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Abstract
This work studies algorithms for learning from ag-
gregate responses. We focus on the construction
of aggregation sets (called bags in the literature)
for event-level loss functions. We prove for linear
regression and generalized linear models (GLMs)
that the optimal bagging problem reduces to one-
dimensional size-constrained k-means clustering.
Further, we theoretically quantify the advantage
of using curated bags over random bags. We then
propose the PriorBoost algorithm, which adap-
tively forms bags of samples that are increasingly
homogeneous with respect to (unobserved) indi-
vidual responses to improve model quality. We
study label differential privacy for aggregate learn-
ing, and we also provide extensive experiments
showing that PriorBoost regularly achieves op-
timal model quality for event-level predictions, in
stark contrast to non-adaptive algorithms.

1. Introduction
In supervised learning, the learner is given a training dataset
of n i.i.d pairs (xi, yi), where xi ∈ Rd is a feature vec-
tor and yi is the corresponding response. Responses are
real-valued for regression problems, and belong to a finite
discrete set for multi-class classification. The fundamental
problem in supervised learning is to (1) train a model with
this data, and (2) use this model to infer the response/label
of unseen test instances. However, in many practical appli-
cations (e.g., medical tests and elections), the responses con-
tain sensitive information, but the features are far less sensi-
tive (e.g., demographic information or zip codes/regions). In
such applications, there are valid concerns about revealing
individual responses to the learning algorithm, even if it is a
trusted party.

A popular approach to mitigate this privacy concern in prac-
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tice is to let the learner access responses in an aggregate
manner. In the framework of learning from aggregate re-
sponses (LAR), the learner is given access to a collection of
unlabeled feature vectors called bags and an aggregate sum-
mary of the responses in each bag. A widely used choice is
the mean response or label proportions of each bag (Yu et al.,
2014). The learner then fits a model using the aggregate
responses with the goal of accurately predicting individual
responses on future data.

The problem of learning from aggregate responses (a.k.a.
learning from label proportions in the context of classifi-
cation) dates back to at least Wein & Zenios (1996) in the
context of group testing, a technique used in many different
fields including medical diagnostics, population screening,
and quality control. The idea is to combine multiple samples
into a group and test them together rather than individually.
This approach has been widely adopted in cases where test-
ing resources are limited or the prevalence of the condition
being tested for is low. LAR has also been studied in other
earlier work (de Freitas & Kück, 2005; Musicant et al., 2007;
Quadrianto et al., 2008; Rueping, 2010; Patrini et al., 2014)
for settings where direct access to the individual responses
is not possible (e.g., in political party elections where aggre-
gate votes are only available at discrete district levels).

Recently, there has been a resurgence in the LAR framework
primarily due to the rise of privacy concerns; see (Scott &
Zhang, 2020; Saket, 2022; Zhang et al., 2022; Busa-Fekete
et al., 2024; Chen et al., 2023; Brahmbhatt et al., 2023; Ja-
vanmard et al., 2024; Li et al., 2024) for a non-exhaustive
list. Specifically, if the aggregation bags are large enough
and have no (or little) overlap, revealing only the aggregate
responses provides a layer of privacy protection, often for-
malized in terms of k-anonymity (Sweeney, 2002). Large
tech companies have recently deployed aggregate learning
frameworks, including Apple’s SKAdNetwork library (Koll-
nig et al., 2022) and the Private Aggregation API in the
Google Privacy Sandbox (Geradin et al., 2020). Aggregate
responses can further be perturbed to provide label differen-
tial privacy (Chaudhuri & Hsu, 2011), a popular notion of
privacy that measures the leakage of personal label/response
information, which we discuss in detail in Section 6.

In some applications, the bagging configurations are natu-
rally determined by the problem at hand (e.g., in the voting
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example above the bags are defined based on districts). In
other applications, however, the learner has the flexibility of
curating bags of query samples to maximize model utility
while complying with privacy or legal constraints imposed
by the data regulators. Our work focuses on the problem of
bag curation in the framework of learning from aggregate
responses.

1.1. Problem statement

We first describe the process of learning from aggregate re-
sponses, for a given collection of bags. Consider a partition
of n samples into m non-overlapping bags, each of size at
least k, for a prespecified k (and hence n ≥ mk). We focus
on training a model by minimizing the following event-level
loss:

θ̂ := arg min
θ

1

n

m∑
`=1

∑
i∈B`

L(y`, fθ(xi)) , (1)

where B` is the set of samples in bag ` and y` is the mean
response in bag `. In words, with this approach the model
is learned by fitting individual predictions to the average
response of its bag.

The problem of bag curation is to find an optimal bagging
configuration that maximizes model utility (in terms of min-
imizing estimation error), while satisfying the minimum bag
size constraint |B`| ≥ k. Note that this min-size constraint
implies k-anonymity in the sense of that any response in the
(aggregate) dataset is shared by at least k individuals. Larger
values of k offer higher protection of individual responses.

1.2. Overview of our approach and contributions

This work focuses on event-level loss and the problem of bag
curation. To control privacy leakage, we require the bags
to be non-overlapping and of size at least k. An important
property of our mechanism is the following: The learner
never sees an individual response. Conceptually, the learner
always constructs a query of fresh samples to send to an
oracle, who then returns the aggregate response.

Our key insight is to leverage available prior information
about E[y | x] to construct better bags for the learner. Such
prior information can be based on domain knowledge, mod-
els trained on public data, or even previous iterations of an
aggregate learning algorithm.

We summarize our contributions as follows.

• Reduction to size-constrained k-means clustering.
We first present our method assuming access to a prior.
We start with linear regression and characterize the
dependence of the model estimation error on the bag
construction. We then show that finding optimal bags
reduces to a one-dimensional size-constrained k-means

clustering problem that involves prior information on
the expected response of samples. In Section 3, we
then extend our derivations to the family of generalized
linear models.

• Advantage over random bagging. In Section 4, we
theoretically demonstrate the improvement of our bag-
ging approach over schemes that construct bags inde-
pendently of data (including random bagging).

• Iterative prior-boosting algorithm. In Section 5,
we propose an adaptive algorithm called PriorBoost,
which constructs a good prior from the aggregate data
itself. It can be used even in settings where no public
prior distribution is available. PriorBoost partitions
the training data across multiple stages: it start with
random bagging, and then iteratively refines the prior
by constructing more consistent bags on the remaining
data.

• Differentially private LAR. In Section 6, we propose
a mechanism that adds Laplace noise to aggregate re-
sponses to ensure label differential privacy. We observe
an intriguing tradeoff on the choice of minimum bag
size k. On the one hand, larger k implies less sensi-
tivity of aggregate responses to individual substitution
and hence less noise is needed to ensure privacy. On
the other hand, smaller k results in smaller bias of the
trained model. The optimal choice of k (for a fixed
privacy budget ε) depends on how these two effects
contribute to the model test loss. We showcase this
tradeoff empirically and discuss how the optimal k
varies with the sample size n, features dimension d,
and bag construction algorithm.

• Experiments. We study PriorBoost through exten-
sive experiments in Section 7. This includes a com-
parison with random bagging for linear and logistic
regression tasks, as well as a careful exploration into
label differential privacy with Laplace noise for differ-
ent privacy budgets.

1.3. Other related work

An active line of work in LAR is centered around the design
of new loss functions. In addition to the the event-level loss
in (1), another popular choice is bag-level loss (or aggre-
gate likelihood), which measures the mismatch between the
aggregate responses y` and the average model predictions
1/|B`|

∑
i∈B`

fθ(xi) across bags ` ∈ [m] (Rueping, 2010;
Yu et al., 2014). Javanmard et al. (2024) study the statis-
tical properties of both losses and show that for quadratic
loss functions `(x, y) = (x− y)2, the event-level loss can
be seen as a regularized form of the bag-level loss. They
propose a novel interpolating loss that optimally adjusts the
strength of the regularization.
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It is worth noting that in many large-scale production ML
systems, models are often trained online (Anil et al., 2022;
Fahrbach et al., 2023; Coleman et al., 2024), and event-level
loss is more amenable to online optimization. A separate
system can be in charge of bagging and generating aggregate
responses without the learner needing to know the bagging
structure. In contrast, bag-level loss minimization requires
computing average predictions for each bag, making it more
challenging to implement, especially with mini-batch SGD
where all samples in a bag must be in the same batch.

