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Abstract

We consider the problem of ranking a set of n
items given a sample of their pairwise preferences.
It is well known from the classical results of sort-
ing literature that without any further assumption,
one requires a sample size of Ω(n log n) with ac-
tive selection of pairs whereas, for a random set
pairwise preferences the bound could be as bad
as Ω(n2). However, what if the learner is exposed
to additional knowledge of the items features and
their pairwise preferences are known to be mod-
elled in terms of their feature similarities – can
these bounds be improved? In particular, we intro-
duce a new probabilistic preference model, called
feature-Bradley-Terry-Luce (f-BTL) for the pur-
pose, and present a new least squares based algo-
rithm, fBTL-LS, which requires a sample complex-
ity much lesser than O(n log n) random pairs to
obtain a ‘good’ ranking. The sample complexity of
our proposed algorithms depends on the degree of
feature correlation of the items that makes use of
tools from classical graph matching theory, shed-
ding light on the true complexity of the problem –
this was not possible before with existing matrix
completion based tools. We also prove tightness of
our results showing a matching information theo-
retic lower bound for the problem. Our theoretical
results are corroborated with extensive experimen-
tal evaluations on varying datasets.

1 INTRODUCTION
Given a set of n items and m pairwise comparisons among
them, the problem of ranking from pairwise preferences is
to recover an underlying ranking among the n items. This
is a well-studied problem in several disciplines including
statistics, operations research, theoretical computer science,
social choice theory, machine learning, decision systems etc
[23, 4, 15, 20, 2], [5, 9, 11, 16], [24, 6, 18, 22, 3, 7, 19, 21,

17]. A typical approach to solve this problem is to assume
that the comparisons are generated in a stochastic fashion
according to a score based pairwise probability model, e.g.
Bradley-Terry-Luce model [4] [15] or the Thurstone model
[23] and develop algorithms [9], [16], [18], [3] that first
estimate the score vector from the given comparisons and
obtain the final ranking by simply sorting their estimated
scores.

However in practice they suffer from several shortcomings:
Firstly, often times side information such as features or re-
lationships among items are available, e.g. to rank a set of
mobile phones, it is natural to use features such as cost, bat-
tery life, size etc., which influence the pairwise preferences
of users in preferring one mobile over other. However, most
algorithms do not take this additional information into ac-
count. Secondly, they fail to handle the case when new items
get added as one cannot find the position of a new item in
an already estimated ranking without collecting at least few
pairwise preferences of it. Finally, the sample complexity of
previous approaches scale as O(n log n) which can proved
to be sub-optimal when item preferences are based on their
feature similarities.

In this work, we introduce the feature-Bradley–Terry–Luce
(f-BTL) model of pairwise comparisons to tackle the prob-
lems listed above. The f-BTL model is a generalization of
the standard BTL model where the probability of preferring
one item over the other explicitly depends on their associ-
ated features such that similar items get similar ranks. We
next propose a least squares-based algorithm fBTL-LS – the
novelty of our approach lies in the sample complexity anal-
ysis (i.e. the number of comparisons needed to achieve a
fixed error) for recovering a ‘near-optimal’ ranking. The
key ingredient used here is a relation graph that we de-
fine on the items based on their features correlation and
apply ideas from classical graph matching theory on the
relation graph. Precisely, our sample complexity bound is of
O(α logα), where on an intuitive level, α denotes the num-
ber of the main (independent) items that influence the pref-
erence structures of the rest of n− α items in the set—This
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shows a significant reduction in the number of comparisons
needed, compared to the earlier known bound O(n log n),
especially when α << n, which often is the case in many
applications. Furthermore, we also give a matching sample
complexity lower bound analyzing the minimal number of
pairwise preferences required, establishing the optimality
of our algorithm. Our experimental evaluation shows the
proposed algorithm significantly outperforms existing algo-
rithms, demonstrating its usefulness on various special types
of relation graphs including union of cliques, disconnected
graphs, trees, stars, cycles, etc. Our contributions are listed
below:

1. We introduce a new probabilistic model, f-BTL, for rank-
ing from pairwise comparisons which explicitly uses fea-
tures associated with items (Sec. 2).

2. We give a novel sample complexity analysis using ideas
from graph matching theory that captures the dependencies
among features explicitly in terms of structural properties
of the graph, unlike previous approaches (Sec. 3).

3. We propose an algorithm, fBTL-LS and provide its sample
complexity guarantees for recovering a ‘good estimate’ of
the score vector under f-BTL (Sec. 4).

4. We finally show our sample complexity guarantee is tight
proving a matching lower bound (Sec. 5).

5. Our experimental results support our theoretical findings
showing the superiority of our algorithm on both synthetic
data and real datasets (Sec. 6).

2 PRELIMINARIES AND SETTING

(a) Relation graph G([n], E)
associated to U (Sec. 2.1)

(b) The bipartite graph CM =
(I(G) ∪M,∆M ) (Thm. 3.1)

Figure 1: Few graphical demonstrations

Notations. We use lowercase boldface letters for vectors,
uppercase boldface letters for matrices, lowercase letters for
scalars and uppercase letters for constants. ∥ · ∥2 denotes
the ℓ2 norm for vectors and spectral norm for matrices.
∥ · ∥F denotes the Frobenius norm for matrices. We denote
the set {1, . . . , n} by [n]. For any matrix A ∈ Rm×n, we
abbreviate Aij = A(i, j).

Bradley-Terry-Luce (BTL) model.([4], [15]) A standard
probabilistic model for pairwise comparisons is the Bradley-
Terry-Luce (BTL) model where the probability of preferring
item i over j is given by: Pij = exp(θi)

exp(θi)+exp(θj)
, θ ∈ Rn

being the ‘score vector’ of the n items.

2.1 PROBLEM SETTING

Let [n] = {1, . . . , n} be the set of items to be ranked, and
their feature vectors are U = {u1, . . . ,un} ⊂ Rd, where
U respects a relation graph G([n], E) as follows:

Feature (U) vs Relation graph (G). We assume the feature
set U of the n items are associated to an underlying relation
graph G([n], E) by a natural assumption: G([n], E) is such
that there exists an independent set of G, say I(G), such
that the set of item features U = {ui}i∈[n] lies in the linear
span of only that of I(G), {ui}i∈I(G). More formally,

ui =
∑

j∈I(G)∩N̄G(i)

Bjiuj ∀i ∈ [n], (1)

where NG(i) = {j ∈ [n] | (i, j) ∈ E} denotes the set of
neighboring nodes of i in G, and N̄G(i) = NG(i) ∪ {i}.
Here B ∈ Rn×α is a coefficient matrix that expresses U
in terms of the bases features {ui}i∈I(G). Note, we also
assume B is such that any α × α submatrix of B is of
rank α, which ensures none of the dependent features can
be represented as a linear combination of the other depen-
dent features, or precisely I(G) is a maximal independent
set of the independent nodes and all the dependent items
[n] \ I(G), can only be represented as a unique linear com-
bination of the independent nodes I(G). Thus we assume
Bij = 0 whenever (i, j) /∈ E, and the subset of vectors in
U corresponding to the items in the independent set I(G)
are linearly independent. Thus d ≥ α, and {ui}i∈I(G) form
a basis for span(U). Hence Bij = 1, if j = i, or else
Bij = 0, ∀j ̸= i, ∀i ∈ [α]. We denote α = |I(G)|; clearly,
it becomes the independent number of G if I(G) corre-
sponds to a maximum independent set. We will henceforth
assume I(G) = [α], w.l.o.g, unless specified otherwise.
(see Fig. 1a for further illustration).

Preference Model. We introduce the feature Bradley–Terry–
Luce model (f-BTL) where the probability of preferring item

i over j is given by: Pij =
e(wTui)

e(wTui) + e(wTuj)
, w ∈ Rd.

Note that the f-BTL model reduces to the standard BTL
model when α = n and U is the standard basis. Clearly
the ‘score vector’ θ ∈ Rn for f-BTL model turns out to be
θi = wTui.

Sampling Model. We assume that a set M of m ∈ [
(
n
2

)
]

pairs is generated where each pair is chosen with some
probability p ∈ [0, 1]. Each pair in M is compared K times
independently according to f-BTL model.

Remark. (1) shows that two items with similar set of neigh-
bours in I(G) are similar in terms their features. This along
with f-BTL model ensures two similar items are also similar
in their scores θi, and hence rankings.



Problem. Under f-BTL model and given U, for what values
of m and K can one find an estimated score vector θ̂ such
that P

(
∥θ−θ̂∥2

∥θ∥2
≤ ϵ
)
> 1− δ ? Here ϵ > 0 and δ ∈ [0, 1]

are two given problem parameters, which respectively de-
note the allowable error limit and performance confidence.

Performance Error. The error above is measured in terms
of normalized l2 error ∥θ−θ̂∥2

∥θ∥2
, which is a natural perfor-

mance measure for score based probability models (e.g.
BTL, Thurstone etc.) [16, 3]. Moreover, it is actually suit-
able for measuring ranking performances as it upper bounds
the pairwise disagreement error – the weighted Kendall-Tau
loss [16]:

pd(θ, θ̂)=

(
1

n∥θ∥22

∑
i<j

(
θi − θj

)2
1
(
(θi − θj)(θ̂i − θ̂j)<0

))1
2

Thus giving a (ϵ, δ) guarantee for the normalized ℓ2-error
also ensures the same for pd(θ, θ̂). We use both of the losses
in our experiment evaluations (Section 6).

2.2 RELATED WORKS

Ranking from pairwise comparisons has been studied ex-
tensively in various disciplines owning to its huge practi-
cal importance, reviewing all lies beyond the scope of this
work. We review only the works most relevant to our setting.
The most related work is [17], however, they assume the
features to lie in some low dimensional space and use a
matrix completion-based approach to predict the ranking.
Note that the low-rank assumption is a global assumption
on the features that might miss out completely on the ex-
act dependencies on the items. [8] also consider a feature
preference information model, but do not analyze the graph
theoretic aspects of feature dependencies.[9], [3] also use
a least squares-based approach, but without any feature in-
formation. [16, 24, 6, 18, 22] [7], [19], [21] work in the
pairwise ranking setting under different probabilistic mod-
els (including BTL model), but again none of them use
features explicitly and hence are sub-optimal for our set-
ting (as we will see in the experiments). [11] work in a
setting where the probabilities come from some unknown
low-dimensional feature embedding of the items. However,
they require the pairs to be queried actively, whereas our
work focuses on random (passive) selection of pairs. There
is also a rich ranking literature on noisy sorting [5], approx-
imation algorithms [2], dueling bandits [25] etc., which are
fundamentally different from the passive setting under the
BTL model considered here. Table 1 summarizes the sample
complexities of a few related works.

