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Abstract

Contextual Bayesian Optimization (CBO) effi-
ciently optimizes black-box functions with respect
to design variables, while simultaneously integrat-
ing contextual information regarding the environ-
ment, such as experimental conditions. However,
the relevance of contextual variables is not nec-
essarily known beforehand. Moreover, contextual
variables can sometimes be optimized themselves
at an additional cost, a setting overlooked by cur-
rent CBO algorithms. Cost-sensitive CBO would
simply include optimizable contextual variables
as part of the design variables based on their cost.
Instead, we adaptively select a subset of contextual
variables to include in the optimization, based on
the trade-off between their relevance and the addi-
tional cost incurred by optimizing them compared
to leaving them to be determined by the environ-
ment. We learn the relevance of contextual vari-
ables by sensitivity analysis of the posterior surro-
gate model while minimizing the cost of optimiza-
tion by leveraging recent developments on early
stopping for BO. We empirically evaluate our pro-
posed Sensitivity-Analysis-Driven Contextual BO
(SADCBO) method against alternatives on both syn-
thetic and real-world experiments, together with
extensive ablation studies, and demonstrate a con-
sistent improvement across examples.
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1 INTRODUCTION

Bayesian optimization (BO) is a sample-efficient black-box3

optimization method, typically used when the objective func-4

tion is too expensive to optimize directly [Garnett, 2023].5

Given an objective function that can be evaluated pointwise6

over a set of design variables, BO combines surrogate mod-7

*Work done while at Aalto University.

eling with a pre-specified policy of evaluation over the de- 8

sign space (the so-called acquisition function) to efficiently 9

locate the global optimum of the function. BO has been es- 10

pecially useful in automatic discovery of materials [Zhang 11

et al., 2020], molecules [Fang et al., 2021], and pharmaceu- 12

tical compounds [Gómez-Bombarelli et al., 2018, Korovina 13

et al., 2020]—problem domains in which evaluating the 14

performance of a candidate depends on a costly experiment. 15

Despite the success of BO and its recent algorithmic ad- 16

vancements, open challenges remain for its practical use. 17

A key implicit assumption in vanilla BO is that the objec- 18

tive function only depends on the design variables. This 19

assumption is violated in many practical scenarios, wherein 20

various uncontrolled environmental factors and experimen- 21

tal settings, referred to as contextual variables [Krause and 22

Ong, 2011, Kirschner et al., 2020, Arsenyan et al., 2023], 23

also affect the objective function. For instance, ambient 24

humidity was found to influence the experiments in robot- 25

assisted material design [Nega et al., 2021], such that the 26

best compound differed with humidity conditions. Moreover, 27

in practice, the domain experts themselves might not know 28

a priori which contextual variables are relevant, and would 29

observe their confounding effect only during the course of 30

the optimization process. Therefore, it is critical to identify 31

the contextual variables that significantly affect the objec- 32

tive function, not only to achieve the highest optimization 33

results, but also for the practitioners to reliably reproduce 34

experimental results. 35

To deal with the uncertainty related to the contextual vari- 36

ables, variants of BO have been developed. In particular, 37

Krause and Ong [2011] introduced the Contextual Bayesian 38

optimization (CBO) framework, which uses the uncontrol- 39

lable contextual information known before the experiment, 40

like current environmental conditions, to enhance the sur- 41

rogate model. Alternatively, several works have proposed 42

to alter the simple optimization objective to make it robust 43

in some sense, such as by taking the expectation with re- 44

spect to the contextual variables [Toscano-Palmerin and 45

Frazier, 2022], or considering distributionally-robust scenar- 46
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ios [Bogunovic et al., 2018, Kirschner et al., 2020]. However,47

these works consider a different setup than the original CBO48

framework, as contextual information is only revealed after49

the design has been sent for experiment, not before. Besides50

this distinction, in some applications, contextual variables51

can be controlled, and therefore set to values they may be52

unlikely to take during passing observation. Such variables53

are, for instance, synthesis conditions of material samples,54

including sintering temperature or the used solvents. Certain55

environmental conditions like room temperature or ambi-56

ent humidity are also “principally” controllable during the57

course of an experiment [Higgins et al., 2021, Nega et al.,58

2021]. Nevertheless, whether their inclusion as optimization59

variables is relevant or not may not be straightforward to60

predict [Abolhasani and Brown, 2023]. Moreover, optimiz-61

ing over all the potentially relevant contextual variables can62

improve BO performance, but this process can be costly,63

thus invoking a cost-versus-efficiency trade-off.64

Contributions. In this paper, we extend the CBO
framework to settings in which the relevance of con-
textual variables is (i) not known beforehand, and
(ii) can be optimized, but at some cost. We propose
a Sensitivity-Analysis-Driven CBO (SADCBO) algo-
rithm for the simultaneous identification and opti-
mization of relevant contextual variables. SADCBO
leverages recent advances in sensitivity-analysis-
driven variable selection [Sebenius et al., 2022] and
early stopping criteria for BO [Ishibashi et al., 2023].
We emphasize that SADCBO combines the contextual
observational setting, where the context information
is only observed, and the contextual optimization set-
ting, where contextual variables can be optimized
(similar to design variables), into a sequential algo-
rithm. In effect, SADCBO provides a way to navigate
the following tradeoff: should contextual variables be
taken as is at no cost, or should they be steered out-
side of their observational distribution in order to pro-
vide more information about the objective, at a cost?
We evaluate the performance of SADCBO, comparing
against methods from the CBO and high-dimensional
BO literature, on both synthetic and real-world cases.

65

2 CONTEXTUAL BAYESIAN
OPTIMIZATION (CBO)

The CBO framework [Krause and Ong, 2011] deals with66

a black-box function f : X × Z → R defined on the joint67

space of both the design variables X ⊂ Rd and contextual68

variables Z ⊂ Rc. We assume that we get noisy evalua-69

tions of f , that is, we observe the output y = f(x, z) + ε70

with ε ∼ N (0, σ2
noise). A Gaussian process (GP) prior71

[Rasmussen and Williams, 2006] is placed on f ; with72

the notation v = [x, z], we write f(v) ∼ GP(0, k(v,v′)).73

A GP is a stochastic process fully characterized by its 74

mean function (taken here to be zero) and its kernel 75

k(v,v′) = cov[f(v), f(v′)]. This implies that for any 76

finite-dimensional collection of inputs [v1, . . . ,vt], the func- 77

tion values f = [f(v1), . . . , f(vt)]
⊤ ∈ Rt follow a mul- 78

tivariate normal distribution f ∼ N (0,K), where K = 79

(k(vi,vj))1≤i,j≤t is the kernel matrix. Given a dataset 80

Dt = {(xi, zi, yi)}ti=1 = {(vi, yi)}ti=1, the posterior dis- 81

tribution of f(v) given Dt is Gaussian, with analytical ex- 82

pressions for the mean µt(v|Dt) and variance σ2
t (v|Dt). 83

In the CBO setting, we first observe the context variables, 84

and then choose the design variables accordingly. More 85

precisely, at iteration t+1, a context vector zt+1 is observed, 86

assumed to have been drawn from an unknown distribution 87

p(z), and the optimal design x⋆
t+1 is such that 88

x⋆
t+1 = argmax

x∈X
f(x, zt+1). (1)