(Li et al., 2024) studies the problem of learning from label
proportions and various learning rules that acheive PAC
learning guarantees for classification loss. It also proposes
novel debiasing techniques to achieve optimistic rates in
both the realizable and agnostic setting.

We note that the works discussed above mainly consider
random bagging. Closer to our goal, Chen et al. (2023)
study the problem of bag curation, but they take a differ-
ent approach than ours by grouping samples by common
features instead of predicted response values.

2. Warm-up: Linear regression
The high-level intuition behind our approach is that useful
bagging configurations are ones where aggregate responses
are close to their individual responses. This allows for the
estimator to be close to the empirical risk minimizer (ERM),
similar to teacher-student knowledge distillation (Hinton
et al., 2015). Our goal is therefore to use available predic-
tions ỹ ≈ E[y | x] based on prior information to construct
better bags for the aggregate learner.

To illustrate this idea, we start with a linear regression setup
where response yi is generated as

yi = xᵀ
i θ
∗ + εi , εi ∼ N (0, σ2). (2)

The design matrix is X =
[
x1 . . . xn

]ᵀ ∈ Rn×d, the
response vector is y = (y1, . . . , yn)ᵀ, and the noise vector
is ε = (ε1, . . . , εn)ᵀ. We assume ε is independent of X ,
and that E[ε] = 0 and E[εεᵀ] = σ2I . Letting m denote the
number of bags, we encode the assignment of samples to
bags with a matrix S ∈ Rm×n, where

S`,i =

{
1√
|B`|

if i ∈ B`,

0 otherwise.
(3)

Consider the event-level loss minimizer of (1) with L being
least squares loss, which we can write as

θ̂ = arg min
θ

1

n
‖SᵀSy −Xθ‖22 . (4)

2.1. Bounding the estimator error

Our next result characterizes the error of this estimator. All
proofs in this section are deferred to Appendix A.
Theorem 2.1. If the design matrixX ∈ Rn×d has rank d,
then for the estimator θ̂ given by Eq. (4), we have

E
[ ∥∥∥θ̂ − θ∗∥∥∥2

2

∣∣∣X]=
∥∥(XᵀX)−1Xᵀ(SᵀS − I)Xθ∗

∥∥2
2

+ σ2
∥∥(XᵀX)−1XᵀSᵀ

∥∥2
F
. (5)

An optimal bagging configuration (in the sense of minimiz-
ing the estimation error) is one whose matrix S minimizes
(5) among all feasible partitions. The first term of the right-
hand side is the (conditional) bias of θ̂ and the second term
is its variance. As we can see, the choice of S affects both
terms.

Instead of solving for an optimal S, which can be challeng-
ing due to its partition structure, we first develop an upper
bound on the error, and then we minimize this bound over S
to give guidance on how to design aggregation bags.

Corollary 2.2. The estimation error E[‖θ̂ − θ∗‖22 |X] in
Eq. (5) is upper bounded by∥∥(XᵀX)−1Xᵀ

∥∥2
op

(‖(SᵀS − I)Xθ∗‖22 + σ2 min(m, d)).

2.2. Reducing to size-constrained k-means clustering

Next observe that I − SᵀS is a projection matrix given by

(I − SᵀS)i,j =


1− 1

|B`| if i, j ∈ B` and i = j,

− 1
|B`| if i, j ∈ B` and i 6= j,

0 otherwise.

Specifically, I − SᵀS is the projection onto the space of
vectors that have zero mean within each bag.

Let ỹi := E[yi | xi] = xᵀ
i θ be the conditional expected

response of sample xi according to the prior model θ ∈ Rd.
Letting ỹ = (ỹ1, . . . , ỹn), we then have

‖(I − SᵀS)ỹ‖22 =

m∑
`=1

∑
i∈B`

(ỹi − µ`)2 , (6)

where µ` = 1
|B`|

∑
i∈B`

ỹi is the mean of the entries of ỹ
in bag `. Observe that (6) is the one-dimensional k-means
objective.

To summarize, let B denote the set of all partitions of the n
samples. Minimizing the upper bound in Corollary 2.2 over
the set of non-overlapping bags of size at least k amounts to
the following optimization problem:

min
(B1,...,Bm)∈B

m∑
`=1

∑
i∈B`

(ỹi − µ`)2 + σ2 min(m, d)

subject to |B`| ≥ k ∀` ∈ [m]
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This problem exhibits an interesting tradeoff with the num-
ber of bags m. The first term in the objective is the bias of
the estimator θ̂, which measures the within-bag deviation
of ỹ. If we require larger bags (and hence a smaller m), this
term increases since there will be more heterogeneity within
bags. Decreasing m, however, reduces the second term in
the objective, which is the variance of the estimator θ̂. The
reason is that the aggregate responses y` are averaged across
larger bags and thus have lower variance. This reduction in
the variance of the aggregated responses corresponds to a
reduction in the estimator variance.

Focusing on the case where m ≥ d, we can drop the second
term in the objective to get the following one-dimensional k-
means clustering problem with minimum size constraints:1

min
(B1,...,Bm)∈B

m∑
`=1

∑
i∈B`

(ỹi − µ`)2 (7)

subject to |B`| ≥ k ∀` ∈ [m]

The next result establishes a structural property about opti-
mal solutions to this problem.

Lemma 2.3 (Sorting structure). Consider the optimization
problem (7) and sort the values ỹi in non-increasing order
as ỹ(1) ≥ · · · ≥ ỹ(n). There exists an optimal solution
{B∗` : ` ∈ [m]} with the following property: if ỹ(i) and ỹ(j)
are in a bagB∗` , then ỹ(k) ∈ B∗` for all k ∈ {i, i+1, . . . , j}.

We discuss the algorithmic consequences of Lemma 2.3 in
more detail in Section 5.

3. Extension to GLMs
We next extend our derivation to the family of generalized
linear models (GLMs). In a GLM, the response variables yi
are conditionally independent given xi, and generated from
a particular distribution in the exponential family where the
log-likelihood function is written as:

log p(yi | ηi, φ) =
yiηi − b(ηi)

ai(φ)
+ c(yi, φ) , (8)

where ηi is the location parameter and φ is the scale param-
eter. The functions ai(·), b(·), and c(·, ·) are known. It is
sometimes assumed that ai(φ) has the form ai(φ) = φ/wi,
where wi is a known prior weight. We consider canoni-
cal GLMs, in which the location parameter has the form
ηi = xᵀ

i θ
∗ for an unknown model parameter θ∗. GLMs in-

clude several well-known statistical models, including linear
regression, logistic regression, and Poisson regression.

1More accurately, this is a one-dimensional m-means cluster-
ing problem with size constraints. We use k to denote the minimum
bag size to agree with the notion of k-anonymity.

Let θ̂ be the minimizer of the event-level loss in (1) with L
the negative log-likelihood. Concretely,

θ̂ = arg min
θ

L(θ)

:= arg min
θ

1

n

m∑
`=1

∑
i∈B(`)

y`x
ᵀ
i θ − b(x

ᵀ
i θ)

ai(φ)
, (9)

where we drop the term c(yi, φ) as it does not depend on θ.

By the optimality of θ̂, we have ∇L(θ̂) = 0. Our goal is
to find a bagging configuration that makes θ̂ close to the
ground truth model θ∗. A natural approach towards this goal
is to make the gradient of the loss at θ∗ small. As we show
in Lemma B.2, for strongly convex losses, the estimation
error ‖θ̂ − θ∗‖2 can be controlled by ‖∇L(θ∗)‖2.

Our next result characterizes the norm of the loss gradient
at θ∗, connecting it to the bagging matrix S. Throughout,
we use the following convention: For a function f : R→ R,
when f is applied to a vector, it is applied to each entry of
that vector, i.e., f(v) = (f(v1), . . . , f(vn)).

Theorem 3.1. Consider the GLM family in (8) with canon-
ical link functions (ηi = xᵀ

i θ
∗). For negative log-likelihood

loss in (9), we have

E
[
‖∇L(θ∗)‖22

∣∣X]=
∥∥XᵀD−1(SᵀS − I)b′(Xθ∗)

∥∥2
2

+
∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2

∥∥∥2
F
, (10)

whereD = diag({ai(φ)}).

We defer all proofs in this section to Appendix B. Note that
E[y | x] = b′(xᵀθ∗) and Var(y | x) = a(φ)b′′(xᵀθ∗) are
available from the given prior and therefore, in principle,
the right-hand side of (10) can be minimized over the choice
of bagging matrix S.

