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ABSTRACT

This paper addresses the critical challenge of unlearning in Vertical Federated
Learning (VFL), an area that has received limited attention compared to horizon-
tal federated learning. We introduce the first approach specifically designed to
tackle label unlearning in VFL, focusing on scenarios where the active party aims
to mitigate the risk of label leakage. Our method leverages a limited amount of
labeled data, utilizing manifold mixup to augment the forward embedding of in-
sufficient data, followed by gradient ascent on the augmented embeddings to erase
label information from the models. This combination of augmentation and gra-
dient ascent enables high unlearning effectiveness while maintaining efficiency,
completing the unlearning procedure within seconds. Extensive experiments con-
ducted on diverse datasets, including MNIST, CIFAR10, CIFAR100, and Model-
Net, validate the efficacy and scalability of our approach. This work represents
a significant advancement in federated learning, addressing the unique challenges
of unlearning in VFL while preserving both privacy and computational efficiency.

1 INTRODUCTION

Figure 1: Illustration of the risk of label leak-
age in vertical federated unlearning (VFU). Dur-
ing VFU, the active party requires to transfer gra-
dient associates with the unlearn features gu to the
passive party to unlearn the passive model Gθ. As
such. this transferred unlearn gradient gu poses a
potential risk to leak the unlearn label to the pas-
sive party. Note that, Fw is active model.

Vertical Federated Learning (VFL) (Yang et al.,
2019) allows multiple organizations to col-
laboratively utilize their private datasets in a
privacy-preserving manner, even when they
share some sample IDs but differ significantly
in terms of features. In VFL, there are typi-
cally two types of parties: (i) the passive party,
which holds the features, and (ii) the active
party, which possesses the labels. VFL has
seen widespread application, especially in sen-
sitive domains like banking, healthcare, and e-
commerce, where organizations benefit from
joint modeling without exposing their raw data
(Yang et al., 2019; Li et al., 2020).

A fundamental requirement in VFL is the ne-
cessity for unlearning, which is driven by par-
ticipants’ ”right to be forgotten” as mandated
by regulations such as the General Data Pro-
tection Regulation (GDPR)1 and the Califor-
nia Consumer Privacy Act (CCPA)2. While un-
learning has been explored in the context of
Horizontal Federated Learning (HFL), there
has been limited attention to its application
in vertical settings. Existing studies on verti-
cal federated unlearning (Zhang et al., 2023a;
Wang et al., 2024; Deng et al., 2023) primarily focus on the unlearning process for individual clients,

1https://gdpr-info.eu/art-17-gdpr/
2https://oag.ca.gov/privacy/ccpa
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often addressing the removal of all features from the passive party upon their exit. In contrast, this
paper emphasizes the unlearning of labels, which is a critical aspect in VFL, particularly in sce-
narios such as Credit Risk Assessment where the determination of a loan applicant’s likelihood of
default is essential. Moreover, the active party aims to eliminate label information not only from the
active model but also from the passive models, as the passive models may retain label information
(Fu et al., 2022b).

A significant challenge in directly applying traditional machine unlearning methods, such as re-
training (Bourtoule et al., 2020; Foster et al., 2023) or Boundary unlearning (Chen et al., 2023), in
this context pose a risk of leaking unlearned labels during the unlearning process. Typically, the
active party, which retains the labels, must either inform the passive party about the samples that
require unlearning or transfer the gradients associated with the unlearned label. This practice may
inadvertently expose sensitive label information to the passive party (see Fig. 1 and Sect. 3.2).

To address this challenge, we propose a few-shot unlearning method that effectively erases labels
from both the active model and passive model in VFL by leveraging a limited amount of private data
(see Sect. 4). Specifically, our method employs manifold mixup (Verma et al., 2019) to augment
the forward embeddings of each passive party. The active party then performs gradient ascent on
the mixed embeddings to unlearn the active model and subsequently transfers the inverse gradients
to the passive party to facilitate the unlearning of the passive model independently. This approach
offers three key advantages: first, it necessitates only labels from a small amount of private data,
significantly reducing the risk of label privacy leakage; second, by utilizing the manifold mixup
technique, it enhances unlearning effectiveness with minimal data; and third, it is highly efficient,
completing the unlearning process within seconds.

The primary contributions of this work are as follows:

1. To the best knowledge, this is the first work to address the unlearning of labels in VFL.

2. We systematically elucidate the label privacy leakage that may occur when directly apply-
ing traditional machine unlearning methods.

3. We propose a few-shot label unlearning method that effectively erases labels from both the
active and passive models in VFL, utilizing a limited amount of private data. Moreover,
this approach leverages only a small number of data to mitigate the risk of label privacy
leakage while employing manifold mixup to enhance unlearning effectiveness.

4. We conduct extensive experiments on multiple benchmark datasets, including MNIST,
CIFAR-10, CIFAR-100, and ModelNet, demonstrating that our method rapidly and ef-
fectively unlearns target labels compared to other machine unlearning methods.

2 RELATED WORKS

Machine Unlearning & Horizontal Federated Unlearning. Machine unlearning (MU) was ini-
tially introduced by (Cao & Yang, 2015) to selectively remove some data from model without retrain
the model from scratch (Garg et al., 2020; Chen et al., 2021). MU can be categorized into exact un-
learning and approximate unlearning. Exact unlearning methods such as SISA (Bourtoule et al.,
2020) and ARCANE (Yan et al., 2022) split data into sections and train sub-models for each data
section and merge all sub-models. During unlearning, retrain the affected data section and merge all
sub-models again. In approximate unlearning, techniques such as fine tuning (Golatkar et al., 2020a;
Jia et al., 2024) (fine tune with Dr), random label (Graves et al., 2020; Chen et al., 2023) (fine tune
with incorrect random label of Du), noise introducing (Tarun et al., 2024; Huang et al., 2021), gra-
dient ascent (Goel et al., 2023; Choi & Na, 2023; Abbasi et al., 2023; Hoang et al., 2023) (maximise
loss associate with Du), knowledge distillation (Chundawat et al., 2023; Zhang et al., 2023c; Kur-
manji et al., 2023) (train a student model) and weights scrubbing (Golatkar et al., 2020a;b; 2021;
Guo et al., 2023; Foster et al., 2023) (discarding heavily influenced weights) are used.

