfer proof certificates (such as barrier certificates and closure certificates) in
addition to transferring control.

Approaches such as Nadali et al. (2023; 2024) can transfer control and proof certificates when the
desired specification on the source and the target system is available. Unfortunately, in typical transfer
learning situation, one is interested in transferring a control from a legacy system that is desirable
for several, difficult to reify, reasons. In these situations, a formal and complete specification is
difficult to extract. We posit that, if we have access to unambiguous structured interfaces (semantic
anchors (Velasquez, 2023)) between the source and the target environments relating observations
in these domains, a behaviorally equivalent transfer can be guaranteed by guaranteeing closeness
of these observations as the system evolves in time. We introduce the notion of Neural Simulation
Relations, which transfers any controller designed for a source system, to a target system, independent
of the property.

In this work we assume access to a simulation environment (digital twin or black-box model) of the
source system Ŝ. In our proposed behavior transfer approach, as depicted in Figure 1, given a source
system Ŝ and a target system S, we design an interface function K that can transfer an arbitrary
controller from Ŝ to S. It does so by guaranteeing the existence of an approximate simulation
relationR between the states of the source and target systems such that for any pair of related states,
and any input in the source environment, there exists an input in the target environment that keeps
the next states related according to R. Moreover, it also guarantees that any pair of states, related
viaR, have approximately similar observations. The existence of such a simulation relation implies
that any behavior on the source system, due to any chosen controller, can be mimicked in the target
system. In this work, we train two neural networks to approximate the simulation relation R and
the interface function K. Under reasonable assumptions, we provide validity conditions that, when
satisfied, guarantee the closeness of the outputs of two systems equipped with their corresponding
controllers, thus eliminating the need for post-facto verification.

Related Work. Transfer learning aims at using a previously acquired knowledge in one domain
in a different domain. In the context of control systems, transfer learning is typically concerned
with transferring a controller from simulation to real-world system which is based on adapting a
controller or policy (Fu et al., 2016; Christiano et al., 2016; Bousmalis et al., 2018; Salvato et al.,
2021; Nagabandi et al., 2018), or robust control methods that are not affected by the mismatch
between the simulator and the real world (Mordatch et al., 2015; Zhou & Doyle, 1998; Berberich
et al., 2020). Another approach is to leverage simulation relations (Girard & Pappas, 2011), which is
mainly concerned with controlling a complex target system through a simpler source system. The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

results in Girard & Pappas (2011; 2009) introduced a sound hierarchical control scheme based on
the notion of an approximate simulation function (relation), bringing together theories from both
control and automata theory under a unified framework. This relation has had a profound impact
on software verification (Baier & Katoen, 2008; Clarke, 1997), synthesizing controllers against
logical properties (da Silva et al., 2019; Fainekos et al., 2007; Zhong et al., 2023) across a variety of
systems, such as piecewise affine (Song et al., 2022), control affine (Smith et al., 2019; 2020), and
descriptor systems (Haesaert & Soudjani, 2020). Additionally, it has been applied in various robotics
applications, such as legged (Kurtz et al., 2020) and humanoid (Kurtz et al., 2019) robots. Moreover,
Abate et al. (2024) proposed bisimulation learning to find a finite abstract system. More recently, new
approaches have been proposed to transfer safety proofs between two similar systems (Nadali et al.,
2023; 2024).

Contribution. In this paper, we propose sufficient data-driven criteria, dubbed Neural Simulation
Relation, to ensure transfer of controllers designed for source systems, along with their correct-
ness proofs (if existing), to target systems. In particular, we introduce a training framework that
parameterizes the simulation relation function and its associated interface function as neural net-
works. Furthermore, by proposing validity conditions to ensure the correctness of these functions,
we formally guarantee behavioral transfer from a source to a target system, eliminating the need for
post-facto verification over the neural networks.

To the best of our knowledge, this is the first correct-by-construction work that aims to find a
simulation relation and its interface function in a data-driven manner between two given systems.

2 PROBLEM FORMULATION

We denote the set of reals and non-negative reals by R and R≥0, respectively. Given sets A and
B, A \ B and A × B represent the set difference and Cartesian product between A and B, re-
spectively, and |A| represents the cardinality of a set A. Moreover, we consider n-dimensional
Euclidean space Rn equipped with infinity norm, defined as ∥x − y∥ := max1≤i≤n |xi−yi|
for x=(x1, x2, . . . , xn), y=(y1, y2, . . . , yn) ∈ Rn. Similarly, we denote Euclidean norm as
∥x− y∥2 :=

√∑n
i=1(xi − yi)2. Furthermore ⟨x0, x1, . . .⟩, x(k) ∈ Rn denotes an infinite sequence.

Throughout the paper, we focus on discrete-time control systems (dtCS), as defined below.
Definition 1. A discrete-time control system (dtCS) is a tuple S:=(X ,X0,Y, U, f, h), where X⊆Rn

represents the state set, X0⊆X is the initial state set, U⊆Rm is the set of inputs, and Y⊆Rl is the set
of outputs. Furthermore, f :X×U→X is the state transition function, and h : X→Y is the output
function. The evolution of the system under input from controller u : X → U is described by:

S :

{
x(t+ 1) = f(x(t), u(t)),

y(t) = h(x(t)), t ∈ N,
(1)

A state sequence of system S is denoted by ⟨x0, x1, . . .⟩, where x0∈X0, and xi+1=f(xi, ui), ui∈U ,
for all i ∈ N. We assume that sets X , U , and Y are compact, and maps f and h are unknown but can
be simulated via a black-box model. Moreover, we assume that f and h are Lipschitz continuous, as
stated in the following assumption.
Assumption 2 (Lipschitz Continuity). Consider a dt-CS S=(X ,X0,Y, U, f, h). The map f is
Lipschitz continuous in the sense that there exists constants Lu,Lx ∈ R≥0 such that for all x,x′∈X ,
and u, u′∈U one has:

∥f(x, u)− f(x′, u′)∥ ≤ Lx∥x− x′∥+ Lu∥u− u′∥. (2)

Furthermore, the map h is Lipschitz continuous in the sense that there exists some constant Lh ∈ R≥0

such that for all x, x′ ∈ X , one has:

∥h(x)− h(x′)∥ ≤ Lh∥x− x′∥. (3)

Without loss of generality, we assume that Lipschitz constants of the functions f and h are known. If
the Lipschitz constants are unknown, one can leverage sampling methods (Wood & Zhang, 1996;
Strongin et al., 2019; Calliess et al., 2020) to estimate those constants. For those dt-CSs satisfying
Assumption 2, we define a notion of behavior transfer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 3. (Behavior Transfer) Consider two dt-CSs S = (X ,X0,Y, U, f, h) (a.k.a. target
system) and Ŝ = (X̂ , X̂0,Y, Û , f̂ , ĥ) (a.k.a. source system), and a constant ϵ ∈ R≥0. There exists a
behavior transfer from Ŝ to S with respect to ϵ, if for any controller for Ŝ, there exists one for S,
such that each systems’ output, equipped with their corresponding controllers, remain ϵ-close for
all time. Concretely, for any state sequence X̂ = ⟨x̂0, x̂1, . . .⟩ in the source system equipped with
its controller, there exists a controller and a state sequence X = ⟨x0, x1, . . .⟩ in the target system
equipped with the controller, such that:

∥h(xt)− ĥ(x̂t)∥ ≤ ϵ, for all t ∈ N.

Intuitively, if a behavior transfer exists from Ŝ to S, one can adapt any control policy from Ŝ to S
while ensuring their outputs remain similar (i.e., within ϵ) at all times. To automate the transfer of
control strategies in different domains, with theoretical guarantees, this paper aims at solving such a
behavior transfer from Ŝ to S, as formally stated in the problem formulation below.
Problem 4 (Behavior Transfer). Consider two dt-CSs S = (X ,X0,Y, U, f, h) (a.k.a. target system)
and Ŝ = (X̂ , X̂0,Y, Û , f̂ , ĥ) (a.k.a. source system), and a constant ϵ ∈ R≥0. Verify a behavior
transfer from Ŝ to S with respect to ϵ (if existing).

To solve Problem 4, the notion of ϵ-approximate simulation relation is deployed throughout the paper,
which is recalled from Tabuada (2009) as the following.
Definition 5 (Approximate Simulation Relation). Consider two dtCSs S = (X ,X0,Y, U, f, h) and
Ŝ = (X̂ , X̂0,Y, Û , f̂ , ĥ), and a constant ϵ ∈ R≥0. A relation R ⊆ X × X̂ is an ϵ-approximate
simulation relation from Ŝ to S if following conditions hold:

(i) ∀x̂0 ∈ X̂0,∃x0 ∈ X0 such that (x0, x̂0) ∈ R, (4)

(ii) ∀(x, x̂) ∈ R, we have that ∥h(x)− ĥ(x̂)∥ ≤ ϵ, (5)

(iii) ∀(x, x̂) ∈ R and ∀û ∈ Û , we have that ∃u ∈ U such that (f(x, u), f̂(x̂, û)) ∈ R. (6)

The system Ŝ is said to be ϵ-approximately simulated by S, denoted by Ŝ ⪯ϵ S, if there exists an
ϵ-approximate simulation relation from Ŝ to S.

Note that condition (6) tacitly implies the existence of an interface function K : X × X̂ × Û → U as
in Figure 1, which acts as transferred controller for S. The next proposition shows that one can solve
Problem 4 by searching for an ϵ-approximate simulation relation from Ŝ to S (if existing).
Proposition 6 (Approximate Simulation Relation Imply Transferability(Tabuada, 2009)). Consider
two dtCSs S = (X ,X0,Y, U, f, h) and Ŝ = (X̂ , X̂0,Y, Û , f̂ , ĥ), and a constant ϵ ∈ R≥0. If there
exists an ϵ-approximate simulation relation from Ŝ to S as in Definition 5, then there exists a
behavior transfer from Ŝ to S with respect to ϵ as in Definition 3.

From this proposition, Problem 4 reduces to the search of an ϵ-approximate simulation relationR
from Ŝ to S alongside its associated interface function K. To circumvent the need for mathematical
models of Ŝ and S and enable the discovery ofR through their black-box representations, we learn
the relationR and the interface function K as neural networks (Goodfellow et al., 2016).
Definition 7. A neural network with k∈N layers is a function F :Rni→Rno , which computes an output
yk∈Rno for any input y0∈Rni such that yj=σ(Wjyj−1+bj), with j∈{1, . . ., k}, where Wj and bj
are weight matrix and bias vectors, respectively, of appropriate sizes, and σ is the activation function.
Additionally, yj−1 and yj are referred to as the input and output of the j-th layer, respectively.

In this paper, we consider neural networks with ReLU activation function, defined as
σ(x):=max(0, x). Such networks describe Lipschitz continuous functions, with Lipschitz con-
stant LF ∈ R≥0, in the sense that for all x′1, x

′
2 ∈ Rni , the following condition holds:

∥F (x′1)− F (x′2)∥ ≤ LF ∥x′1 − x′2∥. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Note that one can obtain an upper bound for Lipschitz constant of a neural network with ReLU
activations using spectral norm (Combettes & Pesquet, 2020).

In the next section, considering Proposition 6, we propose a data-driven approach to learn a neural-
network-based approximate simulation relation (referred to as neural simulation relation) from a
source system Ŝ to a target system S to solve Problem 4.