However, similar to the case of linear regression, we start
by upper bounding (10), and then we minimize this upper
bound over the choice of S. This provides guidance for how
to construct the bags, and is easier to compute while being
more interpretable.

Corollary 3.2. Define µi := E[yi | xi] = b′(xᵀ
i θ
∗) and

vi := Var(yi | xi) = ai(φ)b′′(xᵀ
i θ
∗), and let their vector

forms be µ = (µ1, . . . , µn) and v = (v1, . . . , vn). Then,

E
[
‖∇L(θ∗)‖22

∣∣X] ≤ ∥∥XᵀD−1
∥∥2
op

(11)

·
{
‖(SᵀS − I)µ‖22 + min

( m∑
`=1

∑
i∈B`

vi
|B`|

, d ‖v‖∞
)}

.

In the case of linear regression, we have vi = σ2, so the term
involving vi becomes σ2 min(m, d) like in Corollary 2.2,
which only depends on the number of bags.
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Further, if m/d ≥ max(vi)/min(vi), the min term in (11)
is achieved by d ‖v‖∞, so this term can be dropped from
the objective, bringing us to the familiar size-constrained
clustering problem:

min
(B1,...,Bm)∈B

m∑
`=1

∑
i∈B`

(µi − µ`)2 (12)

subject to |B`| ≥ k ∀` ∈ [m]

We conclude by showing that we can drop the variance term
from the bound in (11) for logistic and Poisson regression,
i.e., that (12) is the correct objective function.

Logistic regression. In this case we have y ∈ {0, 1}, so
the log-likelihood becomes:

log p(y | η) = yη − log(1 + eη) ,

which corresponds to b(η) = log(1 + eη), a(φ) = 1, and
c(y, φ) = 0. Therefore, µ = b′(η) = 1/(1 + e−η) and
v = eη/(1 + eη)2. Then, for any i, j ∈ [n], we have

vi
vj

= eηi−ηj
(

1 + eηj

1 + eηi

)2

≤ eηi−ηje2(ηj−ηi)+

≤ e|ηi−ηj | ≤ e‖xi−xj‖2e‖θ
∗‖2 ,

where we used ηi = xᵀ
i θ
∗. Therefore, if ‖xi‖2 ≤ B, we

have max(vi)/min(vi) ≤ exp(2B ‖θ∗‖2), so for m/d ≥
exp(2B ‖θ∗‖2), we can drop the variance term from the
objective function.

Poisson regression. In this case we have y ∈ Z≥0, so the
log-likelihood reads as:

log p(y | η) = yη − eη − log(y!) ,

which corresponds to b(η) = eη, c(y, φ) = − log(y!), and
a(φ) = 1. Thus, µ = b′(η) = eη and v = a(φ)b′′(η) = eη.
Then, similar to the previous example, max(vi)/min(vi) ≤
exp(2B ‖θ∗‖2) and so for m/d ≥ exp(2B ‖θ∗‖2), we can
drop the variance term from the objective function.

4. Comparison with random bagging
We now theoretically justify the benefit of our prior-based
bagging approach for aggregate learning compared to ran-
dom bagging by proving a separation in the estimator error
for linear models. An analogous but more involved analysis
can also be carried out for GLMs. Before we present our
results, we neet to establish some definitions and state our
assumptions.

Definition 4.1. A random variable X is η-subgaussian if
E[exp(X2/η2)] ≤ 2. A random vector x is η-subgaussian
if all of the one-dimensional marginals are η-subgaussian,
i.e., xᵀv is η-subgaussian for all v with ‖v‖2 = 1.

Some examples of subgaussian random variables include
Gaussian, Bernoulli, and all bounded random variables.
Assumption 4.2. The features vectors x1, . . . ,xn ∈ Rd
are drawn i.i.d from a centered κ-subgaussian distribution
with covariance matrix Σ := E[xix

ᵀ
i ] ∈ Rd×d.

Assumption 4.3. We consider an asymptotic regime where
the sample size n and the features dimension d both grow
to infinity. We assume that the eignevalues of Σ remain
bounded and also away from zero in this asymptotic regime,
i.e., σmin(Σ) ≥ Cmin > 0 and ‖Σ‖op ≤ Cmax < ∞ for
some constants Cmin and Cmax.

Our first theorem upper bounds the estimator error when the
bags are formed using the ground truth model θ∗.
Theorem 4.4. Consider the linear model (2) under Assump-
tions 4.2 and 4.3. Suppose that the dimension d and the sam-
ple size n grow to infinity and n = Ω(d). For the bagging
matrix S constructed by solving problem (7), the following
holds true with probability at least 1− 1/n− 2e−cd,

E
[ ∥∥∥θ̂ − θ∗∥∥∥2

2

∣∣∣X] ≤ C (k log(n) ‖θ∗‖22 + σ2d

nσmin(Σ)

)
,

for some constants c, C > 0 that depend only on the sub-
gaussian norm κ.

Out next result lower bounds the estimator error when the
bags are chosen independently of the data. This applies to
random bags as a special case.
Theorem 4.5. Consider the linear model (2) under Assump-
tions 4.2 and 4.3. Suppose the dimension d and the sample
size n grow to infinity and n = Ω(d2 log d). If the bags are
constructed independent of data and each of size k, the fol-
lowing holds true with probability at least 1−2e−c1d−2d−c,

E
[ ∥∥∥θ̂ − θ∗∥∥∥2

2

∣∣∣X] ≥ [(1− 1

k
− Cd

√
log d

σmin(Σ)
√
n

)2

‖θ∗‖22

+
σ2

kn

trace(Σ)−
√
d log d

(‖Σ‖op + c0

√
d
n )2

]
,

where c, c0, c1, C > 0 are constants that only depend on κ,
the subgaussian norm of the features vectors.

Remark 4.6. Theorems 4.4 and 4.5 quantify the improve-
ment we get in model risk when using the bag construction
from constrained k-means instead of random bags. Note
that in the asymptotic regime where n, d → ∞ with n =
Ω(d2 log d), the model risk under Theorem 4.4 converges to
zero, while the risk under Theorem 4.5 is lower bounded by
(1− 1

k )2 ‖θ∗‖22. We note that Cmind ≤ trace(Σ) ≤ cmaxd.
In other words, the bias of the estimated model remains non-
vanishing under random bags, whereas it vanishes asymp-
totically when the bags are constructed via size-constrained
k-means.
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Remark 4.7. Theorem 4.4 considers bagging configurations
based on k-means with a minimum group size constraint
in (7). It assumes access to an oracle model that gives the
correct ordering of (unobserved) responses yi. However, as
stated in our methodology, we use a prior model to com-
pute the conditional expected responses ỹi, and because
of this there may be a mismatch between the ordering of
yi’s and ỹ′is. We denote by S and S̃ the corresponding
bagging matrices. Our next theorem shows how the esti-
mator error inflates with respect to the mismatch quantity
‖SSᵀ − S̃S̃ᵀ‖op.

Theorem 4.8. Consider the linear model (2) under Assump-
tions 4.2 and 4.3. Suppose that the dimension d and the
sample size n grow to infinity, and n = Ω(d). Let S̃ be
the bagging configuration based on problem (7) using the
predicted responses ỹi by a prior model. Similarly, let S
be the corresponding bagging configuration by an oracle
model who has access to individual responses yi. If we have
a mismatch ‖SSᵀ − S̃S̃ᵀ‖op ≤ ε, then the following holds
true with probability at least 1− 1/n− 2e−cd,

E
[ ∥∥∥θ̂ − θ∗∥∥∥2

2

∣∣∣X] ≤ C (k log(n) ‖θ∗‖22 + σ2d

nσmin(Σ)

)

+
σmax(Σ)− C ′

√
d/n

σmin(Σ) + C ′
√
d/n
‖θ∗‖22 ε

2,

for some constants c, C,C ′ > 0 that depend only on the
subgaussian norm κ.

5. Algorithm
We now present the PriorBoost algorithm. The high-level
idea is to partition the dataX into T parts, and use each slice
X(t) together with last round’s model θ̂(t−1) to form better
bags S(t), and hence learn a stronger event-level model θ̂(t)

at each step. This is an iterative and adaptive procedure.
However, since we get one aggregate response per sample
(non-overlapping bags), taking more steps means using less
data per step. We compare PriorBoost to the random bag-
ging algorithm in Section 7 that uses all available data in a
one non-adaptive round.