Given zt+1 and the previous t observationsDt, the next can-
didate design xt+1 is selected using the Upper Confidence
Bound (UCB) acquisition function α [Srinivas et al., 2012]:

xt+1 = argmax
x∈X

α(x, zt+1|Dt)

= µt(x, zt+1|Dt) + β
1/2
t σt(x, zt+1|Dt), (2)

for a sequence (βt)t≥1. This incurs a design cost λx. 89

Extending the CBO problem setup. We extend the prob- 90

lem setting of CBO in two ways. Firstly, we assume that 91

only a subset of the contextual variables truly affect f . Let 92

z = [z(1), . . . , z(c)] be the vector of all contextual variables. 93

For any set J belonging to the power set of {1, . . . , c}, de- 94

note by z(J) ∈ R|J| the vector of reduced dimension whose 95

variables are indexed by J . For instance, if J = {1, 3}, then 96

z(J) = [z(1), z(3)]. We assume that there exists a set J⋆, 97

where |J⋆| ≪ c, such that f(x, z) = f(x, z(J
⋆)) ∀(x, z). 98

Secondly, we include the possibility of setting the value 99

of any of the contextual variables at some cost over and 100

above the usual design query cost λx. This means that for all 101

j ∈ {1, . . . , c}, the context variable z(j) can be optimized at 102

a cost λj . To be able to control each contextual variable, we 103

must also assume their independence: p(z) =
∏c

j=1 p(z
(j)). 104

With these additional assumptions, we aim to maximize the 105

function f in a cost-efficient manner, while identifying the 106

optimal set J⋆. This provides the user with a comprehensive 107

summary of the relevant contextual variables found through 108

optimization, thus ensuring reproducibility and explainabil- 109

ity. Unlike CBO, the ability to control contextual variables 110

allows us to judge whether or not one should optimize con- 111

textual variables to learn more about the objective (albeit at 112

a cost), or if the current sampled context is already informa- 113

tive enough. Specifically, we aim to maximize the objective 114

115

(x⋆
t+1, z

⋆
t+1) = argmax

(x,z
(J⋆)
t+1 )∈X×∏

j∈J⋆ Zj

f(x, zt+1) (3)



where, for all j ∈ J⋆, we optimize z
(j)
t+1 at cost λj , and all116

other elements j′ ∈ {1, . . . , c} \ J⋆ of zt+1 remain at their117

values sampled from the environment (z(j
′)

t+1 ∼ p(z(j
′))).118

3 METHODOLOGY

To solve the extended CBO problem introduced in Section 2,119

we identify relevant contextual variables, building on a vari-120

able selection technique from the GP literature [Sebenius121

et al., 2022]. Section 3.1 describes our adaptation of this122

method to the optimization setting, by restricting the dataset123

to high function values. Section 3.2 then presents our se-124

quential algorithm SADCBO, which employs the adapted125

variable selection method in solving the optimization prob-126

lem. A flowchart summarizing the proposed method can be127

found in Figure S1.128

3.1 VARIABLE SELECTION FOR CBO VIA
SENSITIVITY ANALYSIS

To handle the presence of contextual variables that can be129

optimized, one approach is to include them in the design130

space. However, such a strategy can be infeasible when their131

relevance is not known a priori and domain experts can only132

provide a candidate set of potentially relevant contextual133

variables. Indeed, this leads to an exponential expansion of134

the search space, while at the same time increasing the cost135

of optimization. In such cases, it is crucial to identify the136

relevant contextual variables, i.e., to find (a good approx-137

imation to) the optimal set J⋆. This not only allows us to138

optimize the function more efficiently but also provides ad-139

ditional insights about the experiment to the domain experts.140

To approximate the optimal set J⋆, we include those contex-141

tual variables that are most relevant for identifying the opti-142

mum, which we estimate using sensitivity analysis. Specifi-143

cally, we adapt the Feature Collapsing (FC) method [Sebe-144

nius et al., 2022]. The FC method perturbs training points145

(namely, by setting one feature to zero), and measures the146

induced shift in the posterior predictive distribution in terms147

of KL divergence. Given a dataset Dt = {(xi, zi, yi)}ti=1,148

the relevance ri,j on the ith sample of the jth contextual149

variable z
(j)
i is computed as150

ri,j = KL (p(y⋆|xi, zi,Dt)||p(y⋆|xi, zi ⊙ ξ[j],Dt)) , (4)

where ξ[j] = [ξ(1), . . . , ξ(c)] is a vector so that ξ(j) =151

0, and ξ(j
′) = 1 for j′ ̸= j, and ⊙ is the element-wise152

multiplication. The relevance score of the jth contextual153

variable is then computed as an average over Dt:154

FCDt
(j) =

1

|Dt|

|Dt|∑
i=1

(
ri,j∑c

j′=1 ri,j′

)
. (5)

The FC scores obtained in this manner reveal the variables155

that are relevant for predicting the output across Dt. As our156

goal is to maximize f , we are interested in identifying con- 157

textual variables that are relevant for high function values. 158

Hence, we adapt Equation (5) to the BO setting by modify- 159

ing the dataset over which the scores are averaged. We use 160

information about high function values from two different 161

sets: (1) The subset Dγt associated with the highest output 162

values observed so far: 163

Dγt

t = {(xi, zi, yi) ∈ Dt | yi/ybest ≥ γt}, (6)

where ybest = max1≤i≤t yi is the current observed maxi- 164

mum. For example, using γt = 0.8 ∀t would yield a Dγt

t 165

that consists of the highest 20% observations so far. (2) We 166

select a batch of Q points DQ
t := {(x⋆

q , zt+1)}Qq=1 that are 167

promising given the next context zt+1: 168

{x⋆
q}Qq=1 = argmax

{xq}Q
q=1∈XQ

αBatch({(xq, zt+1)}Qq=1|Dt), (7)

where αBatch denotes a batched version of the acquisition 169

function α such as Q-UCB for UCB [Wilson et al., 2017]. 170

We use the union DBO
t = Dγt

t ∪ DQ
t as our dataset for FC. 171

Therefore, we compute FCDBO
t

based on Equation (5). The 172

importance of working with DBO
t instead of Dt is illustrated 173

in Figure 1 on a toy example. 174

We successively select the indices of the contextual variables 175

with the highest FC scores until their cumulative FC score 176

exceeds some chosen threshold η ∈ [0, 1], meaning that the 177

selected variables explain the fraction η of the output sensi- 178

tivity amongst all contextual variables. Let Jη denote the set 179

of indices of the selected contextual variables. We train a GP 180

surrogate based on {(xi, z
(Jη)
i , yi)}ti=1 and can select a new 181

design through maximization of the acquisition function α: 182

xt+1 = argmax
x∈X

α(x, z
(Jη)
t+1 |Dt). (8)

