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Abstract

Recent studies show that self-feedback im-001
proves large language models (LLMs) on cer-002
tain tasks while worsens other tasks. We dis-003
covered that such a contrary is due to LLM’s004
bias towards their own output. In this paper,005
we formally define LLM’s self-bias – the ten-006
dency to favor its own generation – using two007
statistics. We analyze six LLMs on transla-008
tion, constrained text generation, and mathe-009
matical reasoning tasks. We find that self-bias010
is prevalent in all examined LLMs across mul-011
tiple languages and tasks. Our analysis reveals012
that while the self-refine pipeline improves the013
fluency and understandability of model out-014
puts, it further amplifies self-bias. To miti-015
gate such biases, we discover that larger model016
size and external feedback with accurate assess-017
ment can significantly reduce bias in the self-018
refine pipeline, leading to actual performance019
improvement in downstream tasks.020

1 Introduction021

Large language models (LLMs) have shown strong022

capabilities in many NLP tasks. While these mod-023

els still make mistakes, recent studies show that024

“self-refine” (also known as “self-reflection”) is025

promising to rectify errors based on LLM’s self-026

feedback (Madaan et al., 2023; Chen et al., 2023;027

Shinn et al., 2023; Manakul et al., 2023; Pan et al.,028

2023). Meanwhile, opposite study also shows that029

LLMs fail to correct their mistakes and their perfor-030

mance even gets worse after self-feedback (Huang031

et al., 2023b). These contradictory results suggests032

that LLM’s self-feedback is unreliable. Self-refine033

procedure relies a model’s evaluation capability034

on any generated text. We hypothesize that such035

failure to self-correction is due to LLM’s bias to-036

wards evaluating its own generation. This is con-037

sistent with a prior finding that LM-based metrics038

(e.g. BARTScore) exhibit “narcissism” during self-039

evaluation, i.e., the metric model favors text gener-040

Figure 1: How LLM’s self-feedback inflates scores com-
pared to human assessment. Bias is the mean differ-
ence between LLM and human scores, while skewness
(Dskew) measures the asymmetry of their distribution
around zero. Non-biased estimation will have Dskew=0.

ated by the same underlying language model in the 041

context of summarization tasks (Liu et al., 2023b). 042

However, it remains unclear whether bias exists 043

universally in LLMs across a wide range of tasks. 044

How to quantify such biases? How does this “nar- 045

cissism” impact LLM’s self-refinement? 046

In this work, we define “self-bias” to the degree 047

that an LLM favors its own generation. We pro- 048

pose to use two principled statistics to estimate 049

self-bias in LLM’s self-refinement procedure. The 050

first one measures the degree of inflation in the 051

LLM’s self-evaluation compared to the true (hu- 052

man) evaluation. The second measures whether 053

LLM’s self-evaluation is skewed compared to the 054

ture estimate. Figure 1 illustrates these two statis- 055

tics. We examine self-bias scores on six diverse 056

LLMs, covering four languages across three dis- 057

tinct tasks: machine translation, constrained text 058

generation, and mathematical reasoning. We find 059

that self-bias is universal in self-refine and self- 060
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rewarding pipelines, regardless of the languages061

and tasks. This bias causes LLMs to optimize for062

false positive corrections rather than improving the063

actual output quality.064

We further investigate what is the real benefit065

of self-refine. We find that while the self-refine066

pipeline improves the fluency and understandabil-067

ity of model outputs, it does not necessarily lead to068

intended improvements as specified in the prompt.069

Moreover, LLMs may favor texts that mirror their070

style, potentially leading to false positive optimiza-071

tion and reduced diversity in text generation. To072

mitigate the self-bias, we propose two solutions:073

increasing the model size and incorporating ex-074

ternal feedback to provide accurate assessment,075

thereby directing the LLM towards more accurate076

self-correction. Our contributions are:077

1. We formally define the self-bias of an LLM us-078

ing two principled estimated statistics.079

2. We quantify self-biases for six diverse LLMs080

and find that self-bias amplifies during self-081

refine across many languages and tasks.082

3. We observe two factors that contribute to self-083

bias and pinpoint two directions to mitigate it084

and elicit LLMs’ self-correction ability.085

2 Related Work086

Large language model self-correction. Recent087

works demonstrate that LLM can utilize its own088

feedback signal to refine itself (Madaan et al., 2023;089

Chen et al., 2023; Shinn et al., 2023). Wang et al.090

(2023) further proposed to sample diverse reason-091

ing paths and use a majority vote to find the most092

confident answer. Huang et al. (2023a) leverages093

self-consistency to further fine-tune the LLM on094

the most confident reasoning path with diverse in-095

struction formats. On the other hand, LLM’s self-096

feedback can also be used as a reward signal to097

further align LLM to follow instructions (Gulcehre098

et al., 2023; Yuan et al., 2024).099

Despite some demonstrations of performance im-100

provements, most findings indicate that LLMs101

struggle to rectify their initial mistakes, and102

their performance even worsens after self-103

correction (Huang et al., 2023b; Tyen et al., 2023;104

Ke et al., 2023). This issue arises because the105

quality of the model’s self-generated feedback is106

bounded by its existing knowledge and abilities107

(Stechly et al., 2023; Hong et al., 2023). Therefore,108

internal feedback may not offer any extra advantage 109

for improving the results; it might even steer the 110

model away from the correct answer (Valmeekam 111

et al., 2023). However, prior works only had em- 112

pirical observations on this phenomenon, while 113

lacking a quantitative analysis. Moreover, prior 114

works only focus on specific tasks, such as reason- 115

ing or code generation. In this work, we are the first 116

to quantitatively analyze the self-bias of different 117

LLMs across three tasks and four languages, which 118

provides a novel and generalizable view to address 119

the perils of self-refine. 120

LLMs as evaluators. Liu et al. (2023a) leverages 121

GPT-4 to evaluate text through chain-of-thoughts 122

prompting. Fu et al. (2023) leverages GPT-3’s se- 123

quence likelihood to estimate model performance. 124

Kocmi and Federmann (2023); Xu et al. (2023) de- 125

signed detailed error schemes for LLM to output 126

fine-grained error annotations. Despite the popular- 127

ity of using LLMs as evaluators, Koo et al. (2023) 128

pointed out that LLM exhibits cognitive bias when 129

evaluating the text, misaligning from human pref- 130

erence. Zheng et al. (2023) pointed out LLMs have 131

verbosity and self-enhancement bias, which makes 132

them prefer long and verbose answers and answers 133

generated by themselves. Chang et al. (2023) found 134

out that LLM prefers memorized text over non- 135

memorized text, creating unfair judgments over 136

texts. Deutsch et al. (2022); Liu et al. (2023b) 137

point out that reference-free metrics are inherently 138

biased on their own outputs. 139

Although the above empirical studies provide valu- 140

able insights, they lack a formal definition to quan- 141

tify those biases nor provide a connection to the 142

self-refine framework. In this work, we define and 143

quantify self-bias and provide the first in-depth 144

analysis of its impact on the self-refine pipeline. 145

We analyze potential bias attributions and pinpoint 146

two mitigation directions. 147

3 Quantify Self-Bias 148

This section outlines the approach used to quan- 149

tify the self-bias exhibited by LLMs in an iterative 150

self-reflection pipeline. We employ statistical bias 151

and distance skewness (Szekely and Móri, 2006) 152

estimation to measure this bias. 153

3.1 Iterative Self-Refinement 154

The self-refine framework operates by first gener- 155

ating a response to a given prompt. It then iterates 156
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between feedback and refinement steps, continuing157