Concretely, the first step of PriorBoost uses random bag-
ging to learn θ̂(1) from the aggregate responses of the first
slice X(1). In each subsequent step, we use θ̂(t−1) to pre-
dict the individual responses ỹ(t) for this round of dataX(t).
Based on these predictions, we form aggregation bags by
solving the one-dimensional size-constrained k-means clus-
tering problem in (7). Recall that our goal is for bags to
be homogoneous with respect to the true responses, which
the learner never sees. The learner then gets the aggregate
response of each bag, learns a better model θ(t), and re-
peats the process. We give pseudocode for PriorBoost in

Algorithm 1 PriorBoost

Input: dataX , model L(·, fθ(·)), number of steps T
1: SplitX into T equal-sized partsX(1), . . . ,X(T )

2: Get aggregate responses y(1) for (X(1),S(random))

3: Update θ̂(1) ← arg minθ L(y(1), fθ(X(1)))
4: for t = 2 to T do
5: Predict ỹ(t) ← fθ̂(t−1)(X

(t))

6: Sort samples by ỹ(t)i and solve (7) to get bags S(t)

using Lemma 5.1
7: Get aggregate responses y(t) for (X(t),S(t))

8: Update θ̂(t) ← arg minθ L(y(t), fθ(X(t)))
9: end for

10: return θ̂(T )

Algorithm 1 and summarize its core clustering subroutine
below.

Lemma 5.1. The clustering problem in (7) with bags of
minimum size k can be solved in time O(nk + n log n).

This subroutine exploits the sorted structure of an optimal
partition (Lemma 2.3) and uses dynamic programming with
a constant-time update for the sum of squared distance term
for the last cluster in the recurrence (Wang & Song, 2011).
We describe this algorithm in more detail and give a proof
of the lemma in Appendix D.
Remark 5.2. If we have a weak model for predicting event-
level responses (e.g., using prior θ̂(0) or transfer learn-
ing), we can use its predictions for ỹi to sort X(1) and ap-
ply Lemma 5.1 in step t = 1. This warm starts PriorBoost
compared to random bagging S(random) and allows the algo-
rithm to use fewer adaptive rounds.

6. Differential privacy for aggregate responses
As previously explained, aggregate learning offers a degree
of privacy protection by obscuring individual responses and
only disclosing aggregated responses for each bag. If the
bags do not overlap and each bag has a minimum size k,
substituting individual responses with the aggregated ones
ensures k-anonymity, a privacy concept asserting that any
given response is indistinguishable from at least k− 1 other
responses.

Another widely used notion of privacy that formalizes the
privacy protection of responses/labels is label differential
privacy (label DP), introduced by Chaudhuri & Hsu (2011).
In simple terms, a mechanism, or data processing algorithm,
is deemed label DP if its output distribution remains largely
unchanged if a single response/label is altered in the input
dataset. The concept of label differential privacy is derived
from (full) differential privacy (Dwork et al., 2006a;b), fo-
cusing specifically on preserving the privacy of responses
rather than all features. It is important to note that dif-
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ferential privacy provides a guarantee for data processing
algorithms, whereas k-anonymity is a property of datasets.
We recall the formal definition of label DP from (Chaudhuri
& Hsu, 2011).

Definition 6.1 (Label differential privacy). Consider a ran-
domized mechanismM : D → O that takes as input dataset
D and outputs into space O. A mechanismM is called ε-
label DP if for any two datasets (D,D′) that differ in the
label of a single example and any subset O ⊆ O, we have

Pr(M(D) ∈ O) ≤ eε Pr(M(D′) ∈ O) ,

where ε is the privacy budget.

It is easy to see that learning from aggregate responses, in
the form described so far, is not label DP. However, we can
use the Laplace mechanism on top of aggregation to ensure
label DP. We empirically study the optimal size of the bags,
in terms of minimizing model estimation error, for a given
privacy budget in Section 7.3.

In the Laplace mechanism, the magnitude of the noise being
added depends on the privacy guarantee ε and the sensitivity
of the output to each single change in the dataset. Suppose
that the responses/labels are bounded |yi| ≤ B by some
value B that is independent of data (and hence can be used
without sacrificing any data privacy). The sensitivity of an
aggregate response, for a bag of size k, is then given byB/k.
Therefore, to ensure ε-label DP, we add independent draws
Z` ∼ Laplace(0, B/εk) to the aggregate responses y`, for
each ` ∈ [m]. By Dwork et al. (2006b, Proposition 1) these
noisy aggregated responses are ε-DP, and by closure of DP
under post-processing (Dwork et al., 2014, Proposition 2.1)
any learning algorithm that only uses the noisy aggregate
responses is ε-DP.

7. Experiments
We empirically study linear regression, logistic regression,
and label DP in the aggregate learning framework. For these
tasks, we compare three algorithms:

• PriorBoost: Pseudocode presented in Algorithm 1.

• OneShot: Random bagging on all of the training data.
This is equivalent to Algorithm 1 with T = 1 (i.e., a
non-adaptive version).

• PBPrefix: Variant of Algorithm 1 where at each step t,
the model trains on all data seen so far. Specifically, the
data used to learn θ̂(t) in Line 8 is

⋃t
i=1{(X(i),y(i))}.

Our experiments use NumPy (Harris et al., 2020) and scikit-
learn’s LogisticRegression (Pedregosa et al., 2011).

Figure 1: Linear regression. Compares PriorBoost (solid)
with OneShot (left, dotted) and PBPrefix (right, dashed) by
plotting test MSE at each step t for different bag sizes k.

7.1. Linear regression

We start by generating a dataset (X,y) withX ∈ Rn×d as
follows. First, sample a ground truth model θ∗ ∼ Nd(0, I).
Next, generate a design matrixX of n i.i.d. feature vectors
xi ∼ Nd(0, I) and get their responses y = Xθ∗+ε, where
each εi ∼ N (0, σ2) is i.i.d. Gaussian noise with σ = 0.1.

To study the convergence of PriorBoost and PBPrefix,
we set T = 256. Then we set n = T · 4096 = 220 and
d = 8 so that both algorithms get 4096 new samples per
step. We generate an independent test set of n samples from
the same model and plot the test mean squared error (MSE)
at each step of the algorithm (using the entire test set) in
Figure 1. OneShot, as described above, creates random
bags of size k across all of the training data, gets the mean
response of each bag, and fits a linear regression model with
least squares loss. We run each algorithm for bags of size
k ∈ {1, 2, 4, 8, 16, 32, 64}.

In Figure 1, PriorBoost converges to optimal model qual-
ity (i.e., the loss when k = 1) for all bag sizes k. This
is in stark contrast to non-adaptive OneShot (i.e., random
bagging), whose test loss gets worse as k increases. In
the right subplot, PBPrefix converges much slower than
PriorBoost—and to suboptimal solutions. This is because
the aggregate responses obtained in early steps of the al-
gorithms are noisy, as the prior θ̂(t) is weaker. Noisy re-
sponses are helpful for constructing better bags in the next
iteration (and hence allowing us to learn a stronger prior),
but they can be actively unhelpful if they remain in the train-
ing set for too long (e.g., the data that PBPrefix trains on
in later steps). PriorBoost, however, only trains on the last
slice of aggregate data (X(t),y(t)), and therefore “forgets”
early/noisy mean responses, leading to better final model
quality while also using fewer samples per step.

7.2. Logistic regression

For our first logistic regression experiment, we use the same
ground truth model weights, design matrix, and Gaussian
noise (θ∗,X, ε) as in linear regression, but now we create
binary labels by sending them through a sigmoid function
and rounding: yi = round(σ(xᵀ

i θ
∗ + εi)) ∈ {0, 1}. After
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Figure 2: Logistic regression. Compare PriorBoost (solid)
with OneShot (left, dotted) and PBPrefix (right, dashed) by
plotting test log loss at each step t for different bag sizes k.

each aggregation step t, the oracle rounds the mean response
of each bag round(y`) ∈ {0, 1} to get back to a binary label,
which is an additional source of noise.2 All three algorithms
fit logistic regression models with binary cross-entropy loss
and L2 regularization penalty λ

2 ‖θ‖
2
2 for λ = 10.

Similar to the linear regression experiment, Figure 2 shows
that PriorBoost converges to optimality for all bag sizes.
In contrast, OneShot steadily degrades as k increases. We
also see that by training on all aggregate responses available
at step t to learn θ̂(t), PBPrefix converges slower and to
suboptimal solutions for k ≥ 16.