Note that other measures of variable relevance could have 183

been used, e.g., the method proposed by Spagnol et al. 184

[2019] based on maximum mean discrepancy [Gretton et al., 185

2012]. We found FC to perform better (see Section 5.2). 186

3.2 SENSITIVITY-ANALYSIS-DRIVEN CBO
(SADCBO)

Building on top of the variable selection method discussed in 187

Section 3.1, we now present SADCBO, a sequential method 188

for performing BO in the presence of irrelevant contextual 189

variables. SADCBO proceeds in two phases. 190

In the first, observational phase, we choose to only observe 191

the values of the contextual variables without optimizing 192

over them. This ensures that we do not waste budget op- 193

timizing the contextual variables when their relevance is 194

computed based on a limited amount of data, and hence 195

can be noisy. We select the contextual variables based on 196

their FC relevance and then use vanilla CBO as described 197
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Figure 1: Sensitivity analysis on DBO
t characterizes vari-

able importance at the optimum faster than Dt. Top left:
2D black-box objective together with the queries produced
along a BO trajectory. Initial samples are represented by
empty dark-colored triangles, newly obtained samples as
dots with an increasingly lighter color. Top right: Best value
found during the optimization trial. Bottom left: Sensitivity
indices for z(1) and z(2) averaged over DBO

t . As we con-
verge to the optimum, DBO

t mainly involves samples close
to the optimum, leading to a different variable relevance
ranking (iteration 30 to the end; z(1) is more relevant) com-
pared to the early iterations (10 to 30; z(2) is more relevant).
Bottom right: Sensitivity indices computed on the whole
dataset Dt do not converge as quickly and do not capture
the shift in relevance close to the optimum.

in Section 2 to optimize the design variables. Thus, in this198

phase, we leverage the available contextual information to199

guide design selection.200

In the early stage of the optimization, cheap queries where201

contextual variables are not optimized still provide a con-202

siderable amount of information. The information gained203

from purely observing contextual variables will, however,204

saturate at some point, leading to diminishing simple regret205

differences. At this point, it becomes necessary to pay the206

higher price to control more dimensions of the input space.207

This motivates the introduction of a second phase, in which208

contextual variables can have their values arbitrarily set,209

through optimization.210

In the second, contextual optimization phase, we optimize211

the contextual variables selected at each iteration based on212

their FC relevance. As optimizing a context variable z(j) is213

associated with a cost λj , we modify the FC relevance in214

Equation (5): 215

F̃CDt(j) = FCDt(j)/λj (9)

Our variable selection criterion can then be interpreted as the 216

degree of sensitivity per unit cost. This allows SADCBO to 217

automatically trade off a variable’s potential to greatly affect 218

the optimum with the associated optimization cost. As be- 219

fore, once the contextual variables z(Jη) have been selected, 220

we train a GP surrogate using {(xi, z
(Jη)
i , yi)}ti=1 and select 221

the next design and contextual variables to query as 222

(xt+1, z
(Jη)
t+1 ) = argmax

(x,z(Jη))∈X×∏
j∈Jη

Zj

α(x, z(Jη)|Dt).

(10)
In effect, Jη represents our approximation for J⋆ as intro- 223

duced in Equation (3). Note that our acquisition function is 224

not cost-weighted, as cost-weighted acquisition functions 225

can dramatically underperform [Lee et al., 2021], specifi- 226

cally for non-continuous cost models. Including the cost at 227

the model selection level avoids this issue. 228

Switching from observational to optimization phase. 229

We employ the criterion proposed by Ishibashi et al. [2023] 230

for determining the stopping time in BO. Using this cri- 231

terion, we detect the point at which the optimization gain 232

based on purely observing the contextual variables dimin- 233

ishes, following which the contextual optimization phase 234

begins. We now briefly describe the details of this switching 235

criterion. 236

With v = [x, z], let v⋆
t = argmaxv∈Dt

f(v) be the
current best candidate point in the dataset up to time
t. Denoting f⋆ := maxv∈V f(v), let Rt = f⋆ −
Ef̂∼p(f |Dt)

[maxv∈V f̂(v)] be the expected minimum sim-
ple regret. Then, with probability 1−δ, ∆Rt = |Rt−Rt−1|
can be upper bounded by ∆R̃t with

∆R̃t = v(ϕ(g) + gΦ(g)) + |∆µ⋆
t |

+ κδ,t−1

√
1

2
KL(p(f |Dt)||p(f |Dt−1)), (11)

where ϕ(·) and Φ(·) are the p.d.f. and c.d.f. of a stan- 237

dard Gaussian distribution, respectively, ∆µ⋆
t := µt(v

⋆
t )− 238

µt−1(v
⋆
t−1), v :=

√
σ2
t (v

⋆
t )− 2Σt(v⋆

t ,v
⋆
t−1) + σ2

t (v
⋆
t−1), 239

g := ∆µ⋆
t /v, and κδ,t−1 is a sequence indexed by t and de- 240

pending on δ. Then, we switch from the observational to the 241

optimization phase in SADCBO when ∆R̃t ≤ st, where 242

st :=

(
σt−1(v

⋆
t ) + κδ,t−1/2

)
σt−1(vt)σnoise

√−2 log δ
σ2
t−1(vt) + σ2

noise
.

(12)
Further details about the derivation of st and the expression 243

of κδ,t−1 can be found in Appendix B. The entire algorithm 244

is summarized in Algorithm 1. 245



Algorithm 1 SADCBO
1: Input: initial dataset D0, hyperparameters η and γ,

batch size Q, budget Λ, costs λx, λ1, . . . , λc

2: Train initial GP using D0 and all variables [x, z].
phase = observational. t = 1.

3: while Λ ≥ λx do
4: Receive context zt+1 ∼ p(z)
5: Assemble dataset DBO

t (Equations (6) and (7))
6: Compute FCDBO

t
(j) for all j (Equation (5) or (9) if

phase = optimization)
7: In descending order, add indices to Jη until∑

j∈Jη
FCDBO

t
(j) > η

8: Train lower-dimensional GP {(xi, z
(Jη)
i ,yi)}ti=1

9: Get xt+1 (Equation (8)) (and zt+1 (Equation (10)) if
phase = optimization)

10: Acquire observation yt+1 at [xt+1, zt+1]
11: Dt+1 ← Dt ∪ {(xt+1, zt+1, yt+1)}
12: Retrain full GP
13: if phase = observational and ∆R̃t ≤ st [based on

p(f |Dt+1)] (Equation (12)) then
14: phase = optimization
15: end if
16: Λ← Λ− λx +

