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Abstract

Recent studies show that self-feedback im-
proves large language models (LLMs) on cer-
tain tasks while worsens other tasks. We dis-
covered that such a contrary is due to LLM’s
bias towards their own output. In this paper,
we formally define LLM’s self-bias — the ten-
dency to favor its own generation — using two
statistics. We analyze six LLMs on transla-
tion, constrained text generation, and mathe-
matical reasoning tasks. We find that self-bias
is prevalent in all examined LLMs across mul-
tiple languages and tasks. Our analysis reveals
that while the self-refine pipeline improves the
fluency and understandability of model out-
puts, it further amplifies self-bias. To miti-
gate such biases, we discover that larger model
size and external feedback with accurate assess-
ment can significantly reduce bias in the self-
refine pipeline, leading to actual performance
improvement in downstream tasks.

1 Introduction

Large language models (LLMs) have shown strong
capabilities in many NLP tasks. While these mod-
els still make mistakes, recent studies show that
“self-refine” (also known as “self-reflection”) is
promising to rectify errors based on LLM’s self-
feedback (Madaan et al., 2023; Chen et al., 2023;
Shinn et al., 2023; Manakul et al., 2023; Pan et al.,
2023). Meanwhile, opposite study also shows that
LLMs fail to correct their mistakes and their perfor-
mance even gets worse after self-feedback (Huang
et al., 2023b). These contradictory results suggests
that LLM’s self-feedback is unreliable. Self-refine
procedure relies a model’s evaluation capability
on any generated text. We hypothesize that such
failure to self-correction is due to LLM’s bias to-
wards evaluating its own generation. This is con-
sistent with a prior finding that LM-based metrics
(e.g. BARTScore) exhibit “narcissism” during self-
evaluation, i.e., the metric model favors text gener-
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Figure 1: How LLM’s self-feedback inflates scores com-
pared to human assessment. Bias is the mean differ-
ence between LLM and human scores, while skewness
(Dskew) measures the asymmetry of their distribution
around zero. Non-biased estimation will have Dskew=0.

ated by the same underlying language model in the
context of summarization tasks (Liu et al., 2023b).
However, it remains unclear whether bias exists
universally in LLMs across a wide range of tasks.
How to quantify such biases? How does this “nar-
cissism” impact LLM’s self-refinement?

In this work, we define “self-bias” to the degree
that an LLM favors its own generation. We pro-
pose to use two principled statistics to estimate
self-bias in LLM’s self-refinement procedure. The
first one measures the degree of inflation in the
LLM’s self-evaluation compared to the true (hu-
man) evaluation. The second measures whether
LLM’s self-evaluation is skewed compared to the
ture estimate. Figure 1 illustrates these two statis-
tics. We examine self-bias scores on six diverse
LLMs, covering four languages across three dis-
tinct tasks: machine translation, constrained text
generation, and mathematical reasoning. We find
that self-bias is universal in self-refine and self-



rewarding pipelines, regardless of the languages
and tasks. This bias causes LLMs to optimize for
false positive corrections rather than improving the
actual output quality.

We further investigate what is the real benefit
of self-refine. We find that while the self-refine
pipeline improves the fluency and understandabil-
ity of model outputs, it does not necessarily lead to
intended improvements as specified in the prompt.
Moreover, LLMs may favor texts that mirror their
style, potentially leading to false positive optimiza-
tion and reduced diversity in text generation. To
mitigate the self-bias, we propose two solutions:
increasing the model size and incorporating ex-
ternal feedback to provide accurate assessment,
thereby directing the LLM towards more accurate
self-correction. Our contributions are:

1. We formally define the self-bias of an LLM us-
ing two principled estimated statistics.

2. We quantify self-biases for six diverse LLMs
and find that self-bias amplifies during self-
refine across many languages and tasks.

3. We observe two factors that contribute to self-
bias and pinpoint two directions to mitigate it
and elicit LLMs’ self-correction ability.

2 Related Work

Large language model self-correction. Recent
works demonstrate that LLLM can utilize its own
feedback signal to refine itself (Madaan et al., 2023;
Chen et al., 2023; Shinn et al., 2023). Wang et al.
(2023) further proposed to sample diverse reason-
ing paths and use a majority vote to find the most
confident answer. Huang et al. (2023a) leverages
self-consistency to further fine-tune the LLM on
the most confident reasoning path with diverse in-
struction formats. On the other hand, LLM’s self-
feedback can also be used as a reward signal to
further align LLM to follow instructions (Gulcehre
et al., 2023; Yuan et al., 2024).

Despite some demonstrations of performance im-
provements, most findings indicate that LLMs
struggle to rectify their initial mistakes, and
their performance even worsens after self-
correction (Huang et al., 2023b; Tyen et al., 2023;
Ke et al., 2023). This issue arises because the
quality of the model’s self-generated feedback is
bounded by its existing knowledge and abilities
(Stechly et al., 2023; Hong et al., 2023). Therefore,

internal feedback may not offer any extra advantage
for improving the results; it might even steer the
model away from the correct answer (Valmeekam
et al., 2023). However, prior works only had em-
pirical observations on this phenomenon, while
lacking a quantitative analysis. Moreover, prior
works only focus on specific tasks, such as reason-
ing or code generation. In this work, we are the first
to quantitatively analyze the self-bias of different
LLMs across three tasks and four languages, which
provides a novel and generalizable view to address
the perils of self-refine.

LLMs as evaluators. Liuetal. (2023a) leverages
GPT-4 to evaluate text through chain-of-thoughts
prompting. Fu et al. (2023) leverages GPT-3’s se-
quence likelihood to estimate model performance.
Kocmi and Federmann (2023); Xu et al. (2023) de-
signed detailed error schemes for LLM to output
fine-grained error annotations. Despite the popular-
ity of using LLMs as evaluators, Koo et al. (2023)
pointed out that LLLM exhibits cognitive bias when
evaluating the text, misaligning from human pref-
erence. Zheng et al. (2023) pointed out LLMs have
verbosity and self-enhancement bias, which makes
them prefer long and verbose answers and answers
generated by themselves. Chang et al. (2023) found
out that LLM prefers memorized text over non-
memorized text, creating unfair judgments over
texts. Deutsch et al. (2022); Liu et al. (2023b)
point out that reference-free metrics are inherently
biased on their own outputs.

Although the above empirical studies provide valu-
able insights, they lack a formal definition to quan-
tify those biases nor provide a connection to the
self-refine framework. In this work, we define and
quantify self-bias and provide the first in-depth
analysis of its impact on the self-refine pipeline.
We analyze potential bias attributions and pinpoint
two mitigation directions.