until it reaches a predetermined number of itera-158

tions. At each refinement step, the refined output159

will only be accepted if it demonstrates superior160

quality compared to the previously generated text.161

The quality of the text is assessed through the self-162

feedback from the language model itself.163

3.2 Bias Estimation164

We estimate the self-bias of LLMs using the statisti-165

cal bias definition. This bias is characterized by the166

disparity between an LLM’s predicted quality score167

and the expected quality score. More specifically,168

Bias(θ̂) =
1

n

n∑
i=1

θi − E(θ̂i), (1)169

where θi is an LLM’s quality prediction at sam-170

ple i and E(θ̂i) denotes the expected value of the171

sample quality at i. Ideally, E(θ̂) should be de-172

rived from human annotations (e.g., multidimen-173

sional quality metrics (MQM) human annotations174

(Freitag et al., 2021) for machine translation) or175

predefined criteria (e.g., word coverage for con-176

strained text generation (Madaan et al., 2023)).177

The LLM’s quality prediction is expected to pre-178

cisely follow the human annotation procedure or179

predefined criteria, ensuring consistency between180

θ and E(θ̂). When Bias(θ̂) > 0, the LLM assigns181

a higher quality score to its own samples compared182

to the expected quality score. When Bias(θ̂) < 0,183

the LLM under-estimates its quality compared to184

the expected quality score. The larger the value185

of Bias(θ̂), the more pronounced the LLM’s bias186

against its own samples. The unbiased sample187

should have Bias(θ̂) = 0.188

3.3 Distance Skewness Estimation189

In an ideal scenario, an unbiased quality estima-190

tion would have E(θ̂) = 0, resulting in a perfectly191

symmetric distribution when plotting θi − E(θ̂i).192

However, E(θ̂i) = 0 does not guarantee a symmet-193

ric distribution (e.g., one tail could be long and194

thin, while the other is short and fat, yet they bal-195

ance out overall). Therefore, we introduce another196

meta-metric, distance skewness, to measure the197

asymmetry of θi − E(θ̂i)’s distribution. Specifi-198

cally,199

dSkewn(X) = 1−
∑

i,j ∥xi − xj∥∑
i,j ∥xi + xj − 2γ∥

, (2)200

where xi is a random variable drawn from201

θi − E(θ̂i) and xj is a random variable drawn from202

θi − E(θ̂i)− xi. dSkewn(X) measures the asym- 203

metry of X with respect to γ. Distance skewness 204

ranges between 0 and 1. dSkewn(X) equals 0 if 205

and only if X is diagonally distributed respect to γ. 206

dSkewn(X) equals 1 if and only if X is distributed 207

at a constant on one side of γ. A higher distance 208

skewness indicates a more asymmetric distribution 209

of θi − E(θ̂i). In our experimental setup, we use 210

both bias and distance skewness to measure the 211

model’s bias towards its quality prediction. 212

4 Analyze LLM with Self-Bias 213

4.1 Experimental Setup 214

We include three closed-source LLMs (GPT-4 215

(Achiam et al., 2023), GPT-3.5-Turbo and Gemini 216

(Team et al., 2023)) and three open-source LLMs 217

(LLaMA2-7B/13B/70B (Touvron et al., 2023), 218

Mistral-MOE (Jiang et al., 2024) and Deepseek- 219

MOE (Dai et al., 2024)). These models have been 220

shown to have strong instruction-following capa- 221

bilities (Madaan et al., 2023; Shinn et al., 2023), 222

making them well-suited to demonstrate self-bias. 223

For each model, we first prompt it to produce the 224

initial generation. Then, we prompt the model 225

to generate the feedback for the initial generation. 226

The model takes in both the feedback and the prior 227

step generation to produce a refined output. We 228

will only accept refinement if the feedback score is 229

improved on the refined output. We listed specific 230

model API/checkpoints in Appendix Section A. 231

Machine Translation. We evaluated LLMs on 232

Flores-200 (NLLB Team, 2022) dataset with four 233

language pairs: Yoruba to English (Yor-En), Ja- 234

vanese to English (Jav-En), Armenian to English 235

(Arm-En), and Igbo to English (Ig-En), using 100 236

test examples per language pair. We concentrate on 237

low-to-medium resource language pairs, as Kocmi 238

et al. (2023) indicate that LLMs like GPT-4 already 239

perform at a nearly human-like level in high re- 240

source language pairs such as Chinese-to-English, 241

leaving limited potential for further improvement 242

through self-refine. 243

To ensure high-quality evaluations, we utilized 244

feedback prompts based on the MQM human an- 245

notation from Freitag et al. (2021), as in Kocmi 246

and Federmann (2023). LLMs will input source 247

text and candidate text and output feedback, includ- 248

ing error location, error type, and severity labels. 249

We adopt the same error scoring as Freitag et al. 250

(2021), assigning −1 for minor errors and −5 for 251
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major errors, with a score range of 0 to −25 (0 for252

