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ABSTRACT

Modern foundation models rely heavily on using scaling laws to guide crucial
training decisions. Researchers often extrapolate the optimal architecture and
hyper parameters settings from smaller training runs by describing the relationship
between, loss, or task performance, and scale. All components of this process vary,
from the specific equation being fit, to the training setup, to the optimization method.
Each of these factors may affect the fitted law, and therefore, the conclusions of
a given study. We discuss discrepancies in the conclusions that several prior
works reach, on questions such as the optimal token to parameter ratio. We
augment this discussion with our own analysis of the critical impact that changes in
specific details may effect in a scaling study, and the resulting altered conclusions.
Additionally, we survey over 50 papers that study scaling trends: while 45 of these
papers quantify these trends using a power law, most under-report crucial details
needed to reproduce their findings. To mitigate this, we we propose a checklist for
authors to consider while contributing to scaling law research.

1 INTRODUCTION

Training at the scale seen in recent large foundation models (Dubey et al., 2024; OpenAI, 2023;
Reid et al., 2024) is an expensive and uncertain process. Given the infeasibility of hyperparameter
tuning multi-billion parameter models, researchers extrapolate the optimal training setup from
smaller training runs. More precisely, scaling laws (Kaplan et al., 2020) are used to study many
different aspects of model scaling. Scaling laws can guide targets for increasing dataset size and
model size in pursuit of desired accuracy and latency for a specific deployment scenario, study
architectural improvements, determine optimal hyperparameters and assist in model debugging.

Table 1: We provide a summary of the papers sur-
veyed, highlighting the reproducibility challenges
endemic to scaling law papers.

# Papers...

Surveyed 51
With a quantified scaling law 45
With a description of training setup 40
With a definition of equation variables 36
With a description of evaluation 29
With a description of curve fitting 28
With analysis code 19
With metric scores or checkpoints provided 17

Scaling laws are often characterized as power
laws between the loss and size of the model and
dataset, and are seen in several variations (Sec-
tion 2). These laws are found empirically by
training models across a few orders of magni-
tude in model size and dataset size, and fitting
the loss of these models to a proposed scaling
law. Each component of this process varies in
the reported literature, from the specific equa-
tion being fit, to the training setup, and the op-
timization method, as well as specific details for
selecting checkpoints, counting parameters and
the objective loss optimized during fitting.

Changes to this setup can lead to significant
changes to the results, and therefore completely
different conclusion to the study. For example, Kaplan et al. (2020) studied the optimal allocation
of compute budget, and found that dataset size should be scaled more slowly than model size
(D ∝ N0.74, D is dataset size, N is model size). Later, Hoffmann et al. (2022) contradicted this
finding, showing that model size and dataset size should be scaled roughly equally for optimal scaling.
They highlight the differences in setup which lead to them showing that large models should be
trained for significantly more tokens: particularly, they point to using later checkpoints, training larger
models, a different learning rate schedule and changing the number of training tokens used across
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SCALING LAW REPRODUCILIBILITY CHECKLIST

Scaling Law
Hypothesis (§3)
• Form

• Variables (Input)

• Parameters

• Derivation and
Motivation

• Assumptions

Training Setup (§4)
• # of models

• Model size range

• Dataset source & size

• Parameter/ FLOP Count
Calculation

• Hyperparameter Choice

• Other Settings

• Code Open Sourcing

Data Collection(§5)
• Checkpoint Open

Sourcing

• # Checkpoints per
Power Law

• Evaluation Dataset &
Metric

• Metric Modification
& Code

Fitting Algorithm (§6)
• Objective (Loss)

• Algorithm

• Optimization
Hyperparameters

• Optimization Initialization

• Data Usage Coverage

• Validation of Law(s)

Figure 1: We introduce a checklist for researcher to use for scaling laws research. In Appendix B, we
include an expanded version of the checklist that may be used as a template.

runs. Multiple followup works have focused on either reproducing or explaining the differences
between these two papers (Besiroglu et al., 2024; Porian et al., 2024; Pearce & Song, 2024b). The
authors find it challenging to reproduce results of previous papers - we refer the reader to Section 2
for a further discussion on these replication efforts.

Motivated by this, we survey over 50 papers on scaling laws across a variety of modalities, tasks
and architectures, and find that essential details needed to reproduce scaling law studies are often
underreported. We broadly categorize these details as follows:

Section 3: What form are we fitting? Researchers may choose any number of power law forms
relating any set of variables, to which they fit the data extracted from training runs. Even seemingly
minor differences in form, may imply critical changes in assumptions – for example, about certain
interactions between variables which are excluded, the definitions of these variables or error terms
which are deemed significant enough to include.
Section 4: How do we train models? In order to fit a scaling law, one needs to train a range of
models spanning orders of magnitude in parameter count and/or dataset size. Each model requires a
multitude of hyperparameter and parameter choices, such as the specific model/dataset sizes to use,
the architecture shape, batch size or learning rate schedule.
Section 5: How do we extract data after training? Once these models are trained, downstream
metrics like perplexity must be obtained from the intermediate or final checkpoints. This data may be
also scaled, interpolated or bootstrapped to create more datapoints to fit the power law parameters.
Section 6: How are we optimizing the fit? Finally, the variable must be fit with an objective and
optimization method, which may in turn have their own initialization and hyperparameters to choose.

To aid scaling laws researchers in reporting details necessary to reproduce their work, we propose a
checklist (Figure 1 - an expanded version may be found in Appendix B ). Based on this checklist,
we summarize these details for all 51 papers in tabular form in Appendix C. We find that important
details are frequently underreported, significantly impacting reproducibility, especially in cases
where there is no code - only 19 of 42 papers surveyed have analysis code/code snippets available.
Additionally, 23 (a little over half) of surveyed papers do not describe the optimization process, and
15 do not describe how training FLOPs or number of parameters are counted, which has been found
to significantly change results (Porian et al., 2024). In addition, we fit our own power laws to further
demonstrate how these choices critically impact the final scaling law (§7).

2 PAPERS ON SCALING LAWS

Researchers have proposed scaling laws to study the scaling of deep learning across multiple domains
and for several tasks. Studies of the scaling properties of generalization error with training data size
and model capacity predate modern deep learning. Banko & Brill (2001) observed a power law
scaling of average validation error on a confusion set disambiguation task with increasing dataset size.
The authors also claimed that the model size required to fit a given dataset grows log linearly. As
for larger scale models, Amodei et al. (2016) observe a power-law WER improvement on increasing
training data for a 38M parameter Deep Speech 2 model. Hestness et al. (2017) show similar power
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law relationships across several domains such as machine translation, language modeling, image
processing and speech recognition. Moreover, they find that these exponential relationships found
hold across model improvements.

Kaplan et al. (2020) push the scale of these studies further, studying power laws for models up to
1.5B parameters trained on 23B tokens to determine the optimal allocation of a fixed compute budget.
Later studies (Hoffmann et al., 2022; Hu et al., 2024) revisit this and find that Kaplan et al. (2020)
greatly underestimate the amount of data needed to train models optimally, though major procedural
differences render it challenging to attribute the source of this discrepancy. Since then, researchers
have studied various aspects of scaling up language models. Wei et al. (2022) examine the emergence
of abilities with scale that are not present in smaller models, while Hernandez et al. (2021) study
the scaling laws for transfer between distributions in a finetuning setting. Henighan et al. (2020)
consider possible interactions between different modalities while recently, Aghajanyan et al. (2023)
study scaling in multimodal foundation models. Tay et al. (2022) show that not all architectures scale
equally well, highlighting the importance of using scaling studies to guide architecture development.
Poli et al. (2024) scale hybrid architectures like Mamba (Gu & Dao, 2023), showing the efficacy
of this new model family. Other researchers also formulate specific scaling laws to study other
Transformer based architectures. For example, Clark et al. (2022) and Frantar et al. (2023) introduce
new scaling laws to study mixture of expert models (Fedus et al., 2022; Shazeer et al., 2017) and
sparse models (Zhu & Gupta, 2017) respectively. Researchers have also used scaling laws to study
encoder-decoder models for neural machine translation (Ghorbani et al., 2021; Gordon et al., 2021),
and the effect of data quality and language on scaling coefficients Bansal et al. (2022); Zhang et al.
(2022). While language models form the majority of the papers surveyed, we also consider papers
that study VLMs (Cherti et al., 2023; Henighan et al., 2020), vision (Alabdulmohsin et al., 2022;
Zhai et al., 2022), reinforcement learning (Hilton et al., 2023; Jones, 2021; Gao et al., 2023) and
recommendation systems (Ardalani et al., 2022). We further discuss different forms of scaling laws
researchers introduce for the specific research questions they wish to answer in Section 3.

A majority of the surveyed papers study Transformer (Vaswani, 2017) based models, but a few
consider different architectures. For example, Sorscher et al. (2022) investigate data pruning laws in
ResNets, and some smaller scale studies use MLPs or SVMs (Hashimoto, 2021). This overrepresen-
tation is perhaps partially a result of Transformer-based models achieving higher scale than other
architectures; a ResNet101 has 44M parameters, while the largest Llama 3 model has 405B.