Meanwhile, in federated unlearning, most of the existing works are focused in the horizontal envi-
ronment (Wu et al., 2022; Gu et al., 2024a; Zhao et al., 2024a; Romandini et al., 2024; Liu et al.,
2024; Zhang et al., 2023b; Su & Li, 2023; Ye et al., 2023; Gao et al., 2022; Cao et al., 2022; Yuan
et al., 2022; Alam et al., 2023; Li et al., 2023; Halimi et al., 2023; Xia et al., 2023; Wang et al.,
2023; Dhasade et al., 2023; Liu et al., 2022; Zhao et al., 2024b; Wang et al., 2022; Gu et al., 2024b).
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Only very limited research works focus in the vertical environment. For instance, (Zhang et al.,
2023a) introduce vertical federated unlearning (VFU) in gradient boosting tree. (Wang et al., 2024)
introduce passive party unlearning on deep learning model with fast retraining on remaining parties,
and (Deng et al., 2023) introduce passive party unlearning on logistic regression model.

Most if not all existing VFU work have been primarily focused on passive parties unlearning (Zhang
et al., 2023a; Wang et al., 2024; Deng et al., 2023). Hence, a significant gap arise when an active
party seeks for a collaboration from passive parties for a single class unlearning while all parties
remaining engaged in VFL. Unfortunately, current VFU approaches do not address this specific sce-
nario, as they do not explore class unlearning within VFL setting. In contrast to prior works focusing
on class unlearning in centralise machine unlearning and horizontal federated unlearning settings,
this paper uniquely addresses class unlearning of classification model within the VFL paradigm.
This distinction arises because traditional class unlearning methods in centralised and horizontal
federated learning setting are impractical for VFL settings, where all parties have different features
of data and different computational power.

Vertical Federated Learning & Privacy Leakage. VFL is introduced to meet the needs of enter-
prises looking to utilize features distributed across multiple parties for improved model performance,
compared to models trained by a single entity, all while preserving data privacy (Yang et al., 2019).
In VFL, privacy is of utmost importance because the participants are typically companies that handle
valuable and sensitive user information. Hence, privacy protection during VFU is also an important
criteria. We explain the risk of label leakage during VFU in Sect. 3.2.

3 LABEL LEAKAGE DURING VERTICAL FEDERATED UNLEARNING

This section explains the risk of label leakage during label unlearning process as depicted in Fig. 1.

3.1 GENERAL SETUP

VFL Training. We assume that a VFL setting consists of one active party P0 and K passive parties
{P1, · · · , PK} who collaboratively train a VFL model Θ = (θ, ω) to optimize:

min
ω,θ1,··· ,θK

1

n

n∑
i=1

ℓ(Fω ◦ (Gθ1(x1,i), Gθ2(x2,i),

· · · , GθK (xK,i)), yi),

(1)

in which Party Pk owns features xk = (xk,1, · · · , xk,n) and the passive model Gθk , the active
party owns the labels y = {y1, · · · , ym} and active model Fω . Each passive party k transfers its
forward embedding Hk to the active party to compute the loss. The active model Fω and passive
models Gθk , k ∈ {1, · · · ,K} are trained based on backward gradients. Note that, before training,
all parties leverage Private Set Intersection (PSI) protocols to align data records with the same IDs.
Please see details of the notations in Appendix A.2.

Unlearning Label in VFL. When the active party requests to unlearn some sensitive labels yu,
where the corresponding unlearn feature is {xu

k}Kk=1 := {{xu
k,i}

nu
i=1}Kk=1. The active party aims to

remove the influence of yu on both the active model Fω and K passive models {Gθk}Kk=1.

Label unlearning in VFL refers to the process of efficiently and securely removing label information
from a VFL system. Specifically, the unlearned passive model of client k, denoted as θuk , and
the unlearned active model, denoted as ωu, are obtained through the application of an unlearning
mechanism U , as follows:

θuk = U(θk,gu), ωu = U(ω,yu),

where θk and ω represent the passive models of client k and active model before unlearning, respec-
tively, and gu are the gradients associated with the unlearned label yu.

Building upon the principles of machine unlearning presented in (Bourtoule et al., 2020), label un-
learning in VFL needs to satisfy the following three objectives: i) Selective Removal: The influence
of specific labels must be erased while preserving the integrity of other data. ii) Efficiency: The un-
learning process should achieve the above without requiring the computational cost of retraining

3
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the model from scratch. iii) Privacy Preservation: The unlearning process must ensure that no
sensitive label information is leaked to the passive party.

Threat Model. We assume all participating parties are semi-honest and do not collude with each
other. An adversary (i.e., the passive party) faithfully executes the training protocol but may launch
privacy attacks to infer the private labels of the active party.

Assumption. We assume that the passive party possesses corresponding labels for a limited number
of features, defined as Dp = {(xp

k,y
p)}Kk=1 = {{(xp

k,i, yi)}
np

i=1}Kk=1, where np << nu. This
assumption is reasonable, as the active party must convey some label information to the passive party
in order to effectively remove that information. Furthermore, this assumption is widely employed in
prior works (Fu et al., 2022b; Gu et al., 2023; Zou et al., 2022).

3.2 LABEL LEAKAGE DURING UNLEARNING

MNIST CIFAR10 CIFAR100
Datasets
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Figure 2: Illustration of label leakage (%) with Boundary
unlearning in VFL using ResNet18 model on different num-
ber of classes and datasets.

To remove the influence of the pas-
sive models {Gθk}Kk=1, there exists
a risk of unlearning label leakage
(yu = {yu1 , . . . , yumu

}) to the pas-
sive parties. During the unlearn-
ing process, the active party is re-
quired to transfer information to the
passive party, e.g., gradients gu =
{gu1 , . . . , gunu

}, in order to effectively
unlearn the label associated with the
passive model. Consequently, the
passive party may infer the label
based on this information.

In particular, when unlearning a sin-
gle class yu,1, we consider two rep-
resentative unlearning methods: (i)
retraining (Foster et al., 2023) and
(ii) Boundary unlearning (Chen et al.,
2023). For retraining methods, the
active party must inform the passive party regarding which features do not require training, thus,
the label is leaked. In the case of Boundary unlearning, the gradients transferred to the passive party
correspond to the features associated with the label yu,1 may leak the label.

Furthermore, when multiple labels (mu) are targeted for unlearning, the label leakage issue becomes
exacerbated. Lets consider the Boundary unlearning as an example. This method illustrates that the
passive party can infer label information from the gradients gu transmitted by the active party during
the unlearning process. Specifically, the passive party employs clustering on gu to derive mu clusters
by optimizing the following objective function:

min
∑
gi∈Cj

mu∑
j=1

|gu,i − ḡu,j |, (2)

where Cj denotes the set of points assigned to cluster j, and ḡu,j represents the centroid of cluster j.
Consequently, the passive party can deduce the labels of the features in X . Fig. 2 exposes the label
leakage (in %) during unlearning in VFL for varying numbers of unlearning classes. For instance,
with four classes from CIFAR-100, a total of 62.45% of label leakage is exposed.