3 NEURAL SIMULATION RELATIONS

In this section, we focus on how to train neural networks to construct a so-called neural simulation
relation (cf. Definition 8) from a source system to a target system to solve Problem 4. To this end, we
first introduce the construction of the dataset for training these networks. Based on condition (5), one
may observe that for any (x, x̂) ∈ R ⊆ X × X̂ , outputs h(x) and ĥ(x̂) should be ϵ-close. Therefore,
to train neural networks, we only consider thoseR ⊆ T , with T being defined as:

T := {(x, x̂) ∈ X × X̂ , | ∥h(x)− ĥ(x̂)∥ ≤ ϵ}. (8)

Then, to construct the data sets with finitely many data points, we cover the set T by finitely many
disjoint hypercubes T1, T2, . . . , TM , by picking a discretization parameter e > 0, such that:

∥t− ti∥ ≤
e

2
, for all t ∈ Ti, (9)

where ti is the center of hypercube Ti, i ∈ {1, . . . ,M}. Accordingly, we pick the centers of
these hypercubes as sample points, and denote the set of all sample points by Td := {t1, . . . , tM}.
Moreover, consider a hypercube X̂ over

0 over-approximating X̂0 (i.e., X̂0 ⊆ X̂ over
0), and a hypercube

X under
0 under-approximating X0 (i.e.,, X under

0 ⊆ X0). We discretize Û , X̂ over
0 , and X under

0 in the same
manner with discretization parameters ê, e, e, resulting in data sets Ûd, X̂ d

0 , and X d
0 , respectively.

Note that we need an over-approximation of X̂0 and an under-approximation of X0 to ensure that for
all x̂0 ∈ X̂ d

0 ⊂ X̂0, there exists x0 ∈ X d
0 ⊂ X0 such that 10 holds.

Having these data sets, we are ready to introduce the notion of neural simulation relation and its
associate interface function, which will be trained using these data.

Definition 8. Consider two dtCSs, Ŝ=(X̂ , X̂0,Y, Û , f̂ , ĥ) (a.k.a source system) and
S=(X ,X0,Y, U, f, h) (a.k.a target system), a constant ϵ ∈ R≥0, and neural networks V :

X × X̂→[0, 1] and K : X × X̂ × Û → U . A relation Rdd:={(x, x̂) ∈ X × X̂ | V (x, x̂) ≥
0.5, ∥h(x) − ĥ(x̂)∥ ≤ ϵ}, is called a neural simulation relation from Ŝ to S with the associated
interface function K, if the following conditions hold:

∀x̂0 ∈ X̂ d
0 , ∃x0 ∈ X d

0 such that V (x0, x̂0) ≥ 0.5 + η, (10)

∀(x, x̂)∈Td such that ∥h(f(x,K(x, x̂, û)))− ĥ(f̂(x̂, û))∥ < ϵ− γ→V (x, x̂) ≥ 0.5 + η, (11)

∀(x, x̂)∈Td such that ∥h(f(x,K(x, x̂, û)))− ĥ(f̂(x̂, û))∥ ≥ ϵ− γ→V (x, x̂) < 0.5− η, (12)

∀(x, x̂)∈Td such that V (x, x̂) ≥ 0.5 + η → V (f(x,K(x, x̂, û)), f̂(x̂, û)) ≥ V (x, x̂) + η, (13)

where η, γ ∈ R>0 are some user-defined robustness parameters, and û ∈ Ûd.

We opted to employ a classifier network for simulation function V , since we faced numerical
instabilities with the classical definition (Girard & Pappas, 2009).

Each condition of neural simulation relation, is closely related to Definition 5. Condition 10 corre-
sponds to condition 4, conditions 11 and 12 correspond to condition 5, and condition 13 corresponds
to condition 6. In order to obtain a neural simulation relation and its associated interface function K
satisfying 10-13, we train the network V with loss l := l1 + l2 + l3 + l4, in which

l1 := CE(V (x, x̂), 1), ∀(x, x̂) ∈ Xnsi,

l2 := CE(V (x, x̂), 1), ∀(x, x̂)∈Td,∀û∈Ûd such that ∥h(f(x,K(x, x̂, û)))− ĥ(f̂(x̂, û))∥ < ϵ−γ.
l3 := CE(V (f(x,K(x, x̂, û)), f̂(x̂, û)), 1), ∀(x, x̂) ∈ Td,∀û ∈ Ûd such that V (x, x̂) ≥ 0.5 + η.

l4 := CE(V (x, x̂), 0),∀(x, x̂) ∈ Td,∀û ∈ Ûd such that ∥h(f(x,K(x, x̂, û)))− ĥ(f̂(x̂, û))∥≥ϵ−γ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where CE(x, y) := y log x+(1− y) log(1−x) is the cross-entropy loss function, suited for training
classifier networks (Goodfellow et al., 2016). Specifically, l1 encodes the condition (10), and Xnsi

denotes the set of all points that violate condition (10). Losses l2 and l4 encode conditions (12)
and (11) for the network V , respectively, l3 encodes condition (13). Additionally, we train the network
K employing the following loss

lk :=MSE(h(f(x,K(x, x̂, û))), ĥ(f̂(x̂, û))), ∀(x, x̂) ∈ Td such that V (x, x̂) ≥ 0.5+η, ∀û∈Ûd,

where MSE(x, y) := 1
n

∑n
i=1

√
(xi − yi)2 is the mean squared error loss function (Goodfellow

et al., 2016). By leveraging lk, the network K is trained to produce an input for the target system
such that the outputs of target and source systems are ϵ-close at the next time step, regardless of the
input provided to the source system.