Previous results show that under the standard BTL model,
the Rank Centrality [16] [19], MLE under the BTL model
[22] and the Least Squares [3] algorithms need O(n log n)
comparisons to achieve a small error with probability at least
1−O(poly(1/n)). However, these algorithms do not con-

sider the features explicitly. The Feature Low Rank model
of [17] uses features but requires O(d2 log(n)) pairs to be
compared. Another related work is [12], which proposes an
estimator for the parameters of a generalized linear para-
metric model, which includes classical preference mod-
els like Bradley-Terry and Thurstone. By addressing the
violation of independence, they prove a sample complex-
ity guarantee, showing that with Gaussian-distributed fea-
tures, the estimator converges to a rescaled version of the
model parameters based on the ambient dimension, num-
ber of samples, and comparisons. Their results indicate that
achieving an accuracy ϵ > 0 in model parameters requires
Ω(dn log3 n/ϵ2) comparisons when the number of samples
is Ω(d/ϵ2), which they validate through experiments on
synthetic data. We show our proposed fBTL-LS algorithm
requires only O(α logα) samples.

Ranking Sampling Sample
Model Technique Complexity

Noisy permutation [5] Active O(n log n)

Low d-dimensional embedding [11] Active O(d log2 n)
Deterministic tournament [2] Active O(npoly(log n))

Rank-r preference with ν incoherence [9] Passive O(nνr(log n)2)
Bradley Terry Luce (BTL) [16] Passive O(n log n)

Noisy permutation [24] Passive O(n log n)
Low r-rank pairwise preference [19] Passive O(nr log n)
Low d-rank feature with BTL [17] Passive O(d2 log n)

Rank aggregation balancing features [8] Passive O(n)
f-BTL (α ‘independent items’) [This work] Passive O(α logα)

Table 1: State-of-the-art vs Our work

3 ANALYSIS: KNOWN PREFERENCES
We begin by analyzing the problem for the noiseless case
where for every pair (i, j) that is compared, we have access
to the exact value for Pij . This analysis will shed light into
the structure of the problem which will be useful later to
analyse the case when Pijs are unknown and need to be
estimated from its noisy observations (Section 4). Under
this setting, the goal is to bound the number of samples m
needed to exactly recover the score vector θ where θi =
wTui ∀i ∈ [n]. From Equation 1, we have that wTui =∑
j∈I(G)

Bjiw
Tuj ,

or equivalently, θi =
∑

j∈I(G)

Bjiθj ∀i ∈ [n]. (2)

As we have access to U and B, we only need to recover the
scores of θj = wTuj ∀j ∈ [α] so that the remaining scores
can be computed using Equation 2. For a pair (i, j), under
the f-BTL model, the following holds:

α∑
k=1

γij
k θk =

α∑
k=1

γij
k (wTuk) = log

(
Pij

Pji

)
(3)

where γij
k = Bik − Bjk. Note that, from (1), this clearly

implies γij
k = 0 if k /∈ N(i) ∪ N(j) as both B(i, k) =

B(j, k) = 0 in that case. Eqn. (3) shows that knowing Pij



for any pair (i, j) gives rise to a linear equation involving
the score vectors corresponding to the items only in I(G).
Since the f-BTL model is invariant to constant shift of the
score vector θ, we can w.l.o.g. assume that one of the item
score to be 0 (with appropriate shift). Thus to recover the
item scores, we only need I(G) − 1 linearly independent
equations of type Eqn. (3) that can be used to solve for the
scores of the items in I(G), i.e {θi}i∈I(G). However, if the
coefficient γij

k is 0 in (3) corresponding to the pair/edge
(i, j), then it does not involve θk. Thus, the equations of
the selected pairs should be such that each item in I(G)
appears in at least one of the equations so that it can be
solved for.

Thus our problem now is to compute the number of pairs
needed to ensure that with high probability each item in
I(G) appears in at least one equation of the form of Equa-
tion 3. To compute this number, we need to explicitly model
the dependencies among features. We do this below and
prove the necessary result using the Hall’s marriage theo-
rem, a classical result from graph matching theory. We state
the theorem below for convenience.

Hall’s Marriage Theorem. [10] Let C = (A∪A′, E) be a
finite bipartite graph and for any S ⊆ A, NC(S) denote the
neighbours of S in A′. Then C admits a matching entirely
covering A if |NC(S)| ≥ |S| ∀S ⊆ A.

The bipartite graph C = (A ∪ A′,∆) for our purpose is
defined as follows: Set A is just the set of items in the
independent set i.e., A = I(G). (Recall I(G) = [α]). Set
A′ consists of

(
n
2

)
nodes, each corresponding to an edge

(i, j). For an edge (i, j), define

Fij = {k ∈ I(G) : γij
k ̸= 0} (4)

Thus Fij is a subset of independent nodes I(G) which are
adjacent to at least either of item i or j (as otherwise γij

k = 0,
as argued above). Hence by observing the preference Pij

of the pair (i, j), we have an equation involving the items
in Fij . We define the edge set ∆ such that an edge from
node k ∈ I(G) to an edge (i, j) is present in the bipartite
graph C iff k ∈ Fij . For any set of edges M ⊆

(
n
2

)
, define

the reduced bipartite graph CM = (I(G) ∪ M,∆M ) by
restricting the A′ to M and defining ∆M correspondingly.
(see Fig. 1b).

Theorem 3.1. Given a set of edges M ⊆
(
n
2

)
, the bipartite

graph CM = (I(G) ∪ M,∆M ) admits a matching that
covers A iff the system of linear equations induced by edges
admits a unique solutions.

Theorem 3.1 gives us a novel way to analyse the num-
ber of pairs needed to obtain enough (linearly indepen-
dent) equations to uniquely solve for the score vector θ.
In particular, we only need to bound the probability that
the Hall’s marriage condition is not met to get a bound
on the number of pairs needed. (This is since when the

condition is met, a matching cover would give I(G) lin-
early independent equations to solve for the base scores
of items in I(G), i.e {θi}i∈I(G)). Before we prove the
result, we need the following definitions for a given set
M . Let Mk denote the neighbours of node k in CM . Let
cI = | ∪k∈I Mk|, dI = | ∩k∈I Mk|, I ⊆ I(G). We now
prove the main result of this section:

Theorem 3.2 (Bound On Error Probability). Given a
relation graph G,feature matrix U, a set of pairs M where
|M | = m generated according to the sampling model above
(where each pair is chosen with probability p), and the exact
preference probabilities Pij ∀(i, j) ∈ M , the probability
that the score vector θ is same as that estimated score vector
θ̂ that is got by solving the equations obtained is bounded
by

P(θ̂ ̸= θ) ≤
min{α(G),dmax(G)+1}∑

q=1

∑
I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)(cI−(q−1)),

dmax(G) being the maximum degree of G.

Proof. (sketch) From Theorem 3.1 we have that one only
fails to recover the true θ if and only if the edge set ∆M of
the bipartite graph CM fails to cover A. Thus:

P(θ ̸= θ̂) = P({A is not covered by CM})
= P({∃S′ ⊆ A s.t. |NCM

(S′)| < |S′|}) (Hall’s Marriage)

Now if we denote the event Fi := {∃S′ ⊆ A s.t. |S′| =
i and S′ is not covered by CM}, ∀i ∈ [α(G)], and recalling
A = [α(G)], one can further show

P(θ ̸= θ̂) = P({∃S′ ⊆ A s.t. |NCM
(S′)| < |S′|})

= P(F1 ∪ F2 ∪ F3 . . . Fα(G)) = P(F1)

+P(F2 ∩ F c
1 ) + . . .+P(Fα(G) ∩ F c

α(G)−1) (5)

Assuming the pairwise node preferences are drawn accord-
ing to the edges sampled from an Erdős-Rényi random graph
G(n, p) and applying Thm. 3.1 on the event Fq ∩ F c

q−1 for
any 1 ≤ q ≤ α(G), we get:

P(Fq ∩ F c
q−1) = P

(
{∃S′ ⊆ A, |S′| = q, S′ is not cover-

ed by CM and ∀S′
1 ⊂ A, |S′

1| < q, S′
1 is covered by CM})

≤
∑

I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q, (6)

where the last inequality follows from the observation that
for any S′ ⊆ A, |S′| = q if S′ is not covered by CM but
all it subsets S′

1 ⊂ S′ are, then G(n, p) must have sampled
exactly q − 1 edges from ∩i∈S′Mi and none from

(
∪i∈I

Mi \ ∩i∈IMi

)
. Combining (5) in (6):

P(θ ̸= θ̂) ≤ P (F1) + . . .+ P (Fα(G) ∩ F c
α(G)−1)

=

α(G)∑
q=1

∑
I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−(q−1),



where we assume
(
x
y

)
= 0, if x < y. The result follows

further noting that if dmax(G) < α(G), then for any I ⊆
[α(G)] such that |I| > (dmax + 1), then dI = 0. The
complete proof is given in Appendix A.2.

Remark. The above theorem gives us a way of choosing p
such that the probability of not satisfying the Hall’s condi-
tion (and hence not having enough equations to solve) can
be bounded by a suitable value. As can be seen in the Theo-
rem, the quantities of interest are cI and dI which capture
the dependencies among the feature vectors of the nodes in
the graph.

For several graphs, these quantities are easily computable,
yielding the sample complexity bounds:

Theorem 3.3 (Sample Complexity for Common Graphs).
Under the settings of Theorem 3.2, the sample complexity
bounds for the following graphs are: 1. m = O(n log(nδ ))
for a disconnected graph, star graph, or cycle, 2. m =
O(log( 1δ )) for a clique, 3. m = O(r log( rδ )) for union of r
disconnected cliques.