4 THE PROPOSED FEW-SHOT LABEL UNLEARNING METHOD

This section details the proposed few-shot label unlearning method as illustrated in Fig. 3 and Al-
gorithm 1. Our solution comprises two primary steps: first, augmenting the forward embedding
through manifold mixup to address the scarcity of labeled data for unlearning (see Sect. 4.1). Sec-
ond, employing gradient ascent on the augmented embedding to influence both the passive and active
models, thereby facilitating the removal of the specified class, as elaborated in Sect. 4.2.

4
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Figure 3: Overview of our proposed few-shot unlearning framework in VFL setting.

4.1 VERTICAL MANIFOLD MIXUP

Algorithm 1 Our Method

Input: Bottom models parameters
θk of K passive parties, top model
parameters ω , unlearn data Du,
learning rate η, unlearn epoch N .
Output: Unlearned bottom models
parameters θuk , unlearned top model
parameters ωu

1: Initialize model θuk and ωu before
unlearning

2: for n in N do:
3: for (xp

i , y
p
i ) in Dp do:

4: ▷ Passive parties k:
5: Split xp

i to K parts.
6: for k = 1 to K do:
7: Hp

k = Gθk(x
p
k,i)

8: Generate H ′
k from Hk

according to equation 3.
9: ▷ Active party:

10: H ′ = [H ′
1, ...,H

′
K ]

11: y = Fω(H
′).

12: L = ℓ(y, y′)
13: ω = ω + η · ∂L

∂ω

14: Active party compute ∂ℓ
∂H′

k

to transfer all passive parties.
15: ▷ Passive parties k:
16: for k = 1 to K do:
17: gk = ∂ℓ

∂H′
k
· ∂Hk

∂ω

18: θk = θk + η · gk
Return θuk and ωu.

Due to the label privacy leakage issue (Sect. 3.2), di-
rectly applying traditional machine unlearning methods
will pose some challenges. We assume that the active
party discloses a limited number of labels to the pas-
sive party to facilitate the unlearning of a specific class.
However, this small labeled dataset, denoted as Dp =
{(xp

1,i, x
p
2,i, · · · , x

p
K,i, y

p
i )}

np

i=1, is insufficient for an ef-
fective unlearning (see Appendix). Consequently, this
scenario can be framed as a few-shot unlearning problem,
wherein a minimal set of labels is employed to unlearn all
associated labels.

Drawing inspiration from the few-shot learning princi-
ples, we adopt the manifold mixup mechanism (Verma
et al., 2019) by interpolating hidden embeddings rather
than directly mixing the features. We propose a manifold
mixup framework for VFL by optimizing the following
loss function:

min
ω,θ1,··· ,θK

1

n2
p

np∑
i,j=1

ℓ(Fω ◦ (Mixλ(Gθ1(x
p
1,i), Gθ1(x

p
1,j)),

· · · ,Mixλ(GθK (xp
K,i), GθK (xp

K,j)),Mixλ(y
p
i , y

p
j )),

where

Mixλ(a, b) = λ · a+ (1− λ) · b. (3)

The mixed coefficient λ ranges from 0 to 1. The advan-
tage of the manifold mixup approach lies in its ability to
flatten the state distributions (Verma et al., 2019). Specif-
ically, for each passive party k, mixup is applied to the
forward embeddings {Hp

k = Gθ(x
p
k,i)} to generate nu-

merous mixed embeddings H ′
k. Subsequently, all passive

parties transfer their respective mixed embeddings H ′
k to the active party.

5
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4.2 VERTICAL LABEL UNLEARNING VIA GRADIENT ASCENT

Once the augmented embeddings {H ′
1, . . . ,H

′
K} for the representative unlearned data Dp (label

is known) are generated, a straightforward yet effective strategy is to implement gradient ascent for
both the active and passive models using these augmented embeddings. Specifically, the active party
concatenates all embeddings {H ′

k}Kk=1 into a single tensor H ′ = [H ′
1, . . . ,H

′
K ], and optimizes it

according to the following formulation:

min
ω

ℓ(Fω(H
′), y′) = ℓ(Fω([H

′
1, . . . ,H

′
K ]), y′), (4)

where y′ represents the mixture of the representative unlearned labels and η is the learning rate.

Unlearning for active model Fω . On one hand, the active model undergoes unlearning for active
model Fω via gradient ascent as follows:

ω = ω + η∇ωℓ(Fω(H
′), y′). (5)

Unlearning for passive model Gωk
. Subsequently, the active party computes the gradients g′k =

∂ℓ
∂H′

k
in accordance with equation 4 and transmits these gradients to the corresponding passive party

k. Finally, the passive party k updates the passive model Gθk using the following expression:

θk = θk + η∇H′
k
ℓ(Fω(H

′), y′) · ∇θkH
′
k. (6)

It is important to note that gradient ascent may lead to significant degradation in model utility or even
result in vanishing gradients if the parameters are not appropriately tuned. Therefore, employing a
small learning rate η and a limited number of unlearning epochs can mitigate these issues while
achieving effective unlearning results (see discussion in Appendix A.1 and experimental details in
Appendix A.4).

5 EXPERIMENTAL RESULTS

This section presents the empirical analysis of the proposed method in terms of utility, unlearning
effectiveness, time efficiency and some ablation studies.

5.1 EXPERIMENT SETUP

VFL Setting. We stimulate a VFL scenario including one active party owned the active model and
multiple passive parties (ranges from one(1) to eight(8)) owned the passive model (see more details
in Appendix A.3).

Datasets & Models. We conduct experiments on six datasets: MNIST (Lecun et al., 1998), CI-
FAR10, CIFAR100 (Krizhevsky et al., 2009), ModelNet (Wu et al., 2015), Brain Tumor MRI (Wang
et al., 2024) and Yahoo Answers dataset (Fu et al., 2022a). We adopt ResNet18 (He et al., 2015) on
dataset MNIST, CIFAR10, CIFAR100, ModelNet and Brain Tumor MRI. We adopt MixText (Chen
et al., 2020) on Yahoo Answers dataset. We do extend our experiments with Vgg16 (Simonyan &
Zisserman, 2015) on dataset CIFAR10 and CIFAR100. Experiments are repeated over five random
trials, and results are reported as mean and standard deviation. Experiment results on Brain Tumor
MRI and Yahoo Answer datasets and further details are available in Appendix A.3. For the MNIST,
CIFAR10, and CIFAR100 datasets, each image feature is divided among K parties, where K rep-
resents the number of passive parties. For the ModelNet dataset, we generate K 2D multi-view
images per 3D mesh model by placing two virtual cameras evenly distributed around the centroid.
Each passive party is assigned one of the K generated 2D multi-view images.