Algorithm 1 Algorithm for Training a Neural Simulation Relation with Formal Guarantee

Input: Sets X0,X , U, X̂0, X̂ , Û for target and source systems, respectively, as in Definition 1;
discretization parameters e for sets X ,X0, X̂ , X̂0 and ê for set Û as in 9; robustness parameters
η ∈ R>0 as in 10 and γ ∈ R>0 as in 11; Lx, Lu, Lh, Lx̂, Lû, Lĥ as introduced in Assumption 2; the
number of iterations N for training each network; the architecture of the neural networks V and K as
in Definition 7; and the desired ϵ ∈ R≥0 as in Problem 4.
Output: Neural networks V (for encoding the neural simulation relation as in Definition 8) and K
(encoding the interface function K).

Construct data sets Td,X d
0 , X̂ d

0 , and Ûd according to 9.
Initialize networks V and K (Goodfellow et al., 2016).
LV ← Upper bound of Lipschitz constant of V (Combettes & Pesquet, 2020).
LK ← Upper bound of Lipschitz constant of K (Combettes & Pesquet, 2020).
Sign← False
i← 0
while Conditions (10)-(16) are not satisfied do

if Sign then
Train V with loss l = l1 + l2 + l3 + l4, with l1, l2, l3, and l4 as in 10-13, respectively.

else
lk ← MSE(h(f(x,K(x, x̂, û))), ĥ(f̂(x̂, û)))
Train K via loss lk over all data points û ∈ Ûd, and (x, x̂) ∈ Td with V (x, x̂) ≥ 0.5 + η

end if
i← i+ 1
if exists n ∈ N such that i = nN then

Sign← not(Sign)
end if
LV ← Upper bound of Lipschitz constant of V (Combettes & Pesquet, 2020).
LK ← Upper bound of Lipschitz constant of K (Combettes & Pesquet, 2020).

end while
Return V , K

Note that a neural simulation relation as in Definition 8 is not necessarily a valid ϵ-approximate
simulation relation as in Definition 5. Since neural networks are trained on finitely many data points,
one requires out of sample guarantees in order to prove correctness.

To address this issue, we propose the following validity conditions, which will be leveraged to show
that a neural simulation relation satisfies condition (4)-(6)(cf. Theroem 10).

Assumption 9. Consider two dtCSs, Ŝ = (X̂ , X̂0,Y, Û , f̂ , ĥ) (a.k.a source system) and S =

(X ,X0,Y, U, f, h) (a.k.a target system), and two fully connected neural networks V : X×X̂ → [0, 1]

and K : X ×X̂ × Û → U , with ReLU activations, satisfying 10-13. We assume the following validity

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

conditions:

Lh(Lx
e

2
+ LuLK max(

e

2
,
ê

2
)
)
+ Lĥ

(
Lx̂

e

2
+ Lû

ê

2

)
≤ γ, (14)

LV

(
max(Lx,Lx̂)

e

2
+ max(LuLk

e

2
,Lû

ê

2
)
)
≤ 2η, (15)

LV
e

2
≤ η, (16)

where η, γ ∈ R>0 are user-defined parameter as in Definition 8, Td, Xd
0 , Ûd are constructed accord-

ing to 9 with dicretization parameters e, e, ê respectively, and û ∈ Ûd. Additionally, LV ,Lh,Lĥ,LK

are Lipschitz constants of V, h, ĥ, and K, respectively (cf 3 and 7), and Lx,Lu (resp. Lx̂,Lû) are
Lipschitz constants of the target system (resp. the source system), as defined in 2.

The intuition behind Assumption 9 lies in leveraging Lipschitz continuity to provide formal guarantees.
Since neural networks are trained on a finite set of data points, it is crucial to establish out-of-sample
performance guarantees to ensure overall correctness.

Lipschitz continuity enables us to extend guarantees from a finite set of training data to the entire
state set. Assumption 9 serves as a condition that facilitates this extension. Specifically, it ensures
that if a sample point (used during training) satisfies the simulation relation conditions, then all points
within a neighborhood centered at the sample point with radius e also satisfy those conditions. This
approach forms the theoretical foundation needed to bridge the gap between finite data and overall
correctness across the entire state set.

Based on Definition 8 and Assumption 9, in Algorithm 1, we summarize the data-driven construction
of a neural simulation relation from the source system to the target system with formal guarantees.

4 FORMAL GUARANTEE FOR NEURAL SIMULATION RELATIONS

In this section, we propose the main result of our paper. This result shows that a neural simulation
relation acquired by using Algorithm 1, conditioned on its termination, is in fact an ϵ-approximate
simulation relation, i.e. it satisfies conditions (4)-(6) and therefore can be deployed to solve Problem 4.

Theorem 10. Consider two dtCSs, Ŝ = (X̂ , X̂0,Y, Û , f̂ , ĥ) (a.k.a. the source system), with its
Lipschitz constants Lx̂,Lû, and Lĥ, and S = (X ,X0,Y, U, f, h) (a.k.a. the target system), with its
Lipschitz constants Lx,Lu, and Lh, and a constant ϵ ∈ R>0. If there exist neural networks V with a
Lipschitz constantLV andK with a Lipschitz constantLK that satisfy conditions (10) to (16), with e, ê

being the discretization parameters for state and input sets, respectively, then one has Ŝ ⪯ϵ S, with
the ϵ-approximate simulation relationRdd := {(x, x̂) ∈ X ×X̂ |V (x, x̂) ≥ 0.5, ∥h(x)− ĥ(x̂)∥ ≤ ϵ}.