7.3. Differential privacy

We now modify PriorBoost by adding Laplace noise to
the aggregate responses to make the algorithm ε-label DP
as described in Section 6. The key observation is that for
binary labels and bags of size at least k, we can reduce the
scale of the Laplace noise by a factor of k. We use the same
experimental setup as in Section 7.2, geometrically sweep
over privacy budgets 0.01 ≤ ε ≤ 100, and compare the
test loss of PriorBoost to an ε-label DP version of random
bagging. Error bars are computed over 10 realizations.

Figure 3: ε-label differentially private logistic regression.
Compares final PriorBoost (solid) test log loss to OneShot
(dashed) for different bag sizes k.

As we increase the privacy loss ε, the test loss decreases

2We randomly round y` =
1/2 to 0 or 1 in a consistent way to

avoid biasing the distribution of binary aggregate labels.

for each value of k. This is expected because the privacy
constraint becomes more relaxed, allowing for better model
quality. Note that ε =∞ corresponds to not using any differ-
ential privacy. For each value of ε, the utility of PriorBoost
improves as the bag size k increases, whereas the utility of
OneShot degrades as we increase k. This may initially seem
surprising, but recall that PriorBoost actively reduces the
bias of the estimated model by forming homogeneous bags
with respect to labels. As we increase k, PriorBoost (1)
effectively maintains a slow growth rate for the bias, (2) can
afford to reduce the scale of its Laplace noise by a factor
of k, and (3) gets low-variance mean labels since they are
averaged over larger bags. Therefore, all in all, PriorBoost
favors larger k in this setup. In particular, it approaches its
non-private loss at a faster rate in ε, for larger k. For exam-
ple with k = 64, it already nearly achieves the non-private
loss for ε ≥ 0.3. For OneShot though, larger k significantly
increases the bias of the estimated model, which outweighs
the variance reduction and results in a larger loss. Also note
that for k = 1 (singleton bags), PriorBoost and OneShot
match. In summary, this experiment shows we can achieve
more utility for a fixed ε by using PriorBoost to learn large
curated bags whose mean labels require less random noise.

Figure 4: Optimal bag sizes k for ε-label DP PriorBoost
for logistic regression. Test loss for ε = 1 as the number of
samples n increases.

Optimal bag sizes. The plots in Figure 3 are for fixed n
and d with n � d. To better understand the effect of bag
size on the bias-variance tradeoff, we next run the same
logistic regression experiment for d = 64, T = 128, ε = 1,
while varying the total number of samples n. An intriguing
observation from Figure 4 is that the optimal bag size (i.e.,
the one minimizing the loss) grows with n. The crossover
points for optimal k also become farther apart as n grows.
For example, k = 4 is optimal for a smaller range of n
compared to k = 16. As discussed earlier, a larger k yields
larger bias while reducing the variance. However, a virtue
of PriorBoost is that both the bias and variance decrease
in the sample size n. The loss plots in Figure 4 suggest that
the decay rate (in n) of the bias is faster than the decay rate
of the variance, and so as n grows, the optimal bag size for
PriorBoost becomes larger.
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Conclusion
This work proposes a novel method for using available prior
information for expected responses of samples to construct
bags for aggregate learning. We devise the multi-stage algo-
rithm PriorBoost to obtain good priors from the aggregate
data itself if no public prior is available. We also propose a
differentially private version, as well as intriguing observa-
tions about optimal bag sizes. Our analysis provably shows
the advantage of our approach over random bagging, which
we back up with strong numerical experiments.
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A. Missing analysis from Section 2
A.1. Proof of Theorem 2.1

The derivative of the loss at the minimizer is zero, which gives us:

Xᵀ(SᵀSy −Xθ̂) = 0.

By rearranging the terms, we have

θ̂ − θ∗ = (XᵀX)−1XᵀSᵀSy − θ∗

= (XᵀX)−1XᵀSᵀSXθ∗ − θ∗ + (XᵀX)−1XᵀSᵀSε

= (XᵀX)−1Xᵀ(SᵀS − In)Xθ∗ + (XᵀX)−1XᵀSᵀSε .

Since the noise vector ε ∈ Rn is independent of the design matrixX with E[ε] = 0 and E[εεᵀ] = σ2I , we have

E
[ ∥∥∥θ̂ − θ∗∥∥∥2

2

∣∣∣X] =
∥∥(XᵀX)−1Xᵀ(SᵀS − In)Xθ∗

∥∥2
2

+ σ2trace((XᵀX)−1XᵀSᵀSSᵀSX(XᵀX)−1) . (13)

Further, since the bags are non-overlapping, we have SSᵀ = Im, by which we get

trace((XᵀX)−1XᵀSᵀSSᵀSX(XᵀX)−1) = trace((XᵀX)−1XᵀSᵀSX(XᵀX)−1)

=
∥∥(XᵀX)−1XᵀSᵀ

∥∥2
F
. (14)

Substituting into (13), we prove the claim.

A.2. Proof of Corollary 2.2

By definition of the operator norm, we have∥∥(XᵀX)−1Xᵀ(SᵀS − In)Xθ∗
∥∥
2
≤
∥∥(XᵀX)−1Xᵀ

∥∥
op
‖(SᵀS − In)Xθ∗‖2 .

Next, we upper bound the variance term in Eq. (14) using the inequality

‖AB‖2F ≤ min
(
‖A‖2op ‖B‖

2
F , ‖B‖

2
op ‖A‖

2
F

)
.

We have ‖S‖2F = m and ‖S‖op = 1 by the Cauchy–Schwarz inequality. We also assumed rank(X) ≤ d, which implies∥∥(XᵀX)−1Xᵀ
∥∥
F
≤
√
d
∥∥(XᵀX)−1Xᵀ

∥∥
op
.

Therefore, we obtain ∥∥(XᵀX)−1XᵀSᵀ
∥∥2
F
≤
∥∥(XᵀX)−1Xᵀ

∥∥2
op

min(m, d) .

Combining these two bounds with Theorem 2.1 gives the result.

A.3. Proof of Lemma 2.3

The key idea is to rewrite the optimization problem by “lifting” the space of optimization variables as follows:

min
(B1,...,Bm)∈B

m∑
`=1

∑
i∈B`

(ỹi − c`)2 (15)

subject to |B`| ≥ k ∀` ∈ [m]

c` ∈ R ∀` ∈ [m]

In words, we introduce the additional variables c` ∈ R, for ` ∈ [m]. It is easy to see that problems (7) and (15) have the
same optimal bagging configurations. Now, suppose that {(B∗` , c∗` ) : ` ∈ [m]} is an optimal solution to (15). If the claim is
not true, then there exists ỹi > ỹj and c` > c`′ such that ỹi ∈ B∗`′ and ỹj ∈ B∗` . We then argue that by assigning ỹi to B∗`
and ỹj to B∗`′ , we can reduce the objective value, which is a contradiction. To show this, we must prove that

(ỹi − c`′)2 + (ỹj − c`)2 > (ỹi − c`)2 + (ỹj − c`′)2 ⇐⇒ −ỹic`′ − ỹjc` > −ỹic` − ỹjc`′
⇐⇒ (ỹi − ỹj)(c` − c`′) > 0 ,

which is true by our assumption.

11



PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses

B. Missing analysis from Section 3
We recall the notion of strong convexity below.

Definition B.1. A function f : Rn → R is strongly convex with parameter µ if the following holds for all x, y ∈ R:

f(y) ≥ f(x) + sᵀx(y − x) +
µ

2
‖y − x‖22 ,

for any sx ∈ ∂f(x), where ∂f(x) denotes the set of subgradients of f at x.

The next lemma states that controlling the estimation error for a strongly convex loss function reduces to controlling the
norm of the gradient of the loss at the true model.

Lemma B.2. Suppose that the loss L is strongly convex with parameter µ and θ̂ = arg minθ L(θ). Then, for any model θ∗,
we have ∥∥∥θ̂ − θ∗∥∥∥

2
≤ 1

µ
‖L(θ∗)‖2 .

In addition, if L has a Lipschitz continuous gradient with parameter L, we have

1

L
‖L(θ∗)‖2 ≤

∥∥∥θ̂ − θ∗∥∥∥
2
.

Proof. By writing the definition of strong convexity for θ̂ and θ∗, and noting that∇L(θ̂) = 0, we get

L(θ∗) ≥ L(θ̂) +
µ

2

∥∥∥θ∗ − θ̂∥∥∥2
2
.