3  Quantify Self-Bias

This section outlines the approach used to quan-
tify the self-bias exhibited by LLLMs in an iterative
self-reflection pipeline. We employ statistical bias
and distance skewness (Szekely and Moéri, 2006)
estimation to measure this bias.

3.1 Iterative Self-Refinement

The self-refine framework operates by first gener-
ating a response to a given prompt. It then iterates



between feedback and refinement steps, continuing
until it reaches a predetermined number of itera-
tions. At each refinement step, the refined output
will only be accepted if it demonstrates superior
quality compared to the previously generated text.
The quality of the text is assessed through the self-
feedback from the language model itself.

3.2 Bias Estimation

We estimate the self-bias of LLMs using the statisti-
cal bias definition. This bias is characterized by the
disparity between an LLM’s predicted quality score
and the expected quality score. More specifically,
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where 6; is an LLM’s quality prediction at sam-
ple i and E(6;) denotes the expected value of the
sample quality at 7. Ideally, E(é) should be de-
rived from human annotations (e.g., multidimen-
sional quality metrics (MQM) human annotations
(Freitag et al., 2021) for machine translation) or
predefined criteria (e.g., word coverage for con-
strained text generation (Madaan et al., 2023)).
The LLM’s quality prediction is expected to pre-
cisely follow the human annotation procedure or
predefined criteria, ensuring consistency between
0 and E(0). When Bias(0) > 0, the LLM assigns
a higher quality score to its own samples compared
to the expected quality score. When Bias(f) < 0,
the LLM under-estimates its quality compared to
the expected quality score. The larger the value
of Bias(), the more pronounced the LLM’s bias
against its own samples. The unbiased sample

should have Bias(#) = 0.

3.3 Distance Skewness Estimation

In an ideal scenario, an unbiased quality estima-
tion would have E(6) = 0, resulting in a perfectly
symmetric distribution when plotting 6; — E(0;).
However, E(f;) = 0 does not guarantee a symmet-
ric distribution (e.g., one tail could be long and
thin, while the other is short and fat, yet they bal-
ance out overall). Therefore, we introduce another
meta-metric, distance §kewness, to measure the

asymmetry of 0; — E(6;)’s distribution. Specifi-
cally,
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where x; is a random variable drawn from

6; — E(6;) and x; is a random variable drawn from
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0; — E(0;) — x;. dSkew,,(X) measures the asym-
metry of X with respect to . Distance skewness
ranges between 0 and 1. dSkew, (X) equals O if
and only if X is diagonally distributed respect to ~.
dSkew,, (X ) equals 1 if and only if X is distributed
at a constant on one side of . A higher distance
skewness indicates a more asymmetric distribution
of 0; — E(6;). In our experimental setup, we use
both bias and distance skewness to measure the

model’s bias towards its quality prediction.

4 Analyze LLM with Self-Bias

4.1 Experimental Setup

We include three closed-source LLMs (GPT-4
(Achiam et al., 2023), GPT-3.5-Turbo and Gemini
(Team et al., 2023)) and three open-source LLMs
(LLaMA2-7B/13B/70B (Touvron et al., 2023),
Mistral-MOE (Jiang et al., 2024) and Deepseek-
MOE (Dai et al., 2024)). These models have been
shown to have strong instruction-following capa-
bilities (Madaan et al., 2023; Shinn et al., 2023),
making them well-suited to demonstrate self-bias.

For each model, we first prompt it to produce the
initial generation. Then, we prompt the model
to generate the feedback for the initial generation.
The model takes in both the feedback and the prior
step generation to produce a refined output. We
will only accept refinement if the feedback score is
improved on the refined output. We listed specific
model API/checkpoints in Appendix Section A.

Machine Translation. We evaluated LLMs on
Flores-200 (NLLB Team, 2022) dataset with four
language pairs: Yoruba to English (Yor-En), Ja-
vanese to English (Jav-En), Armenian to English
(Arm-En), and Igbo to English (Ig-En), using 100
test examples per language pair. We concentrate on
low-to-medium resource language pairs, as Kocmi
et al. (2023) indicate that LLMs like GPT-4 already
perform at a nearly human-like level in high re-
source language pairs such as Chinese-to-English,
leaving limited potential for further improvement
through self-refine.

To ensure high-quality evaluations, we utilized
feedback prompts based on the MQM human an-
notation from Freitag et al. (2021), as in Kocmi
and Federmann (2023). LLMs will input source
text and candidate text and output feedback, includ-
ing error location, error type, and severity labels.
We adopt the same error scoring as Freitag et al.
(2021), assigning —1 for minor errors and —5 for



major errors, with a score range of 0 to —25 (0 for
perfect translations, —25 for samples with more
than five severe errors). The details of the prompts
are provided in the Appendix Table 7, 8 and 9.

Ideally, human raters would have evaluated each
sample, but due to cost and scalability constraints,
we utilized the reference-based learned metric
BLEURT (Sellam et al., 2020) as an approximation
of human judgments. BLEURT generates quality
scores based on the similarity between candidate
and reference translations. To align BLEURT’s
score distribution with that of human ratings, we
employed quantile mapping (Cannon et al., 2015),
yielding a score range from O to -25. Although au-
tomatic metrics are primarily used, we also conduct
modified MQM human evaluations (Freitag et al.,
2021) for validation purposes. Our bias estimation
ranged from -25 to 25. Details on quantile mapping
are provided in the Appendix Section B.

Constrained Text Generation. We conducted
experiments on commonsense text generation, fol-
lowing (Lin et al., 2020). We tested LLMs on 100
examples from the CommonGen Hard dataset. For
each testing instance, the large language model
(LLM) received approximately 30 concepts and
was tasked with generating a fluent and logically
sound text. To generate the initial output, we
adopted a similar prompt design to that of (Lin
et al., 2020). Next, we provided two ICL feedback
examples to help the LLM identify missing con-
cepts in its initial output. In each feedback example,
the LLM was given concept words and the previ-
ous generation and asked to indicate any missing
concepts. This feedback allowed the LLM to revise
its output and generate a text with better coverage
of the input concepts. The details of the prompts
are included in the Appendix Table 11, 12 and 13.

To evaluate the coverage of the generated texts,
we adopted the evaluation metric used in (Madaan
etal., 2023). This metric uses strict string matching
to determine whether each concept word from the
input appears in the generated text (metric outputs 1
if all concepts are covered and 0 otherwise). From
feedback of LLM’s missing concepts, we assigned
a binary score (0 or 1) to each text based on its full
coverage of concepts. Since our string-matching
metric and LLM feedback score were on the same
scale, we were able to compute bias and distance
skewness directly. The range of bias estimation is
between —1 to 1.