perfect translations, −25 for samples with more253

than five severe errors). The details of the prompts254

are provided in the Appendix Table 7, 8 and 9.255

Ideally, human raters would have evaluated each256

sample, but due to cost and scalability constraints,257

we utilized the reference-based learned metric258

BLEURT (Sellam et al., 2020) as an approximation259

of human judgments. BLEURT generates quality260

scores based on the similarity between candidate261

and reference translations. To align BLEURT’s262

score distribution with that of human ratings, we263

employed quantile mapping (Cannon et al., 2015),264

yielding a score range from 0 to -25. Although au-265

tomatic metrics are primarily used, we also conduct266

modified MQM human evaluations (Freitag et al.,267

2021) for validation purposes. Our bias estimation268

ranged from -25 to 25. Details on quantile mapping269

are provided in the Appendix Section B.270

Constrained Text Generation. We conducted271

experiments on commonsense text generation, fol-272

lowing (Lin et al., 2020). We tested LLMs on 100273

examples from the CommonGen Hard dataset. For274

each testing instance, the large language model275

(LLM) received approximately 30 concepts and276

was tasked with generating a fluent and logically277

sound text. To generate the initial output, we278

adopted a similar prompt design to that of (Lin279

et al., 2020). Next, we provided two ICL feedback280

examples to help the LLM identify missing con-281

cepts in its initial output. In each feedback example,282

the LLM was given concept words and the previ-283

ous generation and asked to indicate any missing284

concepts. This feedback allowed the LLM to revise285

its output and generate a text with better coverage286

of the input concepts. The details of the prompts287

are included in the Appendix Table 11, 12 and 13.288

To evaluate the coverage of the generated texts,289

we adopted the evaluation metric used in (Madaan290

et al., 2023). This metric uses strict string matching291

to determine whether each concept word from the292

input appears in the generated text (metric outputs 1293

if all concepts are covered and 0 otherwise). From294

feedback of LLM’s missing concepts, we assigned295

a binary score (0 or 1) to each text based on its full296

coverage of concepts. Since our string-matching297

metric and LLM feedback score were on the same298

scale, we were able to compute bias and distance299

skewness directly. The range of bias estimation is300

between −1 to 1.301

Mathematical Reasoning. We conducted exper- 302

iments on mathematical reasoning. We tested 303

LLMs on 100 examples from the MATH testing 304

set (Hendrycks et al., 2021). For each instance, 305

LLM receives a problem statement and generates 306

a step-by-step solution with a final answer. In this 307

task, we slightly modify the self-refine pipeline by 308

replacing the self-evaluation with self-consistency 309

verification (Huang et al., 2023a). Namely, with the 310

initial solution, LLM will generate an additional ten 311

reasoning paths and a majority vote for a proposed 312

answer. If the proposed answer is inconsistent with 313

the prior solution, we will output a binary score of 314

0, and the initial answer will be replaced by the pro- 315

posed answer. Otherwise, we will output a score of 316

1, and no change will be made to the initial answer. 317

In each iteration, the previous solution will be com- 318

pared against the ground truth answer, outputting 319

1 if they are matched and 0 otherwise. Therefore, 320

we can directly compute bias and distance skew- 321

ness. The range of bias estimation is between −1 322

to 1. The details of the prompts are included in the 323

Appendix Table 10. 324

4.2 Self-Bias Amplification at Iterative 325

Refinement 326

Machine Translation. In Figure 2, we illustrate 327

that all large language models (LLMs) exhibit a 328

self-bias in the self-refine pipeline. Notably, open- 329

source LLMs and GPT-3.5-Turbo tend to exhibit 330

higher levels of self-bias throughout iterations than 331

stronger instruction-following LLMs, such as GPT- 332

4 and Gemini. This suggests that GPT-4 and Gem- 333

ini possess a certain level of capability in resist- 334

ing self-bias. However, despite some robustness 335

demonstrated by GPT-4 and Gemini, we observe 336

a consistent amplification of self-bias through the 337

self-refine pipeline across four language directions, 338

indicating that even these advanced LLMs are sus- 339

ceptible to self-bias amplification. 340

In Figure 3, we illustrate a comparison be- 341

tween GPT-4 and Gemini’s quality assessments 342

of their own outputs and performance measured by 343

reference-based BLEURT over ten iterations. Our 344

findings suggest that the primary reason for the am- 345

plification of bias during self-refine iteration is that 346

actual performance does not improve through itera- 347

tions. Instead, GPT-4 and Gemini mistakenly per- 348

ceive performance improvements in their refined 349

outputs. This discrepancy between the false posi- 350

tive performance measure and the true performance 351
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Figure 2: Average Bias and Dskew estimations for Yor-
En, Jav-En, Arm-En, and Ig-En translations on FLo-
res200, with the x-axis showing self-refine steps, re-
veal that all LLMs exhibit self-bias, where open-source
LLMs exhibit higher levels than GPT-4 and Gemini.
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Figure 3: GPT-4 and Gemini overestimate improve-
ments in self-refined outputs, leading to amplified bias
over iterations compared to actual performance mea-
sured by BLEURT.

measure grows larger with each iteration. We in-352

clude full bias and distance skewness estimations353

of four translation language pairs in Appendix Fig-354

ure 10. The appendix Section C details Gemini’s355

shift from right-skewed to left-skewed distribution,356

resulting in a decrease in distance skewness during357

early iterations and an increase in later ones.358

Constrained Text Generation. Figure 4 depicts359

the amplification of self-bias through ten self-refine360

iterations in constrained text generation for GPT-361

3.5-Turbo, GPT-4, and Gemini. Notably, GPT-4362

exhibits a higher bias estimation at earlier iterations363

compared to GPT-3.5-Turbo and Gemini. This can364

be attributed to GPT-4’s higher coverage ratio at365

initial generation (approximately 40%) compared366

to its counterparts (GPT-3.5-Turbo at around 2%).367

Consequently, GPT-4 struggles to identify a few368

missing concepts, while GPT-3.5-Turbo and Gem-369
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0.6
Bias on CommonGen Hard
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Figure 4: We evaluate the bias and distance skewness
of generated texts produced by GPT-4, GPT-3.5-Turbo,
and Gemini on the CommonGen dataset, across self-
refinement steps. Additionally, we report the coverage
of GPT-3.5-Turbo and GPT-4 compared to true concept
coverage. We show that the rate of LLM’s self-estimated
improvements is much higher than the true coverage
improvements, which leads to self-bias amplification.

ini have more coverage issues and can easily iden- 370

tify missing input concepts. 371

As GPT-3.5-Turbo reaches 20% coverage around 372

the 5th iteration, it experiences a significant rise in 373

bias and skewness estimation. It is worth noting 374

that the rate of LLM’s self-estimated improvements 375

is much higher than the true coverage improve- 376

ments. This phenomenon results in a saturation of 377

performance improvements after the 5th iteration 378

for both GPT-4 and GPT-3.5-Turbo. 379

Mathematical Reasoning. Figure 5 illustrates 380

that all large language models (LLMs) exhibit an 381

increase in bias and skewness estimation in the iter- 382

ative self-consistency pipeline. This suggests that 383

LLMs introduce self-biases towards certain reason- 384

ing paths during self-refine, ultimately leading to a 385

biased ensemble across multiple reasoning paths. 386

Human Evaluation. We employ one graduate 387

student to annotate 50 examples from the 0th and 388

10th iteration of GPT-4, GPT-3.5-Turbo and Gem- 389

ini’s outputs at Yor-En, respectively. The human 390

rater compares candidate text against reference and 391

labels error location, error type, and severity la- 392

bels at candidate text. The scoring scheme follows 393

MQM style (Freitag et al., 2021), which matches 394

the scoring range of LLM’s feedback. Our human 395

score indicates that all three LLMs have not re- 396
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Figure 5: Bias and distance skewness in generated texts
from GPT-4, GPT-3.5-Turbo, and Gemini are measured
on MATH testing set throughout the self-refinement
steps. Results show an increase in bias and skewness
during iterative self-consistency, causing biased ensem-
bles in reasoning paths.

ceived measurable improvements via the self-refine397

pipeline (The raw human scores are included in the398

Appendix Table 4, 5 and 6), which is consistent399

with the BLEURT assessment. In Table 1, both400

increasing bias and distance skewness estimation401

demonstrate that all LLMs have significantly in-402

creased their self-bias with 10 iterative refinements.403

In the following case study, we examine self-bias404

in GPT-4. Our observations reveal that GPT-4’s405

self-feedback mechanism led to the optimization406

of false positives, resulting in an amplification of407

self-bias over three iterations. In section 5, we408

demonstrate two potential alleviation that we can409

use to mitigate this self-bias.410

Self-bias Example at GPT-4

Yoruba text: Ní bayii a ni àwon eku oloshu merin
ti ko ni dayabetesi telele to ti ni ayabetesi,” o she
afikun.
Reference English text: "We now have 4-month-old
mice that are non-diabetic that used to be diabetic,"
he added.
(Red span indicates a major error and blue span
indicates a minor error annotated by GPT-4.)