Proof. (sketch) The results could be obtained by first deriv-
ing the exact expression of P(θ ̸= θ̂) for the specific graphs
and solving for p equating it to δ. The required sample fol-
lows subsequently from the expected number of sampled
edges p

(
n
2

)
. Eg., for r-Disconnected Cliques: Say G has

r ∈ [n] disconnected cliques, G1, G2, . . . Gr, each with
d ∈ [n] edges (i.e. for each k ∈ [r], |E(Gk)| = d), assum-
ing n = rd. Thus in this case α(G) = r. Without loss of
generality let I(G) = {1, 2, . . . r}. Then ∀k ∈ [r], we have
Mk = {(i, j) | (i, j) ∈ E(Gk)} ∪ {(k, j) | j ∈ [n] \ {k}}.
Thus nk =

(
d
2

)
+ (r − 1). Moreover note that ∀I ⊆ [n],

|I| = 2, cI = 2(
(
d
2

)
+ (r − 1))− 1 = d(d− 1) + (r − 2),

dI = 1 and |I| ≥ 3, dI = 0.

Then applying Theorem 3.2 and noting dmax(G) ≤
⌈n
r ⌉ one can get: P(θ ̸= θ̂) ≤ r2(e−p((d2)+r−1)).

Now solving r2(e−p((d2)+r−1)) ≤ δ this implies
p ≥ 1

(d2)+(r−1)
log
(

r2

δ

)
. Thus the expected number

of edges (pairwise preferences) in the random graph
required is atleast p

(
n
2

)
= n(n−1)/2

d(d−1)/2+r−1 log
(

r2

δ

)
≥

n(n−1)r2

n(n−r)+2r2(r−1) log
(

r2

δ

)
≥ r log

(
r2

δ

)
, where the last in-

equality follows assuming r < n√
2

. Moreover setting d = 1

and d = n, we can recover the for disconnected and com-
plete graphs respectively etc. The derivation for all the cases
are in Appendix A.3.

Remark. Theorem 3.3 captures the connection between the
structure of the relation graph G([n], E) (induced by the
features) and the sample complexity for recovering the item
scores θ, under f-BTL model. E.g., if the graph is a clique,
then there is only one independent vector and we need only

O(1) pairwise samples; but for a disconnected graph, star
or cycle where α = O(n), we recover the O(n log n) re-
sult for BTL model [16]. Moreover, there are graphs (e.g.
r-disconnected cliques where α = r) where the sample
complexity scale as O(α log(α) (independent to n). Thus
we get significant improvement in the sample complexity
by exploiting the structure of the features which [17] fails
to achieve. Sample complexities of few other graphs, e.g.
regular graphs and trees are discussed in Appendix A.3.

It is also worth noting that the main structural assumption we
exploited in Theorem 3.3 towards achieving the O(α logα)
sample complexity is the low α-dimensional embedding.
Indeed, for a more general overview of our graph theoretic
problem framework in (1), could assume I(G) to be an
index set of some basis items, where the set {ui ∈ Rα |
i ∈ I(G)} represents a basis of the set of item features
U. Further, to mimic (1), now we assume a corresponding
coefficient matrix B̃ s.t. U = B̃Uα, where Uα represents
the “basis matrix" with vectors in {ui | i ∈ I(G)} stacked
in the columns of Uα. In fact, note we do not need the
knowledge of Uα apriori: As given the true feature matrix
U , we can derive one basis (by Gauss elimination or even
Gram-Schmidt) that spans the feature space set U. This is
precisely what we adapted for our real-data experiments in
Section 6.2.

4 GENERAL CASE: UNKNOWN
PREFERENCES

In this section, we consider the original problem where we
don’t have access to the exact Pij values but only estimates
of it available from the K independent comparisons made.
In this setting, we cannot expect to solve the linear equations
exactly. We propose f-BTL, a least squares based algorithm,
shown in Algorithm 1 to solve for the score vector. Let the
graph induced by the edge set M on the n nodes be called
the comparison graph. The node-edge incidence matrix
Q ∈ Rn×m used in the algorithm is QQT which is the
standard unnormalized Laplacian of the comparison graph
i.e., L = QQT = D−A where D is the diagonal matrix
of degrees and A is the adjacency matrix. Algorithm 1 is
motivated using the fact that when the true probabilities are
known exactly, following holds:

QTBv = y (7)

where ∀(i, j) ∈ M,yij = log
(

Pij

Pji

)
and where v ∈ Rα

such that vi = θi ∀i ∈ [α], y = (yij)(i,j)∈M ∈ Rm. Above

relation simply follows as: yij = log
(

Pij

Pji

)
= log

(
eθi

eθj

)
=

θi−θj , ∀i, j ∈ [n] by the property of f-BTL model (Section
2.1). But since only noisy estimates ŷ are available instead
of true y, we take a least squares approach. The details is
described in Algorithm 1.



4.1 CONNECTIVITY

The results of [3] show the sample complexity for the least
squares algorithm for standard BTL model depends on how
well connected the comparison graph is. Precisely, this is
measured w.r.t the second Eigenvalue of the Laplacian L
which is 0 if and only if the comparison graph is discon-
nected. Thus when the comparison graph is disconnected,
there is no way to recover the score vector in the standard
BTL case. However, as we will see below, our analysis will
depend on the least eigenvalue of the matrix Q̃Q̃T and not
the Laplacian matrix. The important point to note here is that
even if the comparison graph is disconnected, the fBTL-LS
algorithm may still recover the score vector. This is because
of the fact that the algorithm makes use of the matrix B of
coefficients to relate scores across possibly disconnected
components in the comparison graph.

Algorithm 1 Algorithm: fBTL-LS
Require: G, U, a set M of m pairs each compared K

times.
Compute B from U such that Equation 1 is satisfied for
all ui, i ∈ [n].
Compute the node-edge incidence matrix Q ∈ Rn×m

from M . Let Q̃ = BTQ

Compute P̂ij=

{
fraction of times i beats j ∀(i, j) ∈ M

0 ∀(i, j) /∈ M

Compute ŷ ∈ Rm where ∀(i, j) ∈ M, ŷij = log
(

P̂ij

P̂ji

)
Solve v̂ = argminx∈Rα ∥Q̃Tx− ŷ∥

Set θ̂i =

{
v̂i ∀i ∈ [α]

compute using Equation (2) ∀i /∈ [α]

return score vector θ̂

An example of this is shown in Figure 2. Here n = 3 and
M = {(1, 2), (1, 3), (4, 5)} and m = |M | = 3. The com-
parison graph as can be seen in the figure is disconnected.
The nodes circled in red are assumed to be the independent
set nodes. The exact relation between the feature vectors
of the independent set i.e., {u1,u2} and those not in the
independent set i.e., {u3,u4,u5} are given by the matrix B
shown in the figure. It can be verified for this example that
the matrix BTLB (also shown in the figure) has non zero
eigenvalues though the Laplacian is block diagonal (which
happens iff the comparison graph is disconnected).

Figure 2: A disconnected comparison graph for which the
BTLB has non-zero minimum eigenvalue

Theorem 4.1 (Recovery Guarantee for fBTL-LS Algo-

rithm). Let M be a set of m edges generated as per the
sampling model and let each pair in M be compared K
times independently according to the f-BTL model. Then for
any positive scalar K ≥ 6(1 + e2b)2 log n, with probability
at least 1 − 2m

n3 , the normalized ℓ2-error of Algorithm 1
satisfies

∥θ̂ − θ∥
∥θ∥

≤ 2

a
·

√
λmax(BTB)

λmin(BTB)
·
√

m

α
·
√
λn

λ1
,

λ1 = min{λ > 0 | λ is an eigen value of BTLB}, λn =
λmax(B

TLB). λmin(B
TB) and λmax(B

TB) respectively
denotes the minimum and maximum non-zero eigenvalues of
the positive semi-definite matrix BTB. a, b > 0 denote the
range of the f-BTL parameter such that |θi| ≥ a, ∀i ∈ [α]
and |θi| ≤ b, ∀i ∈ [n].

Proof. (sketch) Let us denote the reduced Laplacian ma-
trix by L̃ = Q̃Q̃T = BTQQTB = BTLB which
is clearly positive semi-definite and has all non-negative
eigenvalues. Let f(x) = ∥Q̃Tx − ŷ∥2, then note that
v̂ = argminx∈Rα f(x) in Algorithm 1 would satisfy the
optimality condition ∇f(v̂) = 0 when

Q̃ŷ = Q̃Q̃T v̂ = L̃v̂, (8)

On the other hand, assuming v ∈ Rα s.t. vi = θi, ∀i ∈ [α]

and y ∈ Rm be such that yij = log

(
Pij

Pji

)
, we have v =

argminx∈Rα ∥Q̃Tx− y∥2 which gives

Q̃y = L̃v. (9)

Above condition holds for any i, j ∈ [n], yij = θi − θj ,
and so y = LTθ = LTBv = Q̃Tv, where the second
equality holds due to (2). Combining (8) and (9) we get
Q̃(y − ŷ) = L̃(v − v̂) from which it can be shown that,
λmin(L̃L̃

T )∥v − v̂∥2 ≤ λmax(Q̃
T Q̃)∥y − ŷ∥2. Noting

λmax(Q̃
T Q̃) = λmax(Q̃Q̃T ) = λn and λmin(L̃L̃

T ) =
(λmin(L̃))

2 = (λminQ̃Q̃T )2 = λ2
1 above further implies:

∥v − v̂∥ ≤ ∥y − ŷ∥
√
λn

λ1
. (10)

Now in order to bound ∥y− ŷ∥ =
√∑

(i,j)∈E(yij − ŷij)2,

we first note: |yij−ŷij | ≤ |(logPij−log P̂ij)|+|(logPji−
log P̂ji)|. Denoting νij = |Pij − P̂ij | and applying Hoeffd-
ing’s Inequality:

P
(
νij ≥ η

)
= P

(
|Pij − P̂ij | ≥ η

)
≤ 2e−2η2K (11)

As |θi| ≤ b,∀i ∈ [n], we have 1
1+e2b

≤ Pij ≤
e2b

1+e2b
,∀i, j ∈ [n]. Also as K ≥ 6(1 + e2b)2 log n, using



(11), and further taking union bound over all pairs in M , we
get with probability atleast

(
1− 2m

n3

)
:

P

(
∀i, j ∈ [n], νij <

Pij

2

)
>

(
1− 2m

n3

)
. (12)

Define g : [0, 1] 7→ R, such that g(p) = log(p), ∀p ∈ [0, 1].
Using Taylor’s theorem, one can obtain a p∗ ∈ [Pij −
νij , Pij + νij ] such that

log P̂ij = logPij +
1

p∗
(P̂ij − Pij), or equivalently,

log(P̂ij)− logPij

(P̂ij − Pij)
=

1

p∗
≤ 2

Pij
,

where the last inequality follows from (12) with probability
at least (1− 2m

n3 ). Furthermore, in the high probability event,
as |P̂ij−Pij | < Pij

2 , one can show ∥y− ŷ∥ ≤ 2
√
m. Using

this to (10) we get

∥v − v̂∥ ≤ ∥y − ŷ∥
√
λn

λ1
≤ 2

√
mλn

λ1
(13)

with probability at least
(
1− 1

n

)
. The proof finally follows

noting since |θi| ≥ a, ∀i ∈ [α], we have ∥v∥ ≥ a
√
α.