Proof. Since condition (5) is satisfied by construction (cf. 8), we show that conditions (4) and (6) are
respected by enforcing conditions (10) to (16). First, we show that condition (4) holds. Consider an
arbitrary point x̂0 ∈ X̂0. Based on 9, there exists x̂0i ∈ X̂ d

0 such that ∥x̂0 − x̂0i∥ ≤ e
2 . According

to (10), for any x̂0i ∈ X̂ d
0 , there exists x0i ∈ X d

0 ⊂ X0 such that V (x0i , x̂0i) ≥ 0.5 + η. Leveraging
the Lipschitz continuity of V, one has:

V (x0i , x̂0i)−V (x0i , x̂0) ≤ LV
e

2

eq 10
===⇒0.5 + η−V (x0i , x̂0)≤LV

e

2
=⇒ V (x0i , x̂0)≥0.5 + η−Lv

e

2
,

where LV is the Lipschitz constant of the network V . Using (16), one gets V (x0i , x̂0) ≥ 0.5. Thus,
for any point x̂0∈X̂0, there exists x0i such that (x0i , x̂0)∈Rdd. Therefore condition (4) holds.

Next, we show condition (6) in two steps. Concretely, for any (x, x̂) ∈ Rdd and û ∈ Û , we show 1)
Step 1: V (f(x,K(x, x̂, û)), f̂(x̂, û)) ≥ 0.5, and 2) Step 2: ∥h(f(x,K(x, x̂, û)))− ĥ(f̂(x̂, û))∥ ≤ ϵ.
Step 1: Consider X:=(x, x̂)∈T to be an arbitrary point. Based on 9, there exists Xi:=(xi, x̂i) ∈ Td
such that ∥X−Xi∥≤ e

2 . If V (Xi)≥0.5+η, by leveraging Lipschitz continuity, one gets:

V (Xi)− V (X) ≤ LV
e

2
=⇒ 0.5 + η − LV

e

2
≤ V (X)

eq 16
===⇒ V (X) ≥ 0.5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Therefore, X ∈ Rdd. Now, if V (Xi) < 0.5 − η (note that for any Xi ∈ Td, one has either
V (Xi) ≥ 0.5 + η or V (Xi) < 0.5 − η according to 11 and 12), again by leveraging Lipschitz
continuity, one gets:

V (X)− V (Xi) < LV
e

2
=⇒ V (X) < 0.5− η + LV

e

2

eq 16
===⇒ V (X) < 0.5.

Thus, X /∈ Rdd. Therefore, one can conclude that Rdd is equivalent to the set {X ∈ T |∃Xi ∈
Td with V (Xi)≥0.5+η, ∥X−Xi∥≤ e

2}. Consider any X ∈ Rdd and û ∈ Û , and the corresponding
Xi ∈ Td, with V (Xi)≥0.5+η, Ui := (K(Xi, ûi), ûi), with ûi ∈ Ûd, and Uc := (K(X, û), û), such
that ∥X −Xi∥ ≤ e

2 and ∥û− ûi∥ ≤ ê
2 . Let’s define F (X,Uc) := (f(x,K(x, x̂, û)), f̂(x̂, û)). Then

one gets:

V (F (Xi, Ui))− V (F (X,Uc)) ≤ LV ∥F (Xi, Ui)− F (X,Uc)∥.

Based on Assumption 2, one has LV ∥F (Xi, Ui) − F (X,Uc)∥ ≤ LV

(
Lx′∥X −Xi∥ + Lu′∥Uc −

Ui∥
)
≤ LV

(
Lx′

e
2 + Lu′

)
, where Lx′ := max(Lx,Lx̂), Lu′ := max(LuLK

e
2 ,Lû

ê
2). Then, one

gets V (F (Xi, Ui))− LV

(
Lx′

e
2 + Lu′

)
≤ V (F (X,Uc)). Considering 13, one has:

V (F (X,Uc)) ≥ V (Xi) + η − LV

(
Lx′

e

2
+ Lu′

)
≥ 0.5 + 2η − LV

(
Lx′

e

2
+ Lu′

)
.

According to 15, for any X ∈ Rdd and for any û ∈ Û , there exists u ∈ U (setting u =
K(x, x̂, û)) such that V (F (X,Uc)) ≥ 0.5. To show F (X,Uc) ∈ Rdd, we still need to show
∥h(f(x,K(x, x̂, û)))− ĥ(f̂(x̂, û))∥ ≤ ϵ, which is accomplished by Step 2.

Step 2: Consider any X := (x, x̂) ∈ Rdd and û ∈ Û , and the corresponding Xi := (xi, x̂i) ∈ Td,
with V (Xi)≥0.5+η, and ûi ∈ Ûd, such that ∥X −Xi∥ ≤ e

2 and ∥û− ûi∥ ≤ ê
2 . One gets:

∥h(f(x,K(x, x̂, û)))− ĥ(f̂(x̂, û))∥
≤∥h(f(x,K(x, x̂, û)))− h(xi,K(xi, x̂i, ûi)) + ĥ(f̂(x̂i, ûi))− ĥ(f̂(x̂, û))∥

+ ∥h(xi,K(xi, x̂i, ûi))− ĥ(f̂(x̂i, ûi))∥ (17)

≤∥h(f(x,K(x, x̂, û)))− h(xi,K(xi, x̂i, ûi)) + ĥ(f̂(x̂i, ûi))− ĥ(f̂(x̂, û))∥+ ϵ− γ (18)

≤∥h(f(x,K(x, x̂, û)))− h(xi,K(xi, x̂i, ûi))∥+ ∥ĥ(f̂(x̂i, ûi))− ĥ(f̂(x̂, û))∥+ ϵ− γ (19)

≤Lh(Lx∥x− xi∥+ LuLK∥X ′
i −X ′∥

)
+ Lĥ

(
Lx̂∥x̂− x̂i∥+ Lû∥û− ûi∥

)
+ ϵ− γ (20)

where X ′
i := (xi, x̂i, ûi), X

′ := (x, x̂, û), and LK is the Lispchitz constant of network K, in which
17 and 19 are the results of triangle inequality, 18 holds according to 11 and 12, while 20 holds
considering Assumption 2. Note that ∥X ′

i −X ′∥ ≤ max(e2 ,
ê
2), and ∥û− ûi∥ ≤ ê

2 , by construction.
Continued from 20, one gets:

Lh(Lx
e

2
+ LuLK max(

e

2
,
ê

2
)
)
+ Lĥ

(
Lx̂

e

2
+ Lû

ê

2

)
+ ϵ− γ ≤ ϵ,

which holds according to condition (14).