Replication Efforts Besiroglu et al. (2024) seek to reproduce the parameter fitting approach used
by Hoffmann et al. (2022). They are unable to recover the scaling law from Hoffmann et al. (2022),
and demonstrate that the claims of the original paper are inconsistent with descriptions of the setup.
They then seek to improve the fit of the scaling law by initializing from the parameters found in
Hoffmann et al. (2022) and modifying parts of the power law fitting process.

Porian et al. (2024) isolate several decisions as primarily responsible for the discrepancy between the
recommendations of Kaplan et al. (2020) and Hoffmann et al. (2022): (1) learning rate scheduler
warmup, (2) learning rate decay, (3) inclusion of certain parameters in total parameter count, and (4)
specific training hyperparameters. By adjusting these factors, they are able to reproduce the results
of Kaplan et al. (2020) and Hoffmann et al. (2022). However, they only use 16 training runs to fit
their scaling laws, each designed to match one targeted setting (e.g., replicating Kaplan et al. (2020)).
Instead of using raw loss values, they fit to loss values found by interpolating between checkpoints.
Like Pearce & Song (2024b), they apply a log transform and linear regression to fit their law.

3 WHAT form ARE WE FITTING?

A majority of papers we study fit some kind of power law (f(x) = ax−k). That is, they specify
an equation defining the relationship between multiple factors, such that a proportional change in
one results in the proportional change of at least one other. They then optimize this power law to
find some parameters. A few efforts do not seem to fit a power law, but may show a line of best fit,
obtained through unspecified methods (Rae et al., 2021; Dettmers et al., 2022; Tay et al., 2022; Shin
et al., 2023; Schaeffer et al., 2023; Poli et al., 2024).

The specific form may be motivated by researcher intuition, previous empirical results, prior work,
code implementation, or data availability. More importantly, the form is often determined by the
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specific question(s) a paper investigates. For example, one may attempt to predict the performance
achieved by scaling up different model architectures, or the optimal ratio for model scaling vs data
scaling when increasing training compute (Kaplan et al., 2020; Hoffmann et al., 2022). Based on
this, we loosely classify scaling laws by their form as performance prediction and ratio optimization
approaches. We indicate this classification for all surveyed papers in Appendix C.

3.1 RATIO OPTIMIZATION

The simplest scaling law forms usually predict the relation between two variables in an optimal
setting. For example, approaches 1 and 2 from Hoffmann et al. (2022) fit to the optimal (i.e., lowest
loss) D and N values for a particular compute budget C. Porian et al. (2024), aiming to resolve these
inconsistencies, defines ρ∗ = D∗

N∗ and writes this relationship as:

N∗(C) = N∗
0 · Cα;D∗(C) = D∗

0 · Cα; ρ∗(C) = ρ∗0 · Cα (1)

They assume C ≈ 6ND, and thus only need to fit the first equation; the other power laws can be
inferred. This simplicity is deceptive in some cases, as collecting (N∗(C), C) pairs may not be
trivial. It is possible to fix C and follow a binary search approach to train a multitude of models, then
bisect to approximate the performance-optimal N,D pair. However, this quickly grows prohibitively
costly. In practice, it is common to interpolate between a set of fixed results to estimate the true
N∗(C) §5. This adds to the complexity of this approach, and introduces a hidden dependency on
the performance evaluation, yet it does not actually predict the performance of the optimal points.
If only the performance of the optimal-ratio model is of interest, it is possible to fit a second power
law L(N∗(C), D∗(C)) = a · Cα. Most papers we survey choose to fit a power law which directly
predicts performance.

3.2 PERFORMANCE PREDICTION

Kaplan et al. (2020) proposes a power law between Loss L, number of model Parameters N , and
number of Dataset tokens D:

L(N,D) =

[(
N

Nc

)αN
αD

+
D

Dc

]αD

(2)

On the other hand, Approach 3 of Hoffmann et al. (2022) proposes

L(N,D) = E +
A

Nα
+

B

Dβ
(3)

In both of the above, all variables other than L, N , and D are parameters to be found in the power
law fitting process. Though these two forms are quite similar, they differ in some assumptions.
Kaplan et al. (2020) constructs their form on the basis of 3 expected scaling law behaviors, and
Hoffmann et al. (2022) explains in their Appendix D that their form is based on risk decomposition.
The resulting Kaplan et al. (2020) form includes an interaction between N and D in order to satisfy a
constraint requiring assymmetry introduced by one of their expected behaviors. The Hoffmann et al.
(2022) form, on the other hand, consists of 3 additive sources of error, E representing the irreducible
error that would exist even with infinite data and compute budget, as well as two terms representing
the error introduced by limited parameters and limited data, respectively.

Power laws for performance prediction can sometimes yield closed form solutions for optimal ratios
as well. However, the additional parameters and input variables, introduced by the need to incorporate
the performance metric term, add random noise and dimensionality. This increases the difficulty
of optimization convergence, so when prediction performance is not the aim, a ratio optimization
approach is frequently a better choice.

Many papers directly adopt one of these forms, but some adapt these forms to study relationships with
other input variables. Clark et al. (2022), for example, study routed Mixture-of-Expert models, and
propose a scaling law that relates dense model size (effective parameters) N and number of experts E
with a biquadratic interaction (logL(N,E) ≜ a logN + b logE + c logN logE + d). Frantar et al.
(2023) study sparsified models, and propose a scaling law with an additional parameter sparsity S, the
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optimal value of which increases withN (L(S,N,D) =
(
aS(1− S)bS + cS

)
·
(

1
N

)bN
+
(
aD

D

)bD
+c).

Other papers change the form to model variables in the data setup. Aghajanyan et al. (2023) consider
interference and synergy between multiple data modalities (L(N,Dj) = Ej +

Aj

Nαj +
Bj

|Dj |βj
,

L(N,Di, Dj) = [
L(N,Di)+L(N,Dj)

2 ] − Ci,j +
Ai,j

Nαi,j +
Bi,j

|Di|+|Dj |βi,j
), while Goyal et al. (2024),

Fernandes et al. (2023) and Muennighoff et al. (2024) add terms to their scaling law formulations
which represent mixing data sources and/or repeated data, using notions such as diminishing utility.
A comprehensive list of the power law forms in the surveyed papers may be found in Table 6.

4 HOW DO WE train models?

In order to fit a scaling law, one needs to train a range of models across multiple orders of magnitude
in model size and/or dataset size. Researchers must first decide the range and distribution of N
and D values for their training runs, in order to achieve stable convergence to a solution with high
confidence, while limiting the total compute budget of all experiments. Many papers did not specify
the number of data points used to fit each scaling law; those that did range from 4 to several hundred,
but most used fewer than 50 data points. The specific N and D values also skew the optimization
process towards a certain range of N/D ratios, which may be too narrow to include the true optimum.
Some approaches, such as using IsoFLOPs (Hoffmann et al., 2022), additionally dictate rules for
choosingN andD values. Moreover, using a minimumN orD value may result in outlier values that
may need to be dropped (Porian et al., 2024; Shin et al., 2023; Henighan et al., 2020). We investigate
this choice in §7.2

The definition of N , D, or compute cost C can affect the results of a scaling study. For example, if a
study studies variation in tokenizers, a definition of training data size based on character count may
be more appropriate than one based on token count (Tao et al., 2024). The inclusion or exclusion
of embedding layer compute and parameters, may also skew the results of a study - a major factor
in the different in optimal ratios determined by Kaplan et al. (2020) and Hoffmann et al. (2022)
has been attributed to not factoring embedding FLOPs into the final compute cost (Pearce & Song,
2024b; Porian et al., 2024). Given the increase in extremely long context models (128k-1M) Reid
et al. (2024), the commonly used training FLOPs approximation C = 6ND (see Appendix C) may
not hold for such models, given the additional cost proportional to the context length and model
dimension - Bi et al. (2024) introduce a new terms non-embedding FLOPs/token to account for this.

Scaling law fit depends on the performance of each individual checkpoint, which is highly dependent
on factors such as training data source, architecture and hyperparameter choice. Bansal et al. (2022)
and Goyal et al. (2024), for instance, discuss the effect of data quality and composition on power law
exponents and constants. Repeating data has also been found to yield different scaling patterns in
large language models (Muennighoff et al., 2024; Goyal et al., 2024).

Researchers have also studied the effect of architecture choice on scaling - Hestness et al. (2017) find
that architectural improvements only shift the irreducible loss, while Poli et al. (2024) suggest that
these improvements may be more significant. The way in which a model is scaled can also affect
results. Within the same architecture family, Clark et al. (2022) show that increasing the number of
experts in a routed language model has diminishing returns beyond a point, while Ghorbani et al.
(2021) find that scaling the encoder and decoder have different effects on model performance. Scaling
embedding size can also drastically change scaling trends (Tao et al., 2024).

The optimal hyperparameters to train a model changes with scale. Changing batch size, for example,
can change model performance McCandlish et al. (2018); Kaplan et al. (2020). Optimal learning rate
is another hyperparameter shown to change with scale, though techniques such as those proposed
in Tensor Programs series of papers (Yang et al., 2022) can keep this factor constant with simple
changes to initialization. More specifically, changing the learning rate schedule from a cosine decay
to a constant learning rate with a cooldown (or even changing the learning rate hyperparameters) has
been found to greatly affect the results of scaling laws studies (Hu et al., 2024; Porian et al., 2024;
Hägele et al., 2024; Hoffmann et al., 2022).