Evaluations Metrics. We evaluate the utility of unlearning by measuring accuracy of Dr before
and after unlearning. The higher accuracy on Dr indicates stronger utility. To evaluate the unlearning
effectiveness, we construct a simple MIA from (Shokri et al., 2017) to test Attack Success Rate
(ASR) and measuring the accuracy of Du before and after unlearning. MIA seeks to determine if a
specific data record was included in the training of a target machine learning model. Time efficiency
is evaluated by comparing the runtime of each baseline.

6
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Model Datasets Metrics
Accuracy (%)

Baseline Retrain FT Fisher Amnesiac Unsir BU Ours

ResNet18

MNIST

Dr 99.29 99.33 ± 0.03 98.99 ± 0.05 12.16 ± 0.46 98.16 ± 0.92 84.92 ± 1.13 98.72 ± 0.02 98.89 ± 0.00

Du 99.39 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 58.83 ± 1.79 0.00 ± 0.00

ASR 90.61 1.03 ± 0.24 2.92 ± 1.08 0.11 ± 0.07 0.00 ± 0.00 29.07 ± 7.95 0.47 ± 0.01 0.63 ± 0.01

CIFAR10

Dr 90.61 91.26 ± 0.12 88.16 ± 0.15 54.4 ± 10.77 86.37 ± 0.20 75.02 ± 1.65 72.65 ± 0.55 89.11 ± 0.14

Du 93.10 0.00 ± 0.00 11.00 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 3.25 ± 0.15 0.00 ± 0.00

ASR 83.84 25.98 ± 1.27 15.85 ± 2.33 50.67 ± 12.51 1.62 ± 0.54 76.78 ± 0.44 34.90 ± 1.16 18.21 ± 0.63

CIFAR100

Dr 71.43 71.03 ± 0.12 66.86 ± 0.73 61.04 ± 8.61 60.05 ± 0.03 59.32 ± 0.14 55.30 ± 0.81 67.85 ± 0.03

Du 83.00 0.00 ± 0.00 12.25 ± 2.25 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 3.50 ± 0.50 0.00 ± 0.00

ASR 88.40 25.53 ± 3.36 29.30 ± 2.70 28.10 ± 4.10 2.60 ± 1.30 73.70 ± 1.70 6.00 ± 0.60 13.47 ± 0.19

ModelNet

Dr 94.26 93.90 ± 0.11 66.64 ± 1.53 28.10 ± 0.69 73.91 ± 1.83 13.51 ± 0.05 24.07 ± 0.27 83.32 ± 0.07

Du 100.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.00 ± 0.00

ASR 98.40 0.65 ± 0.05 0.79 ± 0.16 23.48 ± 0.77 1.11 ± 0.16 49.20 ± 1.25 21.16 ± 0.23 0.46 ± 0.07

Vgg16

CIFAR10

Dr 89.50 90.27 ± 0.19 88.69 ± 0.08 15.93 ± 4.82 84.67 ± 0.22 74.74 ± 0.72 82.69 ± 0.1 88.85 ± 0.24

Du 91.10 0.00 ± 0.00 4.25 ± 1.05 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.85 ± 0.05 1.60 ± 0.16

ASR 81.66 33.10 ± 1.86 21.84 ± 2.66 42.25 ± 6.23 2.36 ± 0.86 21.75 ± 2.41 34.53 ± 0.65 31.59 ± 0.34

CIFAR100

Dr 65.48 65.32 ± 0.32 59.92 ± 0.56 35.42 ± 1.95 55.83 ± 0.13 55.78 ± 0.59 52.21 ± 0.00 62.13 ± 0.06

Du 77.00 0.00 ± 0.00 2.50 ± 0.25 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 3.00 ± 0.00 4.30 ± 0.94

ASR 87.20 42.13 ± 2.73 34.50 ± 4.30 40.70 ± 3.50 3.10 ± 0.15 42.70 ± 0.70 18.20 ± 0.11 21.73 ± 0.84

Table 1: Accuracy of Dr and Du for each unlearning method across ResNet18 and Vgg16 model in
single-class unlearning

Unlearning Scenarios. Single-class unlearning: We forget a single class from all datasets. Two-
classes unlearning: We forget two classes from CIFAR10/100. Multi-classes unlearning: We forget
four classes from CIFAR100. Note that, the labels selected for unlearning remain consistent across
all datasets. Specifically: a) In single-label unlearning, we unlearn label “0”; b) In two-label un-
learning, we unlearn labels “0” and “2”, respectively. While, c) In multi-label unlearning, we
unlearn labels “0”, “2”, “5”, and“7”, respectively.

Baselines. We compare our method with the following baselines: Retrain, Fine Tuning (Golatkar
et al., 2020a; Jia et al., 2024), Fisher Forgetting (Golatkar et al., 2020a), Amnesiac Unlearning
(Graves et al., 2020), UNSIR (Tarun et al., 2024) and Boundary Unlearning (Chen et al., 2023).
We implement the baselines with the following details. Retrain: Retrain the model from scratch
with Dr with the same hyper-parameters to baseline. Fine Tuning (Golatkar et al., 2020a; Jia et al.,
2024): The baseline model is fine-tuned using Dr for 5 epochs with learning rate set 0.01. Fisher
Forgetting (Golatkar et al., 2020a): We use fisher information matrix (FIM) to inject noise into
the parameters proportional to their relative importance to the Df compared to the Dr. Amnesiac
(Graves et al., 2020): We retrain the model for 3 epochs with relabeled Df with incorrect random
label and Dr. Unsir (Tarun et al., 2024): We introduce noise matrix on Df to impair the model with
noise generated and repair the model with Dr. Boundary Unlearning (Chen et al., 2023): We create
adversarial examples from Df and assign new nearest incorrect adversarial label to shrink the Df to
the nearest incorrect decision boundary.

5.2 EXPERIMENTAL RESULTS

5.2.1 UTILITY GUARANTEE

To assess the utility of our proposed unlearning method, we evaluate accuracy on Dr before and
after unlearning (Tab. 1, 2, 3). An effective unlearning method should retain as much information
as possible from Dr.