Combining Step 1 and Step 2, one concludes that condition (6) holds. Thus, Rdd satisfies condi-
tions (4)-(6), therefore,Rdd is an ϵ-approximate simulation relation from Ŝ to S with K being its
corresponding interface function.

Remark 11. Note that in order to implement the interface function K for the target system S, one
needs to have access to a simulation environment (digital twin or black-box model) of the source
system Ŝ.

5 EXPERIMENTS

In this section, we demonstrate the efficacy of our proposed method with two case studies. All
experiments are conducted on an Nvidia RTX 4090 GPU. In all experiments, networks V and K
are parameterized with 5 hidden layers, each containing 20 neurons for V and 200 neurons for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 2: Figure 2a depicts the error between the outputs, and Figure 2b depicts the trajectories for
both systems. Red area depicts the unsafe set.

K, respectively, with ReLU activation for both networks. For both experiments, we train the the
networks V and K according to Algorithm 1 by setting N = 500. Although the mathematical models
of all systems are reported for simulation purposes, we did not incorporate them to encode neural
simulation relations conditions. We have provided a discussion in Appendix 9.1 comparing our
method to the state-of-the-art approaches.

5.1 VEHICLE

For our first case study, we borrowed vehicle models from Althoff et al. (2017), more details
can be found in the Appendix 9.2. The corresponding Lipschitz constants are Lx = 1.1,Lu =
0.1,Lh = 1,Lx̂ = 1.1,Lû = 0.1, and Lĥ = 1. We train the networks with the following parameters:
η=0.3, γ=0.016, e=0.002, ê=0.0005, and ϵ = 0.02. In this example, the size of data set is |Td| =
5× 107. The training converged in 20 minutes with following parameters: LV =23, and LK=8.32×
10−5. The error between outputs of source and target systems over an state sequence of 1000 steps is
depicted in Figure 2. Source system is controlled by a safety controller, designed to avoid the unsafe
set (Zhao et al., 2020).

5.2 DOUBLE PENDULUM

For our second case study, we consider a double inverted pendulum, depicted in Figure 3. Details
on target and source systems can be found in the Appendix 9.3. Our algorithm converged in 12
hours with the following parameters: LV =13.3,LK=5.17×10−2, η = 0.1, ϵ = 0.05, γ = 0.02, e =
0.015, ê = 0.0005 (resulting in a data set with |Td| = 1.5 × 106). Output sequences of the source
and the target systems are depicted in Figure 3. The source system is controlled by a neural control
barrier certificate (Anand & Zamani, 2023), which keeps the pendulum in the upright position.

Figure 3: Source and target systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 4: Multiple trajectories of target and source systems are depicted in Figure 4b, and their
corresponding output error is depicted in Figure 4a.

6 CONCLUSION

We proposed a data-driven approach that guarantees the behavior transfer from a source control
system to a target control system. We utilized neural networks to find a simulation relation and its cor-
responding interface function between these systems, we dubbed such relations as neural simulation
relations. The existence of such functions guarantees that the error between outputs of two systems
remain within a certain bound, which enables the behavior transfer. In addition, we propose validity
conditions that provide correctness for our neural networks representing the simulation relation and
its associated interface function, eliminating the need for post-facto verification. Lastly, we illustrated
the effectiveness of our algorithm with two case studies. Possible future direction is to alliviate
sample complexity with properties of both target and source systems, such as monotonicity (Angeli
& Sontag, 2003) and mixed-monotonicity (Coogan & Arcak, 2015).

7 LIMITATIONS

We provided a sufficient condition for transferring controllers between two systems. If our proposed
algorithm does not converge, it does not necessarily mean that a simulation relation does not exist.
Typically, our algorithm fails to find a simulation relation when the source and target systems are
fundamentally different. Additionally, our method is limited by exponential sample complexity,
which restricts its applicability to higher-dimensional systems.

8 REPEATABILITY STATEMENT

We have outlined details of our proposed method, with its hyper parameters, and the hardware it
was trained on in experiments’ section. We have also included the code for both case studies in
supplementary materials.

9 APPENDIX

9.1 COMPARISON WITH STATE OF THE ART

To the best of our knowledge, this is the first formally correct result that aims to find a simulation
relation and its interface function in a data-driven manner between two given systems. In general,
existing works are primarily focused on constructing a source (abstract) system given a target
(concrete) system (Abate et al., 2022; 2024; Devonport et al., 2021; Hashimoto et al., 2022). In
contrast, our approach does not construct any abstraction. Instead, it establishes a formally correct

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

transfer of controllers designed for a given abstract (source) system to a concrete (target) system.
Methods that aim to find a simulation relation between two given systems typically make restrictive
assumptions about the models of both the source and target systems. For example, the results in
Zhong et al. (2024) assume linear systems, while Smith et al. (2019) considers only polynomial
systems. Furthermore, both methods require access to the mathematical models of the systems. In
contrast, our approach makes no assumptions about the specific models of the systems, requiring only
access to a black-box representation and the Lipschitz continuity of the dynamics.