One common motivation for fitting a scaling laws is extrapolation to higher compute budgets.
However, there is no consensus on the orders of magnitude up that one can project a scaling law and
still find it accurate, nor on the breadth of compute budgets that should be covered by the data. We
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find that the range of model size N and dataset size D greatly varies, with the maximum value of
N in each paper ranging from 10M parameters to around 7B and that of D being as large as 400B
tokens. For most papers we survey, the scales are relatively modest: 13 of 51 papers train models
beyond 2B parameters; most only train models smaller than 1B parameters. It has been shown, with
some controversy Schaeffer et al. (2023), that scaling to significantly larger scales can result in new
abilities that did not appear in smaller models (Wei et al., 2022). Forecasting limits to extrapolation
and the appearance of new abilities at new scales is an open question.

5 HOW DO WE collect data FROM MODEL TRAINING?

To evaluate the range of models trained to fit a scaling law, train or validation loss are most commonly
used, but some works consider other metrics, such as ELO score (Jones, 2021; Neumann & Gros,
2022), reward model score (Gao et al., 2023), or downstream task metrics like accuracy or classifica-
tion error rate (Henighan et al., 2020; Zhai et al., 2022; Cherti et al., 2023; Goyal et al., 2024; Gao
et al., 2023). This choice is non-trivial - while some papers show that there is a power law relation
between the predicted loss found by using validation loss and a different downstream task (Dubey
et al., 2024), it is possible for the results of a study to change completely depending on the metric
used. Schaeffer et al. (2023), for example, find that using linear metrics such as Token-edit distance
instead of non-linear metrics such as accuracy produces smooth, continuous predictable changes in
model performance, contrary to an earlier study by Wei et al. (2022). Moreover, Neumann & Gros
(2022) find that they are unable to use test loss instead of Elo scores to fit a power law.

While it is most straightforward to evaluate only the final checkpoint on the target metric, some studies
may use the median score of the last several checkpoints of each training run Ghorbani et al. (2021),
or multiple intermediate checkpoints throughout each training run for various reasons. One common
reason is that this is the only computationally feasible way to obtain a fit with sufficient confidence
intervals (Besiroglu et al., 2024). For instance, the ISOFLop approach to finding the optimal D/N
ratio in Hoffmann et al. (2022) requires training multiple models for each targeted FLOP budget - this
would be computationally prohibitive to do without using intermediate checkpoints. Hoffmann et al.
(2022), in particular, use the last 15% checkpoints. Some papers also report bootstrapping values
(Ivgi et al., 2022). This detail is often not specified in scaling law papers, with only 29 of 51 papers
reporting this information - we point the reader to Appendix C for an overview.

A related technique is performance interpolation. Porian et al. (2024) do not aim to exactly match
the desired FLOP counts when evaluating model checkpoints mid-training. They instead interpolate
between multiple model checkpoints to estimate the performance of a model with the target number
of FLOPs. Hoffmann et al. (2022) and Tao et al. (2024) also interpolate intermediate checkpoints.
Hilton et al. (2023), relatedly, smooth the learning curve before extracting metric scores.

As discussed in Section 4, training models with too little data or too few parameters can skew the
results. To prevent this issue, several works report filtering out data points before fitting their power
law. Henighan et al. (2020) drop their smallest models, while Hilton et al. (2023) and Hoffmann
et al. (2022) exclude early checkpoints. Muennighoff et al. (2024) remove outlier datapoints that
perform badly due to excess parameters or excess epochs. Similarly, Ivgi et al. (2022) remove outlier
solutions after bootstrapping.

6 HOW ARE WE optimizing THE FIT?

The optimization of a power law requires several design decisions, including optimizer, loss, ini-
tialization values, and bootstrapping. We discuss each in this section. Over half of the papers we
analyze do not provide any information about their power law fitting process, or provide limited
information only and fail to detail crucial aspects. Specifically, many papers fail to describe their
choice of optimizer or loss function. In Table 2, we provide an overview of the optimization details
(if specified) for each paper considered.

Optimizer Power laws are most commonly fit with a variety of algorithms designed to optimize
non-linear functions. One of the most common is the BFGS (Broyden-Fletcher-Goldfarb-Shanno)
algorithm, or a variation L-BFGS (Liu & Nocedal, 1989). Some papers (Hashimoto, 2021; Covert
et al., 2024) use Adam, Adagrad, or other optimizers common in machine learning, such as AdamW,
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Paper Curve-fitting Method Loss Objective Hyperparameters Initialization Are scaling laws
Reported? validated?

Rosenfeld et al. (2019) Least Squares Regression Custom error term N/A Random Y
Mikami et al. Non-linear Least Squares in log-log space N/A N/A Y
Schaeffer et al. (2023) NA NA NA NA NA
Sardana & Frankle (2023) L-BFGS Huber Loss Y Grid Search N
Sorscher et al. (2022) NA NA NA NA NA
Caballero et al. (2022) Least Squares Regression MSLE N/A Grid Search, optimize one Y
Besiroglu et al. (2024) L-BFGS Huber Loss Y Grid Search Y
Gordon et al. (2021) Least Squares Regression N/A N.S. N
Bansal et al. (2022) NS NS N NS N
Hestness et al. (2017) NS RMSE N NS Y
Bi et al. (2024) NS NS N NS Y
Bahri et al. (2024) NS NS N NS N
Geiping et al. (2022) Non-linear Least Squares NA Non-augmented parameters Y
Poli et al. (2024) NS NS N NS N
Hu et al. (2024) scipy curvefit NS N NS N
Hashimoto (2021) Adagrad Custom Loss Y Xavier Y
Ruan et al. (2024) Linear Least Squares Various N/A N/A Y
Anil et al. (2023) Polynomial Regression (Quadratic) N.S. N N.S. Y
Pearce & Song (2024a) Polynomial Least Squares MSE on Log-loss N/A N/A N
Cherti et al. (2023) Linear Least Squares MSE N/A N/A N
Porian et al. (2024) Weighted Linear Regression weighted SE on Log-loss N/A N/A Y
Alabdulmohsin et al. (2022) Least Squares Regression MSE Y N.S. Y
Gao et al. (2024) N.S N.S N.S N.S N.S
Muennighoff et al. (2024) L-BFGS Huber on Log-loss Y Grid Search, optimize all Y
Rae et al. (2021) None None N/A N/A N
Shin et al. (2023) NA NA NA NA NA
Hernandez et al. (2022) NS NS NS NS NS
Filipovich et al. (2022) NS NS NS NS NS
Neumann & Gros (2022) NS NS NS NS NS
Droppo & Elibol (2021) NS NS NS NS NS
Henighan et al. (2020) NS NS NS NS NS
Goyal et al. (2024) Grid Search L2 error Y NA Y
Aghajanyan et al. (2023) L-BFGS Huber on Log-loss Y Grid Search, optimize all Y
Kaplan et al. (2020) NS NS NS NS N
Ghorbani et al. (2021) Trust Region Reflective algorithm, Least Squares Soft-L1 Loss Y Fixed Y
Gao et al. (2023) NS NS NS NS Y
Hilton et al. (2023) CMA-ES+Linear Regression L2 log loss Y Fixed Y
Frantar et al. (2023) BFGS Huber on Log-loss Y N Random Trials Y
Prato et al. (2021) NS NS NS NS NS
Covert et al. (2024) Adam Custom Loss Y NS Y
Hernandez et al. (2021) NS NS NS NS Y
Ivgi et al. (2022) Linear Least Squares in Log-Log space MSE NA NS Y
Tay et al. (2022) NA NA NA NA NA
Tao et al. (2024) L-BFGS, Least Squares Huber on Log-loss Y N Random Trials from Grid Y
Jones (2021) L-BFGS NS NS NS NS
Zhai et al. (2022) NS NS NS NS NS
Dettmers & Zettlemoyer (2023) NA NA NA NA NA
Dubey et al. (2024) NS NS NS NS Y
Hoffmann et al. (2022) L-BFGS Huber on Log-loss Y Grid Search, optimize all Y
Ardalani et al. (2022) NS NS NS NS NS
Clark et al. (2022) L-BFGS-B L2 Loss Y Fixed NS

Table 2: We provide an overview of which papers provide specific details required to reproduce how
they fit their scaling law equation.

RMSProp, and SGD. Though effective for LLM training, these are sometimes ill-suited for the
purpose of fitting a scaling law, due to various factors limiting their practicality, such as data-
hungriness. Goyal et al. (2024) forgo the use of an optimizer altogether due to instability of solutions
(see initialization) and rely exclusively on grid search to fit their scaling law parameters.