Likewise, by changing the role of θ̂ and θ∗, we have

L(θ̂) ≥ L(θ∗) +∇L(θ∗)ᵀ(θ̂ − θ∗) +
µ

2

∥∥∥θ∗ − θ̂∥∥∥2
2
.

By adding the above two inequalities and rearranging the terms, we arrive at

∇L(θ∗)ᵀ(θ∗ − θ̂) ≥ µ
∥∥∥θ∗ − θ̂∥∥∥2

2
.

Next, by Cauchy–Schwarz inequality,∇L(θ∗)ᵀ(θ∗ − θ̂) ≤ ‖L(θ∗)‖2
∥∥∥θ∗ − θ̂∥∥∥

2
, which along with the previous inequality

proves the first claim.

The second claim follows easily from Lipschitz condition. We write

‖∇L(θ∗)‖2 =
∥∥∥∇L(θ∗)−∇L(θ̂)

∥∥∥
2
≤ L

∥∥∥θ∗ − θ̂∥∥∥
2
,

which completes the proof.

B.1. Proof of Theorem 3.1

The gradient of the loss in (9) reads as

∇L(θ) =
1

n

m∑
`=1

∑
i∈B(`)

1

ai(φ)
(y` − b′(θᵀxi))xi

= XᵀD−1(SᵀSy − b′(Xθ)) .

We next consider the following bias-variance decomposition:

E
[
‖∇L(θ∗)‖22

∣∣X] =
∥∥∥E[∇L(θ∗)

∣∣X]∥∥∥2
2

+ trace(Cov(∇L(θ∗) |X)) . (16)
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Under the GLM, the responses yi are independent conditioned on xi. In addition,

E[yi | xi] = b′(θᵀxi), Var(yi | xi) = ai(φ)b′′(θᵀxi) .

We therefore get

E
[
∇L(θ∗)

∣∣X] = XᵀD−1(SᵀSb′(Xθ∗)− b′(Xθ∗))

= XᵀD−1(SᵀS − I)b′(Xθ∗) . (17)

In addition,

Cov(∇L(θ∗) |X) = E
[
XᵀD−1SᵀS(y − b′(Xθ∗))(y − b′(Xθ∗))ᵀSᵀSD−1X

∣∣X]
= XᵀD−1SᵀSDdiag(b′′(Xθ∗))SᵀSD−1X .

Therefore,

trace(Cov(∇L(θ∗) |X)) =
∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2

∥∥∥2
F
. (18)

Combining (17) and (18) into (16) completes the proof.

B.2. Proof of Corollary 3.2

We upper bound each term of (10) separately. For the first term, we have∥∥XᵀD−1(SᵀS − I)µ
∥∥
2
≤
∥∥XᵀD−1

∥∥
op
‖(SᵀS − I)µ‖2 .

For the second term, we develop two upper bounds and take the minimum of the two.

For the first upper bound we have∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥2
F
≤ d

∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥2
op

≤ d
∥∥XᵀD−1

∥∥2
op
‖SᵀS‖2op

∥∥∥D1/2diag(b′′(Xθ∗))1/2
∥∥∥
op

≤ d
∥∥XᵀD−1

∥∥2
op
‖v‖∞ .

For the second upper bound we have∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥2
F
≤
∥∥XᵀD−1

∥∥2
op

∥∥∥SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥2
F
, (19)

using the inequality ‖AB‖2F ≤ ‖A‖
2
op ‖B‖

2
F.

We also note that ∥∥∥SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥2
F

= trace (SᵀSDdiag(b′′(Xθ∗))SᵀS)

= trace (Ddiag(b′′(Xθ∗))SᵀSSᵀS)

= trace (Ddiag(b′′(Xθ∗))SᵀS)

= trace (Ddiag(b′′(Xθ∗))SᵀS)

=

m∑
`=1

∑
i∈B`

ai(φ)b′′(xᵀ
i θ
∗)

|B`|
=

m∑
`=1

∑
i∈B`

vi
|B`|

.

Combining the above bounds, we obtain∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥2
F
≤
∥∥XᵀD−1

∥∥2
op

min
( m∑
`=1

∑
i∈B`

vi
|B`|

, d ‖v‖∞
)
. (20)

This completes the proof of the corollary.
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C. Missing analysis from Section 4
C.1. Proof of Theorem 4.4

We prove the claim using the result of Corollary 2.2. Recall the notation µ := Xθ∗. By Lemma 2.3, we know that the
solution S given by (7) has a simple sorting structure. We use that structure to construct a bagging scheme to upper bound
the term ‖(SᵀS − I)µ‖22. Without loss of generality, assume that n is divisible by k. Sort the entries of µ and construct the
bags as B(`) = {(`− 1)k+ 1, . . . , `k} for ` = 1, . . . ,m := n/k. In addition, let µ̄` indicate the average of µi’s over bag `.
This construction of bags satisfy the constraint of (7) and so we have

‖(SᵀS − I)µ‖22 ≤
m∑
`=1

`k∑
j=(`−1)k+1

(µj − µ̄`)2

≤ k
m∑
`=1

(µ`k − µ(`−1)k+1)2

≤ k
( m∑
`=1

µ`k − µ(`−1)k+1

)2
= k(µ(1) − µ(n))

2

≤ 4k ‖µ‖2∞ .

where µ̄i in the first inequality denotes the average of µi’s over bag i.

We next bound ‖µ‖2∞. Since xi’s are κ-subgaussian, we have that µi is κ ‖θ∗‖2-subgaussian, for i ∈ [n].

Lemma C.1. Suppose that ξ1, . . . , ξn are centered η-subgaussian random variables. Then, with probability at least 1− 1
n ,

we have
max
i∈[n]

ξ2i ≤ 2η2 log n.

By using Lemma C.1 we obtain

‖(SᵀS − I)µ‖22 ≤ 4k ‖µ‖2∞ ≤ 8kκ2 ‖θ∗‖22 log n , (21)

with probability at least 1 − 1/n. We next use the concentration bounds on the singular values of matrices with i.i.d.
subgaussian rows to bound

∥∥(XᵀX)−1Xᵀ
∥∥
op

. Specifically, we use Vershynin (2012, Equation (5.25)), which states that

with probability at least 1− 2e−c1t
2

, the following holds true:∥∥∥∥ 1

n
XᵀX −Σ

∥∥∥∥
op

≤ max(δ1, δ
2
1), δ1 = C1

√
d

n
+

t√
n
, (22)

for constants c1, C1 > 0 that depend only on κ. We define the probabilistic event E as follows:

E1 :=

{∥∥∥∥ 1

n
XᵀX −Σ

∥∥∥∥
op

≤ C
√
d

n

}
, (23)

for some fixed constant C > 0. Then using (22) we have Pr(E1) ≥ 1− 2e−c1d, for some constant depending on C and κ.
Under the event E , and by using Weyl’s inequality for singular values, we have

σmin(X) ≥
√
nσmin(Σ)− C

√
dn . (24)

Combining (21) and (37) in Corollary 2.2, we obtain the result.

Proof of Lemma C.1. Since ξi is η-subgaussian, by definition E[exp(X2/η2)] ≤ 2. Exponentiating and using Markov’s
inequality, we obtain

Pr(|ξi| ≥ t) = Pr(eξ
2
i /η

2

≥ et
2/η2) ≤ e−t

2/η2E[eξ
2
i /η

2

] ≤ 2e−t
2/η2 .

14
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Choosing t = η
√

2 log n and union bounding over i ∈ [n], we get

Pr
(

max
i∈[n]
|ξi| ≥ η

√
2 log n

)
≤ 2

n
,

which completes the proof of lemma.

C.2. Proof of Theorem 4.5

We recall the characterization of the risk given by Theorem 2.1:

E
[ ∥∥∥θ̂ − θ∗∥∥∥2

2

∣∣∣X] =
∥∥(XᵀX)−1Xᵀ(SᵀS − In)Xθ∗

∥∥2
2

+ σ2
∥∥(XᵀX)−1XᵀSᵀ

∥∥2
F
. (25)

We introduce the shorthand Λ := SᵀS − In. Our next lemma lower bounds the expected bias.