∑
j∈Jη

λj , t← t+ 1
17: end while

4 RELATED WORK

Robust BO. Bogunovic et al. [2018], Kirschner et al.246

[2020], Husain et al. [2023] and Saday et al. [2023] perform247

worst-case optimization under fluctuations of the contextual248

variables. In particular, Distributionally-Robust BO [DRBO,249

Kirschner et al., 2020] tries to maximize the expected black-250

box function value under the worst-case distribution of the251

contextual variables. This worst-case distribution belongs to252

an “uncertainty set”, a ball centered around a reference dis-253

tribution that is gradually learned [Tulabandhula and Rudin,254

2014]. However, as in Krause and Ong [2011], these works255

assume that the relevant contextual variables are known a256

priori, and can only be observed, after the designs have257

been selected, and not controlled.258

High-dimensional BO. Due to the curse of dimensional-259

ity, the performance of standard BO is severely degraded260

when applied in high-dimensional input spaces. To tackle261

this problem, most approaches either aim at carrying out262

BO in a lower-dimensional space instead of the original or263

work with a structured GP surrogate. A lower-dimensional264

subspace can be found in a data-agnostic manner, for in-265

stance by randomly dropping dimensions of the problem [Li266

et al., 2017] or considering tree-like random decomposi-267

tions [Ziomek and Bou-Ammar, 2023]. Data-driven meth-268

ods based on various measures of feature relevance have also269

been proposed [Spagnol et al., 2019, Shen and Kingsford,270

2021]. In contrast, structured surrogate methods encode271

structural information about the objective, for instance us- 272

ing an additive kernel, yielding an acquisition function that 273

is additive under the provided decomposition [Rolland et al., 274

2018]. Finally, Eriksson and Jankowiak [2021] and Liu et al. 275

[2023] proposed using a sparsity-enforcing GP surrogate, 276

equipped with a heavy-tailed horseshoe prior on the squared 277

inverse lengthscales. 278

Cost-aware BO. In most methods, the BO budget is given 279

in iterations, implicitly assuming that each evaluation has 280

the same cost. In practice, cost may vary significantly across 281

different regions of the input space [Lee et al., 2020], or 282

depend on the number of variables we optimize over. Cost- 283

aware BO integrates the cost-constrained nature of the prob- 284

lem, usually within the acquisition function. Let us also 285

mention more involved strategies like constrained Markov 286

decision processes when the total budget is known before- 287

hand [Lee et al., 2021]. The recent work by Tay et al. [2023] 288

carries out Robust BO while at the same time involving a 289

notion of controlled variables at a cost. However—unlike 290

our framework—they require the nonselected variables to 291

be sampled from a known distribution at each iteration. 292

5 EXPERIMENTAL RESULTS

We evaluate our approach on several real-world examples 293

and synthetic functions, described in Section 5.1. We com- 294

pare against multiple baselines (Table 1) and present results 295

in Section 5.2. In Section 5.3 we discuss the influence of vari- 296

ous experimental settings: number of noise variables present, 297

contextual variable query cost, surrogate and method hy- 298

perparameters. We conclude by presenting several insights 299

regarding the phase-switching criterion. 300

Baselines. We benchmark our approach, coined SADCBO, 301

against baselines referenced in Table 1. In particular, MMDBO 302

operates variable selection in BO through an MMD-based 303

measure of sensitivity [Spagnol et al., 2019] and is detailed 304

in Appendix C, whereas Dropout [Li et al., 2017] ran- 305

domly selects half of the contextual variable for optimiza- 306

tion. Next, CaBO [Lee et al., 2020] performs vanilla BO 307

over [x, z], using a cost-weighted acquisition function. The 308

cost model employed here is a smoothed version of our non- 309

continuous cost model, using a Gaussian curve. Finally, CBO 310

refers to the Contextual BO framework proposed by Krause 311

and Ong [2011]. As a way to assess the impact of contextual 312

variables and selection mechanisms, we also report CUBO 313

and VBO: Context-Unaware BO over the designs x only and 314

Vanilla BO over both design and contextual variables [x, z]. 315

Implementation details. We fix the hyperparameters of 316

SADCBO to η = 0.8, Q = 10, γt = 0.8 ∀t. For the GP 317

surrogate, we use a squared-exponential kernel with in- 318

dependent lengthscales for each variable, learned through 319

marginal likelihood maximization. We use the UCB ac- 320

quisition strategy, as well as Q-UCB for computing DQ
t 321



Table 1: Methods used in experiments.

Name Description

Without
variable
selection

CUBO Context-Unaware BO over x only
VBO Vanilla BO over [x, z]
CaBO Cost-Aware BO over [x, z] [Lee et al., 2020]
CBO Contextual BO using all contexts z [Krause and Ong, 2011]

With
variable
selection

Dropout Randomly drop half of context variables [Li et al., 2017]
MMDBO Maximum mean discrepancy-driven BO [Spagnol et al., 2019]
SADCBO Sensitivity analysis-driven CBO (This work)

Table 2: Dimensionality of the experiments. For synthetic ex-
periments, additional dimensions stand for (artificial) noise
variables, put on top of the design and contextual variables.