Moreover, as θ = Bv, ∥θ∥ ≥
√
λmin(BTB)∥v∥ ≥

a
√

αλmin(BTB). On the other hand, θ̂ = Bv̂ thus,

∥θ − θ̂∥ = ∥B(v − v̂)∥ ≤
√

λmax(BTB)∥v − v̂)∥.

Combining above observations with (13) yields the desired
bound. The proof is given in Appendix B.1.

Remark. Thm. 4.1 shows that the normalized error is
bounded by a product of 4 terms. The first term 2

a can be
treated as a constant that depends on the minimum score
of the f-BTL model – a sensitivity component of the er-
ror bound. The second term is the condition number of the
feature coefficient matrix B and captures how the features
interact with each other. The third term depends on the num-
ber of pairs seen in M . When |M | = m = α logα, this
term becomes

√
logα. The fourth term grows depending

on how many samples one sees as it depends on L which
is the Laplacian of the comparison graph. If both λn and
λ1 are O(logα), then the normalized error is a constant
with probability at least 1 − poly( 1n ). Thus, the result es-
sentially says that if one sees O(α logα) samples and B is
such that both λ1 and λn are O(logα), then the normalized
error is bounded by a small constant. Thus the m in the
numerator could be misleading, as one expects decreasing
performance error with increasing m. However as explained
above, combining the effect of all m-dependent factors in-
cluding eigenvalues of B′LB, the error bound on the right
hand side decreases as m scales as O(α logα).

5 LOWER BOUND
In this section, we show how the achievable ℓ2-error rate
of the fBTL-LS algorithm (Theorem 4.1), compares to the
minimax ℓ2-error rate possible, over the class of feature
Bradley-Terry-Luce (f-BTL) model. Theorem 5.1 proves
an information-theoretic lower bound for the ℓ2-error rate
achievable by any learning algorithm for estimating the
score parameters of the f-BTL model.

Theorem 5.1 (Lower Bound for estimating the param-
eters of f-BTL model). Let us consider the following
set of score vectors ΘB(a, b) of a f-BTL model defined
with respect to the coefficient matrix B and range pa-
rameters a, b > 0 such that: B(a, b) = {θ ∈ Rn |
θ satifies (2), |θi| ≤ a ∀i ∈ [α], |θi| ≥ b ∀i ∈ [n]}.

Now suppose the learner (an algorithm to estimate scores of
a f-BTL model) is given access to noisy pairwise preferences
sampled according to a G(n, p) Erdős-Rényi random graph
with p = ζ

n for some ζ > 0, such that K independent
noisy pairwise preferences are available for each sampled
pair, generated according to some unknown f-BTL model in
ΘB(a, b). Then if θ̂ ∈ Rn be the learner’s estimated f-BTL
score vector based on the sampled pairwise preferences,
upon which environment chooses a worst case true score
vector θ ∈ ΘB(a, b), then for any such learning algorithm
one can show that

sup
θ∈ΘB(a,b)

E[∥θ̂ − θ∥]
∥θ∥

≥
√

λmin(BTB)

16bλmax(BTB)
√
448ζKe2(b+1)

,

the expectation is over the randomness of the algorithm.

Our proof technique uses a constructive argument to gener-
ate the score vectors θ from a uniform distribution that
respects the f-BTL model in the dynamic range |θi| ∈
[a, b], ∀i ∈ [n], and solves the stochastic inference problem
into a multi-way hypothesis testing problem. The full proof
is given in Appendix C.1.

Proof. (sketch) We solve the above problem reducing it to a
multi-class hypothesis testing problem as follows: Consider
we are given a set of N score vectors {θ1,θ2, . . .θN} ⊂
ΘB(a, b) s.t. ∥θk1 − θk2∥ ≥ δ, for any two score vec-
tors θk1 ,θk2 such that k1, k2 ∈ [N ]. Then given the set
of pairwise preferences generated by an unknown sore vec-
tor θ = θL (L being a random index selected uniformly
[N ]), the hypothesis testing task is to identify the index of
the score vector L.

Now given any algorithm that predicts a score vector θ̂
based on the given set of pairwise preferences from the
f-BTL model θL, sampled according to a G(n, p) Erdős-
Rényi random graph with p = ζ

n for some ζ > 0, such
that K independent noisy pairwise preferences are available
for each sampled pair, one natural way to estimate L is by
L̂ = argmink∈[N ] ∥θ̂−θk∥. Note that for L̂ to be different



that L, it has to be the case that ∥θ̂− θ∥ ≥ δ
2 . Thus one can

write E[∥θ̂−θ∥] ≥ δ
2P(L̂ ̸= L). Further applying a similar

information theoretic analysis as [16], one gets E[∥θ̂ −

θ∥] ≥ δ
2

[
1−

Kζ

2N2

∑
k1∈[N]

∑
k2∈[N] ∥e

θk1−eθ
k2 ∥2+log 2

logN

]
Thus the remaining task is to construct a set of N score
vectors {θ1,θ2, . . .θN} ⊂ ΘB(a, b) which are well sep-
arated, so to get suitable bounds on the terms ∥eθk1 −
eθ

k2 ∥2, ∀k1, k2 ∈ [N ] to obtain the desired lower bound
for which we carefully constructed the score vectors as
follows: For any k ∈ [N ], we construct the kth score
vector θk set of the set of N random score vectors as fol-
lows: 1. Draw α many random variables Xk

1 , X
k
2 , . . . X

k
α ∼

Unif
[(

1
2 − βδ

)
,
(

1
2 + βδ

)]
, where β is a constant to be

adjusted later. 2. Set θki = a + (b − a)Xk
i , ∀i ∈ [α],

0 < a < b < 1. 3. Consider the coefficient matrix
B ∈ Rn×α

+ such that
∑α

j=1 Bij = 1, ∀i ∈ [n]. 4. Set the re-
maining score vectors θki according to (2) for all i ∈ [n]\[α].
The claim now follows proving the following two lemmas

Lemma 5.2. 1
6 (b− a)2αβ2δ2 ≤ ∥θk1

[α] − θk2

[α]∥
2 ≤ 7

6 (b−
a)2αβ2δ2, for all k1, k2 ∈ [N ] × [N ], with probability at
least (1−N2e−

α
32 ),

Lemma 5.3. Given any two θ,θ′ ∈ [a, b]n, such that 0 <
a < b < 1 ∥eθ − eθ

′∥2 ≤ e2(b+1)∥θ − θ′∥2

which combined with the above derived lower bound on
E[∥θ̂ − θ∥] yields the result. The complete proof can be
found in Appendix C.1.

Remark. Since m =
(
n
2

)
p, or equivalently ζ = pn =

O
(
m
n

)
, the above bound suggests that the left hand side is

bounded by a small constant upon observing m = α logα
pairs for K ≥ n

α logα – which exactly matches our derived
upper bound of Thm. 4.1 for any n ≥ α logα log n, estab-
lishing tightness of the results.

6 EXPERIMENTS
We compared our algorithm fBTL-LS with three state-of-the-
art methods: (i) Ordinary Least Squares (OLS ) [3], (ii) Rank
Centrality (RC) [16] and (iii) Inductive Pairwise Ranking
based on inductive matrix completion (IMC) [17]. The first
two algorithms do not use any feature information while the
third algorithm does.

Performance Measures: 1. Normalized ℓ2-error: For ex-
periments where there is a true score vector, we use the
normalized ℓ2 error between the estimated score vector and
the true score vector

(
∥θ̂−θ∥
∥θ∥

)
.

2. Pairwise disagreement (pd) error: Suppose P∗ ∈
[0, 1]n×n denotes the pairwise preference matrix corre-
sponding to the true (and unknown) score θ, given by
P ∗
ij = eθi

eθi+eθj
and P̂ ∈ [0, 1]n×n be the estimated

preference matrix return by the algorithm (note if the al-
gorithm returns a score vector estimate θ̂, we compute
P̂ij = eθ̂i

eθ̂i+eθ̂j
∀i, j ∈ [n]), then pd-error is defined

as: pd(P̂,P∗) = 2
n(n−1)

∑
i<j

(
I(P̂ij ≥ 0.5 ∧ P ∗

ij <

0.5) + I(P̂ij < 0.5 ∧ P ∗
ij > 0.5)

)
Remark. This counts the fraction of pairs where P∗ and P̂
disagree – the Kendall’s Tau ranking loss [14, 16] between
true and estimated ranking (θ and θ̂).

3. Sample complexity(sc(ϵ)): Minimum number of pair-
wise comparisons required to be observed to obtain normal-
ized ℓ2-error

(
∥θ̂−θ∥
∥θ∥

)
< ϵ.

6.1 EXPERIMENTS ON SYNTHETIC DATASETS

We consider three different settings— Type-I plots: with
increasing node size (n), Type-II plots: with increasing sam-
pling rate (p) but fixed node size (n) and independence
number (α) Type-III plots: with increasing independence
number (α) and fixed node size (n).

Graphs used. We use 3 different graphs for synthetic exper-
iments: (1) r-disconnected cliques: Union of r-cliques (2)
d-regular graphs: Graphs with each node having degree d
and (3) k-ary trees: Trees with every node having k-children
(except the leaf nodes).