GPT-4’s 1st generation [Human: -11, GPT4: -11,
Bias: 0]: "At this point, we have four rats without
diabetes that have developed diabetes," he added.

GPT-4’s 1st refinement [Human: -12, GPT4: -10,
Bias: 2]: "Currently, we have four healthy rats that
have developed diabetes," he clarified.

GPT-4’s 2nd refinement [Human: -11, GPT4: 0,
Bias: 11]: "Presently, we have four non-diabetic rats
that have developed diabetes," he elaborated.

411

4.3 What improves after Self-Refine?412

Self-Refine can improve fluency and understand-413

ability but not quality. We demonstrate that414

LLM with biased feedback can impede the model’s415

GPT-4 GPT-3.5-Turbo Gemini

Iterations Bias Dskew Bias Dskew Bias Dskew

0th 8.06 0.452 19.6 0.803 9.62 0.455
10th 14.6 0.692 21.9 0.885 17.6 0.766

Table 1: We report human evaluation on GPT-4, GPT-
3.5-Turbo and Gemini’s quality assessment on 0th and
10th iteration of refinement generation at Yor-En. We
used Bias and Dskew estimation to demonstrate bias
found by human evaluation. All LLMs have signifi-
cantly increased self-bias after 10 iterations.
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0.96
Fluency

0 1 2 3 4 5 6 7 8 9 10

0.84

0.88

0.92

Understandbility

GPT-4 GPT-3.5-Turbo Gemini

Figure 6: We measure the fluency and understandability
aspects of GPT-4, GPT-3.5-Turbo, and Gemini’s gener-
ated texts at Yor-En through self-refine steps. Despite no
gains in quality, all LLMs have consistent performance
improvements in fluency and understandability.

self-refine process. This raises a natural question: 416

if an LLM does not improve its generation quality, 417

does it improve in any other aspects throughout the 418

iterative refine phase? To investigate this, we uti- 419

lize the learned metric UniEval (Zhong et al., 2022) 420

to measure the LLM’s improvement beyond qual- 421

ity metrics. UniEval, a multidimensional learned 422

metric, estimates various evaluation dimensions, 423

including fluency, understandability, engagement 424

and more. We focus on two dimensions, fluency 425

and understandability, which UniEval is not trained 426

on task-specific data. Our results, illustrated in 427

Figure 6, show that GPT-4, GPT-3.5-Turbo, and 428

Gemini consistently exhibit improvements in both 429

fluency and understandability. This suggests an 430

alternative perspective on the self-refine pipeline, 431

indicating that while an LLM may not strictly ad- 432

here to instruction-following in terms of quality 433

improvements, it can still improve certain intrinsic 434

text qualities, such as fluency and understandability. 435

436

LLMs favor texts that follow their style. To ex- 437

plore this propensity, we conducted experiments to 438

investigate if LLMs display a preference for outputs 439

that align with their generation style. We asked the 440

GPT4, GPT-3.5-Turbo, and Gemini model to para- 441
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Figure 7: We used Madlad400-10b to translate 100 Yor-
En translations and asked GPT-4, GPT-3.5-Turbo, and
Gemini to paraphrase 100 translations. We show the
BLEURT and LLM scores before and after paraphras-
ing. In the lower right of the figure, we show the bias
estimation before and after paraphrasing. GPT-4 and
Gemini have negative self-bias before paraphrasing. Af-
ter paraphrasing, all LLMs increase their bias against
their paraphrased outputs.

phrase external translation outputs. In this prompt,442

LLMs aimed not to improve the quality of trans-443

lations but rather to rewrite sentences in their cor-444

responding styles. Using the multilingual trans-445

lation system Madlad400-10b (Kudugunta et al.,446

2023), we produced 100 Yoruba-to-English transla-447

tions. Subsequently, each LLM was instructed to448

paraphrase the generated sentences. Our findings,449

shown in Figure 7, reveal that GPT-4 and Gemini450

have negative self-bias before paraphrasing. How-451

ever, after paraphrasing, all LLMs showed an in-452

creased bias against their paraphrased outputs. This453

is mainly attributed to a decline in quality perfor-454

mance post-paraphrasing, with LLMs erroneously455

perceiving these paraphrased outputs as indicative456

of improvements.457

4.4 Self-Reward Execrates Self-Bias458

In this section, we will explore the concept of self-459

bias in the self-rewarding pipeline, as outlined in460

(Yuan et al., 2024). The pipeline begins with an461

instruction fine-tuned large language model (LLM).462

Initially, we generate k candidate responses for463

each input provided to the LLM. Next, the same464

LLM is used as a reward model to identify the best-465

performing candidate or to rank pairs within the466

collection of samples. Finally, various training ob-467

jectives are applied to further train the LLM using468

DeepSeek-MOE Mistral-MOE LLaMA2-7B

Sample Size Bias Dskew Bias Dskew Bias Dskew

1 14.8 0.735 12.4 0.483 8.75 0.491
4 16.1 0.795 10.1 0.490 14.1 0.580
8 16.7 0.800 13.0 0.610 19.8 0.810
16 18.0 0.830 16.9 0.730 20.7 0.840
32 18.5 0.840 18.5 0.790 20.9 0.850

Table 2: We report Bias and Dskew on Deepseek-MOE,
Mistral-MOE and LLaMA2-7B’s self-feedback with
varying sample size at Yor-En. Our results indicate that
both bias and distance skewness tend to increase as the
sample size grows larger.

the top-performing samples. 469

To illustrate the potential drawbacks of this 470

pipeline, we carried out experiments on Yoruba 471

to English translation task using three open- 472

source LLMs: Deepseek-MOE, MistralMOE, and 473

LLaMA2-7B. For each source input, we sampled 474

k candidate responses from each model. Subse- 475

quently, we obtained self-feedback scores on these 476

candidates employing the prompt detailed in Sec- 477

tion 4.1 and computed the corresponding self-bias. 478

We varied k across 1, 4, 8, 16, and 32 to examine 479

the influence of sample size on the self-bias within 480

the self-rewarding pipeline. 481

As shown in Table 2, we observed that all LLMs 482

displayed an increase in bias and distance skewness 483

as the sample size increased. This occurs when the 484

LLM has a biased estimation of its self-feedback, 485

and this bias can be amplified when the sample size 486

is increased to find the top-performing candidate 487

according to the self-feedback. Notably, selecting 488

samples from a larger pool, e.g. a sample size of 489

32, significantly increases this bias compared to se- 490

lections from a smaller pool, such as a sample size 491

of 4. When the LLM optimizes over these samples, 492

it can further exacerbate its self-bias and generate 493

samples that are biased by its self-feedback. 494

5 Alleviating Self-Bias 495

External Feedback Reduces Self-Bias. We 496

demonstrated that self-feedback from a large lan- 497

guage model can self-amplify bias with iterative 498

refinement. We aim to answer if external feedback 499

with low bias estimation can improve the model’s 500

generation performance and elicit self-correction 501

capability. We leverage a reference-based feed- 502

back model, InstructScore (Xu et al., 2023), to 503

provide external feedback. InstructScore will take 504

in both reference and candidate text and output fine- 505
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Figure 8: Using an external feedback model, we pro-
vide external feedback for GPT-4, GPT-3.5-Turbo, and
Gemini in Yoruba-to-English translation task, across
5 refinement steps. We compare the models’ true
performance (measured by BLEURT) against external
feedback-evaluated performance and self-feedback eval-
uated performance. Additionally, we plot the bias esti-
mation for the three LLMs, considering both feedback
types over 5 iterative refinement steps.