Lemma C.2. Under the assumptions of Theorem 4.5, the following holds with probability at least 1− 2e−c1d − 2d−c,

E
[ ∥∥(XᵀX)−1XᵀΛXθ∗

∥∥2
2

∣∣∣X] ≥ (1− 1

k
− C d

√
log d

σmin(Σ)
√
n

)2

‖θ∗‖22 ,

where constants C, c, c1 > 0 only depend on the subgaussian norm κ.

Our next lemma lower bound the variance term in (25).

Lemma C.3. Under the assumptions of Theorem 4.5, the following holds with probability at least 1− 2e−c1d − 2d−c,

E
[ ∥∥(XᵀX)−1XᵀS

∥∥2
F

∣∣∣X] ≥ 1

kn
· trace(Σ)−

√
d log d

(‖Σ‖op + c0

√
d
n )2

,

where constants c, c0, c1 > 0 only depend on the subgaussian norm κ.

Proof of Theorem 4.5 follows by using Lemma C.2 and Lemma C.3 in the decomposition (25).

C.3. Proof of Lemma C.2

Consider the following optimization problem

α̂ =
1

2n
arg min

α∈Rd
‖Xα−ΛXθ∗‖22 . (26)

It is easy to see that by the KKT condition α̂ = (XᵀX)−1XᵀΛXθ∗, and so we are interested in the norm of the solution
to the above optimization problem. In order to do this, we define α∗ := trace(Λ)

n θ∗. As we will see later this is indeed the
solution of the population version of the above loss (when n→∞). The strategy is to upper bound ‖α̂−α∗‖2 from which
we obtain a lower bound on ‖α̂‖2.

By the optimality of α̂ we have

0 ≤ 1

2n
‖Xα∗ −ΛXθ∗‖22 −

1

2n
‖Xα̂−ΛXθ∗‖22

=
1

n
(α∗ − α̂)ᵀXᵀ(Xα∗ −ΛXθ∗)− 1

2n
‖X(α̂−α∗)‖22 .

Rearranging the terms we get

1

2n
‖X(α̂−α∗)‖22 ≤ ‖α∗ − α̂‖2

1

n
‖Xᵀ(Xα∗ −ΛXθ∗)‖2 .

The left-hand side can be also lower bounded by

1

2
σmin

( 1

n
XᵀX

)
‖α̂−α∗‖22 ≤

1

2n
‖X(α̂−α∗)‖22 .
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Combining the last two inequalities we arrive at

‖α̂−α∗‖2 ≤
2 ‖Xᵀ(Xα∗ −ΛXθ∗)‖2

nσmin(XᵀX/n)
. (27)

By using concentration bound on the singular values of matrices with i.i.d subgaussian rows, see Vershynin (2012, Equation
(5.25)), we have that with probability at least 1− 2e−c1t

2

,∥∥∥∥ 1

n
XᵀX −Σ

∥∥∥∥
op

≤ max(δ1, δ
2
1), δ1 = C1

√
d

n
+

t√
n
, (28)

for constants c1, C1 > 0 which depend only on κ. We define the probabilistic event E1 as follows:

E1 :=

{∥∥∥∥ 1

n
XᵀX −Σ

∥∥∥∥
op

≤ C
√
d

n

}
,

for some fixed constant C > C1. Then using (28) we have Pr(E1) ≥ 1− 2e−c1d, for some constant depending on C and κ.

We next bound the numerator of the right-hand side of (27). We write

1

n
‖Xᵀ(Xα∗ −ΛXθ∗)‖2 ≤

∥∥∥∥( 1

n
XᵀX −Σ

)
α∗

∥∥∥∥
2

+

∥∥∥∥Σα∗ − 1

n
XᵀΛXθ∗

∥∥∥∥
2

. (29)

Under event E1 the first term is bounded by C
√
d/n ‖α∗‖2.

In addition, by its definition it is easy to see that Λ is a projection matrix of rank n−m. More specifically, it projects onto
the space of vectors which are zero mean on each of the m bags. Therefore trace(Λ) = n−m and so

‖α∗‖2 =
n−m
n
‖θ∗‖2 = (1− 1

k
) ‖θ∗‖2 . (30)

Hence, under the event E1 the first term in (29) is bounded by∥∥∥∥( 1

n
XᵀX −Σ

)
α∗

∥∥∥∥
2

≤
∥∥∥∥( 1

n
XᵀX −Σ

)∥∥∥∥
op

‖α∗‖2 < C ‖θ∗‖2

√
d

n
. (31)

To bound the second term in the (29), we note that by definition of α∗,∥∥∥∥Σα∗ − 1

n
XᵀΛXθ∗

∥∥∥∥
2

=
1

n

∥∥∥(trace(Λ)Σ−XᵀΛX
)
θ∗
∥∥∥
2

≤
‖θ∗‖2
n
‖trace(Λ)Σ−XᵀΛX‖op

≤ ‖θ∗‖2
d

n

∣∣∣trace(Λ)Σ−XᵀΛX
∣∣∣
∞
, (32)

where for a matrix A, the notation |A|∞ refers to the maximum absolute values of its entries. In the last step we used the
inequality ‖A‖op ≤ d|A|∞, for symmetricA ∈ Rd×d.

We next proceed by upper bounding the right-hand side of (32). We first show that the matrix of interest side has zero mean.
To see this note that for any i, j ∈ [d] we have

E[(XᵀΛX)ij ] = E[x̃ᵀ
i Λx̃j ] = trace(ΛE(x̃jx̃

ᵀ
i )) = trace(Λ)Σij ,

where x̃i denotes the i-th column of X . Therefore, E[XᵀΛX] = trace(Λ)Σ. We next use the (asymmetric version of)
Hanson–Wright inequality (see, e.g, Vershynin (2018, Theorem 6.2.1)), by which we get that for any fixed i, j ∈ [d],

Pr {|(XᵀΛX)ij − trace(Λ)Σij | ≥ t} ≤ 2 exp

{
−cmin

( t2

κ2n(1− 1/k)
,
t

κ2

)}
, (33)
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where we used the fact that ‖Λ‖F = n−m = n− n/k, since it is a projection matrix of rank n−m. By union bounding
over the d2 coordinates i, j ∈ [d], we get

Pr {|XᵀΛX − trace(Λ)Σ|∞ ≥ t} ≤ 2d2 exp

{
−c0 min

( t2

κ2n(1− 1/k)
,
t

κ2

)}
. (34)

Fix a constant C >
√

2
c0
κ and define the event E2 as follows

E2 :=
{
|XᵀΛX − trace(Λ)Σ|∞ ≤ C

√
n log d

}
.

Using the deviation bound (34) we have Pr(E2) ≥ 1− 2d−c with c = C2c0
κ2(1−1/k) − 2 > 0. Recalling the bound (32), on the

event E2 we have ∥∥∥∥Σα∗ − 1

n
XᵀΛXθ∗

∥∥∥∥
2

≤ C ‖θ∗‖2 d
√

log d

n
. (35)

Putting together equations (29), (31), (35), we obtain that on the event E := E1 ∩ E2,

1

n
‖Xᵀ(Xα∗ − ΛXθ∗)‖2 ≤ C ‖θ

∗‖2 d
√

log d

n
, (36)

for a constant C depending on the subgaussian norm κ. In addition on the event E1, we have

σmin

( 1

n
XᵀX

)
≥ σmin(Σ)−

∥∥∥∥ 1

n
XᵀX −Σ

∥∥∥∥
op

≥ σmin(Σ)− C
√
d

n
. (37)

Next by combining (37) and (36) into (27), we get that

‖α∗ − α̂‖2 ≤
Cd

σmin(Σ)

√
log d

n
‖θ∗‖2 , (38)

for some constant C > 0. Note that here we used the fact that d = o(n). Therefore, by using triangle inequality, on the
event E

‖α̂‖2 ≥ ‖α∗‖2 − ‖α̂−α∗‖2 ≥
(

1− 1

k
− C d

√
log d

σmin(Σ)
√
n

)
‖θ∗‖2 ,

for a constant C > 0 that depends on the subgaussian norm κ.

We also have
Pr(E) = 1− Pr(Ec1 ∪ Ec2) ≥ 1− Pr(Ec1)− Pr(Ec2) ≥ 1− 2e−c1d − 2d−c ,

which along with the previous equation gives the desired result.