Data generation For each of the above type of graphs G, we
first fix a maximum independent set I(G) of G, and embed
the ith node of I(G) with the ith canonical basis vector of
Rα, i.e. ui = ei, ∀i ∈ [α]. Thus our feature dimension is
d = α. We next generate a random coefficient matrix B ∈
Rn×α and obtain the feature embedding {ui}ni=1 ⊂ Rα of
rest of the items using (1). Choose a random vector w ∈ Rα

and assign a BTL score θi = wTui to every node i ∈ [n] as
defined in (2). Finally θ = (θ1, θ2, . . . , θn) is normalized
to ℓ2-norm 1, i.e. ∥θ∥2 = 1, setting θi =

θi
∥θ∥2

, ∀i ∈ [n].

Parameter setting. As follows from the data generation, the
feature dimension d is equal to the independence number
α = |I(G)| of G in each case. We also fix K = 1000
(unless performance is reported against K), and report the
average performances over 50 runs.

TYPE-I PLOTS: INCREASING NODE SIZE (n)

We compare the algorithms, with varying node size (n),
on three different graphs: (1) Union of 10 disconnected
cliques on n nodes, (2) d-Regular graph of n nodes with
fixed degree d = 10 and (3) Full binary tree of n nodes.
The results are reported in Figure 3. They clearly reflect
the superior performance of fBTL-LS for each of the three
performance measures.

Results. For 10-disconnected cliques, α = 10 is fixed for all
n, unlike graph (2) and (3) where α scales with n. The sam-



Figure 3: Performance vs n on (1) 10-disconnected clique, (2) 10-regular graph (3) full binary tree

ple complexity sc(0.5) of fBTL-LS for achieving a target
error ϵ = 0.5 for 10-disconnected clique is almost constant
for n from 20 to 500, unlike the rest of the algorithms where
it scales with n–which justifies our claim of the required
sample complexity to be O(α logα), as also remarked in
Thm. 4.1. This also justifies why for 10-regular graph and
full binary tree, the sample complexity of fBTL-LS mono-
tonically increases with n, as α itself scales with n for them.

Remark. The above reflects how our algorithm finds the
position of a newly added item in an already estimated rank-
ing without collecting extra pairwise preferences, as long
as it lies in the span of I(G) (i.e. α remains fixed), the sam-
ple complexity remains unaffected too (e.g. 10-disconnected
cliques) – This is a significant advantage of our method over
the rest which cannot exploit the underlying item dependen-
cies and thus needs to observe preference information of the
newly added nodes leading to increased sample complexity
with increasing n.

Figure 4: Performance vs p, where p = Cα logα

(n2)
on (1)

100-disconnected clique, (2) 50-regular graph and (3) full
binary tree, with ∼ 500 nodes in each

TYPE-II PLOTS: INCREASING p, FIXED n, α

Here we compare the algorithms with varying sampling rate
p for two estimation error metrics, normalized ℓ2-error and
pairwise disagreement pd(P̂,P∗), on the following three
different graphs: (1) Union of 100 disconnected cliques
on 500 nodes, i.e. each clique of 5 nodes, (2) 50-Regular
graphs on 500 nodes, each of degree d = 50 and (3) Full
binary tree of height 8 (511 nodes). Thus in each case, n
and α are kept fixed, with p to be set as p = Cα logα

(n2)
, C

varying from 0.5 to 32.

Figure 5: Performance vs α on disconnected cliques and
d-regular graph (n = 500 nodes in each)

Results. Fig. 4 shows, as expected, the performance of all
the algorithms gets improved with a higher sampling rate
p. However, the performance improvement rate is far more
drastic for fBTL-LS compared to the rest due to its inherent
ability to exploit the feature correlation, and thus attains
accurate score estimates faster.

TYPE-III PLOTS: INCREASING α AND FIXED n

In the third setup, we compare the four algorithms with
varying independence set size (or independence number)



α for a fixed set of n = 500 nodes on the following two
graphs: (1) Union of r-disconnected cliques over 500 nodes
with varying r and (2) d-Regular graph of 500 nodes with
varying degree d (Figure 5).

Results. The results show varying p as p = 10(α logα)

(n2)
nor-

malized ℓ2-error and pd(P̂,P∗), remains almost constant
validating the claim of the required sample complexity of
fBTL-LS to be O(α logα), as follows from Theorem 4.1.
The sample complexity curves on the other hand validate the
dependency of sc(0.5) on α, which increases with higher
values of α, as expected.

6.2 REAL DATA EXPERIMENTS

We finally evaluate the algorithms on two benchmark real-
world preference learning datasets: car and sushi.

1. Car Dataset. ([1]) It contains pairwise preferences of 20
cars given by 60 users, where each car is represented by a
6-dimensional feature vector. 2. Sushi Dataset. ([13]) This
dataset contains over 100 sushis rated according to their
preferences, each sushi is represented by a 7-dimensional
feature vector.

Figure 6: Pairwise disagreement error pd(P̂,P∗) vs sam-

pling rate
(
p = Cα logα

(n2)

)
, and number of repeated samples

(K) on Car and Sushi

Setup. Note that the real-world datasets do not satisfy any
preference modeling assumption, e.g. BTL assumption, and
hence there is no true score vector θ associated to the item
preferences. From the user preferences, we first compute
the underlying pairwise preference matrix P∗, where P ∗

ij

is computed by taking the empirical average of number of
times an item i is preferred over item j. Further to con-
struct the feature matrix U, we use the provided feature
information of the item set, that is provided in each dataset.
Specifically, if each item is represented by d-dimensional
feature vector (as described before, d = 6 for Car and d = 7
for Sushi), we find a set of d items whose corresponding fea-
tures are linearly independent that forms a basis of Rd and

use these d items as the independent set I. The coefficient
matrix B is then constructed by representing the rest of the
items as a linear combination of I, such that it satisfies (1)
(see Sec. 2.1).

Performance Measure. As noted above, the real-world
datasets do not satisfy the BTL assumption, so there is no
true score vector θ associated with the item preferences. We
however measure the performances of the algorithms with
respect to the true preference matrix P∗, using pairwise
disagreement error pd(P̂,P∗).

In both cases, our algorithm outperforms the rest. We also
evaluate the algorithms with an increasing number of re-
peated samples per pair (K). As expected, it shows higher
K leads to improved performance (Fig. 6).

7 CONCLUSION AND FUTURE WORKS
Many of the state-of-the-art existing ranking algorithms ei-
ther fail to utilize this feature information, or make broad
low-rank assumptions that cannot capture the item depen-
dencies through their corresponding feature representations.
We introduce a feature-based probabilistic preference model,
f-BTL, and propose a least squares-based algorithm, fBTL-
LS, which is shown to achieve much tighter sample complex-
ity for the problem of ranking from pairwise comparisons
with feature information.

We have proposed a least squares-based algorithm and have
shown theoretical recovery guarantees for the same. While
least square-based algorithms are a natural choice, it would
be interesting to see how Markov chain-based approaches,
e.g. Rank Centrality [16] can be extended to accommodate
feature information. One can also potentially consider the
contextual setting introducing user features in addition. Ana-
lyzing the sample complexity for recovering partial ordering
(e.g. top-K items) would be useful too.
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SUPPLEMENTARY: A GRAPH THEORETIC APPROACH FOR PREFERENCE LEARNING
WITH FEATURE INFORMATION

A SUPPLEMENTARY FOR SECTION 3

A.1 PROOF OF THEOREM 3.1

Theorem 3.1. Given a set of edges M ⊆
(
n
2

)
, the bipartite graph CM = (I(G) ∪M,∆M ) admits a matching that covers

A iff the system of linear equations induced by edges admits a unique solutions.

Proof. If there is a matching that covers A, then each node i in I(G) has a distinct representative edge in M which induces
an equation containing i. Thus there are at least I(G) equations with each node appearing in at least one of them and hence
the system can be solved for. More over the solution would be unique since these I(G) many induced equations would be
linearly independent. It is important note in this regard that than all the equations (of form Eqn. (3)) emerges from any pair
(i, j) is would lead to a linearly independent equation–this is since we also assume B is such that any α× α submatrix of B
is of rank α (see Sec. 2.1), which ensures none of the dependent features can be represented as a linear combination of the
other dependent features. Above is crucial for the correctness of proof as it ensures all the linear equations induced through
these cover-matching edges are linearly independent.

On the other hand, if there is no matching that covers A, then by Hall’s marriage theorem [10], there must exist some subset
S ⊆ A such that it’s neighbours |NCM

(S)| < |S|. As the total number of equations that involve nodes in S are less than the
number of nodes, this set of equations cannot be solved for.

A.2 PROOF OF THEOREM 3.2

Theorem 3.2 (Bound On Error Probability). Given a relation graph G,feature matrix U, a set of pairs M where |M | = m
generated according to the sampling model above (where each pair is chosen with probability p), and the exact preference
probabilities Pij ∀(i, j) ∈ M , the probability that the score vector θ is same as that estimated score vector θ̂ that is got by
solving the equations obtained is bounded by

P(θ̂ ̸= θ) ≤
min{α(G),dmax(G)+1}∑

q=1

∑
I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)(cI−(q−1)),

Proof. Note from Theorem 3.1 we have that one only fails to recover the true θ if and only if the edge set ∆M of the
bipartite graph CM fails to cover A. Thus we have

P(θ ̸= θ̂) = P({A is not covered by CM})
= P({∃S′ ⊆ A s.t. |NCM

(S′)| < |S′|}) (by Hall’s Marriage Theorem)

We use NG(i) to denote the set of neighbours of node i ∈ [n] in a graph G and N̄G(i) to denote the set of neighbours
of node i ∈ [n] in G including i itself, i.e. N̄G(i) = NG(i) ∪ {i}. Define NG(S) = ∪i∈SNG(i), ∀S ⊆ V (G) and
N̄G(ij) =

(
N̄G(i) ∪ N̄G(j)

)
∩ I(G). Thus we can associate every node k ∈ I(G) = [α(G)] in the independent set to a set

of edges Mk such that (i, j) ∈ Mk ⇐⇒ k ∈ N̄G(ij). Let us also denote nk = |Mk| and let nmin = min
{k∈[α(G)]}

nk. More

generally we denote nI = | ∩i∈I Mi|, ∀I ⊆ [α(G)].