From Tab. 1, 2, 3, we observe that: i) Fine-tuning achieves good preservation on Dr, but its un-
learning effectiveness is low (see Sect. 5.2.2). ii) Fisher forgetting badly preserves the information
of Dr, resulting in a huge degradation on Dr accuracy. iii) Random incorrect labeling of Du from
Amnesiac Unlearning causes the decision boundaries of Dr to shift unpredictably, resulting in a
drop in accuracy on Dr. This degradation is more pronounced in datasets with a large number of
classes, such as CIFAR100 and ModelNet. iv) The repair step from UNSIR fails to fully retain
the information in Dr, leading to some performances degradation on Dr. v) Boundary unlearning
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Model Datasets Metrics
Accuracy (%)

Baseline Retrain FT Fisher Amnesiac Unsir BU Ours

ResNet18

CIFAR10

Dr 91.48 91.74 ± 0.01 90.63 ± 0.57 31.25 ± 2.23 86.16 ± 0.82 74.48 ± 0.06 81.64 ± 0.56 88.25 ± 0.09

Du 88.40 0.00 ± 0.00 41.15 ± 1.55 49.55 ± 0.40 0.00 ± 0.00 0.00 ± 0.00 19.90 ± 0.85 0.63 ± 0.60

ASR 79.61 21.66 ± 0.64 13.22 ± 0.37 25.60 ± 0.08 1.84 ± 0.13 41.79 ± 1.35 35.40 ± 1.54 28.20 ± 1.48

CIFAR100

Dr 71.56 71.21 ± 0.13 66.04 ± 0.58 53.56 ± 2.54 59.52 ± 0.03 58.02 ± 0.37 56.37 ± 0.39 66.89 ± 0.05

Du 71.00 0.00 ± 0.00 38.00 ± 0.01 25.20 ± 5.75 0.00 ± 0.00 0.00 ± 0.00 13.00 ± 0.01 6.50 ± 0.71

ASR 88.60 21.60 ± 0.85 19.20 ± 1.20 48.90 ± 0.54 6.50 ± 0.40 54.83 ± 0.44 13.70 ± 0.90 6.50 ± 0.33

Vgg16

CIFAR10

Dr 89.80 91.13 ± 0.03 88.09 ± 0.35 47.53 ± 2.38 86.16 ± 0.19 71.50 ± 0.07 88.67 ± 0.22 88.21 ± 0.02

Du 89.10 0.00 ± 0.00 28.55 ± 0.33 13.10 ± 0.28 0.00 ± 0.00 0.00 ± 0.00 19.08 ± 0.53 0.00 ± 0.00

ASR 82.64 28.31 ± 1.23 17.75 ± 2.22 68.43 ± 1.14 1.67 ± 0.01 46.21 ± 0.72 11.72 ± 0.07 28.37 ± 0.86

CIFAR100

Dr 65.75 65.59 ± 0.17 60.79 ± 0.37 35.24 ± 2.21 57.86 ± 0.81 56.04 ± 0.44 50.02 ± 0.18 62.49 ± 0.11

Du 58.50 0.00 ± 0.00 11.75 ± 1.25 11.00 ± 4.85 0.00 ± 0.00 0.00 ± 0.00 3.25 ± 0.25 0.00 ± 0.00

ASR 73.60 30.55 ± 0.05 22.75 ± 1.05 32.60 ± 1.17 3.45 ± 0.65 52.40 ± 0.80 27.90 ± 1.20 30.50 ± 1.80

Table 2: Accuracy of Dr and Du for each unlearning method across ResNet18 and Vgg16 model in
two-classes unlearning

exhibits inconsistencies across different datasets, models, and scenarios. In some cases, they show
huge degradation on Dr, while in other instances, they preserve Dr well. Contrary, vi) our solution
shows good unlearning utility in all experiment settings.

5.2.2 UNLEARNING EFFECTIVENESS

For unlearning effectiveness, we run MIA to evaluate if the unlearned model leaks any information
about the Du and measure the accuracy of Du before and after unlearning.

From Tab. 1, 2, 3, we observe that: i) Fine-tuning shows bad unlearning effectiveness on CI-
FAR10/100 datasets. The unlearning effectiveness of fine tuning is worse on two-classes (Tab. 2)
and multi-classes unlearning scenarios (Tab. 3); ii) Fisher forgetting, Amnesiac Unlearning and
UNSIR show strong unlearning effectiveness, reducing accuracy of Du to 0.00%; iii) Boundary un-
learning exhibits inconsistencies across different datasets, models, and scenarios. In some cases,
they show good unlearning effectiveness on Du, while in other instances, they show bad unlearn-
ing effectiveness. In contrast, iv) our solution demonstrates strong effectiveness across all models,
datasets, and scenarios. It achieves successful unlearning of Du.

Also, on the same tables (Tab. 1-3), we observe that: i) Fine tuning shows consistent ASR score.
ii) Fisher forgetting shows high ASR score in most of the cases. iii) Amnesiac unlearning shows
consistencies in very low ASR score across all experiments. iv) UNSIR shows high ASR score on
almost all experiments, v) Boundary unlearning shows relatively consistent ASR scores. Finally, all
in all vi) our solution shows a consistent ASR performance across all datasets, models and scenarios.

5.2.3 TIME EFFICIENCY

Figure 4: The runtime(s) of each unlearning method.

For the computational complexity, Fig. 4
presents an execution time (in seconds)
of single-class unlearning with ResNet18
model in CIFAR10 dataset. It can be
observed that: i) The gold standard re-
train model has the highest execution time.
ii) Unlearning methods that utilises full
dataset or Dr such as Fine Tuning, Amne-
siac Unlearning and Fisher forgetting have
relatively high execution time. iii) Un-
learning methods that utilise only Du such
as Boundary Unlearning shows a lower ex-
ecution time. iv) Our solution has the low-
est execution time (16x - 1200x lower).
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Model Datasets Metrics
Accuracy (%)

Baseline Retrain FT Fisher Amnesiac Unsir BU Ours

ResNet18 CIFAR100

Dr 71.53 71.91 ± 0.12 67.16 ± 0.13 54.79 ± 1.04 59.09 ± 0.54 59.05 ± 0.38 48.96 ± 0.04 69.87 ± 0.09

Du 72.00 0.00 ± 0.00 33.87 ± 0.88 45.38 ± 1.13 0.00 ± 0.00 0.00 ± 0.00 15.00 ± 0.25 4.83 ± 1.12

ASR 86.65 16.95 ± 0.35 18.23 ± 1.63 62.78 ± 3.93 6.05 ± 1.19 68.63 ± 1.83 38.35 ± 0.75 13.97 ± 0.45

Vgg16 CIFAR100

Dr 65.83 65.66 ± 0.08 60.92 ± 0.08 36.55 ± 1.07 57.26 ± 0.18 56.86 ± 0.26 47.04 ± 0.32 64.33 ± 0.16

Du 60.25 0.00 ± 0.00 7.63 ± 0.13 28.75 ± 1.25 0.00 ± 0.00 0.00 ± 0.00 7.13 ± 0.11 6.00 ± 0.25

ASR 75.80 27.20 ± 0.75 24.38 ± 3.13 55.20 ± 3.75 4.80 ± 0.05 32.83 ± 0.58 29.70 ± 0.03 27.50 ± 0.65

Table 3: Accuracy of Dr and Du for each unlearning method across ResNet18 and Vgg16 model in
multi-classes unlearning