Mathematical Reasoning. We conducted exper-
iments on mathematical reasoning. We tested
LLMs on 100 examples from the MATH testing
set (Hendrycks et al., 2021). For each instance,
LLM receives a problem statement and generates
a step-by-step solution with a final answer. In this
task, we slightly modify the self-refine pipeline by
replacing the self-evaluation with self-consistency
verification (Huang et al., 2023a). Namely, with the
initial solution, LLM will generate an additional ten
reasoning paths and a majority vote for a proposed
answer. If the proposed answer is inconsistent with
the prior solution, we will output a binary score of
0, and the initial answer will be replaced by the pro-
posed answer. Otherwise, we will output a score of
1, and no change will be made to the initial answer.
In each iteration, the previous solution will be com-
pared against the ground truth answer, outputting
1 if they are matched and 0 otherwise. Therefore,
we can directly compute bias and distance skew-
ness. The range of bias estimation is between —1
to 1. The details of the prompts are included in the
Appendix Table 10.

4.2 Self-Bias Amplification at Iterative
Refinement

Machine Translation. In Figure 2, we illustrate
that all large language models (LLMs) exhibit a
self-bias in the self-refine pipeline. Notably, open-
source LLLMs and GPT-3.5-Turbo tend to exhibit
higher levels of self-bias throughout iterations than
stronger instruction-following LLMs, such as GPT-
4 and Gemini. This suggests that GPT-4 and Gem-
ini possess a certain level of capability in resist-
ing self-bias. However, despite some robustness
demonstrated by GPT-4 and Gemini, we observe
a consistent amplification of self-bias through the
self-refine pipeline across four language directions,
indicating that even these advanced LL.Ms are sus-
ceptible to self-bias amplification.

In Figure 3, we illustrate a comparison be-
tween GPT-4 and Gemini’s quality assessments
of their own outputs and performance measured by
reference-based BLEURT over ten iterations. Our
findings suggest that the primary reason for the am-
plification of bias during self-refine iteration is that
actual performance does not improve through itera-
tions. Instead, GPT-4 and Gemini mistakenly per-
ceive performance improvements in their refined
outputs. This discrepancy between the false posi-
tive performance measure and the true performance
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Figure 2: Average Bias and Dskew estimations for Yor-
En, Jav-En, Arm-En, and Ig-En translations on FLo-
res200, with the z-axis showing self-refine steps, re-
veal that all LLMs exhibit self-bias, where open-source
LLMs exhibit higher levels than GPT-4 and Gemini.
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Figure 3: GPT-4 and Gemini overestimate improve-
ments in self-refined outputs, leading to amplified bias
over iterations compared to actual performance mea-
sured by BLEURT.

measure grows larger with each iteration. We in-
clude full bias and distance skewness estimations
of four translation language pairs in Appendix Fig-
ure 10. The appendix Section C details Gemini’s
shift from right-skewed to left-skewed distribution,
resulting in a decrease in distance skewness during
early iterations and an increase in later ones.

Constrained Text Generation. Figure 4 depicts
the amplification of self-bias through ten self-refine
iterations in constrained text generation for GPT-
3.5-Turbo, GPT-4, and Gemini. Notably, GPT-4
exhibits a higher bias estimation at earlier iterations
compared to GPT-3.5-Turbo and Gemini. This can
be attributed to GPT-4’s higher coverage ratio at
initial generation (approximately 40%) compared
to its counterparts (GPT-3.5-Turbo at around 2%).
Consequently, GPT-4 struggles to identify a few
missing concepts, while GPT-3.5-Turbo and Gem-
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Figure 4: We evaluate the bias and distance skewness
of generated texts produced by GPT-4, GPT-3.5-Turbo,
and Gemini on the CommonGen dataset, across self-
refinement steps. Additionally, we report the coverage
of GPT-3.5-Turbo and GPT-4 compared to true concept
coverage. We show that the rate of LLM’s self-estimated
improvements is much higher than the true coverage
improvements, which leads to self-bias amplification.

ini have more coverage issues and can easily iden-
tify missing input concepts.

As GPT-3.5-Turbo reaches 20% coverage around
the Sth iteration, it experiences a significant rise in
bias and skewness estimation. It is worth noting
that the rate of LLM’s self-estimated improvements
is much higher than the true coverage improve-
ments. This phenomenon results in a saturation of
performance improvements after the 5th iteration
for both GPT-4 and GPT-3.5-Turbo.

Mathematical Reasoning. Figure 5 illustrates
that all large language models (LLMs) exhibit an
increase in bias and skewness estimation in the iter-
ative self-consistency pipeline. This suggests that
LLMs introduce self-biases towards certain reason-
ing paths during self-refine, ultimately leading to a
biased ensemble across multiple reasoning paths.

Human Evaluation. We employ one graduate
student to annotate 50 examples from the Oth and
10th iteration of GPT-4, GPT-3.5-Turbo and Gem-
ini’s outputs at Yor-En, respectively. The human
rater compares candidate text against reference and
labels error location, error type, and severity la-
bels at candidate text. The scoring scheme follows
MQM style (Freitag et al., 2021), which matches
the scoring range of LLM’s feedback. Our human
score indicates that all three LLMs have not re-
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Figure 5: Bias and distance skewness in generated texts
from GPT-4, GPT-3.5-Turbo, and Gemini are measured
on MATH testing set throughout the self-refinement
steps. Results show an increase in bias and skewness
during iterative self-consistency, causing biased ensem-
bles in reasoning paths.

ceived measurable improvements via the self-refine
pipeline (The raw human scores are included in the
Appendix Table 4, 5 and 6), which is consistent
with the BLEURT assessment. In Table 1, both
increasing bias and distance skewness estimation
demonstrate that all LLMs have significantly in-
creased their self-bias with 10 iterative refinements.
In the following case study, we examine self-bias
in GPT-4. Our observations reveal that GPT-4’s
self-feedback mechanism led to the optimization
of false positives, resulting in an amplification of
self-bias over three iterations. In section 5, we
demonstrate two potential alleviation that we can
use to mitigate this self-bias.

Self-bias Example at GPT-4

Yoruba text: Ni bayii a ni awon eku oloshu merin
ti ko ni dayabetesi telele to ti ni ayabetesi,” o she
afikun.

Reference English text: "We now have 4-month-old
mice that are non-diabetic that used to be diabetic,"
he added.

(Red span indicates a major error and blue span
indicates a minor error annotated by GPT-4.)

GPT-4’s 1st generation [Human: -11, GPT4: -11,
Bias: 0]: "At this point, we have four rats without
diabetes that have developed diabetes," he added.