9.2 EXPERIMENT SETTINGS: VEHICLE

The source and target systems are 3 and 5 dimensional model, respectively. The target system is a 5
dimensional car:

x(k + 1) =

x1(k)
x2(k)
δ(k)
v(k)
ψ(k)

+ τ

v(k) sin(ψ(k))
v(k) cos(ψ(k))

u1(k)
u2(k)

v(k)tan(δ)

 , y(k) =
[
1 0 0 0 0
0 1 0 0 0

]
x(k)

where τ = 0.1 is the sampling time, and x(k) := [x1(k);x2(k); δ(k); v(k);ψ(k)] is the state vector,
in which x1(k), x2(k), δ(k), v(k), ψ(k) are horizontal position, vertical position, steering angle,
velocity, and heading angle at time step k, respectively. u1(k) and u2(k) are acceleration and steering
of the vehicle as control inputs, at time step k. The source system is a three dimensional car model,
which is used extensively in obstacle avoidance problem (Zhang et al., 2023; Zhao et al., 2020):

x̂(k + 1) =

[
x̂1(k)
x̂2(k)
x̂3(k)

]
+ τ

[
sin(x̂3(k))
cos(x̂3(k))
u(k)

]
, ŷ(k) =

[
1 0 0
0 1 0

]
x̂(t)

where x̂ := [x̂1, x̂2, x̂3] is the state vector, in which x̂1, x̂2, x̂3 are horizontal position, vertical
position, and steering angle, respectively. u(k) is the steering of the vehicle as the control input, at
time step k.

We consider X̂ = [−2, 3] × [0, 8] × [−1, 1], X̂0 = [−2,−1] × [0, 2] × [−1, 1], Û = [−0.5, 0.5],
which represent the state, initial state and input set of the source system, respectively. Moreover,
X = X̂ × [−1, 1]2, X0 = X̂0 × [−1, 1]2, U = [−1, 1]2, represent the state, initial state and input set
of the target system, respectively.

9.3 EXPERIMENT SETTINGS: DOUBLE PENDULUM

Target system has the following model:θ1(k + 1)
ω1(k + 1)
θ2(k + 1)
ω2(k + 1)

=

 θ1(k) + τω1(k)
ω1(k) + τ(g sin(θ1(k))− sin(θ1(k)−θ2(k))ω2

1(k))
θ2(k) + τω2(k)

ω2(k) + τ(g sin(θ2(k))+ sin(θ1(k)−θ2(k))ω2
2(k))

+ τ

 0 0
30 0
0 0
0 39

[
u1(k)
u2(k)

]
;

where [θ1(k);ω1(k); θ2(k);ω2(k)] ∈ [−0.5, 0.5]4, and y(k) = [θ1(k), ω1(k)] is the output. Here, θ1
and θ2 represent the angular position of the first and the second joint, respectively, and ω1 and ω2

are the angular velocity, respectively, and u∈[−1, 1]2 are the inputs applied to the first and second
joint, respectively. The initial set of states are X0 = X , X̂0 = X̂ for the target and the source systems,
respectively. This is a simplified version of double inverted pendulum, where we assumed the second
derivative of both angles are zero, to be able to discretize this system. The source system is an
inverted pendulum with the following model:[

θ̂(k + 1)
ω̂(k + 1)

]
=

[
θ̂(k) + τ ω̂(k)

ω̂(k) + τg sin(θ̂(k))

]
+ τ

[
0
9.1

]
û(k); ŷ(k) =

[
1 0
0 1

]
x̂(k),

where [θ̂(k); ω̂(k)]∈[−0.5, 0.5]2 represent the angular position and velocity, respectively, and
τ=0.01 is the sampling time, and Û = [−1, 1] is the input set. Furthermore, for both sys-
tems, g = 9.8 is the gravitational acceleration. The Lipschitz constants are Lx=1.098,Lu =
0.39,Lh=1,Lx̂=1.098,Lû=0.091, and Lĥ = 1.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Abate, Alec Edwards, and Mirco Giacobbe. Neural abstractions. Advances in Neural
Information Processing Systems, 35:26432–26447, 2022.

Alessandro Abate, Mirco Giacobbe, and Yannik Schnitzer. Bisimulation learning. In International
Conference on Computer Aided Verification, pp. 161–183. Springer, 2024.

Matthias Althoff, Markus Koschi, and Stefanie Manzinger. Commonroad: Composable benchmarks
for motion planning on roads. In 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 719–726.
IEEE, 2017.

Mahathi Anand and Majid Zamani. Formally verified neural network control barrier certificates for
unknown systems. In Proceedings of the 22nd World Congress of the International Federation of
Automatic Control, pp. 2742–2747, 2023.

David Angeli and Eduardo D Sontag. Monotone control systems. IEEE Transactions on automatic
control, 48(10):1684–1698, 2003.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Julian Berberich, Johannes Köhler, Matthias A Müller, and Frank Allgöwer. Data-driven model
predictive control with stability and robustness guarantees. IEEE Transactions on Automatic
Control, 66(4):1702–1717, 2020.

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrish-
nan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simulation and domain
adaptation to improve efficiency of deep robotic grasping. In 2018 IEEE international conference
on robotics and automation (ICRA), pp. 4243–4250. IEEE, 2018.

Jan-Peter Calliess, Stephen J Roberts, Carl Edward Rasmussen, and Jan Maciejowski. Lazily adapted
constant kinky inference for nonparametric regression and model-reference adaptive control.
Automatica, 122:109216, 2020.

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter
Abbeel, and Wojciech Zaremba. Transfer from simulation to real world through learning deep
inverse dynamics model. arXiv preprint arXiv:1610.03518, 2016.

Edmund M Clarke. Model checking. In Foundations of Software Technology and Theoretical
Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997 Proceedings 17, pp.
54–56. Springer, 1997.

Patrick L Combettes and Jean-Christophe Pesquet. Lipschitz certificates for layered network structures
driven by averaged activation operators. SIAM Journal on Mathematics of Data Science, 2(2):
529–557, 2020.