Number of Passive Parties Metrics
Accuracy (%)

Baseline Retrain FT Fisher Amnesiac Unsir BU Ours

1

Dr 92.50 93.27 ± 0.11 88.51 ± 0.09 76.83 ± 3.02 88.95 ± 0.58 77.89 ± 0.48 89.66 ± 0.08 90.01 ± 0.46

Du 93.60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 23.60 ± 1.60 0.00 ± 0.00

ASR 89.34 24.54 ± 1.38 40.27 ± 3.15 66.40 ± 1.98 0.36 ± 0.14 15.83 ± 0.49 19.66 ± 0.56 16.13 ± 0.36

2

Dr 90.61 91.26 ± 0.12 88.16 ± 0.15 54.40 ± 10.77 86.37 ± 0.20 75.02 ± 1.65 72.65 ± 0.55 89.11 ± 0.14

Du 93.10 0.00 ± 0.00 11.00 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 3.25 ± 0.15 0.00 ± 0.00

ASR 83.84 25.98 ± 1.27 15.85 ± 2.33 50.67 ± 12.51 1.62 ± 0.54 76.78 ± 0.44 34.90 ± 1.16 18.21 ± 0.63

4

Dr 88.12 89.04 ± 0.02 77.52 ± 1.15 41.56 ± 0.49 81.77 ± 0.04 71.88 ± 0.39 73.85 ± 0.49 86.69 ± 0.13

Du 91.40 0.00 ± 0.00 0.00 ± 0.00 0.90 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.81 ± 0.03 0.00 ± 0.00

ASR 79.58 25.86 ± 2.04 63.44 ± 0.44 52.05 ± 0.91 2.90 ± 0.38 76.52 ± 4.16 72.61 ± 0.97 21.51 ± 0.69

Table 4: Accuracy of Dr and Du for each unlearning method across ResNet18 model in single-class
unlearning on different number of passive parties.

5.3 ABLATION STUDY

In this section, we conduct an ablation study on the effectiveness of our method for different number
of passive parties and different privacy-preserving VFL mechanishm.

5.3.1 EVALUATION ON DIFFERENT SIZE OF Dp

GA-A
GA-S

Ours
0

20

40

60

80

100
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cu
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cy

 (%
)

86.87 89.29 89.11

0

40.48

0

D
D

Figure 5: Comparison of the utility and unlearning effective-
ness on different size of Dp. The results indicate that when
using a limited amount of data (|Dp| = 40), directly ap-
plying gradient ascent (GA-S) does not achieve satisfactory
unlearning effectiveness, as the accuracy on the unlearned
data remains at 40.48%. Contrary, our method, which in-
corporates manifold mixup, demonstrates significantly bet-
ter unlearning effectiveness (e.g. with only 40 labeled data
points, our approach reduces the unlearned accuracy to 0%.)

We apply the gradient ascent with dif-
ferent size Dp to achieve unlearning
in Fig. 5, e.g, three methods (GA-A
using 5000 samples, GA-S using 40
samples and ours). It shows that i)
40 samples is not enough to unlearn
since the unlearning result on Du re-
mains at 40.48% while GA-A with
5000 samples achieves 0%. Mean-
while, ii) our method with only 40
samples able to achieve 0% unlearn-
ing effectiveness on Du (see more ex-
periment in Appendix A.4).

5.3.2 EVALUATION
FOR DIFFERENT
NUMBER OF PASSIVE PARTIES

Table 4 shows the accuracy of Dr,
Du and ASR score on one(1) passive
party, two(2) and four(4) passive par-
ties, respectively. The results indicate
that our method can perform well in
unlearning effectiveness and utility.
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Figure 6: Comparison of the utility and unlearning effectiveness for Differential Privacy (Fu et al.,
2022b) (a privacy preserving VFL method). (a) and (b) show the accuracy of Dr and Du between
baseline and our solution on different level of Gaussian Noise model, respectively.
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Figure 7: Comparison of the utility and unlearning effectiveness for Gradient Compression (Fu et al.,
2022b) (a privacy preserving VFL method). (a) and (b) show the accuracy of Dr and Du between
baseline and our solution on different level of gradient compression ratio model, respectively.

5.3.3 EVALUATION FOR DIFFERENT PRIVACY PRESERVING VFL METHODS

We evaluate our unlearning methods under two privacy preserving VFL methods: (i) Differential
Privacy (Fu et al., 2022b) and (ii) Gradient Compression (Fu et al., 2022b). Fig. 6 and 7 present the
effectiveness of our solution on both methods across different levels of variance Gaussian noise and
compression ratio, respectively. It shows that even for a large compression ratio and noise level, our
proposed method still able to unlearn effectively, while the utility of the vertical training decreases
significantly.

6 CONCLUSIONS

In conclusion, this paper presents a pioneering approach to label unlearning within VFL domain,
addressing a critical gap in the existing literature. By introducing a few-shot unlearning method that
leverages manifold mixup, we effectively mitigate the risk of label privacy leakage while ensuring
efficient unlearning from both active and passive models. Our systematic exploration of potential
label privacy risks and extensive experimental validation on benchmark datasets underscores the
proposed method’s efficacy and rapid performance. Ultimately, this work not only advances the un-
derstanding of unlearning in VFL but also sets the stage for further innovations in privacy-preserving
collaborative machine learning practices.
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A APPENDIX

This section provides a detailed information on discussion, our experimental settings and additional
experimental results.

A.1 DISCUSSION FOR UNLEARNING EFFECTIVENESS

Consider a scenario where the active party seeks to unlearn the label yu with the corresponding
feature xu and embedding Hu = Gθ(xu). The gradient ascent approach aims to remove the label
information yu from both the active model θ and the passive model ω.

1) Unlearning effectiveness for Gradient Ascent (GA). Using the first-order Taylor expansion of
ℓ(ω;Hu, yu) around the initial parameter ωt, we obtain:

ℓ(ωt+1;Hu, yu) ≈ ℓ(ωt;Hu, yu) +∇ωℓ(ωt;Hu, yu)
⊤(ωt+1 − ωt).

Substituting the gradient ascent update ωt+1 = ωt + η∇ωℓ(ωt;Hu, yu) (as defined in Eq. (5) of the
main text), this becomes:

ℓ(ωt+1;Hu, yu) ≈ ℓ(ωt;Hu, yu) + η∥∇ωℓ(ωt;Hu, yu)∥2.