GPT-4’s 1st refinement [Human: -12, GPT4: -10,
Bias: 2]: "Currently, we have four healthy rats that
have developed diabetes," he clarified.

GPT-4’s 2nd refinement [Human: -11, GPT4: 0,
Bias: 11]: "Presently, we have four non-diabetic rats
that have developed diabetes," he elaborated.

\

4.3 What improves after Self-Refine?

Self-Refine can improve fluency and understand-
ability but not quality. We demonstrate that
LLM with biased feedback can impede the model’s

GPT4 GPT-3.5-Turbo Gemini
Iterations Bias Dskew Bias Dskew  Bias Dskew
Oth 8.06 0.452 19.6 0.803 9.62 0.455
10th 146 0.692 219 0.885 17.6  0.766

Table 1: We report human evaluation on GPT-4, GPT-
3.5-Turbo and Gemini’s quality assessment on Oth and
10th iteration of refinement generation at Yor-En. We
used Bias and Dskew estimation to demonstrate bias
found by human evaluation. All LLMs have signifi-
cantly increased self-bias after 10 iterations.
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Figure 6: We measure the fluency and understandability
aspects of GPT-4, GPT-3.5-Turbo, and Gemini’s gener-
ated texts at Yor-En through self-refine steps. Despite no
gains in quality, all LLMs have consistent performance
improvements in fluency and understandability.

self-refine process. This raises a natural question:
if an LLLM does not improve its generation quality,
does it improve in any other aspects throughout the
iterative refine phase? To investigate this, we uti-
lize the learned metric UniEval (Zhong et al., 2022)
to measure the LL.M’s improvement beyond qual-
ity metrics. UniEval, a multidimensional learned
metric, estimates various evaluation dimensions,
including fluency, understandability, engagement
and more. We focus on two dimensions, fluency
and understandability, which UniEval is not trained
on task-specific data. Our results, illustrated in
Figure 6, show that GPT-4, GPT-3.5-Turbo, and
Gemini consistently exhibit improvements in both
fluency and understandability. This suggests an
alternative perspective on the self-refine pipeline,
indicating that while an LLM may not strictly ad-
here to instruction-following in terms of quality
improvements, it can still improve certain intrinsic
text qualities, such as fluency and understandability.

LLM:s favor texts that follow their style. To ex-
plore this propensity, we conducted experiments to
investigate if LLMs display a preference for outputs
that align with their generation style. We asked the
GPT4, GPT-3.5-Turbo, and Gemini model to para-
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Figure 7: We used Madlad400-10b to translate 100 Yor-
En translations and asked GPT-4, GPT-3.5-Turbo, and
Gemini to paraphrase 100 translations. We show the
BLEURT and LLM scores before and after paraphras-
ing. In the lower right of the figure, we show the bias
estimation before and after paraphrasing. GPT-4 and
Gemini have negative self-bias before paraphrasing. Af-
ter paraphrasing, all LLMs increase their bias against
their paraphrased outputs.

phrase external translation outputs. In this prompt,
LLMs aimed not to improve the quality of trans-
lations but rather to rewrite sentences in their cor-
responding styles. Using the multilingual trans-
lation system Madlad400-10b (Kudugunta et al.,
2023), we produced 100 Yoruba-to-English transla-
tions. Subsequently, each LLM was instructed to
paraphrase the generated sentences. Our findings,
shown in Figure 7, reveal that GPT-4 and Gemini
have negative self-bias before paraphrasing. How-
ever, after paraphrasing, all LLMs showed an in-
creased bias against their paraphrased outputs. This
is mainly attributed to a decline in quality perfor-
mance post-paraphrasing, with LLMs erroneously
perceiving these paraphrased outputs as indicative
of improvements.

4.4 Self-Reward Execrates Self-Bias

In this section, we will explore the concept of self-
bias in the self-rewarding pipeline, as outlined in
(Yuan et al., 2024). The pipeline begins with an
instruction fine-tuned large language model (LLM).
Initially, we generate k£ candidate responses for
each input provided to the LLM. Next, the same
LLM is used as a reward model to identify the best-
performing candidate or to rank pairs within the
collection of samples. Finally, various training ob-
jectives are applied to further train the LLM using

DeepSeek-MOE  Mistral-MOE  LLaMA2-7B
Sample Size Bias Dskew Bias Dskew Bias Dskew
1 14.8 0.735 124 0483 875 0.491

4 16.1 0.795 10.1 0490 14.1 0.580

8 16.7 0.800 13.0 0.610 19.8 0.810

16 18.0 0.830 169 0.730  20.7 0.840

32 18.5 0.840 185 0.790 209 0.850

Table 2: We report Bias and Dskew on Deepseek-MOE,
Mistral-MOE and LLaMA2-7B’s self-feedback with
varying sample size at Yor-En. Our results indicate that
both bias and distance skewness tend to increase as the
sample size grows larger.

the top-performing samples.

To illustrate the potential drawbacks of this
pipeline, we carried out experiments on Yoruba
to English translation task using three open-
source LLMs: Deepseek-MOE, MistralMOE, and
LLaMAZ2-7B. For each source input, we sampled
k candidate responses from each model. Subse-
quently, we obtained self-feedback scores on these
candidates employing the prompt detailed in Sec-
tion 4.1 and computed the corresponding self-bias.
We varied k across 1,4, 8,16, and 32 to examine
the influence of sample size on the self-bias within
the self-rewarding pipeline.

As shown in Table 2, we observed that all LLMs
displayed an increase in bias and distance skewness
as the sample size increased. This occurs when the
LLM has a biased estimation of its self-feedback,
and this bias can be amplified when the sample size
is increased to find the top-performing candidate
according to the self-feedback. Notably, selecting
samples from a larger pool, e.g. a sample size of
32, significantly increases this bias compared to se-
lections from a smaller pool, such as a sample size
of 4. When the LLM optimizes over these samples,
it can further exacerbate its self-bias and generate
samples that are biased by its self-feedback.

5 Alleviating Self-Bias

External Feedback Reduces Self-Bias. We
demonstrated that self-feedback from a large lan-
guage model can self-amplify bias with iterative
refinement. We aim to answer if external feedback
with low bias estimation can improve the model’s
generation performance and elicit self-correction
capability. We leverage a reference-based feed-
back model, InstructScore (Xu et al., 2023), to
provide external feedback. InstructScore will take
in both reference and candidate text and output fine-
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Figure 8: Using an external feedback model, we pro-
vide external feedback for GPT-4, GPT-3.5-Turbo, and
Gemini in Yoruba-to-English translation task, across
5 refinement steps. We compare the models’ true
performance (measured by BLEURT) against external
feedback-evaluated performance and self-feedback eval-
uated performance. Additionally, we plot the bias esti-
mation for the three LLMs, considering both feedback
types over 5 iterative refinement steps.

grained feedback, including error location, severity
label, and error type. To ensure a fair comparison,
we parse all outputs with the same format as self-
feedback. Since InstructScore can access reference
text to provide feedback, we recognize this external
feedback as oracle feedback. However, models will
only receive information about error location, error
type, and severity labels. Therefore, refinement
still relies on LL.M’s self-correction capability.