Some scaling law works (Rosenfeld et al., 2019) opt to use a linear method, such as linear regression,
which is generally much simpler. To do this, they typically convert the hypothesized power law
to a linear form by taking the log. For example, for a power law yb = c · xa + d, use the form
β·log(y) = γ+α·log(x) instead. For loss prediction, this results in a form similar to log(L(N,D)) =
α · logN + β · logD+E. This trick is employed even when using an optimizer capable of operating
on non-linear functions (Hashimoto, 2021). Though this conversion may sometimes work in practice,
it is generally not advised because the log transformation also changes the distribution of errors,
exaggerating the effects of errors at small values. This mismatch increases the likelihood of a poor fit
(Goldstein et al., 2004). We found this approach to be very common among the papers we study.

Loss Various loss functions have been chosen for power law optimization, including variants on
MAE (mean absolute error), MSE (mean squared error), and the Huber loss (Huber, 1992), which is
identical to MSE for errors less than some value δ (a hyperparameter), but grows linearly, like MAE,
for larger errors, effectively balancing the weighting of small errors with robustness to outliers. Of
the papers which specify their loss function, most use a variant of MAE (Ghorbani et al., 2021), MSE
(Goyal et al., 2024; Hilton et al., 2023), Huber loss (Hoffmann et al., 2022; Aghajanyan et al., 2023;
Frantar et al., 2023; Tao et al., 2024; Muennighoff et al., 2024), or a custom loss (Covert et al., 2024).

Initialization Initialization can have a substantial impact on final optimization fit (§7). One
approach is to iteratively train with different initializations, selecting the best fit at the termination
of the search. This is typically a grid search over choices for each parameter (Aghajanyan et al.,
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2023; Muennighoff et al., 2024), or a random sample from that grid (Frantar et al., 2023; Tao et al.,
2024). Alternatively, the full grid of potential initializations can be evaluated on the loss function
without training, and the most optimal k used for initialization and optimization (Caballero et al.,
2022). Finally, if a hypothesis exists, either from prior work or expert knowledge about the function,
this hypothesis may be used instead of a search, or to guide the search (Besiroglu et al., 2024).

Validating the Scaling Law A majority of the papers surveyed do not report validating the scaling
law in any meaningful way. Knowing this is critical to understanding whether the results of the
scaling laws study are valid, given the examples given throughout the paper of scaling laws study
conclusions changing depending on the process details. Porian et al. (2024) and Alabdulmohsin et al.
(2022) use confidence intervals and goodness of fit measures to validate their scaling laws. Ghorbani
et al. (2021) and Bansal et al. (2022) also do this. Otherwise, a majority of the papers that we report
as validating their scaling laws mainly extrapolate to models a few orders of magnitude larger and
observe the adherence to the scaling law obtained.

7 OUR REPLICATIONS AND ANALYSES

Each of the choices discussed above in Sections 3 - 6 may have a crucial impact on the result,
yet it remains common to critically underspecify the setup for fitting a power law. Scaling law
works often fail to open source their model and code, making reproduction infeasible, and likely
contributing to contradictory conclusions as discussed in Section 2. Though some efforts have been
made (Porian et al., 2024; Besiroglu et al., 2024) to reconcile such discrepancies, there is still only
sparse understanding of the impact of each of the decisions we discuss.

To investigate the significance of these scaling law optimization decisions, we vary these choices to
fit our own scaling laws. We fit both the Chinchilla-scraped data from Besiroglu et al. (2024), and
data from our own models.

Reconstructed Chinchilla data (Besiroglu et al., 2024) This data is extracted from a vector-based
figure in the pdf of Hoffmann et al. (2022), who claim that this includes all models trained for the
paper. It consists of 245 datapoints, each corresponding to a final checkpoint collected at the end of
model training. There is a potential risk of errors in this recovery process.

Our models We train a variety of Transformer LMs, ranging in size from 12 million to 400 million
parameters, on varied data and compute budgets and hyperparameter settings. Details about our setup,
including hyperparameters, are listed in Appendix A. We open source all of our models, evaluation
results, code, and FLOP calculator at anonymous.xyz

We fit a multitude of power laws and study the effects of: (1) power law form; (2) model learning
rate; (3) compute budget, model size, and data budget range and coverage; (4) definition of N and C;
(5) evaluation dataset; (6) power law parameter initialization; (7) choice of loss and (8) optimizer.

We begin with replicating, as closely as possible, an existing method. As Kaplan et al. (2020)
provided very limited details about their method, we choose Approach 3 of Hoffmann et al. (2022).
Throughout our analyses, we treat this as a baseline, generally varying only a single component of
the method at a time to match the settings of various surveyed papers. Though this is a performance
prediction method, we compare present the result of our comparisons through the optimal parameter
count predictions, for ease of understanding. We present full results in Figure 3 of the Appendix.

Based on our observations, we also make some more concrete recommendations in Appendix §E,
with the caveat that following the recommendations cannot guarantee a good scaling law fit.

7.1 FORM (§3)

We consider the (1) baseline Hoffmann et al. (2022) form and then (2) apply the trick employed
by Muennighoff et al. (2024) of setting α = β in the Hoffmann et al. (2022) form, which assumes
the optimal D/N ratio stays roughly constant – L(N,D) = E + A

Nα + B
Dα . On both datasets, (2)

approaches the reported law from Hoffmann et al. (2022), but (1) does not (Appendix Figure 3a).
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(a) §4, §7.2 Of the models we train, we choose sub-
sets with (N , D) values which fit a particular method
one might have of setting up training. Results vary
dramatically between settings.

(b) §4, §7.2 We fit power laws to our models and vary
the ways we count N and C, including or excluding
embeddings, as well as using the C = 6ND approx-
imation. The difference in resulting scaling laws is
substantial and increases with scale.

(c) §6, §7.4 We fit to data from Besiroglu et al. (2024) (left) and our data (right) to experiment with the
initialization of parameters in the power law. Results do not follow a clear pattern and are unstable, suggesting
the difficulty of optimizing over this space, and the presence of many local minima.

Figure 2: (§7) We study the effects of various decisions in the fitting of a power law, as outlined
in our checklist (Appendix B) and detailed in §3-§6. For comparison, we include Llama 3 405B
(Dubey et al., 2024), the Chinchilla model (Hoffmann et al., 2022), and an estimate of the 1.5B
GPT-2 model (Radford et al., 2019), as well as the (Kaplan et al., 2020) and (Hoffmann et al., 2022)
scalig laws. A thick, solid line indicates lowest optimization loss in each plot. Overall, these choices
strongly affect the power law fit. Thorough reporting of these decisions may be critical for scaling
law reproducibility.

7.2 TRAINING (§4)

Hu et al. (2024) study the effects of several model training decisions, including batch size, learning
rate schedule, and model width. Their analysis focuses on optimizing hyperparameters, not on the
ways hyperparameter and architecture choices affect the reliability of scaling law fitting. Observed
variations between settings suggests that sub-optimal performance could skew scaling law fit.

To substantiate this further, we experiment with (1) using only the evaluations of models with optimal
learning rates at each model scale 12M-400M parameters, (2) using a single fixed learning rate,
chosen to be the optimal at 12M parameters, (3) fixed, with the optimal at 400M parameters, (4) using
all results for all learning rates available across N,D pairs. We find that results do vary considerably,
with (3) closest to the reported Hoffmann et al. (2022) law (Figure 3b).

We also study the effects of limiting our model scale range, data scale range (implicitly), and data-to-
parameters range by filtering our models: we compare (1) using all N,D scales, (2) only models with
D/N ≥ 22 or (3) D/N ≤ 18. These ranges are designed to exclude D/N = 20, the rule of thumb
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based on Hoffmann et al. (2022). The mininmum or maximum D/N ratio tested does skew results;
(3) and (4) fit to optimal ratios D/N > 22 and D/N < 18, respectively, at the compute budgets we
consider. Removing our 2 largest models in (2) also creates a major shift in the predicted optimal
D/N (Figure 2a).

Related to choice ofN,D andC values, we investigate different ways of countingN andC, especially
on whether to include embedding parameters and FLOPs. We compare (1) including embeddings,
our baseline with (2) excluding embeddings only in N , (3) excluding embeddings only in C, (4)
excluding embeddings in both N and C. We also compare to (5) using the C = 6ND approximation,
including embedding parameters. In all other settings, we calculate the FLOPs in a manner similar to
Hoffmann et al. (2022), and we open source the code for these calculations. The resulting difference
in scaling laws is substantial and increasing at large scales (Figure 2b).

7.3 DATA COLLECTION (§5)

For our own models, we are able to evaluate on 2 different datasets. We take the loss on a held out
validation set of (1) C4 (Raffel et al., 2020) as well as (2) English Wikipedia (Foundation), and fit
separate power laws to the two metrics. Not only does absolute performance predictions vary between
the two datasets, we also find different optimal D/N ratios (Figure 3e).