Since η > 0, the loss ℓ(ω;Hu, yu) increases with each gradient ascent step, effectively reducing the
contribution of the label yu to the active model ω. Similarly, for the passive model θ, we derive:

ℓ(θt+1;xu, yu) ≈ ℓ(θt;xu, yu) +∇θℓ(θt;xu, yu)
⊤(θt+1 − θt)

= ℓ(θt;xu, yu) + η∇θℓ(θt;xu, yu)
⊤(∇Hℓ∇θH)

= ℓ(θt;xu, yu) + η∥∇θℓ(θt;xu, yu)∥2,

where the first equation is due to the Eq. (6) of the main text and second equation is according to the
chain rule. Thus, the contribution of the label yu is effectively removed from the passive model θ.

2) If the loss function ℓ is β-smooth, we can further derive:

∥∇ωℓ(ωT ;Hu, yu)∥ ≤ β∥ωT − ω0∥

= ∥
T−1∑
t=0

∇ωℓ(ωt;Hu, yu)∥ ≤ βη

T−1∑
t=0

∥∇ωℓ(ωt;Hu, yu)∥,
(7)

where the second equation follows from Eq. (5) in the main text. This result indicates that the
convergence of gradient ascent depends on the learning rate η. For instance, when the learning
rate is small or includes a weight decay strategy(Patterson & Gibson, 2017), such as η < 1

2βT , the
gradient norm ∥∇ωℓ(ωT ;Hu, yu)∥ tends to zero.

It is important to note that gradient ascent may impact the model utility on the remained data. To
mitigate this, a small learning rate (smaller than e−6 in Table 7 and 8) is adopted in this paper to
minimize any decline in model utility for the remained data Dr. The experimental results presented
in Section 5 validate this approach.

3) The gradient ascent strategy aims to increase the model’s loss corresponding to the un-
learned label yu, thereby eliminating the contribution of the unlearned label yu to the model, as
illustrated in 1).

A.2 TABLE OF NOTATION

Table 5 summarises all the notations used in this paper.

A.3 EXPERIMENTAL SETUP

Datasets MNIST(Lecun et al., 1998) datasets contain images of handwritten digits. MNIST
dataset comprises 60,000 training examples and 10,000 test examples. Each example is represented
as a single-channel image with dimensions of 28x28 pixels, categorised into one of 10 classes. CI-
FAR10 (Krizhevsky et al., 2009) dataset comprises 60,000 images, each with dimensions of 32x32
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Notation Meaning
Fω, Gθk Active model and kth passive model

K The number of passive party
λ Mixed coefficient
η Learning rate
N Unlearning epochs
xk Private features own by kth passive party
y Private label own by active party
yu The unlearn labels

{xu
k} The unlearned feature for client k corresponding to the yu

xp
k The known features for client k corresponding to the yu

Hk Forward embedding of passive party k
H ′

k Augmented forward embedding of passive party k
g′k Gradient on the embedding H ′

k.

Table 5: Table of Notations

pixels and three colour channels, distributed across 10 classes. This dataset includes 6,000 images
per class and is partitioned into 50,000 training examples and 10,000 test examples. Within each
class, there are 5000 training images and 1000 test images. Similarly, the CIFAR100 (Krizhevsky
et al., 2009) dataset shares the same image dimensions and structure as CIFAR10 but extends to 100
classes, with each class containing 600 images. Within each class, there are 500 training images and
100 test images. ModelNet (Wu et al., 2015) dataset is a widely-used 3D shape classification and
shape retrieval benchmark, which currently contains 127,915 3D CAD models from 662 object cate-
gories. For the MNIST, CIFAR10, and CIFAR100 datasets, each image feature is divided among K
parties, where K represents the number of passive parties. For the ModelNet dataset, we generate K
2D multi-view images per 3D mesh model by placing two virtual cameras evenly distributed around
the centroid. Each passive party is assigned one of the K generated 2D multi-view images.

Model Architecture Table 6 summarised our VFL framework settings.

Model name Model of Passive Party Model of Active Party
Resnet18 20 Conv 1 FC

Vgg16 13 Conv 3 FC

Table 6: Models in experiments. FC: Fully-connected layer. Conv: convolutional layer

Implementation Details Table 7 and 8 summarise the hyper-parameters for our unlearning
method.

Hyper-parameters Single-class
Resnet18-MNIST Resnet18-CIFAR10 Resnet18-CIFAR100 Resnet18-ModelNet Vgg16-CIFAR10 Vgg16-CIFAR100

Optimization Method SGD SGD SGD SGD SGD SGD
Unlearning Rate 2e-7 2e-7 5e-7 5e-7 2e-7 5e-7

Unlearning Epochs 10 15 7 4 15 7
Number of Data Samples 40 40 30 30 40 30

Batch Size 32 32 32 32 32 32
Weight Decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

Momentum 0.9 0.9 0.9 0.9 0.9 0.9

Table 7: Hyper-parameters use for unlearning in our solution in Single-class unlearning.

Table 9 summarises the model name, datasets and unlearn classes involve in each unlearning sce-
narios.
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Hyper-parameters Two-classes Multi-classes
Resnet18-CIFAR10 Resnet18-CIFAR100 Vgg16-CIFAR10 Vgg16-Cifar100 Resnet18-CIFAR100 Vgg16-CIFAR100

Optimization Method SGD SGD SGD SGD SGD SGD
Unlearning Rate 1e-6 9e-7 1e-6 9e-7 9e-7 9e-7

Unlearning Epochs 15 10 15 5 15 5
Number of Data Samples 40 20 40 20 15 15

Batch Size 32 32 32 32 32 32
Weight Decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

Momentum 0.9 0.9 0.9 0.9 0.9 0.9

Table 8: Hyper-parameters use for unlearning in our solution in two-classes and multi-classes un-
learning.

Scenarios Models Datasets Unlearn Classes

Single-class Unlearning Resnet18 MNIST, CIFAR10, CIFAR100, ModelNet 0
Vgg16 CIFAR10, CIFAR100 0

Two-classes Unlearning Resnet18 CIFAR10, CIFAR100 0, 2
Vgg16 CIFAR10, CIFAR100 0, 2

Multi-classes Unlearning Resnet18 CIFAR100 0, 2, 5, 7
Vgg16 CIFAR100 0, 2, 5, 7

Table 9: Models and datasets involve in each unlearning scenarios.

A.4 ADDITIONAL EXPERIMENTS RESULTS

Healthcare and NLP experiment. We have incorporated one experiment using a healthcare dataset
for classification task, specifically the Brain Tumor MRI dataset (Wang et al., 2024), which is com-
monly used in healthcare scenarios. The Brain Tumor MRI dataset consists of 7,023 human brain
MRI images categorized into four classes: glioma, meningioma, no tumor, and pituitary.