grained feedback, including error location, severity506

label, and error type. To ensure a fair comparison,507

we parse all outputs with the same format as self-508

feedback. Since InstructScore can access reference509

text to provide feedback, we recognize this external510

feedback as oracle feedback. However, models will511

only receive information about error location, error512

type, and severity labels. Therefore, refinement513

still relies on LLM’s self-correction capability.514

In Figure 8, we demonstrate that external feedback515

with accurate assessment can significantly lower516

the model’s bias at iterative refinement (shown at517

the lower right of the figure. All dotted curves518

are below solid curves with corresponding colors).519

Interestingly, both Gemini and GPT-4’s bias estima-520

tion is improved throughout the refinement process,521

as the external feedback model can over-penalize522

low-quality outputs. As refinement proceeds, the523

external feedback model converges to BLEURT524

quality assessment that samples achieve improved525

quality. Most importantly, we demonstrate that526

all LLMs with external feedback can elicit their527

self-correction ability with consistent BLEURT im-528

provements at self-refine iterations. We include a529

case study example in Appendix Table 3.530

0 1 2 3 4 5 6 7 8 9 105

10

15

20
Bias Estimation

0 1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

Dskew Estimation

LLaMA2-7b LLaMA2-13b LLaMA2-70b

Figure 9: We show that bias and distance skewness
estimation on LLaMA-2 7B, 13B, and 70B models at
Yor-En translation across self-refinement steps. LLM
with larger parameter size can have less self-bias.

Larger Model Reduces Self-Bias. In Figure 531

9, we demonstrate that LLMs with larger pa- 532

rameter size can have less self-bias throughout 533

self-refinement steps. Specifically, we tested the 534

LLaMA2 models with 7B, 13B, and 70B pa- 535

rameters on Yoruba-to-English (Yor-En) transla- 536

tion tasks. Our findings indicate that while the 537

LLaMA2-70B model exhibits self-bias in the ear- 538

lier iterations, its self-bias begins to plateau af- 539

ter the 5th iteration. In contrast, the 7B and 540

13B models continue to amplify their self-bias in 541

later iterations. This observation aligns with prior 542

work (Huang et al., 2023a), which posited that 543

larger LLMs possess better self-refinement capabil- 544

ities. Our study contributes to this discussion from 545

the perspective of self-bias, proposing that larger 546

LLMs are more resilient to self-bias. Consequently, 547

they can assess their own outputs more accurately 548

and possess a greater capacity for self-correction. 549

6 Conclusion 550

In this study, we define and quantify self-bias in 551

LLMs with two principled estimated statistics. Our 552

experiments across six LLM families, four lan- 553

guages, and three tasks reveal that self-bias is preva- 554

lent in self-refine or self-rewarding pipelines. This 555

biased self-feedback leads to false positive objec- 556

tives, hindering performance improvements during 557

iterative refinement. Further analysis reveals that 558

while LLM improves fluency and understanding of 559

its generated text, they do not necessarily progress 560

in the intended direction, such as improving quality 561

in machine translation or expanding coverage in 562

concept-to-word generation. Instead, LLMs tend 563

to favor texts that adhere to their inherent styles. Fi- 564

nally, our research suggests that larger models are 565

more resistant to self-bias, and incorporating exter- 566

nal feedback significantly reduces bias, leading to 567

performance improvements in LLMs. 568
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7 Limitations569

In this study, we focus on quantifying the self-bias570

exhibited by LLMs in the self-refine pipeline. We571

demonstrate that self-bias will be amplified in the572

self-refine or self-rewarding pipeline and negatively573

impacts the optimization process. However, in sub-574

sequent research, it would be worthwhile to explore575

the measurement of bias that exists between differ-576

ent LLMs, as well as the bias that arises when577

comparing original models and their knowledge-578

distilled counterparts. The following questions re-579

main open: Does LLM have more bias towards580

LLMs that follow the same pretraining procedure,581

data, or learning objectives? Does LLM have more582

bias to the LLMs within the same language model583

families? Do knowledge-distilled LLMs have more584

biases over the original LLMs, such as Vicuna to585

GPT4 or Alpaca to ChatGPT? We leave these inter-586

esting avenues for future research.587

8 Ethical Statement588

All the benchmark data that we used during exper-589

iments is publicly available. We assure that the590

benchmark data does not contain risk or toxic con-591

tent. The annotater was compensated fairly and592

did not disclose any privacy information during the593

annotation process. All the open sourced models594

can be accessed online and all the closed source595

models have publicly accessible APIs. The anno-596

taters were allowed to label sensitive information if597

necessary. The annotater is fully aware that the data598

we collected from him/her will be used for research599

purposes. The total human annotation period took600

six hours and the annotator was paid above local601

minimum wage. We used Mistral Medium, Gram-602

marly and ChatGPT API to polish some of our603

writings.604

The findings of this research have far-reaching im-605

plications for the broader linguistic and technolog-606

ical communities, particularly in the preservation607

and revitalization of endangered or low-resource608

languages. By identifying and mitigating self-bias609

in large language models (LLMs), this work paves610

the way for significant improvements in machine611

translation for languages that are underrepresented612

in digital platforms and datasets.613

The ability to reduce bias in the self-refine pipeline614

of LLMs can lead to more accurate and nuanced615

translations, thereby enhancing the quality and ac-616

cessibility of digital content in low-resource lan-617

guages. This advancement is critical for preserving 618

the cultural heritage and knowledge embodied in 619

these languages, which are at risk of disappearing. 620

Through improved translation capabilities, commu- 621

nities can more easily access global information 622

in their native languages, fostering educational op- 623

portunities and cultural exchange. This contributes 624

to the preservation of linguistic diversity and pro- 625

motes a more inclusive digital ecosystem. 626
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A Model API/Checkpoints838