C.4. Proof of Lemma C.3

Write Sᵀ = [s1| . . . |sm] with si ∈ Rn and ‖si‖2 = 1. We then have

∥∥(XᵀX)−1XᵀS
∥∥2
F

=

n∑
i=1

∥∥(XᵀX)−1Xᵀsi
∥∥2
2
. (39)

We next show that for any unit vector s which is independent of data (y,X) we have

∥∥(XᵀX)−1Xᵀs
∥∥2
2
≥ trace(Σ)−

√
d log d

n2(‖Σ‖op + c0

√
d
n )2

(
1− 2e−c1d − 2d−c

)
, (40)

which together with (39) and the fact that m = n/k, implies the claim of Lemma C.3.
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Define v := (XᵀX)−1Xᵀs. Therefore, 1
nX

ᵀXv = 1
nX

ᵀs, which implies that∥∥∥∥ 1

n
XᵀX

∥∥∥∥2
op

‖v‖22 ≥
∥∥∥∥ 1

n
Xᵀs

∥∥∥∥2
2

. (41)

Our strategy to lower bound E[‖v‖22] is to upper bound the left-hand side of (41) and lower bound it right-hand side.

For the first task, recall the concentration bound (28). By taking t = c′
√
d in that bound, we obtain

Pr

(∥∥∥∥ 1

n
XᵀX −Σ

∥∥∥∥
op

≤ c0

√
d

n

)
≥ 1− 2e−c1d, (42)

for some constants c0, c1 depending on κ, the subgaussian norm of rows ofX . We refer to the probabilistic event in (42) by
E1.

We then proceed to the second task, i.e., lower bounding
∥∥ 1
nX

ᵀs
∥∥
2
. To do this, denote the columns of X ∈ Rn×d by

x̃1, . . . , x̃d ∈ Rn. In this notation,

‖Xᵀs‖22 =

d∑
`=1

(x̃ᵀ
` s)

2 :=

d∑
`=1

Z2
` . (43)

By assumption, Z` = x̃ᵀ
` s are independent subgaussian random variables with E[Z2

` ] = Σ`,` and the subgaussian norm
‖Z`‖ψ2

≤ Cκ for a universal constant C > 0. Therefore, by Vershynin (2012, Remark 5.18 and Lemma 5.14), Z2
` − Σ`,`

are independent centered sub-exponential random variables with ‖Z2
` − Σ`,`‖ψ1

≤ 2‖Z2
` ‖ψ1

≤ 4‖Z`‖2ψ2
≤ 4C2κ2 := C0.

Here, ‖ · ‖ψ1
refers to the subexponential norm of a random variable. We can therefore use an exponential deviation

inequality, Vershynin (2012, Corollary 5.17) to control sum (43). This gives us for every ε ≥ 0,

Pr
(∣∣∣ ‖Xᵀs‖22 − trace(Σ)

∣∣∣ ≥ εd) = Pr

(∣∣∣ d∑
`=1

Z2
` − trace(Σ)

∣∣∣ ≥ εd) ≤ 2 exp
[
− cmin

( ε2
C2

0

,
ε

C0

)
d
]
,

where c > 0 is an absolute constant. We take ε =
√

(log d)/d and define the probabilistic event

E2 :=
{∣∣∣ ‖Xᵀs‖22 − trace(Σ)

∣∣∣ ≤√d log d
}
.

By the above deviation bound we have Pr(E2) ≥ 1− 2d−c for some constant c > 0.

We next consider the event E := E1 ∩ E2. Using (42) and the above bound on Pr(E2) we get

Pr(E) = 1− Pr(Ec1 ∪ Ec2) ≥ 1− Pr(Ec1)− Pr(Ec2) ≥ 1− 2e−c1d − 2d−c .

Further, on the event E we have∥∥∥∥ 1

n
XᵀX

∥∥∥∥
op

≤ ‖Σ‖op +

∥∥∥∥ 1

n
XᵀX −Σ

∥∥∥∥
op

≤ ‖Σ‖op + c0

√
d

n
. (44)

‖Xᵀs‖22 ≥ trace(Σ)−
∣∣∣ ‖Xᵀs‖22 − trace(Σ)

∣∣∣ ≥ trace(Σ)−
√
d log d . (45)

Therefore, by invoking (41), on the event E we have

‖v‖22 ≥
∥∥ 1
nX

ᵀs
∥∥2
2∥∥ 1

nX
ᵀX
∥∥2
op

≥ trace(Σ)−
√
d log d

n2(‖Σ‖op + c0

√
d
n )2

. (46)

Since ‖v‖22 is non-negative by an application of Markov’s inequality we get

E[‖v‖22] ≥ trace(Σ)−
√
d log d

(‖Σ‖op + c0

√
d
n )2

Pr(E) ≥ trace(Σ)−
√
d log d

n2(‖Σ‖op + c0

√
d
n )2

(
1− 2e−c1d − 2d−c

)
.

This completes the proof of (40) and concludes the proof of Lemma C.3.

18



PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses

C.5. Proof of Theorem 4.8

The proof is similar to the proof of Theorem 4.4. We consider the bias-variance decomposition of the upper bound given in
Corollary (2.2).

We have ∥∥∥(S̃ᵀS̃ − In)Xθ∗
∥∥∥2
2
≤ 2 ‖(SᵀS − In)Xθ∗‖22 + 2

∥∥∥(SᵀS − S̃ᵀS̃)Xθ∗
∥∥∥2
2
. (47)

The first term is bounded in Theorem 4.4. For the second term, we bound it as∥∥∥(SᵀS − S̃ᵀS̃)Xθ∗
∥∥∥2
2
≤
∥∥∥SᵀS − S̃ᵀS̃

∥∥∥2
op
‖X‖2op ‖θ

∗‖22

≤ ε2 ‖θ∗‖22 σmax(XᵀX) . (48)

Combining (47) and (48) into Corollary 2.2, we see that the mismatch between bagging configuration S and S̃ contributes
an inflation term to the model risk which is upper bounded by∥∥(XᵀX)−1Xᵀ

∥∥2
op

∥∥∥(SSᵀ − S̃S̃ᵀ)Xθ∗
∥∥∥2
2

≤ σmax((XᵀX)−1) ε2 ‖θ∗‖22 σmax(XᵀX)

=
σmax

(
1
nX

ᵀX
)

σmin

(
1
nX

ᵀX
) ε2 ‖θ∗‖22 .

Note that the result of Theorem 4.4 is under an event with probability at least 1− 1/n− 2e−cd. Under this same event, we

have
∥∥ 1
nX

ᵀX −Σ
∥∥
op
≤ C

√
d
n (see Equation (23)). Therefore, by Weyl’s inequality for singular values we have

σmax

(
1

n
XᵀX

)
≤ σmax(Σ) + C

√
d

n
, σmin

(
1

n
XᵀX

)
≥ σmin(Σ)− C

√
d

n
,

which completes the proof of theorem.

D. Missing analysis from Section 5
D.1. Proof of Lemma 5.1

We build on the observation in Lemma 2.3 about the sorted structure of an optimal solution. First, sort the points by their ỹi
value in O(n log n) time. Next, we present a dynamic programming algorithm that optimally slices the sorted list, i.e., a
stars-and-bars partition where each part has size at least k.

Define the function fk(i) to be the objective of an optimal solution for the subproblem defined by the first i points. It follows
that

fk(i) =


∞ if i < 0

0 if i = 0

mink≤s≤i

{
fk(i− s) +

∑i
j=i−s+1(ỹj − µi,s)2

}
if i ≥ 1

where

µi,s =
1

s

i∑
j=i−s+1

ỹj .

This recurrence considers all suffixes of size s ≥ k as the last cluster, computes their sum of squares error, and recursively
solves the subproblem on the remaining points via fk(i− s). This naively leads to an O(n3)-time dynamic programming
algorithm. However, there are two observations that allow us to reduce the running time to O(nk):

1. We can assume each cluster in an optimal solution has size k ≤ s < 2k. If not, we can split a cluster of size s ≥ 2k into
two parts without increasing the objective. It follows that we can compute each fk(i) by considering O(k) recursive
states.
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2. We can iteratively compute the sum of squared errors d(i, s) :=
∑i
j=i−s+1(ỹj − µi,s)2 in constant time, as shown in

Wang & Song (2011):

d(i, s) = d(i, s− 1) +
s− 1

s
(ỹi−s+1 − µi,s−1)

2

µi,s =
ỹi−s+1 + (s− 1)µi,s−1

s

This means each value of fk(i) can be computed in O(k) time.

Putting everything together, we can compute fk(n) and reconstruct an optimal clustering in O(nk) time after sorting.
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