Table 10 demonstrates that our method achieves strong unlearning effectiveness, with the accuracy
on unlearned data (Du) dropping from 95.67% to 2.43%. Furthermore, the accuracy on the remained
data (Dr) outperforms other unlearning methods, except for retraining. For instance, the Amnesiac
method results in an accuracy drop exceeding 20% while our method drops less than 10%. The
decrease in the remained data accuracy for our method is attributed to the similarity of features
among different labels. Removing one label can inadvertently impact the utility of other labels when
using the gradient ascent method. In contrast, the retraining method performs well in maintaining
the utility of other labels; however, it is significantly more time-consuming.

Metrics Accuracy (%)
Baselines Retrain FT Fisher Amnesiac BU Ours

Dr 97.92 98.81 ± 0.34 81.89 ± 0.82 30.26 ± 0.21 73.29 ± 0.09 45.30 ± 0.91 89.05 ± 0.61
Du 95.67 0.00 ± 0.00 4.33 ± 0.49 0.00 ± 0.00 0.00 ± 0.00 3.67 ± 0.14 2.43 ± 0.04

Table 10: Single-label unlearning scenario with Brain MRI datasets on ResNet18 architecture. This
experiments have one active party and two passive parties. The image features is split to half and
each passive party own half of the image features. We unlearn label 0 (glioma) in this experiments.

Also, we have added experiments on Non-vision dataset (Yahoo Answers dataset (Fu et al., 2022a))
for the classification task. Yahoo Answers is a dataset designed for text classification tasks, compris-
ing 10 classes (topics) such as ”Society & Culture,” ”Science & Mathematics,” ”Health,” ”Education
& Reference,” among others. Each class contains 140,000 training samples and 6,000 testing sam-
ples. For simplicity, we utilized 5,000 training samples and 2,000 testing samples from each class.

Table 11 illustrates that our method performs effectively on both the accuracy of the remained data
and the unlearned data. For instance, the unlearned data accuracy decreases from 41.63% to 5.14%,
while the accuracy drop on the remained data is less than 3%.

More passive parties. In addition, we conducted experiments with one active party and eight pas-
sive parties on the CIFAR-10 dataset using the ResNet-18 architecture. The image features were
split into eight parts, with each passive party owning one-eighth of the image features. Table 13 and
Figure 9 demonstrates that the proposed method continues to perform well in terms of both unlearn-
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Metrics Accuracy (%)
Baseline Retrain Ours

Dr 62.92 63.14 ± 0.45 60.72 ± 0.98
Du 41.63 0.00 ± 0.00 5.14 ± 1.04

Table 11: Single-label unlearning scenario on Yahoo Answer datasets with MixText architecture
((Chen et al., 2020), transformer-based models). This experiments have one active party and two
passive parties. Each sample (a single paragraph of text) is divided into two paragraphs, with each
passive party holding one of them. We unlearn label 6 (Business & Finance) in this experiments.
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Figure 8: PMC resnet18 cifar10 single class

ing effectiveness and the utility of the remained data. For instance, the accuracy on the unlearned
data drops to 0.17%, while the accuracy on the remained data decreases by less than 3%.

PMC attack. Moreover, Figure 8 shows the PMC attack (one strongest label privacy attack in
(Fu et al., 2022b)) before and after unlearning methods. It demonstrates that our methods achieve
beyond 40% drops for the model accuracy on Du.

Efficiency for more passive parties. The manifold mixup step is executed by each passive party,
rather than the active party (see Figure 3 and Algorithm 1 of the main text). As a result, the unlearn-
ing time increases linearly with the number of passive parties. The unlearning times of different
methods are compared for varying numbers of passive parties in the table below, demonstrating that
our method remains the most efficient compared to the alternatives.

Ablation study for λ. For each dataset used in this paper, we augment the embeddings with two
coefficients, i.e., λ = 0.25 and λ = 0.5. Additionally, we evaluate the impact of different λ values
in Table 12. The results indicate that variations in λ have a minimal impact on the unlearning
effectiveness.
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Figure 9: The following sub-figures show the MIA attack success rate on (a) Single-class Resnet18
Mnist, (b) Single-class Resnet18 Cifar10, (c) Single-class Resnet18 Cifar100, (d) Single-class
Resnet18 ModelNet, (e) Single-class Vgg16 Cifar10, (f) Single-class Vgg16 Cifar100, (g) Two-
classes Resnet18 Cifar10, (h) Two-classes Resnet18 Cifar100, (i) Two-classes Vgg16 Cifar10, (j)
Two-classes Vgg16 Cifar100, (k) Multi-classes Resnet18 Cifar100, (l) Multi-classes Vgg16 Ci-
far100. The red line in graphs represent the ASR of retrained model.
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λ Rate Metrics Accuracy (%)

[0.2, 0.5] Dr 88.69 ± 0.19
Du 1.77 ± 0.57

[0.25, 0.5] Dr 89.11 ± 0.14
Du 0.00 ± 0.00

[0.33, 0.5] Dr 88.78 ± 0.09
Du 2.10 ± 0.42

Table 12: Different lambda rate on single-label unlearning scenarios on CIFAR10 dataset with
ResNet18 architecture. We unlearn label 0 in this experiment.

Metrics Accuracy (%)
Baseline Retrain Fisher Amnesiac Unsir BU Ours

Dr 84.16 84.98 ± 0.11 18.01 ± 0.38 77.28 ± 0.93 67.95 ± 0.86 70.99 ± 0.70 82.72 ± 0.99
Du 87.9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.07 0.17 ± 0.03

Table 13: Single-label unlearning scenario on CIFAR10 dataset with Resnet18 architecture on 8
passive parties. The image features is equally split into 8 parts and each passive party own one eight
of the image features. We unlearn label 0 in this experiment.

# of Passive Parties Runtime (s)
Retrain FT Fisher Amnesiac Unsir BU Ours

1 3008.69 ± 1.69 134.05 ± 0.01 197.35± 0.51 95.29 ± 0.47 48.89 ± 0.12 43.59 ± 0.14 1.52 ± 0.04
2 3725.23 ± 8.17 167.11 ± 0.38 254.51 ± 5.98 122.79 ± 0.22 55.52 ± 0.45 49.48 ± 0.59 2.94 ± 0.35
4 5647.67 ± 2.42 361.34 ± 2.47 401.33 ± 3.79 203.68 ± 1.32 78.39 ± 0.41 82.71 ± 3.06 3.48 ± 0.02
8 9699.87 ± 10.37 539.27 ± 4.02 847.71 ± 1.89 201.55 ± 3.53 138.34 ± 0.82 159.09 ± 0.99 7.04 ± 0.44

Table 14: Comparison of runtime between 1,2,4, and 8 passive parties.
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