7.4 FITTING (§6)

We vary the initialization method: (1) our baseline Hoffmann et al. (2022) Approach 3 replication,
which conducts the full optimization process on a grid of 6x6x5x5x5=4500 initializations (Hoffmann
et al., 2022) (2) randomly sampling from only a single initialization in this grid, (3) searching for
the lowest loss initialization point (Caballero et al., 2022), (4) randomly sampling k(=100) points
(Frantar et al., 2023; Tao et al., 2024) and (5) initializing with the coefficients found in Hoffmann
et al. (2022), as Besiroglu et al. (2024) does. (5) yields the lowest loss results, and with the Besiroglu
et al. (2024) data, results in a nearly identical power law to the original. However, optimizing over the
full grid yields the power law which diverges most from the Hoffmann et al. (2022) law, suggesting
the difficulty of optimizing over this space, and the presence of many local minima (Figure 2c). Then,
we analyze the choice of loss objectives, including (1) the baseline log-Huber loss, (2) MSE, (3)
MAE, and (4) the Huber loss. We find much more stability across the loss functions when fitting to
our own data, but we draw no conclusions from such a small sample, except that the loss function
behavior may not be predictable (Figure 3g).

We then fit power laws using various optimizers, beginning with the original (1) L-BFGS. We consider
an early stopping mechanism, which conditions on the stability of the solution between optimization
steps. We set this threshold to a (2) higher value 1e-4 (stopping earlier), and a (3) slightly lower
value 1e-6. Lower values, e.g. 1e-8, resulted in the same solutions. Instead of the default estimate,
we compare to using the true gradient of the loss, also omitted here because of negligible impact.
We compare to (4) BFGS. We test tolerance and gradient settings for BFGS with little impact and
omit these also. Finally, we compare to (5) non-linear least squares and (6) pure grid search, using
a grid 5 times denser along each axis as we used for initialization with other optimizers, chosen to
approximate the runtime of L-BFGS. Variations of BFGS and L-BFGS result in similar power laws,
but the convergences and divergences do not yield other immediately evident patterns (Figure 3h).

8 CONCLUSION

We survey over 50 papers on scaling laws, and discuss differences in form, training setup, evaluation,
and curve fitting, which may lead to significantly different conclusions. We also discuss significant
under-reporting of details crucial to replicating the conclusion of these studies, and provide guidelines
in the form of a checklist aid researchers in reporting more complete details. In addition to discussing
several prior replication studies in literature, we empirically demonstrate the fragility of this process,
by systematically varying these choices on available checkpoints and models that we train from
scratch. We choose to avoid overly prescriptive recommendations, because there is no known set of
actions which can guarantee a good scaling law fit, but we make some suggestions based on patterns
in our findings (Appendix §E). Despite our preliminary investigations, our understanding of which
decisions may skew the results of a scaling law study is sparse, and defines the path for future work.
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Ethics Statement This work discusses how a lack of reproducibility and open-sourcing may be
harmful for scaling laws research, given that the factors in a study setup that may change research
conclusions vary widely.

Reproducibility Statement Upon acceptance, we will release the model checkpoints and analysis
code required to reproduce the results discussed in Section 7.
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A OUR MODEL TRAINING (§7)

We train a variety of Transformer LMs, ranging in size from 12 million to 400 million parameters, on
the same training data distribution, tokenized with the Llama 1 tokenizer (Touvron et al., 2023), which
is a SentencePiece (Zhang & Sennrich, 2019) BPE tokenizer with a vocabulary size of 32,000. All
models were trained on NVIDIA A100 GPUs. These transformers follow the standard architecture,
and use pre-layer RMSNorm (Kudo, 2018), the SwiGLU activation function (Shazeer, 2020), and
rotary positional embeddings (Su et al., 2024). We use a batch size of 512 with a sequence length of
2048. The learning rate is warmed up linearly over 50 steps to the peak learning rate and then follows
a cosine decay to 10% of the peak. We use an Adam optimizer with β1 = 0.9, β2 = 0.95. We sweep
over learning rates and data budgets at each model scale. For our evaluation metric, we use perplexity
on a validation set of C4 (Raffel et al., 2020) and Wikipedia (Foundation). See Table 3 and Table 10
for additional architecture details and hyperparameters, including data budget and learning rate.

Hyperparameter Value

Vocabulary size 32.0K
Batch Size 512
Sequence Length 2048
Attention Head Size 64
Learning Rate Swept 2{0,1,2,3} · 10{−4,−3}

Feedforward Dimension 4 x hidden dimension
LR Schedule Cosine Decay
LR Warmup 50 steps
End LR 0.1 x Peak LR
Optimizer Adam (β1, β2 = 0.9, 0.95)

Table 3: Hyperparameter details for models trained in §7

Model size # layers Hidden Dim # Attn Heads # Steps

12M 5 448 7 {200, 250, 360, 500, 750, 1,000,
4,000, 6,122, 7,346, 8,888, 11,851}

17M 7 448 7 {200, 250, 500, 750, 1,000,
1,250, 1,500, 10,581}

25M 8 512 8 {250, 360, 500, 750, 1,000, 1,500,
2,000, 8,000, 16,000, 31,635}

35M 9 576 9 {200, 250, 360, 500, 750, 1,000,
1,250, 1,500, 22,219}

50M 10 640 10 {500, 750, 1,000, 1,250, 1,500, 1,800,
2,000, 2,500, 4,000, 16,000, 63,991}

70M 12 704 11 {500, 750, 1,000, 1,250, 1,500,
2,000, 2,500, 3,000}

100M 14 768 12 {1,000, 1,500, 2,000, 2,500, 3,000, 4,000}

200M 18 960 15 {2,000, 4,000}

400M 20 1280 20 {8,000}

Table 4: Architecture and Data budget details for models trained in §7

B FULL CHECKLIST

Below, we provide an expanded version of the checklist from Figure 1. We define each category as
follows:
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• Scaling Law Hypothesis: This specifies the form of the scaling law, that of the variables
and parameters, and the relation between each.

• Training Setup: This specifies the exact training setup of each of the models trained to test
the scaling law hypothesis.

• Data Collection: Evaluating various checkpoints of our trained models to collect data points
that will be used to fit a scaling law in the next stage.

• Fitting Algorithm: Using the data points collected in the previous stage to optimize the
scaling law hypothesis.

SCALING LAW REPRODUCILIBILITY CHECKLIST

Scaling Law Hypothesis (§3)
• What is the form of the power law?

• What are the variables related by (included in) the power law?

• What are the parameters to fit?

• On what principles is this form derived?

• Does this form make assumptions about how the variables are related?

Training Setup (§4)
• How many models are trained?

• At which sizes?

• On how much data each? On what data? Is any data repeated within the training for a model?

• How are model size, dataset size, and compute budget size counted? For example, how are
parameters of the model counted? Are any parameters excluded (e.g., embedding layers)?
How is compute cost calculated?

• Are code/code snippets provided for calculating these variables if applicable?

• How are hyperparameters chosen (e.g., optimizer, learning rate schedule, batch size)? Do they
change with scale?

• What other settings must be decided (e.g., model width vs. depth)? Do they change with scale?

• Is the training code open source?

Data Collection(§5)
• Are the model checkpoints provided openly?

• How many checkpoints per model are evaluated to fit each scaling law? Which ones, if so?

• What evaluation metric is used? On what dataset?

• Are the raw evaluation metrics modified? Some examples include loss interpolation, centering
around a mean or scaling logarithmically.

• If the above is done, is code for modifying the metric provided?

Fitting Algorithm (§6)
• What objective (loss) is used?

• What algorithm is used to fit the equation?

• What hyperparameters are used for this algorithm?

• How is this algorithm initialized?

• Are all datapoints collected used to fit the equations? For example, are any outliers dropped?
Are portions of the datapoints used to fit different equations?

• How is the correctness of the scaling law considered? Extrapolation, Confidence Intervals,
Goodness of Fit?

C FULL SHEET

We provide an overview of all the papers surveyed in Tables 5,6, 7, 8 and 9.
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Paper Domain Training Code? Analysis Code? Checkpoints? Metric Scores?

Rosenfeld et al. (2019) Vision, LM N N N N
Mikami et al. Vision N Y Y Y
Schaeffer et al. (2023) LM N N N N
Sardana & Frankle (2023) LM N N N N
Sorscher et al. (2022) Vision N N N Y
Caballero et al. (2022) LM N Y N Y
Besiroglu et al. (2024) LM Y N Y
Gordon et al. (2021) NMT Y Y Y Y
Bansal et al. (2022) NMT N N N N
Hestness et al. (2017) NMT, LM, Vision, Speech N N N N
Bi et al. (2024) LM N N N N
Bahri et al. (2024) Vision N N N N
Geiping et al. (2022) Vision Y Y N N
Poli et al. (2024) LM N N N N
Hu et al. (2024) LM Y N N N
Hashimoto (2021) NLP N N N N
Ruan et al. (2024) LM Y Y N Y
Anil et al. (2023) LM N N N N
Pearce & Song (2024a) LM N Y N N
Cherti et al. (2023) VLM Y Y Y Y
Porian et al. (2024) LM Y Y N Y
Alabdulmohsin et al. (2022) LM, Vision N Y Y Y
Gao et al. (2024) NLP Y Y Y N
Muennighoff et al. (2024) LM Y Y Y N
Rae et al. (2021) LM N N N N
Shin et al. (2023) RecSys N N N N
Hernandez et al. (2022) LM N N N N
Filipovich et al. (2022) LM N N N N
Neumann & Gros (2022) RL Y Y* Y N
Droppo & Elibol (2021) Speech N N N N
Henighan et al. (2020) LM, Vision, Video, VLM N N N N
Goyal et al. (2024) LM, Vision, VLM N Y N Y
Aghajanyan et al. (2023) Multimodal LM N N N N
Kaplan et al. (2020) LM N N N N
Ghorbani et al. (2021) NMT N Y N N
Gao et al. (2023) RL/LM N N N N
Hilton et al. (2023) RL N N N N
Frantar et al. (2023) LM, Vision N N N N
Prato et al. (2021) Vision Y* Y Y Y
Covert et al. (2024) LM Y Y N N
Hernandez et al. (2021) LM N N N N
Ivgi et al. (2022) NLP N N N N
Tay et al. (2022) LM N N N N
Tao et al. (2024) LM N Y N Y
Jones (2021) RL Y Y N Y
Zhai et al. (2022) Vision Y N N N
Dettmers & Zettlemoyer (2023) LM N N N N
Dubey et al. (2024) LM N N N N
Hoffmann et al. (2022) LM N N N N
Ardalani et al. (2022) RecSys N N N N
Clark et al. (2022) LM N Y N Y