Experiment
All

dimensions
Design

variables
Contextual
variables

Portfolio 5 3 2
Yacht 6 4 2
Robot 14 6 8
Molecule 21 3 18

EggHolder 2 + 4 1 1
Hartmann4D 4 + 3 2 2
Hartmann6D 6 + 6 3 3
Ackley 5 + 8 2 3

(Equation (7)) [Wilson et al., 2017]. In all experiments, we322

assume that any variable, design or contextual ones, has323

cost λj = 1 ∀j ∈ {1, . . . , d + c}, except in a dedicated324

study in Section 5.3. Our algorithm is implemented using325

the BoTorch framework [Balandat et al., 2020]. Code can326

be accessed at https://github.com/julienmartinelli/SADCBO.327

5.1 EXPERIMENTS

We benchmark on 4 real-world and 4 synthetic experiments328

(Table 2) described in brief here and detailed in Appendix E.329

Portfolio Optimization 5D. This dataset was first intro-330

duced by Cakmak et al. [2020]. The goal is to optimize331

three design variables, which stand for the hyperparameters332

of a trading strategy, to maximize return under random en-333

vironmental conditions. There are two contextual variables,334

namely: bid–ask spread and the borrowing cost.335

Yacht Hydrodynamics 6D. This dataset comes from the336

UCI Machine Learning Repository [Gerritsma et al., 2013].337

The optimization problem is to maximize the residuary re-338

sistance per unit weight of displacement of a yacht by con-339

trolling its 5-dimensional hull geometry coefficients. Design340

variables are the first four dimensions of the hull geome-341

try coefficients. The contextual variables are the last hull342

geometry dimension and the Froude number.343

Molecule structure optimization 21D. This computational344

chemistry example consists of optimizing the bond angles345

in an alanine molecule to determine the lowest energy con-346

former, i.e., the structure the molecule will likely take in347

nature. These problems are complicated by high dimension- 348

ality. We consider the Alanine, a molecule with 21 angular 349

variables: 3 key variables based on prior domain knowledge 350

set as design variables, and 18 other angles treated as con- 351

textual variables. Molecular energies are calculated with the 352

AMBER forcefield [Case et al., 2023] at each round of BO. 353

Robot pushing task 14D. We follow Wang et al. [2017] 354

and consider a control parameter tuning problem for robot 355

pushing. This real-world function returns the distance be- 356

tween a designated goal location and two objects being 357

pushed by two robot hands, whose trajectory is determined 358

by 14 parameters specifying the location, rotation, velocity 359

and moving direction, among others. There are 6 design 360

variables and 8 contextual variables. 361

Synthetic experiments. We also consider four synthetic 362

test functions, (see Table 2 and Appendix E.2 for details). 363

A min-max transformation is performed on the input data, 364

scaling it to the unit cube: X × Z = [0, 1]d+c. Similarly, 365

the output is scaled between [0, 1] and a noise term ε ∼ 366

N (0, σ2
noise) is added with σ2

noise = 0.001. The contextual 367

variable distribution is p(z) = U([0, 1]c). 368

5.2 RESULTS

Real-world experiments. In each plot from Figure 2, we 369

report the best value found by each baseline as a function 370

of the number of iterations. In real-world experiments (Fig- 371

ure 2a), SADCBO (in red with white markers) quickly con- 372

verges to the optimum. SADCBO consistently outperforms 373

the first baselines VBO and CUBO, even though in the Molec- 374

ular Shape example, SADCBO and CUBO perform on par 375

due to the good choices of the domain experts on the design 376

variables. Except for the Robot Pushing task, the differ- 377

ence between SADCBO and CBO (in blue) is marginal in 378

the real-world experiments. The latter enhances the surro- 379

gate model with information from sampled contexts, while 380

our method may even optimize selected contextual vari- 381

ables if needed. Given that these baselines perform similarly, 382

combined with the observation that optimizing only design 383

variables (CUBO, in yellow) produces poor results for the 384

Portfolio and Yacht problems, we can conclude that contex- 385

tual variables play a significant part in maximizing these 386

two objectives. The cost-aware BO baseline CaBO performs 387

poorly in all tasks. Dropout and MMDBO consistently un- 388

derperforms, except on the Yacht example for the latter. 389

These baselines perform variable selection in a random man- 390

ner for Dropout and using Hilbert-Schmidt Independence 391

Criterion for MMDBO [Gretton et al., 2007], two strategies 392

that do not seem to surpass the Feature Collapse method 393

implemented in SADCBO. This observation highlights the 394

need for an informed variable selection strategy. In-depth 395

findings for the Molecule experiment are presented in Ap- 396

pendix E.1 and provide additional explanations as to why 397

SADCBO clearly outperforms MMDBO and Dropout. 398

https://github.com/julienmartinelli/SADCBO
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Figure 2: Benchmark of the different methods. (a) On real-world datasets, SADCBO (red curve with white markers) performs
on par with other baselines and is the top performer for the Robot Pushing task. (b) On synthetic functions, SADCBO
outperforms other baselines in three cases out of four. (c) Histograms of phase switching criteriong time for SADCBO
computed for the Hartmann6D (c.1) and Hartmann4D problems (c.2). (d) Inclusion probability of each contextual variable
for SADCBO computed for the Hartmann6D (d.1) and Hartmann4D problems (d.2). Each panel shows the mean ±2 standard
error across N = 100 trials.



Synthetic experiments. Figure 2b displays the best value399

found by each baseline for synthetic functions. SADCBO400

ranks first on 3 out of 4 examples, closely followed by the401

cost-aware baseline CaBO, which performs much better on402

synthetic experiments than on the real-world ones. The con-403

textual BO baseline CBO that obtained second to best results404

in real-world experiments, is now less performant, due to405

the fact that it does not optimize the context, similarly as406

CUBO. This seems to be particularly critical for Ackley5D,407

whereas for Hartmann6D/Hartmann4D, simply enhancing408

the surrogate with contextual variable observation already409

leads to a large performance gap between CUBO and CBO.410

Lastly, VBO does a poor job as it optimizes every variable,411

thus spending a large fraction of the budget every iteration.412

For Hartmann6D and Hartmann4D, Figure 2c reports the413

time at which SADCBO’s switching criterion (Equation (12))414

kicks in, in proportion to the total budget, demonstrating415

that both phases are leveraged in our approach.416

Finally, Figure 2d reports the sensitivity indices computed at417

each iteration for each contextual variable, averaged across418

whole trajectories of multiple trials. For Hartmann6D, the re-419

sults match the Sobol sensitivity analysis results (Table S1),420

even though global sensitivity indices may differ from sensi-421

tivity indices with respect to the function optimum. Similar422

findings apply to Hartmann4D (Table S2). Results for other423

problems can be found in Figure S2.424

Main takeaways. Quantitatively, SADCBO achieves
the best overall performances, ranking first in 7 out
of 8 problems, although other methods obtained
comparable performances on 5 out of 8 problems.

The second-best and third-best methods, CBO and
MMDBO, both severely underperform in two examples
(Ackley and Hartmann6 for CBO, Molecular Shape
and EggHolder for MMDBO). While the improvements
provided by SADCBO may seem marginal, they are
consistent across the benchmark.

We hypothesize that this consistent behavior stems
from our two-stage approach, which allows SADCBO
to be versatile. SADCBO can handle both cases where
the impact of the contextual variables on the function
is limited (hence it is not worth spending budget to
control them) and cases where spending budget leads
to informative queries are simultaneously well-handled.
For instance, SADCBO effectively reverted to a CBO al-
gorithm in the Molecular Shape problem, due to an op-
timization phase mostly triggered at the end of the run.
Meanwhile, for the Ackley function, the optimization
phase was triggered in the first quarter of the budget
on average, leading to SADCBO outperforming CBO.