We will also find it convenient to define cI = | ∪i∈I Mi| and dI = | ∩i∈I Mi|, ∀I ⊆ [α(G)]. Clearly when |I| = 1, say
I = {i}, i ∈ [n], cI = dI = ni. In general, for |I| = q, 1 ≤ q ≤ α(G) we have cI =

∑q
x=1

∑
J⊆I||J|=x(−1)x−1dJ ,

where the size of the intersecting sets dIs depends on specific the structure of the graph G (see Theorem 3.3 for graph
specific analysis).

Now if we denote the event Fi := {∃S′ ⊆ A s.t. |S′| = i and S′ is not covered by CM}, ∀i ∈ [α(G)], and recalling
A = [α(G)], we further get



P(θ ̸= θ̂) = P({∃S′ ⊆ A s.t. |NCM
(S′)| < |S′|})

= P (F1 ∪ F2 ∪ F3 . . . Fα(G))

= P
(
F1 ∪ (F2 ∩ F c

1 ) ∪ (F3 ∩ F c
2 ) ∪ . . . ∪ (Fα(G) ∩ F c

α(G)−1)
)

= P (F1) + P (F2 ∩ F c
1 ) + . . .+ P (Fα(G) ∩ F c

α(G)−1) (14)

Assuming the pairwise node preferences are drawn according to the edges sampled from an Erdős-Rényi random graph
G(n, p) and applying Theorem 3.1 on the event F1, it is easy to see that

P(F1) = P({∃S′ ⊆ A s.t. |NCM
(S′)| < |S′| = 1})

= P
(
{∃S′ = {k}, k ∈ [α(G)] s.t. no edge from Mk is sampled in G(n, p)}

)
≤

α(G)∑
i=1

(1− p)ni ,

where the last inequality follows taking union bound over all singletons in A = [α(G)]. Note that one can further bound
above as P(F1) ≤ α(G) exp(−pnmin). In general, for any 1 ≤ q ≤ α(G), one can similarly derive

P(Fq ∩ F c
q−1)

= P
(
{∃S′ ⊆ A, |S′| = q, S′ is not covered by CM and ∀S′

1 ⊂ A, |S′
1| < q, S′

1 is covered by CM})

≤
∑

I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q, (15)

where the last inequality follows from the crucial observation that for any S′ ⊆ A, |S′| = q if S′ is not covered by
CM but all it subsets S′

1 ⊂ S′ are, then G(n, p) must have sampled exactly q − 1 edges from ∩i∈S′Mi and none from(
∪i∈I Mi \ ∩i∈IMi

)
. Using (15) in (14) we finally get,

P(θ ̸= θ̂) ≤ P (F1) + P (F2 ∩ F c
1 ) + . . .+ P (Fα(G) ∩ F c

α(G)−1)

=

α(G)∑
q=1

∑
I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−(q−1),

where we assume
(
x
y

)
= 0, if x < y. Further note that if dmax(G) < α(G), then for any I ⊆ [α(G)] such that

|I| > (dmax + 1), we have dI = 0, using which we further get

P(θ ̸= θ̂) ≤
min{α(G), (dmax(G)+1)}∑

q=1

∑
I⊆I(G)||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−(q−1)

Thus the claim follows.

A.3 PROOF OF THEOREM 3.3

Theorem 3.3 (Sample Complexity for Common Graphs). Under the settings of Theorem 3.2, the sample complexity
bounds for the following graphs are: 1. m = O(n log(nδ )) for a disconnected graph, star graph, or cycle, 2. m = O(log( 1δ ))
for a clique, 3. m = O(r log( rδ )) for union of r disconnected cliques.

Proof. We will now analyse Theorem 3.2 for certain specific class of graphs. We will be using the same notations used in
proof of Theorem 3.2 for the purpose.



1. Fully Disconnected Graph: Note that in this case α(G) = n. Also note that ∀k ∈ [n], Mk = {(k, i) | i ∈ [n] \ {k}}.
Thus nk = n− 1. Moreover ∀I ⊆ [n], |I| = 2, cI = 2n− 3, dI = 1, and if |I| ≥ 3, dI = 0.

Now applying Theorem 3.2 and noting dmax(G) = 0, we further get that,

P(θ ̸= θ̂) ≤
min{α(G), (dmax(G)+1)}∑

q=1

∑
I||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q

=

n∑
i=1

(1− p)n−1 +
∑
i<j

p(1− p)2n−3−1

= n(1− p)n−1 +

(
n

2

)
p(1− p)2n−4

≤ n(e−p)n−1 +
n(n− 1)

2
p(e−p)2n−4

≤ n2(e−p(n−1))

≤ δ,

solving which we get p ≥ 1
(n−1) log

(
n2

δ

)
. Thus the expected number of edges (pairwise preferences) in the random

graph required is atleast p
(
n
2

)
≥ n

2 log
(

n
δ

)
, which recovers the result for the usual BTL model.

2. Complete Graph: In this case α(G) = 1. Without loss of generality assuming I(G) = {1}, thus we have M1 =
{(i, j) | i, j ∈ [n]}. Thus n1 =

(
n
2

)
. Moreover ∀I ⊆ [n], |I| ≥ 2, dI = 0.

Applying Theorem 3.2 as before and noting dmax(G) = n, we further get,

P(θ ̸= θ̂) ≤
min{α(G), (dmax(G)+1)}∑

q=1

∑
I||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q

= (1− p)(
n
2)

= (e−p)(
n
2)

≤ δ,

solving which one gets p ≥ 1

(n2)
log
(

1
δ

)
. Thus the expected number of edges (pairwise preferences) in the random

graph required is atleast p
(
n
2

)
≥ log

(
1
δ

)
, which is intuitive as well since in a complete graph one needs the knowledge

of only Ω(1) pairwise preferences to recover the exact ranking (i.e. θ) with high probability (1− δ).

3. r-Disconnected Cliques: Say G has exactly r ∈ [n] disconnected cliques, G1, G2, . . . Gr, each with d ∈ [n] edges (i.e.
for each k ∈ [r], |E(Gk)| = d), assuming n = rd. Thus in this case α(G) = r. Without loss of generality assume
I(G) = {1, 2, . . . r}. Then ∀k ∈ [r], we have Mk = {(i, j) | (i, j) ∈ E(Gk)} ∪ {(k, j) | j ∈ [n] \ {k}}. Thus
nk =

(
d
2

)
+ (r − 1). Moreover ∀I ⊆ [n], |I| = 2, cI = 2(

(
d
2

)
+ (r − 1)) − 1 = d(d − 1) + (r − 2), dI = 1 and

|I| ≥ 3, dI = 0.

Then applying Theorem 3.2 as above and noting dmax(G) ≤ ⌈n
r ⌉, we further get,



P(θ ̸= θ̂) ≤
min{α(G), (dmax(G)+1)}∑

q=1

∑
I||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q

=

r∑
i=1

(1− p)(
d
2)+r−1 +

∑
i<j,i,j∈[r]

p(1− p)d(d−1)+(r−2)−1

= r(1− p)(
d
2)+r−1 +

(
r

2

)
p(1− p)d(d−1)+(r−3)

≤ r(e−p)(
d
2)+r−1 +

r(r − 1)

2
p(e−p)d(d−1)+(r−3)

≤ r(r − 1)(e−p((d2)+r−1))

≤ r2(e−p((d2)+r−1)) ≤ δ,

solving which one can derive p ≥ 1

(d2)+(r−1)
log
(

r2

δ

)
. Thus the expected number of edges (pairwise preferences)

in the random graph required is atleast p
(
n
2

)
= n(n−1)/2

d(d−1)/2+r−1 log
(

r2

δ

)
≥ n(n−1)r2

n(n−r)+2r2(r−1) log
(

r2

δ

)
≥ r log

(
r2

δ

)
,

where the last inequality follows assuming r < n√
2

. Note that setting d = 1 and d = n, one can recover the earlier
bounds we derived for disconnected and complete graphs respectively.

4. Star: Note that in this case the size of the maximal independent set α(G) = (n− 1). Without loss of generality assume
I(G) = [n] \ {1}. Thus we have that for any k ∈ I(G), Ek = {(k, j) | j ∈ [n] \ {k}}∪ {(1, j) | j ∈ [n] \ {1}}. Thus
nk = (n−1)+(n−2) = 2n−3. Moreover ∀I ⊆ [n], |I| = 2, dI = (n−2)+1 = n−1 and cI = 2(2n−3)−(n−1) =

3n− 5. For |I| ≥ 3, dI = n− 2 and cI = (2n− 3)|I| − (n− 1)(
(|I|

2

)
) + (n− 2)(

(|I|
3

)
)− . . .+ (−1)|I|−1(n− 2),

e.g. when |I| = 3, cI = 4n− 14 etc.

Applying Theorem 3.2 as before and noting dmax(G) = (n− 1), we further get,

P(θ ̸= θ̂) ≤
min{α(G), (dmax(G)+1)}∑

q=1

∑
I||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q

= (n− 1)
(
(1− p)2n−3 +

n(n− 2)

2
p(1− p)2n−4

)
+

(
n− 1

3

)(
n− 2

2

)
p2(1− p)3n−12 + . . .

≤ n2(e−p(n−1))

≤ δ.

Similar to the case of fully disconnected graph, solving p from above one can get that the expected number of edges
(pairwise preferences) in the random graph required is atleast p

(
n
2

)
=
(

n
2 log

(
n
δ

))
.

5. Cycle: We will assume that n = 2n′ ≥ 4 is even, similar analysis can be done for the odd number of nodes as well.
Thus in this case α(G) = n′. Without loss of generality assume I(G) = {2i ∈ [n] | i ∈ [n]}. Thus we have that for any
k ∈ I(G), Ek = {(k, j) | j ∈ [n]\{k}}∪{(k−1, j) | j ∈ [n]\{k−1}}∪{((k+1) mod k, j) | j ∈ [n]\{(k+1)
mod k}}. Thus nk = (n−1)+(n−2)+(n−3) = 3(n−2). Moreover ∀I ⊆ [n], |I| = 2, dI = (n−2)+1 = n−1
and cI = 2(3n− 6)− (n− 1) = 2n− 5. For |I| ≥ 3, dI = 0.