In Figure 8, we demonstrate that external feedback
with accurate assessment can significantly lower
the model’s bias at iterative refinement (shown at
the lower right of the figure. All dotted curves
are below solid curves with corresponding colors).
Interestingly, both Gemini and GPT-4’s bias estima-
tion is improved throughout the refinement process,
as the external feedback model can over-penalize
low-quality outputs. As refinement proceeds, the
external feedback model converges to BLEURT
quality assessment that samples achieve improved
quality. Most importantly, we demonstrate that
all LLMs with external feedback can elicit their
self-correction ability with consistent BLEURT im-
provements at self-refine iterations. We include a
case study example in Appendix Table 3.
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Figure 9: We show that bias and distance skewness
estimation on LLaMA-2 7B, 13B, and 70B models at
Yor-En translation across self-refinement steps. LLM
with larger parameter size can have less self-bias.

Larger Model Reduces Self-Bias. In Figure
9, we demonstrate that LLMs with larger pa-
rameter size can have less self-bias throughout
self-refinement steps. Specifically, we tested the
LLaMA?2 models with 7B, 13B, and 70B pa-
rameters on Yoruba-to-English (Yor-En) transla-
tion tasks. Our findings indicate that while the
LLaMAZ2-70B model exhibits self-bias in the ear-
lier iterations, its self-bias begins to plateau af-
ter the 5Sth iteration. In contrast, the 7B and
13B models continue to amplify their self-bias in
later iterations. This observation aligns with prior
work (Huang et al., 2023a), which posited that
larger LLMs possess better self-refinement capabil-
ities. Our study contributes to this discussion from
the perspective of self-bias, proposing that larger
LLMs are more resilient to self-bias. Consequently,
they can assess their own outputs more accurately
and possess a greater capacity for self-correction.

6 Conclusion

In this study, we define and quantify self-bias in
LLMs with two principled estimated statistics. Our
experiments across six LLM families, four lan-
guages, and three tasks reveal that self-bias is preva-
lent in self-refine or self-rewarding pipelines. This
biased self-feedback leads to false positive objec-
tives, hindering performance improvements during
iterative refinement. Further analysis reveals that
while LLM improves fluency and understanding of
its generated text, they do not necessarily progress
in the intended direction, such as improving quality
in machine translation or expanding coverage in
concept-to-word generation. Instead, LLMs tend
to favor texts that adhere to their inherent styles. Fi-
nally, our research suggests that larger models are
more resistant to self-bias, and incorporating exter-
nal feedback significantly reduces bias, leading to
performance improvements in LLMs.



7 Limitations

In this study, we focus on quantifying the self-bias
exhibited by LLMs in the self-refine pipeline. We
demonstrate that self-bias will be amplified in the
self-refine or self-rewarding pipeline and negatively
impacts the optimization process. However, in sub-
sequent research, it would be worthwhile to explore
the measurement of bias that exists between differ-
ent LLMs, as well as the bias that arises when
comparing original models and their knowledge-
distilled counterparts. The following questions re-
main open: Does LLM have more bias towards
LLMs that follow the same pretraining procedure,
data, or learning objectives? Does LLM have more
bias to the LLMs within the same language model
families? Do knowledge-distilled LLMs have more
biases over the original LLMs, such as Vicuna to
GPT4 or Alpaca to ChatGPT? We leave these inter-
esting avenues for future research.

8 Ethical Statement

All the benchmark data that we used during exper-
iments is publicly available. We assure that the
benchmark data does not contain risk or toxic con-
tent. The annotater was compensated fairly and
did not disclose any privacy information during the
annotation process. All the open sourced models
can be accessed online and all the closed source
models have publicly accessible APIs. The anno-
taters were allowed to label sensitive information if
necessary. The annotater is fully aware that the data
we collected from him/her will be used for research
purposes. The total human annotation period took
six hours and the annotator was paid above local
minimum wage. We used Mistral Medium, Gram-
marly and ChatGPT API to polish some of our
writings.

The findings of this research have far-reaching im-
plications for the broader linguistic and technolog-
ical communities, particularly in the preservation
and revitalization of endangered or low-resource
languages. By identifying and mitigating self-bias
in large language models (LLMs), this work paves
the way for significant improvements in machine
translation for languages that are underrepresented
in digital platforms and datasets.

The ability to reduce bias in the self-refine pipeline
of LLMs can lead to more accurate and nuanced
translations, thereby enhancing the quality and ac-
cessibility of digital content in low-resource lan-

guages. This advancement is critical for preserving
the cultural heritage and knowledge embodied in
these languages, which are at risk of disappearing.
Through improved translation capabilities, commu-
nities can more easily access global information
in their native languages, fostering educational op-
portunities and cultural exchange. This contributes
to the preservation of linguistic diversity and pro-
motes a more inclusive digital ecosystem.
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A Model API/Checkpoints

This section provides a pointer to checkpoints
that we used during experiment. All open-
source models are available on the Hugging
Face platform. For LLaMA2, we use "meta-
llama/Llama-2-(7, 13, 70)b-chat-hf" respectively.
For Mistral MOE, we use "mistralai/Mixtral-
8x7B-Instruct-v0.1". For Deepseek_MOE, we
use "deepseek-ai/deepseek-moe-16b-chat". For
InstructScore, we use "xul998hz/InstructScore".
For the translation model Madlad400-10b, we
use "google/madlad400-10b-mt". We used GPT-
3.5-Turbo and GPT-4 from OpenAl platform
(https://platform.openai.com). We use gemini-pro
from Google Gemini APIL

B Quantile Mapping

While BLEURT (Sellam et al., 2020) correlates
highly with human judgments (Freitag et al., 2022),
its scale of roughly O to 1 is incompatible with the
MQM human annotations, which range from -25 to
0. A linear mapping is not feasible, as the BLEURT
score is not calibrated to the human score, meaning
a BLEURT score of 0.8 does not correspond to -5
in MQM annotations.

To address this issue, we employ quantile mapping
(Cannon et al., 2015) to transform the BLEURT
score into the distribution of human scores. This
method involves learning a mapping function that
maps the quantiles or percentiles of the predictive
distribution to those of the observed distribution. In
this case, our predictive distribution is derived from
the BLEURT score distribution, while our observed
distribution comes from the corresponding human
score distribution.