425

5.3 SENSITIVITY ANALYSIS

We now report experiments assessing the robustness of 426

SADCBO’s performance to several modifications, either at 427

the hyperparameter level or at the experiment setting level. 428

The latter includes assessing performance when increas- 429

ing the number of noise variables, varying the contextual 430

variable query cost, or varying the surrogate model. Next, ad- 431

ditional experiments illustrate the sound behavior of the pro- 432

posed phase switching criterion implemented in SADCBO. 433

Number of irrelevant contextual variables. We com- 434

pare the performance reached by SADCBO when adding an 435

increasingly larger number of noise variables and find that 436

even for a large number of irrelevant contextual variables, 437

SADCBO reaches top performance on 3 out of 4 examples 438

(Figure S3). The gap in performance between SADCBO and 439

CaBO, Dropout and MMDBO seems to overall grow with 440

the number of nuisance variables, in favor of SADCBO. 441

Contextual variables optimization cost. We investigate 442

four different values for the query cost of contextual vari- 443

ables (Figure S4). For extremely cheap contextual variables 444

λj = 0.1 for all j, that is, ten times cheaper than a design 445

variable, VBO performs favorably, as optimizing over all 446

inputs [x, z] is cheap. SADCBO remains competitive in this 447

configuration, even though MMDBO and CaBO perform on 448

par. For a moderate cost λj = 1 (the cost model considered 449

in Figure 2), SADCBO obtains the lowest average rank over 450

all four test functions. For expensive contextual variables, 451

λj = 3 or λj = 10, CaBO seems overall more suitable, 452

although closely followed by SADCBO, and CBO. 453

Sparsity-enforcing surrogates with SADCBO. As 454

SADCBO relies on a posterior sensitivity analysis to select 455

the relevant contextual variables, and is hence agnostic to 456

the choice of GP surrogate model, it can be combined with 457

other methods that induce sparsity via the GP surrogate. 458

One such method is by Eriksson and Jankowiak [2021], who 459

introduced a sparsity-enforcing GP surrogate equipped with 460

a horseshoe prior on the square inverse lengthscales, coined 461

SAASBO. In Figure 3, we compare SADCBO with the 462

combined method SAASBO+SADCBO, with both having the 463

same hyperparameters. We observe that SAASBO+SADCBO 464

improves over just SAASBO in all the synthetic examples, 465

and is also better than SADCBO in two out of four examples. 466

Note that the performance of SAASBO+SADCBO may 467

further improve through hyperparameter tuning. 468

SADCBO phase switching criterion. We ensure that the 469

criterion is well-behaved: the more information about the 470

output is contained in the contextual variables, the later 471

the phase switching occurs (Figure S5). Even though the 472

stopping criterion was initially devised for vanilla BO, its 473

application in a CBO setting is fruitful. Figure 4 further 474

illustrates the soundness of the phase switching criterion. 475
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0 100 200 300 400

Budget

0.5

0.6

0.7

0.8

0.9

B
es

t
va

lu
e

fo
u

n
d

Hartmann6D

Mean BO run
SADCBO adaptive stopping criterion

Mean BO run
switching criterion triggered

at iteration i ∈ {1, . . . , 100}

Figure 4: Assessing SADCBO’s phase switching criterion
on the Hartmann6D function. The iteration selected by the
adaptive stopping criterion implemented in SADCBO yields
one of the best BO trials. Each curve is computed as an
average of 10 different random seeds.

Using the Hartmann6D function under the same setting476

as described above, the mean switching iteration found by477

SADCBO over 100 different runs was collected. Then, new478

BO runs using SADCBO with a fixed phase switching time479

i ∈ {1, . . . , 100} were performed. This was done 10 times480

for each switching time, using different random seeds for481

the initial dataset. The switching time found by SADCBO482

yields one of the best runs, validating the use of the criterion.483

SADCBO hyperparameters. We vary the 3 hyperparam-484

eters of SADCBO: η, γ,Q. Unsurprisingly, the cumulative485

sensitivity threshold η stands out as the most relevant pa-486

rameter: as its value decreases, fewer variables are included,487

at which point not all relevant ones are selected, leading to488

reduced performance (Appendix D).489

6 CONCLUSION

In this paper, we extended Contextual BO [Krause and Ong,490

2011] to settings in which the contextual variables may be491

not only observed but also optimized at a cost. We intro-492

duced SADCBO, an algorithm designed to select relevant 493

context variables affecting the experimental outcomes by 494

efficiently leveraging information present in both the ob- 495

servational and the interventional data. SADCBO results in 496

more adequate surrogate models, and ensures the repro- 497

ducibility of experiments by controlling for such relevant 498

variables. In that respect, SADCBO should be used for prac- 499

tical applications where contextual variables can have an 500

influence while being controllable. This includes, e.g., the 501

development of new high-throughput materials or drugs, 502

where machine learning strategies are being increasingly 503

used [Zhang et al., 2020, Gómez-Bombarelli et al., 2018]. 504

SADCBO can also be combined with any GP surrogate. Thus, 505

if a practitioner believes that a specific contextual variable 506

should be included, this can be easily achieved. Conversely, 507

the variable selection procedure could be generalized to dis- 508

card design variables as well. Lastly, recent work [Branchini 509

et al., 2023] proposed to perform BO under the assump- 510

tion that the input variables and the output are linked by 511

a causal directed acyclic graph, learning the graph whilst 512

maximizing the objective function. Despite its high compu- 513

tational complexity, applying this technique to our particular 514

problem might be promising. 515

Limitations and future work. To achieve cost efficiency, 516

SADCBO integrates the query cost at the variable selection 517

level and employs an early stopping criterion. The latter 518

only depends on an upper bound on the instantaneous regret 519

difference and is therefore not cost-aware. Adding a notion 520

of remaining budget to this criterion would certainly benefit 521

our approach. On a similar note, while our algorithm incor- 522

porates cost, more effort could be put into specifying the 523

costs. In our experiments, they were set to 1 for all variables 524

to prevent bias in the results, and we carried out an abla- 525

tion study with different costs in Section 5.3. Yet, it is worth 526

mentioning that our method is compatible with the inference 527

of black-box, input-dependent costs, similarly to CaBO [Lee 528

et al., 2020]. One would simply need to modify Equation (9), 529

replacing λj by the learned cost. An interesting avenue for 530

future work would be to elicit knowledge of experimental 531

costs from domain experts in real-world situations. 532
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APPENDIX

Outline. The Appendix is organized as follows. In Appendix A, we provide a flowchart summarizing the proposed method722

SADCBO. In Appendix B, we provide further details about the phase switching criterion introduced in Section 3.2. In723

Appendix C, we provide more details about one of the baselines used in the main text, based on maximum mean discrepancy.724

Appendix D contains further experimental results regarding:725

• Phase switching time and sensitivity-based inclusion probabilities of contextual variables found by SADCBO for726

additional test functions (Figure S2).727

• Varying the number of irrelevant contextual variables (Figure S3).728

• Varying contextual variables query cost (Figure S4).729

• The distribution of phase switching times for SADCBO (Figure S5).730

• Varying SADCBO hyperparameters (Appendix D.1 and Figure S6).731

Finally, Appendix E contains a description of the real-world experiments performed throughout the paper, along with the732

analytical expressions of the synthetic examples used.733

A FLOWCHART OF THE ALGORITHM

Dt = {(xi, zi, yi)}t
i=1

Initial dataset
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Final
Recommandation
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t
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Figure S1: Flowchart of the proposed method SADCBO.