Table 5: Details on domain of experiments and availability of code by category for each paper
surveyed.
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Paper Power Law Form Purpose Of Power Law (E.G., Performance Prediction, Optimal Ratio) # Power Law Parameters # Of Scaling Laws

Rosenfeld et al. (2019) ϵ̃(m,n) = an−α + bm−β + c∞ Performance Prediction 5-6 8
Mikami et al. L(n, s) = δ (γ + n−α) s−β Performance Prediction 4 3
Schaeffer et al. (2023) None N/A NA NA
Sardana & Frankle (2023) L(N,D) = E + A

Nα + B
Dβ ; N∗ (ℓ,Dinf ) , D

∗
tr (ℓ,Dinf ) = argminN,Dtr|L(N,Dtr)=ℓ Performance Prediction 5 4

Sorscher et al. (2022) c · α−β , c · exp(−bα) Performance Prediction 2 34

Caballero et al. (2022) y = a+ (bx−c0)
∏n

i=1

(
1 +

(
x
di

)1/fi
)−ci∗fi

Performance Prediction 5+ 100+

Besiroglu et al. (2024) L(N,D) = E + A
Nα + B

Dβ Performance Prediction 5 1

Gordon et al. (2021) L(N,D) =

[(
N
Nc

)αN
αD + D

Dc

]αD

Performance Prediction 4 3

Bansal et al. (2022) L(D) = α
(
D−1 + C

)p
Performance Prediction 3 20

Hestness et al. (2017) ε(m) ∼ αmβg + γ Performance Prediction 3 17

Bi et al. (2024)
Mopt =Mbase · Ca

Dopt = Dbase · Cb ,
ηopt = 0.3118 · C−0.1250

Bopt = 0.2920 · C0.3271
Optimal Ratio, Performance Prediction 2 5

Bahri et al. (2024) L(D) ∝ D−αK , L(P ) ∝ P−αK Performance Prediction 2 35
Geiping et al. (2022) f(x) = ax−c + b, vEffective Extra Samples from Augmentations (x) = f−1

ref (faug (x))− x Performance Prediction 3 50
Poli et al. (2024) logN∗ ∝ a logC and logD∗ ∝ b logC Performance Prediction 2
Hu et al. (2024) L(N,D) = CNN

−α + CDD
−β + L0 Performance Prediction 5 6

Hashimoto (2021) minλ,α Eq̂,n̂

[
(log(R(n̂, q̂)− ϵ)− α log(n̂) + log (Cλ(q̂)))

2
]
R(n̂, q̂) = E

[
ℓ
(
θ̂ (pn̂,q̂) ;x, y

)]
Performance Prediction 2+n(data mixes) 4

Ruan et al. (2024) Em ≈ hσ
(
β⊤Sm + α

)
Performance Prediction 3

Anil et al. (2023) N⋆(C) ≈ N⋆
0 · Ca Performance Prediction 2 1

Pearce & Song (2024a) N∗
\E = bCm

\E L = bCm Optimal Ratio, Performance Prediction 2 1
Cherti et al. (2023) E = βCα Performance Prediction 2 8
Porian et al. (2024) N⋆(C) ≈ N⋆

0 · Ca Optimal Ratio 2 6
Alabdulmohsin et al. (2022) εx = βxc; εx−/varepsilon∞ = βxc; εx = β(x−1 + γ)−c; εx = γ(x)(1 + γ(x))−1ε0 + (1 + γ(x))−1ε∞ Performance Prediction 2-4 600
Gao et al. (2024) L(n, k) = exp (α+ βk log(k) + βn log(n) + γ log(k) log(n)) + exp(ζ + η log(k)) Performance Prediction 2-6 1
Muennighoff et al. (2024) L (UN , UD, RN , RD) = A(

UN+UNR∗
N

(
1−e

−RN
R∗

N

))α + B(
UD+UDR∗

D

(
1−e

−RD
R∗

D

))β + E Performance Prediction 2 (+4) 1

Rae et al. (2021) None Performance Prediction N/A N/A
Shin et al. (2023) None Scaling trend NA NA
Hernandez et al. (2022) E = k ∗Nα Optimal Ratio 2 1
Filipovich et al. (2022) L(C) = (CcC)

αC Performance Prediction 2 3

Neumann & Gros (2022) Nopt (C) =
(

C
C0

)αopt
C

, Ei =
1

1+(Nj/Ni)
αN Performance Prediction 2 3 * 2

Droppo & Elibol (2021) L(N,D) =

[
(L∞)

1
α +

(
NC

N

)αN
α +

(
DC

D

)αD
α

]α
Performance Prediction 6 3

Henighan et al. (2020) L(x) = L∞ +
(
x0

x

)αx Performance Prediction 3 36

Goyal et al. (2024) yk = a · nb11
∏k

j=2

(
nj

nj−1

)bj
+ d Performance Prediction 2+ 2*n(data mixes) 1

Aghajanyan et al. (2023) L(N,Dj) = Ej +
Aj

Nαj +
Bj

|Dj |βj
, L(N,Di, Dj) = [

L(N,Di)+L(N,Dj)
2 ]− Ci,j +

Ai,j

Nαi,j +
Bi,j

|Di|+|Dj |βi,j
Performance Prediction 5 14

Kaplan et al. (2020) L(N, D) =
[(

N
Nc

)αN
αD + D

Dc

]αD

Performance Prediction 4 7

Ghorbani et al. (2021) BLEU = cBL
−pB , L̂opt(B) = α∗B−(pd+pe) + L∞, α∗ ≡ α

(
N̄e(pe+pd)

pe

)pe
(

N̄d(pe+pd)
pd

)pd

Optimal Ratio, Performance Prediction 6 8

Gao et al. (2023)
Rbon(d) = d (αbon − βbond) ,

RRL(d) = d (αRL − βRL log d)
Performance Prediction 2 2

Hilton et al. (2023) I−β =
(
Nc

N

)αN
+
(
Ec

E

)αE Optimal Ratio, Performance Prediction 5 3
Frantar et al. (2023) L(S,N,D) =

(
aS(1− S)bS + cS

)
·
(

1
N

)bN
+
(
aD

D

)bD
+ c Optimal Ratio, Performance Prediction 7 2

Prato et al. (2021)
Err(N) = Err∞ +kNα,

Err(C) = Err∞ +kCα,
Performance Prediction 3 12

Covert et al. (2024) log |ψk(z)| ≈ log |c(z)| − α(z) log(k) Performance Prediction 2 Many

Hernandez et al. (2021) L ≈
[(

NC

N

)αN
αD + DC

k(DF )α(N)β

]αD

Performance Prediction 3 1

Ivgi et al. (2022) NS Performance Prediction NA NA
Tay et al. (2022) None Scaling trend NA NA

Tao et al. (2024) Nopt
v = N0

v ∗
(

Nnv

N0
nv

)γ

, Lu = −E + A1

N
α1
nv

+ A2

N
α2
v

+ B
Dβ Optimal Ratio, Performance Prediction 7 2

Jones (2021)
plateau = mplateau

boardsize · boardsize + cplateau

incline = mincline
boardsize · boardsize +mincline

flops · log flop + cincline

elo = incline.clamp ( plateau , 0)

Performance Prediction 5 1

Zhai et al. (2022) E = α+ β(C + γ)−µ Performance Prediction 4 3
Dettmers & Zettlemoyer (2023) None Scaling trend NA NA
Dubey et al. (2024) N⋆(C) = ACα. Optimal Ratio 2 2
Hoffmann et al. (2022) A3: L(N,D) = E + A

Nα + B
Dβ Optimal Ratio, Performance Prediction 5 3

Ardalani et al. (2022)
(
αx−β + γ

)
Performance Prediction 3 3

Clark et al. (2022) logL(N,E) ≜ +a logN + b logE + c logN logE + d Performance Prediction 4 3

Table 6: Details on power law for each paper surveyed.