We utilize the WMT22 shared metric task (Freitag
et al., 2022) to obtain mapped BLEURT-human
scoring pairs. In this shared metric task, each trans-
lation generated by different translation model is
rated by humans using the MQM human rating
scale. We also run BLEURT on the same set of
translations to obtain BLEURT scores, resulting in
28125 mapped BLEURT-human scoring pairs.

We then perform the following steps: 1) Separately
sort the data of the two distributions in ascend-
ing order. 2) Compute the cumulative distribution
function (CDF) for each distribution. 3) Learn an
interpolation function that maps the percentiles of
the first distribution to the percentiles of the sec-

12

ond distribution. 4) Apply the mapping function to
the values drawn from the predictive distribution
(BLEURT score distribution) to obtain the corre-
sponding values in the observed distribution (hu-
man MQM score distribution).

This process maps the BLEURT score distribu-
tion to the human score distribution (from -25
to 0) while preserving the relative ordering of
BLEURT scores. In our experiments, we used the
latest BLEURT model, BLEURT-20 checkpoint
(Pu et al., 2021), which demonstrates the highest
correlation to the human judgments among its vari-
ants.

C Gemini’s Skewness at Translation

Specifically, in the Java-English (Jav-En) language
pair, Gemini initially assigns lower quality scores
to its output compared to BLEURT assessments
during early iterations, resulting in an underesti-
mation of output performance. This phenomenon
accounts for the decrease in distance skewness at
the beginning, as the right-skewed distribution be-
comes more neutral. However, as bias accumulates
in later iterations, the distribution shifts towards a
left-skewed distribution, leading to an increase in
distance skewness.
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Figure 10: Full Bias and Dskew estimations for Yor-En, Jav-En, Arm-En, and Ig-En translations on FLores200,
with the z-axis showing self-refine steps, reveal that all LLMs exhibit self-bias, where open-source LLMs exhibit

higher levels than GPT-4 and Gemini.

External Feedback Example at GPT-4

Yoruba text: Ni bayii a ni awon eku oloshu merin
ti ko ni dayabetesi telele to ti ni ayabetesi,” o she
afikun.

Reference English text: "We now have 4-month-old
mice that are non-diabetic that used to be diabetic,"
he added.

(Red span indicates a major error and blue span
indicates a minor error annotated by GPT-4.)

GPT-4’s 1st generation [Human: -11, InstructScore:
-10, Bias: 1]: "At this point, we have four rats
without diabetes that have developed diabetes," he
added.

GPT-4’s 1st refinement [Human: -2, InstructScore:
-6, Bias: -4]: "At this point, we have four mice
without diabetes that were diabetic," he added.

GPT-4’s 2nd refinement [Human: -1, InstructScore:
-1, Bias: 0]: "We now have 4-month-old mice that are
non-diabetic that were diabetic," he added.

Table 3: This case study demonstrates that external feed-
back (oracle) from InstructScore (Xu et al., 2023) can
remain low self-bias during iterative self-refine. By
providing accurate error type, error location, and sever-
ity labels, InstructScore effectively elicits GPT-4’s self-
correction capability and improves its translation quality.
Despite InstructScore’s oracle-like role (which it can
access reference text to make error annotations), it does
not provide explicit corrections, requiring GPT-4 to rely
on its internal knowledge for corrections.

Human Evaluation Human GPT-4 Bias Dskew
Oth Iteration -15.0 -6.92 8.06 0.452
10th Iteration -15.1 -0.52 14.6  0.692

Table 4: We report human evaluation and GPT-4’s qual-
ity assessment on Oth and 10th iteration of refinement
generation at Yor-En. We used Bias and Dskew estima-
tion to demonstrate bias found by human evaluation.

Human Evaluation Human GPT-3.5 Bias Dskew
Oth Iteration -22.2 -2.61 19.6 0.803
10th Iteration -21.9 -0.03 21.9 0.885

Table 5: We report human evaluation and GPT-3.5-
Turbo’s quality assessment on the Oth and 10th iteration
of refinement generation at Yor-En. We used Bias and
Dskew estimation to demonstrate bias found by human
evaluation.

Human Evaluation Human Gemini Bias Dskew
Oth Iteration -17.3 -8.92 9.62 0.355
10th Iteration -18.3 -0.72 17.6  0.766

Table 6: We report human evaluation and Gemini’s
quality assessment on the Oth and 10th iterations of
refinement generation at Yor-En. We used Bias and
Dskew estimation to demonstrate bias found by human
evaluation.



In-context-learning prompt for LLM’s initial generation at translation:

Below is an instruction that describes a task.

### Instruction:

Translate Chinese text into English.

Chinese: FriemfiF: JEMFHIR 2 RIETITEM 2 MR E-Fem

### English: Xinhua Commentary: Outstanding returning rural migrant workers can be a rural revitalization army -
Xinhuanet

Below is an instruction that describes a task.

### Instruction:

Translate English text into German.

English: You can come back any time as our chat service window is open 24/7

### German: Sie konnen jederzeit wiederkommen, da unser Chat-Service-Fenster tiglich rund um die Uhr geoffnet ist

Below is an instruction that describes a task.

#i## Instruction:

Translate Yorba text into English.

Yorba: Won da Olori Skwodroni. Dilokrit Pattavee gege bi awako ofururu.
### English: The pilot was identified as Squadron Leader Dilokrit Pattavee.

Below is an instruction that describes a task.
### Instruction:

Translate Yoruba text into English.

Yorba: O ko ago ilekun WiFi, O wi.

Output for translation:
Can you please turn off the WiFi, I'm done.

Table 7: Those are the translation in context learning example we used to prompt all LLMs across four language
directions at Flores200. In this example, the source translation is Yourba text "O ko ago ilekun WiFi, O wi.". The
English output text is from LLaMA2-7B’s generation "Can you please turn off the WiFi, I’'m done.".
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In-context-learning prompt for LLM’s Self-feedback at translation:

You are an annotator for the quality of machine translation. Your task is to identify errors and assess the quality of the
translation.

Based on the source segment and machine translation surrounded with triple backticks, identify error types in the
translation and classify them. The categories of errors are: accuracy (addition, mistranslation, omission, untranslated
text), fluency (character encoding, grammar, inconsistency, punctuation, register, spelling), locale convention (currency,
date, name, telephone, or time format) style (awkward), terminology (inappropriate for context, inconsistent use),
non-translation, other, or no-error.