This section provides a pointer to checkpoints839

that we used during experiment. All open-840

source models are available on the Hugging841

Face platform. For LLaMA2, we use "meta-842

llama/Llama-2-(7, 13, 70)b-chat-hf" respectively.843

For Mistral_MOE, we use "mistralai/Mixtral-844

8x7B-Instruct-v0.1". For Deepseek_MOE, we845

use "deepseek-ai/deepseek-moe-16b-chat". For846

InstructScore, we use "xu1998hz/InstructScore".847

For the translation model Madlad400-10b, we848

use "google/madlad400-10b-mt". We used GPT-849

3.5-Turbo and GPT-4 from OpenAI platform850

(https://platform.openai.com). We use gemini-pro851

from Google Gemini API.852

B Quantile Mapping853

While BLEURT (Sellam et al., 2020) correlates854

highly with human judgments (Freitag et al., 2022),855

its scale of roughly 0 to 1 is incompatible with the856

MQM human annotations, which range from -25 to857

0. A linear mapping is not feasible, as the BLEURT858

score is not calibrated to the human score, meaning859

a BLEURT score of 0.8 does not correspond to -5860

in MQM annotations.861

To address this issue, we employ quantile mapping862

(Cannon et al., 2015) to transform the BLEURT863

score into the distribution of human scores. This864

method involves learning a mapping function that865

maps the quantiles or percentiles of the predictive866

distribution to those of the observed distribution. In867

this case, our predictive distribution is derived from868

the BLEURT score distribution, while our observed869

distribution comes from the corresponding human870

score distribution.871

We utilize the WMT22 shared metric task (Freitag872

et al., 2022) to obtain mapped BLEURT-human873

scoring pairs. In this shared metric task, each trans-874

lation generated by different translation model is875

rated by humans using the MQM human rating876

scale. We also run BLEURT on the same set of877

translations to obtain BLEURT scores, resulting in878

28125 mapped BLEURT-human scoring pairs.879

We then perform the following steps: 1) Separately880

sort the data of the two distributions in ascend-881

ing order. 2) Compute the cumulative distribution882

function (CDF) for each distribution. 3) Learn an883

interpolation function that maps the percentiles of884

the first distribution to the percentiles of the sec-885

ond distribution. 4) Apply the mapping function to 886

the values drawn from the predictive distribution 887

(BLEURT score distribution) to obtain the corre- 888

sponding values in the observed distribution (hu- 889

man MQM score distribution). 890

This process maps the BLEURT score distribu- 891

tion to the human score distribution (from -25 892

to 0) while preserving the relative ordering of 893

BLEURT scores. In our experiments, we used the 894

latest BLEURT model, BLEURT-20 checkpoint 895

(Pu et al., 2021), which demonstrates the highest 896

correlation to the human judgments among its vari- 897

ants. 898

C Gemini’s Skewness at Translation 899

Specifically, in the Java-English (Jav-En) language 900

pair, Gemini initially assigns lower quality scores 901

to its output compared to BLEURT assessments 902

during early iterations, resulting in an underesti- 903

mation of output performance. This phenomenon 904

accounts for the decrease in distance skewness at 905

the beginning, as the right-skewed distribution be- 906

comes more neutral. However, as bias accumulates 907

in later iterations, the distribution shifts towards a 908

left-skewed distribution, leading to an increase in 909

distance skewness. 910
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Figure 10: Full Bias and Dskew estimations for Yor-En, Jav-En, Arm-En, and Ig-En translations on FLores200,
with the x-axis showing self-refine steps, reveal that all LLMs exhibit self-bias, where open-source LLMs exhibit
higher levels than GPT-4 and Gemini.

External Feedback Example at GPT-4

Yoruba text: Ní bayii a ni àwon eku oloshu merin
ti ko ni dayabetesi telele to ti ni ayabetesi,” o she
afikun.
Reference English text: "We now have 4-month-old
mice that are non-diabetic that used to be diabetic,"
he added.
(Red span indicates a major error and blue span
indicates a minor error annotated by GPT-4.)

GPT-4’s 1st generation [Human: -11, InstructScore:
-10, Bias: 1]: "At this point, we have four rats
without diabetes that have developed diabetes," he
added.

GPT-4’s 1st refinement [Human: -2, InstructScore:
-6, Bias: -4]: "At this point, we have four mice
without diabetes that were diabetic," he added.

GPT-4’s 2nd refinement [Human: -1, InstructScore:
-1, Bias: 0]: "We now have 4-month-old mice that are
non-diabetic that were diabetic," he added.

Table 3: This case study demonstrates that external feed-
back (oracle) from InstructScore (Xu et al., 2023) can
remain low self-bias during iterative self-refine. By
providing accurate error type, error location, and sever-
ity labels, InstructScore effectively elicits GPT-4’s self-
correction capability and improves its translation quality.
Despite InstructScore’s oracle-like role (which it can
access reference text to make error annotations), it does
not provide explicit corrections, requiring GPT-4 to rely
on its internal knowledge for corrections.

Human Evaluation Human GPT-4 Bias Dskew

0th Iteration -15.0 -6.92 8.06 0.452
10th Iteration -15.1 -0.52 14.6 0.692

Table 4: We report human evaluation and GPT-4’s qual-
ity assessment on 0th and 10th iteration of refinement
generation at Yor-En. We used Bias and Dskew estima-
tion to demonstrate bias found by human evaluation.

Human Evaluation Human GPT-3.5 Bias Dskew

0th Iteration -22.2 -2.61 19.6 0.803
10th Iteration -21.9 -0.03 21.9 0.885

Table 5: We report human evaluation and GPT-3.5-
Turbo’s quality assessment on the 0th and 10th iteration
of refinement generation at Yor-En. We used Bias and
Dskew estimation to demonstrate bias found by human
evaluation.

Human Evaluation Human Gemini Bias Dskew

0th Iteration -17.3 -8.92 9.62 0.355
10th Iteration -18.3 -0.72 17.6 0.766

Table 6: We report human evaluation and Gemini’s
quality assessment on the 0th and 10th iterations of
refinement generation at Yor-En. We used Bias and
Dskew estimation to demonstrate bias found by human
evaluation.
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In-context-learning prompt for LLM’s initial generation at translation:
Below is an instruction that describes a task.
### Instruction:
Translate Chinese text into English.
Chinese: 新华时评：把优秀返乡农民工打造成乡村振兴生力军-新华网
### English: Xinhua Commentary: Outstanding returning rural migrant workers can be a rural revitalization army -
Xinhuanet

Below is an instruction that describes a task.
### Instruction:
Translate English text into German.
English: You can come back any time as our chat service window is open 24/7
### German: Sie können jederzeit wiederkommen, da unser Chat-Service-Fenster täglich rund um die Uhr geöffnet ist

Below is an instruction that describes a task.
### Instruction:
Translate Yorba text into English.
Yorba: Won da Olori Skwodroni. Dilokrit Pattavee gege bi awako ofururu.
### English: The pilot was identified as Squadron Leader Dilokrit Pattavee.

Below is an instruction that describes a task.
### Instruction:
Translate Yoruba text into English.
Yorba: O ko ago ilekun WiFi, O wi.

Output for translation:
Can you please turn off the WiFi, I’m done.