*Work done while at Aalto University.
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B PHASE SWITCHING CRITERION

The phase switching criterion we employ is derived from the stopping criterion from Ishibashi et al. [2023]. The absolute 734

difference of expected minimum simple regrets ∆Rt := |Rt −Rt−1| can be upper bounded with probability 1− δ by ∆R̃t, 735

a quantity defined in Equation (11). Directly quoting the work of Ishibashi et al. [2023], the rationale behind this criterion 736

reads as follows: “By evaluating the difference between the expected minimum simple regrets, we can stop BO without 737

knowing f∗ , because it indicates that the search efficiency is low and there is almost no improvement in the objective value. 738

However, it is generally difficult to calculate ∆Rt analytically”. Next, any stopping criterion involves the computation of 739

some sort of threshold. Ishibashi et al. [2023] exploit the fact that their upper bound ∆R̃t can itself be upper bounded by a 740

quantity (introduced in [Ishibashi et al., 2023, Equation 10]), whose convergence speed to zero is limited by a specific term, 741

st (Equation 12). st can be computed analytically and therefore yields an adaptive threshold. 742

Finally, Equation (11) involves a sequence κδ,t−1: 743

κδ,t−1 = max
v∈Dt−1

UCBδ(v)−max
v∈V

LCBδ(v), (S1)

where UCBδ(v) = µt(v|Dt) + β
1/2
t σt(v|Dt) and LCBδ(v) = µt(v|Dt) − β

1/2
t σt(v|Dt). β

1/2
t is a trade-off parameter 744

between exploration and exploitation that depends on δ [Srinivas et al., 2012]. κδ,t−1 is a quantity that was first introduced 745

by Makarova et al. [2022, Section 3.2] as an upper bound for the simple regret of the surrogate, which directly flows from 746

the bounds provided by Srinivas et al. [2012] for well-calibrated surrogates. 747

Heuristically, one can think of our setting as applying the stopping criterion to x 7→ f(x, z), a stochastic black-box function 748

with z ∼ p(z). Upon satisfaction of this criterion, we switch to the optimization of (x, z) 7→ f(x, z) where some contextual 749

variables are optimized, and some others are still sampled from p(z(j)). 750

C MAXIMUM MEAN DISCREPANCY-BASED VARIABLE SELECTION

Spagnol et al. [2019] introduced a BO algorithm with a variable selection procedure based on the Hilbert Schmidt 751

Independence Criterion (HSIC). This measure can be used in our setting as well. We now briefly describe how it is defined. 752

As introduced in the main text, let Z ⊂ Rc be the space of contextual variables, and H be a Hilbert space of R-valued 753

functions on Z . Assume that k : Z × Z → R is the unique positive definite kernel associated with the Reproducing Kernel 754

Hilbert Space H. Let µPZ
be the kernel mean embedding of the distribution PZ , µPZ

:= EZ [k(Z, ·)] =
∫
Z k(z, ·)dPZ . 755

Kernel embeddings of probability measures provide a distance between distributions between their embeddings in the 756

Hilbert SpaceH, named Maximum Mean Discrepancy (MMD, [Gretton et al., 2012]): 757

MMD(PZ ,PY ) = ∥µPZ
− µPY

∥2H . (S2)

For two random variables Z ∼ PZ onH and Y ∼ PY on G, the HSIC is the squared MMD between the product distribution
PZY and the product of its marginals PZPY ,

HSIC(Z, Y ) = MMD2(PZY ,PZPY ) (S3)

= ∥µPZY
− µPZPY

∥2H⊗G (S4)

= EZ,Y EZ′,Y ′ [k(Z,Z ′)l(Y, Y ′)] (S5)
+ EZEY EZ′EY ′ [k(Z,Z ′)l(Y, Y ′)]

− 2EZ,Y EZ′EY ′ [k(Z,Z ′)l(Y, Y ′)].

To determine the relevance of a variable Z(i), Spagnol et al. [2019] introduce 758

SHSIC(Z(i)) = HSIC(Z(i), I(Z ∈ Lγ)), (S6)

with Lγ a region of interest: the locations where the objective function value is above a threshold γ. This measure reflects 759

how important Z(i) is to reach Lγ . 760

We implemented this measure, substituting expectations for empirical means over the datasetD. We use γ = 0.8, a threshold 761

identical to the one used for SADCBO in Equation (6). The kernel k is chosen to be a RBF kernel, and l is a linear kernel 762

l(y, y′) = yy′, a common choice for binary data. 763
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even in high dimensions.
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D.1 ADDITIONAL DETAILS ON HYPERPARAMETER VARIATIONS.
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Figure S6: Varying hyperparameters for SADCBO. For any variable, the associated query cost is 1. p(z) = U([0, 1]c). Top:
varying η, the contextual variable inclusion threshold over the cumulative sum of sensitivity indices. Middle: varying γ, the
threshold used in the creation of the truncated dataset Dγ from Equation (6). Bottom: varying Q, the size of the dataset DQ

from Equation (7). η is the most sensitive hyperparameter here.

We vary the 3 hyperparameters of SADCBO: η ∈ [0, 1] the threshold based over the cumulative sum of sensitivity indices,764

which in turn regulates how many variables are selected every iteration; γ ∈ [0, 1], a threshold upon which a value is765

considered high enough to have its input added to dataset Dγ (Equation (6)), used for sensitivity analysis; and Q the size of766

the dataset DQ (Equation (7)).767

Figure S6 reports the performances. Unsurprisingly, η stands out as the most stringent parameter: as its value decreases,768

fewer variables are included, at which point not all relevant ones are selected, leading to reduced performances. Note that in769

a setting where there are no relevant contextual variables, lower values of η will actually lead to better performances.Then,770

varying γ ∈ [0, 1] slightly affects the results: γ increasing means that more samples are collected for sensitivity analysis, but771

these are less relevant for producing a reliable set of variables accounting for the fluctuations at the optimum. Finally, for the772

examples considered, Q has only a limited effect, close to that of varying γ. This might stem from the fact that batched773

acquisition functions are notoriously difficult to optimize and may sometimes struggle to enforce diversity.774



E EXPERIMENT DETAILS

E.1 REAL-WORLD DATASETS

Portfolio optimization dataset. This dataset was first introduced in [Cakmak et al., 2020]. The goal is to tune the 775

hyper-parameters of a trading strategy so as to maximize return under risk-aversion to random environmental conditions. A 776

software is used to simulate and optimize the evolution of a portfolio over a period of four years using open-source market 777

data. Each evaluation of this simulator returns the average daily return over this period of time under the given combination 778

of hyper-parameters and environmental conditions. Since the simulator is expensive to evaluate, we do not use it directly but 779

perform pool-based Bayesian Optimization using a pool of 3000 points generated according to a Sobol sampling design. 780

The hyper-parameters to be optimized are the risk and trade aversion parameters and the holding cost multiplier. These 781

variables constitute the design variables. The contextual variables are the bid-ask spread and the borrowing cost. 782

Yacht hydrodynamics dataset. This dataset comes from the UCI Machine Learning Repository [Gerritsma et al., 2013]. 783