Each error is classified as one of three categories: critical, major, and minor. Critical errors inhibit comprehension of the
text. Major errors disrupt the flow, but what the text is trying to say is still understandable. Minor errors are technically
errors, but do not disrupt the flow or hinder comprehension.

Source: “‘ KA A& ARTFRKERIZINE W EREFHRERZ KA, BiE, EUNESFEHHAEE,
WAEAF], B b KA IF Translation: *““Urumgqi Home Furnishing Store Channel provides you with the latest
bussiness information such as the address, telephone number, bussiness hours, etc., of high-speed rail, and find a
decoration company, and go to the reviews.“‘ Annotate errors in the translation. MQM annotations:

"of high-speed rail" is a critical accuracy/addition error
"go to the reviews" is a major accuracy/mistranslation error
"etc.," is a minor style/awkwards error

Source: “‘I do apologise about this, we must gain permission from the account holder to discuss an order with another
person, I apologise if this was done previously, however, I would not be able to discuss this with yourself without the
account holders permission.*‘ Translation: “‘Ich entschuldige mich dafiir, wir miissen die Erlaubnis einholen, um eine
Bestellung mit einer anderen Person zu besprechen. Ich entschuldige mich, falls dies zuvor geschehen wire, aber ohne
die Erlaubnis des Kontoinhabers wire ich nicht in der Lage, dies mit dir involvement.“‘ Annotate errors in the translation.
MQM annotations:

’involvement’ is a major accuracy/mistranslation error
"the account holder’ is a major accuracy/omission error
’wire’ is a minor fluency/grammar error

’dir’ is a minor fluency/register error

Source: “‘Talks have resumed in Vienna to try to revive the nuclear pact, with both sides trying to gauge the prospects
of success after the latest exchanges in the stop-start negotiations.“‘ Translation: “‘Ve Vidni se ve Vidni obnovily
rozhovory o oZiveni jaderného paktu, pficemze obé partaje se snazi posoudit vyhlidky na dspéch po poslednich vyménach
v jedndnich.“ Annotate errors in the translation. MQM annotations:

’ve Vidni’ is a major accuracy/addition error
"the stop-start’ is a major accuracy/omission error
“partaje’ is a minor terminology/inappropriate for context error

Source: “‘Talks have resumed in Vienna to try to revive the nuclear pact, with both sides trying to gauge the prospects
of success after the latest exchanges in the stop-start negotiations.“‘ Translation: “‘Ve Vidni se ve Vidni obnovily
rozhovory o oZiveni jaderného paktu, pfi¢emzZe obé partaje se snazi posoudit vyhlidky na dspéch po poslednich vyménach
v jednanich.“* Annotate errors in the translation. MQM annotations:

Source: “‘O ko ago ilekun WiFi, O wi.“‘ Translation: “‘He locked the WiFi door, he said.“‘ Annotate errors in the
translation. MQM annotations:

Output for Feedback:
"He locked the WiFi door’ is a critical accuracy/mistranslation error

Table 8: Those are the feedback in context learning examples (three examples) that we used to prompt all LLMs
across four language directions at Flores200. In this example, the source translation is Yourba text "O ko ago ilekun
WiFi, O wi.". The English candidate text is "He locked the WiFi door" from GPT-4. GPT-4’s self-feedback outputs
""He locked the WiFi door’ is a critical accuracy/mistranslation error”.
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In-context-learning prompt for LLM’s refinement at translation:
Please fix all errors. You can rewrite translation if translation is bad.

Source: ““ KA AIF L EARTFRERIZIUE N BIR S TRERZ AL, BiE, ELNESEHHAER, #
FEAF, B ERAREIE

Translation: “‘Urumqi Home Furnishing Store Channel provides you with the latest bussiness information such as
the address, telephone number, bussiness hours, etc., of high-speed rail, and find a decoration company, and go to the
reviews.*

Feedback: ’of high-speed rail’ is a critical accuracy/addition error
’go to the reviews’ is a major accuracy/mistranslation error
’etc.,’” is a minor style/awkward error

Improved Chinese-to-English translation:
Dianping Urumgi Renovation and Design Channel will provide you with the address, phone number, operation time and
other information of HSR Easyhome, and please come to Dianping if you are looking for a renovation company.

Source: “‘I do apologise about this, we must gain permission from the account holder to discuss an order with another
person, I apologise if this was done previously, however, I would not be able to discuss this with yourself without the
account holders permission.**

Translation: “‘Ich entschuldige mich dafiir, wir miissen die Erlaubnis einholen, um eine Bestellung mit einer anderen
Person zu besprechen. Ich entschuldige mich, falls dies zuvor geschehen wire, aber ohne die Erlaubnis des Kontoinhabers
wire ich nicht in der Lage, dies mit dir involvement.***

Feedback:

’involvement’ is a major accuracy/mistranslation error
"the account holder’ is a major accuracy/omission error
’wire’ is a minor fluency/grammar error

’dir’ is a minor fluency/register error

Improved English-to-German translation:

Ich bitte um Entschuldigung, aber wir benotigen das Einversténdnis des Kontoinhabers, um eine Bestellung mit einer
anderen Person zu besprechen, falls es schon eingeholt wurde, entschuldige ich mich, aber ich kann dies ohne das
Einverstdndnis des Kontoinhabers nicht mit Thnen besprechen.

Source: “‘Talks have resumed in Vienna to try to revive the nuclear pact, with both sides trying to gauge the prospects of
success after the latest exchanges in the stop-start negotiations.*

Translation: ““Ve Vidni se ve Vidni obnovily rozhovory o oZiven{ jaderného paktu, pficemzZe obé partaje se snaz{ posoudit
vyhlidky na dspéch po poslednich vyméndch v jedndnich.**

Feedback:

’ve Vidni’ is a major accuracy/addition error

"the stop-start’ is a major accuracy/omission error

“partaje’ is a minor terminology/inappropriate for context error

Improved English-to-Cezch translation:
Ve Vidni byly obnoveny rozhovory o oZiveni jaderného paktu a obé strany se snazi odhadnout, jaké jsou vyhlidky na
uspéch po poslednich vyméndch ndzora v rdmci prerusenych jednani.

Source: “‘O ko ago ilekun WiFi, O wi.*“*
Translation: ‘He locked the WiFi door, he said.*

Feedback:
"He locked the WiFi door’ is a critical accuracy/mistranslation error

Improved English-to-Yoruba translation:
Output for refinement:
"He secured the WiFi connection, he said."