Paper Training Runs / Law Max. Training Flops Max. Training Params Max. Training Data Data Described? Hyperparameters Described? How Are Model Params Counted
(E.G., W/ Or W/Out Embeddings)

Rosenfeld et al. (2019) 42-49 0.7M-70M 100M words / 1.2M images Y Y Non-embedding
Mikami et al. 7 ResNet-101 64k-1.28M images Y Y NA
Schaeffer et al. (2023) 4 1011 NA Y NA Non-embedding
Sardana & Frankle (2023) 47 150M-6B 1.5B-1.25T tokens N Y NA
Sorscher et al. (2022) 60 86M (ViT) 200 epochs Y Y NA
Caballero et al. (2022) 3-40 NS NS N N NS
Besiroglu et al. (2024) NA NA NA NA Y NA Non-embedding
Gordon et al. (2021) 45-55 56M 28.3M-51.1M examples Y Y Non-embedding
Bansal et al. (2022) 10 170M-800M 500K-512M sentences (28B tokens) Y Y NS
Hestness et al. (2017) 9 upto 193M 219 − 228 tokens, upto 29 images, 2k audio hours Y Y NS
Bi et al. (2024) 80 1e17− 3e20 Y Y Non-embedding
Bahri et al. (2024) 8-27 36.5M upto 78k steps; 100 epochs Y Y NS
Geiping et al. (2022) 13 ResNet-18 upto 7.6M images Y Y NS
Poli et al. (2024) 500 total 8.00E+19 70M-7B Y Y Non-embedding
Hu et al. (2024) 36 40M-2B 400M-120B tokens Y Y Non-embedding
Hashimoto (2021) upto 600k sentences Y Y NA
Ruan et al. (2024) 27* -77* 70B-180B 3T-6T tokens N/A N/A N.S.
Anil et al. (2023) 12 1.00E+22 15B 4.00E+11 N N Non-embedding
Pearce & Song (2024a) 20 (simulated), 25 (real) 1.5B (simulated), 4.6M (real) 23B (simulated), 500M (real) tokens Y Y w/ Embedding and Non-embedding considered separately
Cherti et al. (2023) 3* - 29 214M 34B (pretrain), 2B (finetune) examples Y Y N.S
Porian et al. (2024) 16 2.00E+19 901M Y Y w/ Embedding and Non-embedding considered separately
Alabdulmohsin et al. (2022) 1* 110M-1B 1e6-1e10 ex / 3e11 tokens Mixed N N/A
Gao et al. (2024) N.S N.S N.S N.S N N N.S
Muennighoff et al. (2024) 142 8,7B 900B tokens Y Y w/ embedding
Rae et al. (2021) 4 6.31E+23 280B Y Y Non-embedding
Shin et al. (2023) 17 0.1 PF Days 160M 500M-50B tokens Y Y NA
Hernandez et al. (2022) 56 1.5M-800M 100B tokens N N NS
Filipovich et al. (2022) 4 57-509M 30B token Y N NS
Neumann & Gros (2022) 14 5 ∗ 105 104 steps Y Y NS
Droppo & Elibol (2021) 5-21 107 134-23k hrs speech Y Y NS
Henighan et al. (2020) 6-10 1011 1012 tokens Y Y Non-embedding
Goyal et al. (2024) 5 CLIP L/14 - 300M +63M 32-640M samples Y Y Embedding
Aghajanyan et al. (2023) 21 8M-6.7B 5-100B tokens Y Y Non-embedding
Kaplan et al. (2020) 40-150 1.5B 23B tokens Y Y Non-embedding
Ghorbani et al. (2021) 12-14 191-3B NS Y Y Non-embedding
Gao et al. (2023) 9 3B 120-90k N Y NS
Hilton et al. (2023) NS 1020 Y Y NS
Frantar et al. (2023) 48 and 112 0.66M-85M 1.8B images, 65B tokens Y Y Non-embedding
Prato et al. (2021) 5 106 samples Y N NA
Covert et al. (2024) 10 NA 1000 samples for IMDB Y Y NA
Hernandez et al. (2021) NS 1021 108 Y N Non-embedding
Ivgi et al. (2022) 5-8 104 − 108 varies; 500k steps PT Y Y Non-embedding
Tay et al. (2022) 16-30B 219 Y Y NA
Tao et al. (2024) 60 33M-1.13B NV + 4-96k V 4.3B-509B Characters Y Y Embedding and Non-embedding considered separately
Jones (2021) 200 1E+12-1E+17 4E+08-2E+09 Y Y NA
Zhai et al. (2022) 44 5.4M-1.8B 1-13M images Y Y NA
Dettmers & Zettlemoyer (2023) 4 19M-176B NA NA Y NA
Dubey et al. (2024) NS 6 ∗ 1018 − 1022 40M-16B Y* Y NS
Hoffmann et al. (2022) 200-450 6 ∗ 1018 − 3 ∗ 1021 16B 5B-400B tokens Y Y Non-embedding
Ardalani et al. (2022) NS 102-106 TFlops 5M-5B samples N N All are considered
Clark et al. (2022) 56 15M-1.3B 130B tokens Y Y Non-embedding

Table 7: Details on training setup for each paper surveyed.
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Paper Data Points Per Law? Scaling Law Metric Modification Of Final Metric? Subsets Of Data Used

Rosenfeld et al. (2019) 42-49 Loss / Top1 Error N N
Mikami et al. 7 Error Rate N N
Schaeffer et al. (2023) NA Various downstream NA NA
Sardana & Frankle (2023) NS Loss NS NS
Sorscher et al. (2022) 60 Error Rate NA NA
Caballero et al. (2022) 3-40 FID, Loss, Error Rate, Elo Score N NS
Besiroglu et al. (2024) 245 Loss N N
Gordon et al. (2021) 45-55 Loss N N
Bansal et al. (2022) NS Loss, BLEU NS NS
Hestness et al. (2017) NS Token Error, CER, Error Rate, Loss Median min. validation error across multiple training runs with separate random seeds NS
Bi et al. (2024) upto 80 Validation bits-per-byte NS NS
Bahri et al. (2024) upto 100 Loss NS NS
Geiping et al. (2022) 50 Effective Extra Samples Interpolation NS
Poli et al. (2024) NS Loss NS NS
Hu et al. (2024) NS Loss NS NS
Hashimoto (2021) NS Loss NS NS
Ruan et al. (2024) Various downstream N N
Anil et al. (2023) 12 Loss N N
Pearce & Song (2024a) 20, 5 Loss N N
Cherti et al. (2023) 3-29 Error Rate N N
Porian et al. (2024) 12 Loss N N
Alabdulmohsin et al. (2022) N.S. Loss / Accuracy N N/A
Gao et al. (2024) N.S MSE N.S N.S
Muennighoff et al. (2024) 142 Loss N Outliers removed
Rae et al. (2021) 4 Loss N/A N/A
Shin et al. (2023) NA Loss NA NA
Hernandez et al. (2022) NS Loss N N
Filipovich et al. (2022) NS Loss N N
Neumann & Gros (2022) 238 Elo Score N N
Droppo & Elibol (2021) NS Loss N N
Henighan et al. (2020) NS Loss, Error Rate NS Drop smaller models
Goyal et al. (2024) NS Error Rate N N
Aghajanyan et al. (2023) NS Perplexity N N
Kaplan et al. (2020) NS Loss NS NS
Ghorbani et al. (2021) NS Loss, BLEU Median of last 50k steps
Gao et al. (2023) 90 RM Score NS NS
Hilton et al. (2023) NS Intrinsic Performance Smoothing learning curve Exclude early checkpoints
Frantar et al. (2023) 48 and 112 Loss NS NS
Prato et al. (2021) 5 Error Rate NS NS
Covert et al. (2024) (1000-5000 )*10 Expectation NS N
Hernandez et al. (2021) 40-120 Loss NS NS
Ivgi et al. (2022) 5-8 Loss N [2.5, 97.5] percentile
Tay et al. (2022) NA Loss, Accuracy NA NA
Tao et al. (2024) 20*60 Loss Interpolation NS
Jones (2021) 2800 Elo Score NS NS
Zhai et al. (2022) NS Accuracy NS NS
Dettmers & Zettlemoyer (2023) NA Accuracy NA NA
Dubey et al. (2024) 150 Loss, Accuracy NS NS
Hoffmann et al. (2022) upto 1500 Loss N Lowest loss model of a FLOP count, last 15% of checkpoints
Ardalani et al. (2022) 130 Loss NS NS
Clark et al. (2022) 26*56 Loss Log NS

Table 8: Details on data extraction for each paper surveyed.

Paper Curve-Fitting Method Loss Objective Hyperparameters Reported? Initialization Are Scaling Laws Validated?