Samuel Coogan and Murat Arcak. Efficient finite abstraction of mixed monotone systems. In
Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control,
pp. 58–67, 2015.

Rafael Rodrigues da Silva, Vince Kurtz, and Hai Lin. Active perception and control from temporal
logic specifications. IEEE Control Systems Letters, 3(4):1068–1073, 2019.

Alex Devonport, Adnane Saoud, and Murat Arcak. Symbolic abstractions from data: A pac learning
approach. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 599–604. IEEE,
2021.

Georgios E Fainekos, Antoine Girard, and George J Pappas. Hierarchical synthesis of hybrid
controllers from temporal logic specifications. In Hybrid Systems: Computation and Control: 10th
International Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007. Proceedings 10, pp. 203–216.
Springer, 2007.

Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. in 2016 ieee. In RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4019–4026, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Antoine Girard and George J Pappas. Hierarchical control system design using approximate simula-
tion. Automatica, 45(2):566–571, 2009.

Antoine Girard and George J Pappas. Approximate bisimulation: A bridge between computer science
and control theory. European Journal of Control, 17(5-6):568–578, 2011.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Sofie Haesaert and Sadegh Soudjani. Robust dynamic programming for temporal logic control of
stochastic systems. IEEE Transactions on Automatic Control, 66(6):2496–2511, 2020.

Kazumune Hashimoto, Adnane Saoud, Masako Kishida, Toshimitsu Ushio, and Dimos V Dimarogo-
nas. Learning-based symbolic abstractions for nonlinear control systems. Automatica, 146:110646,
2022.

Tracy S Kendler. Levels of cognitive development. Psychology Press, 1995.

Vince Kurtz, Rafael Rodrigues da Silva, Patrick M Wensing, and Hai Lin. Formal connections between
template and anchor models via approximate simulation. In 2019 IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids), pp. 64–71. IEEE, 2019.

Vince Kurtz, Patrick M Wensing, and Hai Lin. Approximate simulation for template-based whole-
body control. IEEE Robotics and Automation Letters, 6(2):558–565, 2020.

Igor Mordatch, Kendall Lowrey, and Emanuel Todorov. Ensemble-cio: Full-body dynamic motion
planning that transfers to physical humanoids. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5307–5314. IEEE, 2015.

Alireza Nadali, Ashutosh Trivedi, and Majid Zamani. Transfer learning for barrier certificates. In
2023 62nd IEEE Conference on Decision and Control (CDC), pp. 8000–8005. IEEE, 2023.

Alireza Nadali, Ashutosh Trivedi, and Majid Zamani. Transfer of Safety Controllers Through
Learning Deep Inverse Dynamics Model. In The 8th IFAC Conference on Analysis and Design of
Hybrid Systems, to appear, 2024.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates.
In International Workshop on Hybrid Systems: Computation and Control, pp. 477–492. Springer,
2004.

Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino. Crossing the reality gap:
A survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE Access,
9:153171–153187, 2021.

Stanley W Smith, He Yin, and Murat Arcak. Continuous abstraction of nonlinear systems using
sum-of-squares programming. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp.
8093–8098. IEEE, 2019.

Stanley W Smith, Murat Arcak, and Majid Zamani. Approximate abstractions of control systems
with an application to aggregation. Automatica, 119:109065, 2020.

Zihao Song, Vince Kurtz, Shirantha Welikala, Panos J Antsaklis, and Hai Lin. Robust approximate
simulation for hierarchical control of piecewise affine systems under bounded disturbances. In
2022 American Control Conference (ACC), pp. 1543–1548. IEEE, 2022.

Roman Strongin, Konstantin Barkalov, and Semen Bevzuk. Acceleration of global search by
implementing dual estimates for Lipschitz constant. In International Conference on Numerical
Computations: Theory and Algorithms, pp. 478–486. Springer, 2019.

Paulo Tabuada. Verification and control of hybrid systems: a symbolic approach. Springer Science &
Business Media, 2009.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alvaro Velasquez. Transfer from imprecise and abstract models to autonomous technologies (tiamat).
Defense Advanced Research Projects Agency (DARPA) Program Solicitation, 2023.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3(1):1–40, 2016.

GR Wood and BP Zhang. Estimation of the Lipschitz constant of a function. Journal of Global
Optimization, 8:91–103, 1996.

Hongchao Zhang, Junlin Wu, Yevgeniy Vorobeychik, and Andrew Clark. Exact verification of
relu neural control barrier functions. Advances in neural information processing systems, 36:
5685–5705, 2023.

Hengjun Zhao, Xia Zeng, Taolue Chen, and Zhiming Liu. Synthesizing barrier certificates using neural
networks. In Proceedings of the 23rd international conference on hybrid systems: Computation
and control, pp. 1–11, 2020.

Bingzhou Zhong, Murat Arcak, and Majid Zamani. Hierarchical control for cyber-physical systems
via general approximate alternating simulation relations. In The 8th IFAC Conference on Analysis
and Design of Hybrid Systems, 2024.

Bingzhuo Zhong, Abolfazl Lavaei, Majid Zamani, and Marco Caccamo. Automata-based controller
synthesis for stochastic systems: A game framework via approximate probabilistic relations.
Automatica, 147:110696, 2023.

Kemin Zhou and John Comstock Doyle. Essentials of robust control, volume 104. Prentice hall
Upper Saddle River, NJ, 1998.

14

	Introduction
	Problem Formulation
	Neural Simulation Relations
	Formal Guarantee for Neural Simulation Relations
	Experiments
	Vehicle
	Double Pendulum

	Conclusion
	Limitations
	Repeatability Statement
	Appendix
	Comparison with state of the art
	Experiment Settings: Vehicle
	Experiment Settings: Double Pendulum