Table 9: Those are the refinement in context learning examples (three examples) that we used to prompt all LLMs
across four language directions at Flores200. In this example, the source translation is Yourba text "O ko ago ilekun
WiFi, O wi.". The English text is GPT-4’s output "He locked the WiFi door.". We gathered GPT-4’s self-feedbak:
""He locked the WiFi door’ is a critical accuracy/mistranslation error". GPT-4 outputs a refined output: "He secured
the WiFi connection, he said.", according to the feedback and prior step generation.
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Prompt for LLM’s initial generation for reasoning:
You are a competitive math problem solver. Please generate a step-by-step solution. Your final answer must be enclosed
in LaTeX’s boxed tag.

. _ 2

How many vertical asymptotes does the graph of y = 756 have?

Output for math answer:

A vertical asymptote is a vertical line that the graph of a function approaches but never crosses. A function has a
vertical asymptote at x = k if it has infinite limits as = approaches k from the left or right.For the rational function
y= m, we know that it could have vertical asymptotes wherever the denominator is zero, because division by
zero is undefined and yields infinity. Therefore, to find the vertical asymptotes, we solve the equation > 4+ z — 6 = 0.
We apply factorization and get (z — 2)(x + 3) = 0. This gives us x = 2 and z = —3.In any case, we need to check
if any of these could be holes instead of vertical asymptotes. This would be the case if + = 2 or x = —3 also made
the numerator zero. However, the numerator is a constant and won’t be zero. Therefore this function has two vertical

asymptotes at x = 2 and x = —3. The answer is .

Table 10: This is the prompt we used to generate mathematical reasoning. The output in this example comes from
GPT-4. We first used this prompt to generate one reasoning path as initial generation. Then, we sample 10 different
reasoning paths and use majority vote to find the most confident answer. To generate self-feedback, we compare
majority voted answer and initial answer. If they are matched, feedback indicates answer is correct and no change
should be made. If they are not matched, the feedback indicates answer is wrong and inital answer will be replaced
by the majority voted answer. We alternate above two steps and iteratively refine the reasoning paths.

Concept-to-text prompt for LLM’s initial generation:
You are generating text based on specified words. Do not provide any explanations or text apart from the text output.

Please generate a sentence that contains the exact string matches for the following concepts:

[vest’, ’snow’, ‘remove’, 'silhouette’, *dunk’, ’step’, ’item’, "toddler’, ’plaster’, *wall’, *piece’, "tool’, ’circle’, ’pull’,
wrap’, "headphone’, *deck’, ’suit’, *press’, “'mother’, *pit’, *cupcake’, ’priest’, 'rink’, ’counter’, ’rest’, ’piano’, *wine’,
’serve’, "winter’ ]

Output for Concept-to-Text generation:

In the winter, the toddler wearing a vest, pressed a piece of wet plaster against the wall in a circle, while his mother
baking a cupcake was removing the snow from the deck with a tool; switching steps to the rhythm of a piano piece

echoing from the headphones wrapped around her neck, she caught a glimpse of the priest serving wine, his silhouette
dunking a cupcake into a pit at the rink counter, under the restful gaze of a suit-clad man.

Table 11: This is the concept-to-text prompt we used to test all LLMs at Commongen Hard. This example contains
the output from GPT-4.
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Concept-to-text in context learning prompt for LLM’s self-feedback:
We want to create a sentence that contains all the specified concepts. Please provide feedback on the following sentences.
The feedback should list all missing concepts. If all concepts are covered, output "all covered’

Concepts: [’dog’, *frisbee’, ’catch’, "throw’]
Generated Sentence: A dog leaps to catch a thrown frisbee.
Feedback: all covered

Concepts: [’dog’, *frisbee’, ’catch’, *throw’]
Generated Sentence: Two dogs are throwing frisbees at each other .
Feedback: [’catch’]

Concepts: ['vest’, ’snow’, ‘remove’, ’silhouette’, ’dunk’, ’step’, item’, ’toddler’, ’plaster’, "wall’, "piece’, ’tool’, ’circle’,
pull’, *wrap’, "headphone’, ’deck’, ’suit’, *press’, “'mother’, ’pit’, cupcake’, ’priest’, 'rink’, ’counter’, ’rest’, ’piano’,
wine’, ’serve’, *winter’ ]

Generated Sentence: In the winter, the toddler wearing a vest, pressed a piece of wet plaster against the wall in a circle,
while his mother baking a cupcake was removing the snow from the deck with a tool; switching steps to the rhythm of a
piano piece echoing from the headphones wrapped around her neck, she caught a glimpse of the priest serving wine, his
silhouette dunking a cupcake into a pit at the rink counter, under the restful gaze of a suit-clad man.

Feedback:

Output for Concept-to-Text feedback:
all covered

Table 12: This is the in-context learing (ICL) concept-to-text prompt (two ICL examples) we used to generate
LLM’s self-feedback at Commongen Hard. This example contains the self-feedback from GPT-4.

Concept-to-text prompt for LLM’s refinement:

Concepts: ['fruit’, 'motorcycle’, perform’, ’jacket’, "vehicle’, *place’, mat’, *walk’, world’, *area’, "kiss’, *'mother’,
“pass’, ‘report’, ‘club’, “axis’, “tricep’, *patient’, ’listen’, ’owner’, "uniform’, *floor’, ’hamburger’, 'use’, wine’, ’cross’,
“bull’, ’sell’, ’lawn’, *friend’]

Generated sentence: In a world where a fruit can perform like a motorcycle, I found my mother wearing a leather jacket,
passing by her vehicle to walk towards the place where she runs a club. Not far from that area, my friend, a patient
person, was ready to sell mats, used for gym workouts, especially for triceps. Being the owner of the shop, he always
wears a uniform. While I was listening to this report, sitting cross-legged on the floor and munching my hamburger, I
missed seeing a bull wandering on the lawn just outside. Just then, I received an unexpected kiss from my wife who
brought me a glass of wine from our cellar which also acts as an axis for all the happenings of my life.

Missing Concepts: ['use’, "lawn’]

Please revise generated sentence which covers all missing concepts and all given concepts, with the exact string matches.
New sentence:

Output for Concept-to-Text refinement:

In a world where a fruit can perform like a motorcycle, I found my mother wearing a leather jacket, passing by her
vehicle to walk towards the place where she runs a club. Not far from that area, my friend, a patient person, was ready
to sell mats, used for gym workouts, especially for triceps. Being the owner of the shop, he always wears a uniform.
While I was listening to this report, sitting cross-legged on the floor and munching my hamburger, I missed seeing a bull
wandering on the lawn just outside. Just then, I received an unexpected kiss from my wife who brought me a glass of
wine from our cellar which also acts as an axis for all the happenings of my life.

Table 13: This is the concept-to-text refinement prompt we used to generate LLM’s refinement at Commongen Hard.
This example contains the refinement from GPT-4.
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