Further applying Theorem (3.2) and noting dmax(G) = 2, we further get,



P(θ ̸= θ̂) ≤
min{α(G), (dmax(G)+1)}∑

q=1

∑
I||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q

=

n′∑
i=1

(1− p)3n−6 +
∑

I⊂I(G),|I|=2

(n− 1)p(1− p)2n−5−(n−1)

=
n

2
(1− p)3n−6 +

n(n− 1)(n− 2)

8
p(1− p)n−4

≤ n

2
(1− p)3n−6 +

n− 2

4
(1− p)n−4

(
as p

(
n

2

)
≥ 1
)

≤ n(1− p)n−4

≤ δ,

solving which one can derive p = f(δ) ≥ 1
n−4 log

(
n
δ

)
. Thus the expected number of edges (pairwise preferences) in

the random graph required is atleast p
(
n
2

)
= n(n−1)/2

n−4 log
(

n
δ

)
≥ n

2 log
(

n
δ

)
.

6. K-ary Tree: Let h be the height of the tree and 1 denotes the root node. For any node i ∈ [n], par(i) and ch(i)
respectively denotes the parent and child nodes i. We will consider only trees of even height for the purpose, it is easy
to derive a similar analysis for trees of odd height. Note that n = (1 +K +K2 + . . .+Kh) = Kh+1−1

K−1 . Clearly the
maximum independent set contains all the nodes which which are at a even length distance from the root, including the
root itself. Thus α(G) = (1 +K2 +K4 + . . .+Kh) = Kh+2−1

K2−1 .

Note that for any k ∈ I(G), NG(k) ∩ I(G)c = {par(k) ∪ ch(k)}. Also every node in [n] \ {I(G)} form C =

(K+K3+K5+. . .+Kh−1) = Kh+2−1
K2−1 clusters, we denote them by H1, H2, . . . HC , such that for any i ∈ [n]\{I(G)},

Hi = {j ∈ I(G) | j ∈ par(i) ∪ ch(i)}. Thus |Hi| = K + 1. We will also abbreviate NG(·) as N(·) for ease of
notations.

Thus for any k ∈ I(G), Ek = {(k, j) | j ∈ [n] \ {k}} ∪k′∈par(k)∪ch(k) {(k′, j) | j ∈ [n] \ {k′}}. This gives that
nk = (n− 1) +

∑K+2
i=2 (n− i) = (k + 2) 2n−k−3

2 . Moreover, for any I ⊆ I(G), |I| = 2,

dI =

{
1 + (n− 2), ∀i, j ∈ I, |N(i) ∩N(j)| = 1,

1, otherwise,

cI =

{
(K + 1)(2n−K − 2), ∀i, j ∈ I, |N(i) ∩N(j)| = 1,

(K + 2)(2n− k − 3)− 1, otherwise,

for any I ⊆ I(G), 3 ≥ |I| ≤ k + 1,

dI =

{
(n− 2), ∀i, j ∈ I, |N(i) ∩N(j)| = 1,

0, otherwise,

cI =


|I|(K + 2) (2n−K−3)

2 −
(|I|

2

)
(n− 1) . . . (−1)|I|−1(n− 2),

∀i, j ∈ I, |N(i) ∩N(j)| = 1,

|I|(K + 2) (2n−K−3)
2 −

(|I|
2

)
1, otherwise,

and for any I ⊆ I(G), |I| > K + 1, dI = 0. Now applying Theorem 3.2 as before and noting dmax(G) = K we
further get,



P(θ ̸= θ̂) ≤
min{α(G), (dmax(G)+1)}∑

q=1

∑
I||I|=q

(
dI

q − 1

)
pq−1(1− p)cI−q

= α(G)(1− p)
(K+2)(2n−K−3)

2 +

C

(
K + 1

2

)
(n− 1)p(1− p)(K+1)(2n−K−2)−(n−1)

(

(
n

2

)
− C

(
K + 1

2

)
)p(1− p)(K+2)(2n−K−3)−1

K+1∑
K′=3

C

(
K + 1

3

)
(n− 2)p2(1− p)“CI”−2

≤ δ.

Unlike the previous cases this does not reduce to any non-trivial closed form upper bound of p for deriving a generalized
sample complexity bound for any K-ary tree, however one might use above to get sample complexities for some
specific choices of h and K.

B SUPPLEMENTARY FOR SECTION 4

B.1 PROOF OF THEOREM 4.1

Theorem 4.1 (Recovery Guarantee for fBTL-LS Algorithm). Let M be a set of m edges generated as per the sampling
model and let each pair in M be compared K times independently according to the f-BTL model. Then for any positive
scalar K ≥ 6(1 + e2b)2 log n, with probability at least 1− 2m

n3 , the normalized ℓ2-error of Algorithm 1 satisfies

∥θ̂ − θ∥
∥θ∥

≤ 2

a
·

√
λmax(BTB)

λmin(BTB)
·
√

m

α
·
√
λn

λ1
,

λ1 = min{λ > 0 | λ is an eigen value of BTLB}, λn = λmax(B
TLB). λmin(B

TB) and λmax(B
TB) respectively

denotes the minimum and maximum non-zero eigenvalues of the positive semi-definite matrix BTB. a, b > 0 denote the
range of the f-BTL parameter such that |θi| ≥ a, ∀i ∈ [α] and |θi| ≤ b, ∀i ∈ [n].

Proof. Let us denote the reduced Laplacian matrix by L̃ = Q̃Q̃T . L = QQT being the original graph Laplacian, the
reduced Laplacian is given by L̃ = BTQQTB = BTLB which is clearly positive semi-definite and has all non-negative
eigenvalues. Define f(x) = ∥Q̃Tx− ŷ∥2. Note that v̂ = argminx∈Rα f(x) in Algorithm 1 would satisfy the optimality
condition ∇f(v̂) = 0 when

Q̃ŷ = Q̃Q̃T v̂ = L̃v̂, (16)

On the other hand, assuming v ∈ Rα to be such that vi = θi, ∀i ∈ [α] and y ∈ Rm be such that yij = log

(
Pij

Pji

)
, we have

v = argminx∈Rα ∥Q̃Tx− y∥2 which gives

Q̃y = L̃v. (17)

The above optimality condition holds as for any i, j ∈ [n], yij = θi − θj , and so y = LTθ = LTBv = Q̃Tv, where the
second equality holds due to (2). Thus combining (16) and (17), we get

Q̃(y − ŷ) = L̃(v − v̂)



which further gives,

(y − ŷ)T Q̃T Q̃(y − ŷ) = ∥Q̃(y − ŷ)∥2 = ∥L̃(v − v̂)∥2 = (v − v̂)T L̃L̃T (v − v̂),

from which we get

λmin(L̃L̃
T )∥v − v̂∥2 ≤ ∥L̃(v − v̂)∥2 = ∥Q̃(y − ŷ)∥2 ≤ λmax(Q̃

T Q̃)∥y − ŷ∥2 (18)

where λmin(L̃L̃
T ) is the smallest non-zero eigenvalue of the positive semi-definite matrix (L̃L̃T ) and λmax(Q̃

T Q̃) being the
largest eigenvalue of (Q̃T Q̃). Now from standard results on matrix eigenvalues, we know that the set of non-zero eigenvalues
of Q̃T Q̃ and Q̃Q̃T are exactly same, which implies λmax(Q̃

T Q̃) = λmax(Q̃Q̃T ) = λn. Moreover, λmin(L̃L̃
T ) =

(λmin(L̃))
2 = (λminQ̃Q̃T )2 = λ2

1. Thus from Equation 18, we get

∥v − v̂∥ ≤ ∥y − ŷ∥
√
λn

λ1
. (19)

Now in order to bound ∥y − ŷ∥ =
√∑

(i,j)∈E(yij − ŷij)2, first recall from the definition of yij that yij = log
(

Pij

Pji

)
=

logPij − logPij , for any edge (i, j) ∈ M . Similarly we have ŷij = log P̂ij − log P̂ij . Thus we have,

|yij − ŷij | = |(logPij − log P̂ij)− (logPji − log P̂ji)|
≤ |(logPij − log P̂ij)|+ |(logPji − log P̂ji)| (20)

Let us denote νij = |Pij − P̂ij |. Clearly |Pji − P̂ji| = νij since Pij + Pji = P̂ij + P̂ji = 1. Note that the random variable
P̂ij is the average of K samples from Bernoulli(Pij), applying Hoeffding’s Inequality we get

P
(
νij ≥ η

)
= P

(
|Pij − P̂ij | ≥ η

)
≤ 2e−2η2K (21)

Now since |θi| ≤ b, ∀i ∈ [n], we have 1
1+e2b

≤ Pij ≤ e2b

1+e2b
, ∀i, j ∈ [n]. Also as K ≥ 6(1 + e2b)2 log n, using (21) we

further have

P
(
νij ≥

Pij

2

)
≤ P

(
νij ≥

1

2(1 + e2b)

)
≤ 2

n3
, ∀i, j ∈ [n] (22)

Above thus implies that νij = |Pij − P̂ij | < Pij

2 with high probability of at least (1 − 2
n3 ), for K = 6 log n(1 + e2b)2.

Further since νij = νji, using union bound over all pairs in M , we get that (22) holds true for all pairs (i, j) ∈ [n] with
probability atleast

(
1− 2m

n3

)
, i.e.

P

(
∀i, j ∈ [n], νij <

Pij

2

)
>

(
1− 2m

n3

)
.

Define g : [0, 1] 7→ R, such that g(p) = log(p), ∀p ∈ [0, 1]. Using Taylor’s theorem, one can obtain a p∗ ∈ [Pij − νij , Pij +
νij ] such that

log P̂ij = logPij +
1

p∗
(P̂ij − Pij), or equivalently,

log(P̂ij)− logPij

(P̂ij − Pij)
=

1

p∗
≤ 2

Pij
,

where the last inequality follows from (22) with probability at least (1− 2m
n3 ).

Furthermore, in the high probability event, as |P̂ij − Pij | < Pij

2 Thus we have

| log(P̂ij)− logPij | ≤ 1, ∀i, j ∈ [n].

combining above with (20) we get
|yij − ŷij | ≤ 2,



which implies ∥y − ŷ∥ ≤ 2
√
m. Applying above to (19) we thus get

∥v − v̂∥ ≤ ∥y − ŷ∥
√
λn

λ1
≤ 2

√
mλn

λ1
(23)

with probability at least
(
1− 1

n

)
. Finally note that since |θi| ≥ a, ∀i ∈ [α], we have ∥v∥ ≥ a

√
α. Moreover, as θ = Bv,

∥θ∥ = ∥Bv∥ ≥
√
λmin(BTB)∥v∥ ≥ a

√
αλmin(BTB). On the other hand, we have set θ̂ = Bv̂ thus,

∥θ − θ̂∥ = ∥B(v − v̂)∥ ≤
√
λmax(BTB)∥v − v̂)∥.