Table 7: Those are the translation in context learning example we used to prompt all LLMs across four language
directions at Flores200. In this example, the source translation is Yourba text "O ko ago ilekun WiFi, O wi.". The
English output text is from LLaMA2-7B’s generation "Can you please turn off the WiFi, I’m done.".
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In-context-learning prompt for LLM’s Self-feedback at translation:
You are an annotator for the quality of machine translation. Your task is to identify errors and assess the quality of the
translation.
Based on the source segment and machine translation surrounded with triple backticks, identify error types in the
translation and classify them. The categories of errors are: accuracy (addition, mistranslation, omission, untranslated
text), fluency (character encoding, grammar, inconsistency, punctuation, register, spelling), locale convention (currency,
date, name, telephone, or time format) style (awkward), terminology (inappropriate for context, inconsistent use),
non-translation, other, or no-error.
Each error is classified as one of three categories: critical, major, and minor. Critical errors inhibit comprehension of the
text. Major errors disrupt the flow, but what the text is trying to say is still understandable. Minor errors are technically
errors, but do not disrupt the flow or hinder comprehension.

Source: “‘大众点评乌鲁木齐家居商场频道为您提供高铁居然之家地址，电话，营业时间等最新商户信息，
找装修公司，就上大众点评“‘ Translation: “‘Urumqi Home Furnishing Store Channel provides you with the latest
bussiness information such as the address, telephone number, bussiness hours, etc., of high-speed rail, and find a
decoration company, and go to the reviews.“‘ Annotate errors in the translation. MQM annotations:

"of high-speed rail" is a critical accuracy/addition error
"go to the reviews" is a major accuracy/mistranslation error
"etc.," is a minor style/awkwards error

Source: “‘I do apologise about this, we must gain permission from the account holder to discuss an order with another
person, I apologise if this was done previously, however, I would not be able to discuss this with yourself without the
account holders permission.“‘ Translation: “‘Ich entschuldige mich dafür, wir müssen die Erlaubnis einholen, um eine
Bestellung mit einer anderen Person zu besprechen. Ich entschuldige mich, falls dies zuvor geschehen wäre, aber ohne
die Erlaubnis des Kontoinhabers wäre ich nicht in der Lage, dies mit dir involvement.“‘ Annotate errors in the translation.
MQM annotations:

’involvement’ is a major accuracy/mistranslation error
’the account holder’ is a major accuracy/omission error
’wäre’ is a minor fluency/grammar error
’dir’ is a minor fluency/register error

Source: “‘Talks have resumed in Vienna to try to revive the nuclear pact, with both sides trying to gauge the prospects
of success after the latest exchanges in the stop-start negotiations.“‘ Translation: “‘Ve Vídni se ve Vídni obnovily
rozhovory o oživení jaderného paktu, přičemže obě partaje se snaží posoudit vyhlídky na úspěch po posledních výměnách
v jednáních.“‘ Annotate errors in the translation. MQM annotations:

’ve Vídni’ is a major accuracy/addition error
’the stop-start’ is a major accuracy/omission error
’partaje’ is a minor terminology/inappropriate for context error

Source: “‘Talks have resumed in Vienna to try to revive the nuclear pact, with both sides trying to gauge the prospects
of success after the latest exchanges in the stop-start negotiations.“‘ Translation: “‘Ve Vídni se ve Vídni obnovily
rozhovory o oživení jaderného paktu, přičemže obě partaje se snaží posoudit vyhlídky na úspěch po posledních výměnách
v jednáních.“‘ Annotate errors in the translation. MQM annotations:

Source: “‘O ko ago ilekun WiFi, O wi.“‘ Translation: “‘He locked the WiFi door, he said.“‘ Annotate errors in the
translation. MQM annotations:

Output for Feedback:
’He locked the WiFi door’ is a critical accuracy/mistranslation error

Table 8: Those are the feedback in context learning examples (three examples) that we used to prompt all LLMs
across four language directions at Flores200. In this example, the source translation is Yourba text "O ko ago ilekun
WiFi, O wi.". The English candidate text is "He locked the WiFi door" from GPT-4. GPT-4’s self-feedback outputs
"’He locked the WiFi door’ is a critical accuracy/mistranslation error".
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In-context-learning prompt for LLM’s refinement at translation:
Please fix all errors. You can rewrite translation if translation is bad.

Source: “‘大众点评乌鲁木齐家居商场频道为您提供高铁居然之家地址，电话，营业时间等最新商户信息，找
装修公司，就上大众点评“‘
Translation: “‘Urumqi Home Furnishing Store Channel provides you with the latest bussiness information such as
the address, telephone number, bussiness hours, etc., of high-speed rail, and find a decoration company, and go to the
reviews.“‘

Feedback: ’of high-speed rail’ is a critical accuracy/addition error
’go to the reviews’ is a major accuracy/mistranslation error
’etc.,’ is a minor style/awkward error

Improved Chinese-to-English translation:
Dianping Urumqi Renovation and Design Channel will provide you with the address, phone number, operation time and
other information of HSR Easyhome, and please come to Dianping if you are looking for a renovation company.

Source: “‘I do apologise about this, we must gain permission from the account holder to discuss an order with another
person, I apologise if this was done previously, however, I would not be able to discuss this with yourself without the
account holders permission.“‘
Translation: “‘Ich entschuldige mich dafür, wir müssen die Erlaubnis einholen, um eine Bestellung mit einer anderen
Person zu besprechen. Ich entschuldige mich, falls dies zuvor geschehen wäre, aber ohne die Erlaubnis des Kontoinhabers
wäre ich nicht in der Lage, dies mit dir involvement.“‘

Feedback:
’involvement’ is a major accuracy/mistranslation error
’the account holder’ is a major accuracy/omission error
’wäre’ is a minor fluency/grammar error
’dir’ is a minor fluency/register error

Improved English-to-German translation:
Ich bitte um Entschuldigung, aber wir benötigen das Einverständnis des Kontoinhabers, um eine Bestellung mit einer
anderen Person zu besprechen, falls es schon eingeholt wurde, entschuldige ich mich, aber ich kann dies ohne das
Einverständnis des Kontoinhabers nicht mit Ihnen besprechen.
Source: “‘Talks have resumed in Vienna to try to revive the nuclear pact, with both sides trying to gauge the prospects of
success after the latest exchanges in the stop-start negotiations.“‘
Translation: “‘Ve Vídni se ve Vídni obnovily rozhovory o oživení jaderného paktu, přičemže obě partaje se snaží posoudit
vyhlídky na úspěch po posledních výměnách v jednáních.“‘

Feedback:
’ve Vídni’ is a major accuracy/addition error
’the stop-start’ is a major accuracy/omission error
’partaje’ is a minor terminology/inappropriate for context error

Improved English-to-Cezch translation:
Ve Vídni byly obnoveny rozhovory o oživení jaderného paktu a obě strany se snaží odhadnout, jaké jsou vyhlídky na
úspěch po posledních výměnách názorů v rámci přerušených jednání.

Source: “‘O ko ago ilekun WiFi, O wi.“‘
Translation: ‘He locked the WiFi door, he said.“‘

Feedback:
’He locked the WiFi door’ is a critical accuracy/mistranslation error

Improved English-to-Yoruba translation:
Output for refinement:
"He secured the WiFi connection, he said."