The optimization problem is to maximize the residuary resistance per unit weight of displacement of a yacht by controlling 784

its 5-dimensional hull geometry coefficients. Another optimization variable is the 1-dimensional Froude number. We chose 785

as design variables the first four dimensions of the hull geometry coefficients. The contextual variables are the last hull 786

geometry dimension and the Froude number. Like the Portfolio optimization dataset, we have access to a limited number of 787

samples (≈ 300) and thus perform pool-based Bayesian optimization. 788

Molecular structure optimization. This case is a computational chemistry challenge. Molecules can adopt different 789

structures that preserve the topology (bonds and bonding types), but have different internal angles. Finding such conformers 790

is a global optimization problem. Here, we are searching for the conformers of alanine — a molecule with structure 791

C3H7NO2 — whose energy is calculated at each round of BO with the AMBER force field [Salomon Ferrer et al., 2013, 792

Case et al., 2023]. Alanine provides 33 structural variables to optimize: ten dihedral angles, eleven bond angles, and twelve 793

bond lengths. Conformer search in the full 33-dimensional space is very challenging, but progress has been made with 794

Bayesian optimization recently by reducing the problem to the four most important dihedral angles [Fang et al., 2021]. For 795

the example in this work, three of these four dihedral angles were chosen as the design variables (indices 3, 17, and 21 796

in the dataset; which denotes dihedral angles d4, d11, and d13 in AMBER notation; d4 is the bond leading to the amino 797

group, d13 the one leading to the hydroxyl group, and d11 is the bond between these two), the rest of the dihedral and bond 798

angles (18 angles) are chosen as the contextual variables, and the bond lengths are kept fixed to facilitate faster simulations. 799

The search space is selected by utilizing molecule domain knowledge in a conservative manner that allows 10-20 degree 800

variations for the bond angles and is free for the dihedral angles. To outline the alanine optimization results, the structure 801

optimization performed here as a test case is a high-dimensional problem, thus, the VBO method that tries to optimize all the 802

variables x and z converges slowly. Due to the same reason, methods MMDBO and Dropout also underperform in terms of 803

convergence for the alanine problem. Similarly to SADCBO, these two baselines operate variable selection, although using a 804

different selection criterion. However, controlling the selected variable comes at a cost. On the opposite, it turns out that 805

from Figure S2 (fifth row, middle panel), SADCBO virtually never switches to phase II for the Molecular Shape example. 806

Therefore, SADCBO does perform contextual variable selection, but does not control them, it only chooses which of these 807

variables will be included in the surrogate, hence behaving like CBO, but with a variable selection step. This explains why 1) 808

CBO closely follows SADCBO for this example and 2) why other variable selection baselines like MMDBO and Dropout 809

end up far from SADCBO. Interestingly, in this case, the simplified case of optimizing only the design variables x (CUBO) 810

also performs well. This is because our domain experts made good initial choices on the relevant design variables x and the 811

search spaces of context variables z. This type of pre-analysis is time-consuming and more challenging for larger molecules. 812

Hence, a future line of work is to test context-aware BO more comprehensively in molecule structure optimization tasks. 813

Robot Pushing Task This task was first introduced in Wang et al. [2017], and consists of a control parameter tuning 814

problem for robot pushing. This real-world function returns the distance between a designated goal location and two objects 815

being pushed by two robot hands, whose trajectory is determined by 14 parameters specifying the location, rotation, velocity 816

and moving direction, among others. The function is implemented with a physics engine, the Box2D simulator. There are 6 817

design variables and 8 contextual variables. 818



E.2 SYNTHETIC TEST FUNCTIONS

Hartmann-6D function:

f(v) = −
4∑

i=1

αi exp

− 6∑
j=1

Aij(v
(j) − Pij)


α = (1.0, 1.2, 3.0, 3.2)T

A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


defined over V = [0, 1]6. The second, fifth, and sixth variables were considered as design variables, while the first, third,819

and fourth variables were considered as contextual variables. 6 noise variables were added. Table S1 provides the results820

of a Sobol global sensitivity analysis performed using evaluations of the function collected over a grid of N = 917504821

samples [Sobol, 2001]. Adding up the first order indices for design and contextual variables separately leads to Sx ≈ 0.124822

and Sz ≈ 0.196. This means that with respect to first-order interactions, contextual variables have more impact than design823

variables, in this synthetic example. One should notice however that these indices are computed across the whole search824

space and not specifically at the optimum.825

Table S1: Sobol global sensitivity analysis for the Hartmann-6D function using N = 917504 samples.

Variable First order sensitivity indices Total order sensitivity indices

z(1) 0.107 0.343
x(2) 0.006 0.399
z(3) 0.007 0.052
z(4) 0.082 0.379
x(5) 0.106 0.297
x(6) 0.012 0.482

Hartmann-4D function:

f(v) =
1

0.839

1.1−
4∑

i=1

αi exp

− 4∑
j=1

Aij(v
(j) − Pij)


α = (1.0, 1.2, 3.0, 3.2)T

A =


10 3 17 3.5
0.05 10 17 0.1
3 3.5 1.7 10
17 8 0.05 10



P = 10−4


1312 1696 5569 124
2329 4135 8307 3736
2348 1451 3522 2883
4047 8828 8732 5743


defined over V = [0, 1]4. The first and fourth variables were considered as design variables, while the second and third826

variables were considered as contextual variables. 3 noise variables were added. Table S2 provides the results of a Sobol827



global sensitivity analysis performed using evaluations of the function collected over a grid of N = 300000 samples. Adding 828

up the first order indices for design and contextual variables separately leads to Sx ≈ 0.579 and Sz ≈ 0.091. This means 829

that with respect to first-order interactions, design variables have much more impact on the output than contextual variables. 830

The gap slightly reduces when considering total order sensitivity indices. However, it is worth remembering that these 831

indices are computed across the whole search space and not specifically at the optimum. 832

Table S2: Sobol global sensitivity analysis for the Hartmann-4D function using N = 300000 samples.

Variable First order sensitivity indices Total order sensitivity indices

x(1) 0.307 0.477
z(2) 0.037 0.279
z(3) 0.054 0.103
x(4) 0.272 0.526

Ackley 5D function:

f(v) = −20 exp

−0.2
√√√√1

5

5∑
j=1

(v(j))2

− exp

1

5

5∑
j=1

cos(2πv(j))

+ 20 + e1

defined over V = [−5, 5]5. 8 noise variables were added. 833

EggHolder 2D function:

f(v) = −(v(2) + 47) sin

(√∣∣∣∣v(2) + v(1)

2
+ 47

∣∣∣∣
)
− v(1) sin

(√
|v(1) − (v(2) + 47)|

)

defined over V = [−512, 512]2. The first variable was considered as a design variable, and the second one as a contextual 834

variable. 4 noise variables were added. A Sobol global sensitivity analysis performed using evaluations of the function 835

collected over a grid of N = 3000000 samples shows that both variables have a similar contribution to the output (Table S3). 836

Table S3: Sobol global sensitivity analysis for the EggHolder-2D function using N = 3000000 samples.

Variable First order sensitivity indices Total order sensitivity indices

x(1) 0.001 0.998
z(2) 0.0004 0.999
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