Combining above with (23), we finally have

∥θ − θ̂∥
∥θ∥

≤
2
√

mλnλmax(BTB)

aλ1

√
αλmin(BTB)

,

with probability at least
(
1− 2m

n3

)
and the claim follows.

C SUPPLEMENTARY FOR SECTION 5

C.1 PROOF OF THEOREM 5.1

Theorem 5.1 (Lower Bound for estimating the parameters of f-BTL model). Let us consider the following set of score
vectors ΘB(a, b) of a f-BTL model defined with respect to the coefficient matrix B and range parameters a, b > 0 such that:
B(a, b) = {θ ∈ Rn | θ satifies (2), |θi| ≤ a ∀i ∈ [α], |θi| ≥ b ∀i ∈ [n]}.

Now suppose the learner (an algorithm to estimate scores of a f-BTL model) is given access to noisy pairwise preferences
sampled according to a G(n, p) Erdős-Rényi random graph with p = ζ

n for some ζ > 0, such that K independent noisy
pairwise preferences are available for each sampled pair, generated according to some unknown f-BTL model in ΘB(a, b).
Then if θ̂ ∈ Rn be the learner’s estimated f-BTL score vector based on the sampled pairwise preferences, upon which
environment chooses a worst case true score vector θ ∈ ΘB(a, b), then for any such learning algorithm one can show that

sup
θ∈ΘB(a,b)

E[∥θ̂ − θ∥]
∥θ∥

≥
√

λmin(BTB)

16bλmax(BTB)
√

448ζKe2(b+1)
,

the expectation is over the randomness of the algorithm.

Proof. We solve the above problem reducing it to a multi-class hypothesis testing problem as follows: Consider we are
given a set of N score vectors {θ1,θ2, . . .θN} ⊂ ΘB(a, b) such that ∥θk1 − θk2∥ ≥ δ, for any two score vectors θk1 ,θk2

such that k1, k2 ∈ [N ]. Then given the set of pairwise preferences generated by an unknown sore vector θ = θL, where L is
a random index selected uniformly from the set [N ], the hypothesis testing task is to identify the index of the true score
vector L.

Now given any algorithm that predicts a score vector θ̂ based on the given set of pairwise preferences from the f-BTL model
θL, sampled according to a G(n, p) Erdős-Rényi random graph with p = ζ

n for some ζ > 0, such that K independent noisy
pairwise preferences are available for each sampled pair, one natural way to estimate L is by L̂ = argmink∈[N ] ∥θ̂ − θk∥.
Note that for L̂ to be different that L, it has to be the case that ∥θ̂ − θ∥ ≥ δ

2 . Thus one can write

E[∥θ̂ − θ∥] ≥ δ

2
P(L̂ ̸= L)

Further applying a similar information theoretic analysis as [16], one gets

E[∥θ̂ − θ∥] ≥ δ

2

[
1−

Kζ
2N2

∑
k1∈[N ]

∑
k2∈[N ] ∥eθ

k1 − eθ
k2∥2 + log 2

logN

]
(24)



Thus the remaining task is to construct a set of N score vectors {θ1,θ2, . . .θN} ⊂ ΘB(a, b) which are well separated, so to
get suitable bounds on the terms ∥eθk1 − eθ

k2∥2, ∀k1, k2 ∈ [N ] in (24). We use the following construction for the purpose:

Constructing the set of score vectors. For any k ∈ [N ], we construct the kth score vector θk set of the set of N random
score vectors as follows:

• Draw α many random variables Xk
1 , X

k
2 , . . . X

k
α ∼ Unif

[(
1
2 − βδ

)
,
(

1
2 + βδ

)]
, where β is a constant to be adjusted

later.

• Set θki = a+ (b− a)Xk
i , ∀i ∈ [α], 0 < a < b < 1.

• Consider the coefficient matrix B ∈ Rn×α
+ such that

∑α
j=1 Bij = 1, ∀i ∈ [n].

• Set the remaining score vectors θki according to (2) for all i ∈ [n] \ [α].

We denote the restriction of the score vector θk to the independent set I(G) by θk
[α] ∈ Rα, where w.l.o.g. we assume

I(G) = [α] as before. Furthermore, from (2) for any two k1, k2 ∈ [N ], we have

λmin(B
TB)∥θk1

[α] − θk2

[α]∥
2 ≤ ∥θk1 − θk2∥2 ≤ λmax(B

TB)∥θk1

[α] − θk2

[α]∥
2 (25)

where λmin(B
TB) and λmax(B

TB) respectively denotes the minimum and maximum non-zero eigenvalues of the positive
semi-definite matrix BTB.

Lemma C.1. 1
6 (b− a)2αβ2δ2 ≤ ∥θk1

[α] − θk2

[α]∥
2 ≤ 7

6 (b− a)2αβ2δ2, for all k1, k2 ∈ [N ]× [N ], with probability at least
(1−N2e−

α
32 ).

Proof. Firstly we note that ∥θk1

[α]−θk2

[α]∥
2 =

∑α
i=1(θ

k1
i − θk2

i )2 and for any i ∈ [α], (θk1
i − θk2

i )2 = (b−a)2(Xk1
i −Xk2

i )2

and E[(Xk1
i −Xk2

i )2] = 2
3β

2δ2. Now applying Hoeffding’s inequality we have that

P
(
|

α∑
i=1

(Xk1
i −Xk2

i )2 − 2

3
αβ2δ2| ≥ 1

2
αβ2δ2

)
≤ 2e−

α
32 ,

for any fixed k1, k2 ∈ [N ]× [N ], and applying union bounding above holds true for all
(
N
2

)
(k1, k2) pairs with probability

N(N − 1)e−
α
32 ≤ N2e−

α
32 . Now for any N < e

α
64 , we have N2e−

α
32 < 1 for all α > 0, and hence with some non-zero

probability of atleast (1−N2e−
α
32 ) > 0, we have

1

6
αβ2δ2 ≤

α∑
i=1

(Xk1
i −Xk2

i )2 ≤ 7

6
αβ2δ2, ∀k1, k2 ∈ [N ]× [N ].

Combining above we get,
1

6
(b− a)2αβ2δ2 ≤ ∥θk1

[α] − θk2

[α]∥
2 ≤ 7

6
(b− a)2αβ2δ2,

for all k1, k2 ∈ [N ]× [N ], with probability at least (1−N2e−
α
32 ).

For convenience let us fix N = e
α

128 . Thus using Lemma C.1 on (25), we get

λmin(B
TB)

6
(b− a)2αβ2δ2 ≤ ∥θk1 − θk2∥2 ≤ 7λmax(B

TB)

6
(b− a)2αβ2δ2,

with probability at least (1− e−
α
64 ). Now setting β =

√
6

(b−a)
√

αλmin(BTB)
in above, we get

δ2 ≤ ∥θk1 − θk2∥2 ≤ 7λmax(B
TB)

λmin(BTB)
δ2, with probability at least (1− e−

α
64 ) (26)

Lemma C.2. Given any two θ,θ′ ∈ [a, b]n, such that 0 < a < b < 1, we have

∥eθ − eθ
′
∥2 ≤ e2(b+1)∥θ − θ′∥2



Proof. The proof follows from the following straightforward deduction:

∥eθ − eθ
′
∥2 =

n∑
i=1

(eθi − eθ
′
i)2 =

n∑
i=1

(eθ
′
i)2(eθi−θ′

i − 1)2

≤
n∑

i=1

e2b(eθi−θ′
i − 1)2 ≤ e2b

n∑
i=1

((θi − θ′i)(e− 1))2

≤ e2(b+1)∥θ − θ′∥2,

where the second last inequality follows from the fact that −1 < θi − θ′i < 1, for all i ∈ [n].

We will now assume our constructed score vectors, θk, indeed satisfy 0 < a < θki < b < 1, ∀i ∈ [n],∀k ∈ [N ]. We will
shortly show this is indeed true by our construction of θk. Then applying Lemma C.2 and subsequently C.1 to (24) we
further get,

E[∥θ̂ − θ∥] ≥ δ

2

[
1− 448e2(b+1)KζΛδ2 + 128 log 2

α

]
, (27)

where Λ = λmax(B
TB)

λmin(BTB)
, and N = e

α
128 .

Thus setting δ =
√
α

4
√

448ζKΛe2(b+1)
, we have that

448e2(b+1)KζΛδ2 + 128 log 2 ≤ α

2
, for any α ≥ 512 log 2,

using which in (27) further gives

E[∥θ̂ − θ∥] ≥ δ

4
=

√
α

16
√
448ζKΛe2(b+1)

=

√
αλmin(BTB)

16
√
448ζKλmax(BTB)e2(b+1)

.

Finally, the only thing left to show is that indeed in the above construction of the score vectors θk lies in the set
ΘB(a, b), ∀k ∈ [N ]. Note that if we can show Xk

i ∈ [0, 1],∀i ∈ [α], then that immediately implies θki ∈ [a, b],∀i ∈ [n] by
our construction of θk and the assumption on the coefficient matrix B ∈ Rn×α

+ such that
∑α

j=1 Bij = 1, ∀i ∈ [n].

Now we have
(

1
2 − βδ

)
≤ Xk

i ≤
(

1
2 + βδ

)
, ∀i ∈ [n] and k ∈ [N ]. And with β =

√
6

(b−a)
√

αλmin(BTB)
and δ =

√
αλmin(BTB)

4
√

448ζKλmax(BTB)e2(b+1)
, we have

βδ =
6

4(b− a)
√
448ζKλmax(BTB)e2(b+1)

<
1

2
.

Hence 0 ≤ Xk
i ≤ 1, ∀i ∈ [n] and indeed we have θk ∈ ΘB(a, b), ∀k ∈ [N ]. The desired lower bound now follows as:

E[∥θ̂ − θ∥]
∥θ∥

≥
√
λmin(BTB)

16bλmax(BTB)
√
448ζKe2(b+1)

,

since ∥θ∥ ≤
√
λmax(BTB)∥θ[α]∥ ≤ b

√
λmax(BTB)α.
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