Table 9: Those are the refinement in context learning examples (three examples) that we used to prompt all LLMs
across four language directions at Flores200. In this example, the source translation is Yourba text "O ko ago ilekun
WiFi, O wi.". The English text is GPT-4’s output "He locked the WiFi door.". We gathered GPT-4’s self-feedbak:
"’He locked the WiFi door’ is a critical accuracy/mistranslation error". GPT-4 outputs a refined output: "He secured
the WiFi connection, he said.", according to the feedback and prior step generation.
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Prompt for LLM’s initial generation for reasoning:
You are a competitive math problem solver. Please generate a step-by-step solution. Your final answer must be enclosed
in LaTeX’s boxed tag.

How many vertical asymptotes does the graph of y = 2
x2+x−6

have?

Output for math answer:
A vertical asymptote is a vertical line that the graph of a function approaches but never crosses. A function has a
vertical asymptote at x = k if it has infinite limits as x approaches k from the left or right.For the rational function
y = 2

x2+x−6
, we know that it could have vertical asymptotes wherever the denominator is zero, because division by

zero is undefined and yields infinity.Therefore, to find the vertical asymptotes, we solve the equation x2 + x− 6 = 0.
We apply factorization and get (x− 2)(x+ 3) = 0. This gives us x = 2 and x = −3.In any case, we need to check
if any of these could be holes instead of vertical asymptotes. This would be the case if x = 2 or x = −3 also made
the numerator zero. However, the numerator is a constant and won’t be zero. Therefore this function has two vertical
asymptotes at x = 2 and x = −3. The answer is 2 .

Table 10: This is the prompt we used to generate mathematical reasoning. The output in this example comes from
GPT-4. We first used this prompt to generate one reasoning path as initial generation. Then, we sample 10 different
reasoning paths and use majority vote to find the most confident answer. To generate self-feedback, we compare
majority voted answer and initial answer. If they are matched, feedback indicates answer is correct and no change
should be made. If they are not matched, the feedback indicates answer is wrong and inital answer will be replaced
by the majority voted answer. We alternate above two steps and iteratively refine the reasoning paths.

Concept-to-text prompt for LLM’s initial generation:
You are generating text based on specified words. Do not provide any explanations or text apart from the text output.

Please generate a sentence that contains the exact string matches for the following concepts:

[’vest’, ’snow’, ’remove’, ’silhouette’, ’dunk’, ’step’, ’item’, ’toddler’, ’plaster’, ’wall’, ’piece’, ’tool’, ’circle’, ’pull’,
’wrap’, ’headphone’, ’deck’, ’suit’, ’press’, ’mother’, ’pit’, ’cupcake’, ’priest’, ’rink’, ’counter’, ’rest’, ’piano’, ’wine’,
’serve’, ’winter’]

Output for Concept-to-Text generation:

In the winter, the toddler wearing a vest, pressed a piece of wet plaster against the wall in a circle, while his mother
baking a cupcake was removing the snow from the deck with a tool; switching steps to the rhythm of a piano piece
echoing from the headphones wrapped around her neck, she caught a glimpse of the priest serving wine, his silhouette
dunking a cupcake into a pit at the rink counter, under the restful gaze of a suit-clad man.

Table 11: This is the concept-to-text prompt we used to test all LLMs at Commongen Hard. This example contains
the output from GPT-4.
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Concept-to-text in context learning prompt for LLM’s self-feedback:
We want to create a sentence that contains all the specified concepts. Please provide feedback on the following sentences.
The feedback should list all missing concepts. If all concepts are covered, output ’all covered’

Concepts: [’dog’, ’frisbee’, ’catch’, ’throw’]
Generated Sentence: A dog leaps to catch a thrown frisbee.
Feedback: all covered

Concepts: [’dog’, ’frisbee’, ’catch’, ’throw’]
Generated Sentence: Two dogs are throwing frisbees at each other .
Feedback: [’catch’]

Concepts: [’vest’, ’snow’, ’remove’, ’silhouette’, ’dunk’, ’step’, ’item’, ’toddler’, ’plaster’, ’wall’, ’piece’, ’tool’, ’circle’,
’pull’, ’wrap’, ’headphone’, ’deck’, ’suit’, ’press’, ’mother’, ’pit’, ’cupcake’, ’priest’, ’rink’, ’counter’, ’rest’, ’piano’,
’wine’, ’serve’, ’winter’]
Generated Sentence: In the winter, the toddler wearing a vest, pressed a piece of wet plaster against the wall in a circle,
while his mother baking a cupcake was removing the snow from the deck with a tool; switching steps to the rhythm of a
piano piece echoing from the headphones wrapped around her neck, she caught a glimpse of the priest serving wine, his
silhouette dunking a cupcake into a pit at the rink counter, under the restful gaze of a suit-clad man.
Feedback:

Output for Concept-to-Text feedback:
all covered

Table 12: This is the in-context learing (ICL) concept-to-text prompt (two ICL examples) we used to generate
LLM’s self-feedback at Commongen Hard. This example contains the self-feedback from GPT-4.

Concept-to-text prompt for LLM’s refinement:
Concepts: [’fruit’, ’motorcycle’, ’perform’, ’jacket’, ’vehicle’, ’place’, ’mat’, ’walk’, ’world’, ’area’, ’kiss’, ’mother’,
’pass’, ’report’, ’club’, ’axis’, ’tricep’, ’patient’, ’listen’, ’owner’, ’uniform’, ’floor’, ’hamburger’, ’use’, ’wine’, ’cross’,
’bull’, ’sell’, ’lawn’, ’friend’]
Generated sentence: In a world where a fruit can perform like a motorcycle, I found my mother wearing a leather jacket,
passing by her vehicle to walk towards the place where she runs a club. Not far from that area, my friend, a patient
person, was ready to sell mats, used for gym workouts, especially for triceps. Being the owner of the shop, he always
wears a uniform. While I was listening to this report, sitting cross-legged on the floor and munching my hamburger, I
missed seeing a bull wandering on the lawn just outside. Just then, I received an unexpected kiss from my wife who
brought me a glass of wine from our cellar which also acts as an axis for all the happenings of my life.
Missing Concepts: [’use’, ’lawn’]
Please revise generated sentence which covers all missing concepts and all given concepts, with the exact string matches.
New sentence:

Output for Concept-to-Text refinement:
In a world where a fruit can perform like a motorcycle, I found my mother wearing a leather jacket, passing by her
vehicle to walk towards the place where she runs a club. Not far from that area, my friend, a patient person, was ready
to sell mats, used for gym workouts, especially for triceps. Being the owner of the shop, he always wears a uniform.
While I was listening to this report, sitting cross-legged on the floor and munching my hamburger, I missed seeing a bull
wandering on the lawn just outside. Just then, I received an unexpected kiss from my wife who brought me a glass of
wine from our cellar which also acts as an axis for all the happenings of my life.

Table 13: This is the concept-to-text refinement prompt we used to generate LLM’s refinement at Commongen Hard.
This example contains the refinement from GPT-4.
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