Rosenfeld et al. (2019) Least Squares Regression Custom error term N/A Random Y
Mikami et al. Non-linear Least Squares in log-log space N/A N/A Y
Schaeffer et al. (2023) NA NA NA NA NA
Sardana & Frankle (2023) L-BFGS Huber Loss Y Grid Search N
Sorscher et al. (2022) NA NA NA NA NA
Caballero et al. (2022) Least Squares Regression MSLE N/A Grid Search, optimize one Y
Besiroglu et al. (2024) L-BFGS Huber Loss Y Grid Search Y
Gordon et al. (2021) Least Squares Regression N/A N.S. N
Bansal et al. (2022) NS NS N NS N
Hestness et al. (2017) NS RMSE N NS Y
Bi et al. (2024) NS NS N NS Y
Bahri et al. (2024) NS NS N NS N
Geiping et al. (2022) Non-linear Least Squares NA Non-augmented parameters Y
Poli et al. (2024) NS NS N NS N
Hu et al. (2024) scipy curvefit NS N NS N
Hashimoto (2021) Adagrad Custom Loss Y Xavier Y
Ruan et al. (2024) Linear Least Squares Various N/A N/A Y
Anil et al. (2023) Polynomial Regression (Quadratic) N.S. N N.S. Y
Pearce & Song (2024a) Polynomial Least Squares MSE on Log-loss N/A N/A N
Cherti et al. (2023) Linear Least Squares MSE N/A N/A N
Porian et al. (2024) Weighted Linear Regression weighted SE on Log-loss N/A N/A Y
Alabdulmohsin et al. (2022) Least Squares Regression MSE Y N.S. Y
Gao et al. (2024) N.S N.S N.S N.S N.S
Muennighoff et al. (2024) L-BFGS Huber on Log-loss Y Grid Search, optimize all Y
Rae et al. (2021) None None N/A N/A N
Shin et al. (2023) NA NA NA NA NA
Hernandez et al. (2022) NS NS NS NS NS
Filipovich et al. (2022) NS NS NS NS NS
Neumann & Gros (2022) NS NS NS NS NS
Droppo & Elibol (2021) NS NS NS NS NS
Henighan et al. (2020) NS NS NS NS NS
Goyal et al. (2024) Grid Search L2 error Y NA Y
Aghajanyan et al. (2023) L-BFGS Huber on Log-loss Y Grid Search, optimize all Y
Kaplan et al. (2020) NS NS NS NS N
Ghorbani et al. (2021) Trust Region Reflective algorithm, Least Squares Soft-L1 Loss Y Fixed Y
Gao et al. (2023) NS NS NS NS Y
Hilton et al. (2023) CMA-ES+Linear Regression L2 log loss Y Fixed Y
Frantar et al. (2023) BFGS Huber on Log-loss Y N Random Trials Y
Prato et al. (2021) NS NS NS NS NS
Covert et al. (2024) Adam Custom Loss Y NS Y
Hernandez et al. (2021) NS NS NS NS Y
Ivgi et al. (2022) Linear Least Squares in Log-Log space MSE NA NS Y
Tay et al. (2022) NA NA NA NA NA
Tao et al. (2024) L-BFGS, Least Squares Huber on Log-loss Y N Random Trials from Grid Y
Jones (2021) L-BFGS NS NS NS NS
Zhai et al. (2022) NS NS NS NS NS
Dettmers & Zettlemoyer (2023) NA NA NA NA NA
Dubey et al. (2024) NS NS NS NS Y
Hoffmann et al. (2022) L-BFGS Huber on Log-loss Y Grid Search, optimize all Y
Ardalani et al. (2022) NS NS NS NS NS
Clark et al. (2022) L-BFGS-B L2 Loss Y Fixed NS

Table 9: Details on optimization for each paper surveyed.
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D FULL ANALYSIS PLOTS
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(a) §3, §7.1 Using data from both Besiroglu et al. (2024) (left) and our own models (right), we compare the
effects of fitting to the power law form used in Approach 3 of Hoffmann et al. (2022) with the variant used by
Muennighoff et al. (2024), which assumes that the exponents α, β are equal – equivalently, that N∗(C) and
D∗(C) scale about linearly with each other. With both datasets, taking this assertion results in a law much closer
to the one reported by Hoffmann et al. (2022).

(b) §4, §7.2 With our models, we simulate the effects of not sweeping the
learning rate. As a baseline, we sweep at each (N , D) pair for the optimal
learning rate over a range of values at most a multiple of 2 apart. Next, we use
a learning rate of 1e-3 for all N , the optimal for our 200 million parameter
models, and do the same for 4e-3, which is optimal for our 12 million parameter
models. Lastly, we use all models, which includes, for some scales, 8 learning
rates at the same N and D. Results vary dramatically across these settings.
Somewhat surprisingly, using all learning rates results in a very similar power
law to sweeping the learning rate, whereas using a fixed learning rate of 1e-3
yields the lowest optimization loss
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(c) §4, §7.2 Of the models we trained, we choose subsets with (N , D) values
which fit a particular method one might have of setting up training. We fit
with (1) all of our models (12M - 400M parameters) first, then with (2) only
models of up to about 100 million parameters. We also compare the effects
of a lower or higher hypothesis about the optimal D/N ratio, including (3)
only models with D/N ≥ 22 or (4) D/N ≤ 18. These ranges are designed to
exluce D/N = 20, the rule of thumb based on Hoffmann et al. (2022). The
mininmum or maximum D/N ratio tested does skew results; (3) and (4) fit
to optimal ratios D/N > 22 and D/N < 18, respectively, at the compute
budgets we consider. Removing our 2 largest models in (2) also creates a major
shift in the predicted optimal D/N .

(d) §4, §7.2 With our own dataset, we fit power laws to the same models, while
varying the ways we count N and C. We compare (1) including embeddings,
our baseline with (2) excluding embeddings only in N , (3) excluding embed-
dings only in C, (4) excluding embeddings in both N and C. By default, we
We also compare to using the C=6ND approximation, including embedding
parameters. In all other settings, we calculate the FLOPs in a manner similar
to Hoffmann et al. (2022), and we open source the code for these calculations.
The resulting difference in scaling laws is substantial and increases at large
scales.
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(e) §5, §7.3 We evaluate our models, calculating loss on a held-out validation set
of C4 Raffel et al. (2020) and Wikipedia Foundation. It would not be surprising
to find merely that the absolute performance predictions vary between the two
datasets, but we also find different optimal D/N ratios.

(f) §6, §7.4 We fit to data from Besiroglu et al. (2024) (left) and our data (right) to experiment with the
initialization of parameters in the power law. We start with (1) optimizing every point in a grid search of
6x6x5x5x5=4500 initializations (Hoffmann et al., 2022), (2) randomly sampling from only a single initialization
in this grid, (3) searching for the lowest loss initialization point (Caballero et al., 2022), (4) randomly sampling
10% of points, and (5) initializing with the coefficients found in Hoffmann et al. (2022), as Besiroglu et al.
(2024) does. (5) yields the lowest loss results in either case, and with the Besiroglu et al. (2024) data, results in a
nearly identical power law to the original. However, optimizing over the full grid yields the power law which
diverges most from the Hoffmann et al. (2022) law, suggesting the difficulty of optimizing over this space, and
the presence of many local minima.
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(g) §6, §7.4 We fit a power law to data from Besiroglu et al. (2024) (left) and our data (right), minimizing different
objective functions: (1) the baseline log-Huber loss, (2) MSE, (3) MAE, and (4) the Huber loss. We found
significantly more stability across the loss functions when fitting to our own data, but we draw no conclusions
from such a small sample, except that the loss function behavior is not predictable, given the differences between
loss functions when looking at the power laws resulting from Besiroglu et al. (2024) data.

(h) §6, §7.4 We fit a power law to data from Besiroglu et al. (2024) (left) and our data (right) using various
optimizers, beginning with the original (1) L-BFGS. L-BFGS and BFGS implementations have an early stopping
mechanism, which conditions on the stability of the solution between optimization steps. We set raise this
threshold for L-BFGS to a (2) higher value 1e-4 (stopping earlier), and a (3) slightly lower value 1e-6. We found
that using any lower values, e.g. 1e-8, resulted in the same solutions for either dataset. L-BFGS and BFGS
also have the option to use the true gradient of the loss, instead of an estimate, which is the default. We omit
this setting, which made no difference in our results. We compare these L-BFGS settings to (4) BFGS. We test
the same 3 tolerance values and the gradient setting, and find that none of these options change the outcome of
BFGS in our analysis. Finally, we compare to (5) non-linear least squares and (6) pure grid search, using a grid
5 times more dense along each axis as we used initialization with other optimizers. This density is chosen to
approximately match the runtime of L-BFGS. Many of these optimizers do converge to similar solutions, but this
depends on the data, and the settings which diverge from this majority do not follow any immediately evident
pattern.

Figure 3: (§7) We study the effects of various decisions in the fitting of a power law, as outlined in our
checklist (Appendix B) and detailed in §3-§6. For each set of analyses, we include markers indicating
3 existing models for comparison purposes: Llama 3 405B (Dubey et al., 2024), the Chinchilla model
(Hoffmann et al., 2022), and an estimate of the 1.5B GPT-2 model (Radford et al., 2019), for which
we know details of the dataset storage size and word count, but not an exact count of data BPE
tokens, for which we use an estimate of 100 billion. We additionally include the scaling laws found
by (Kaplan et al., 2020) and (Hoffmann et al., 2022) for comparison, and we use a thicker, solid
line for the method in each plot which achieves the lowest optimization, with the exception of the
plots comparing loss functions, for which this would be nonsensical. We find overall, throughout our
analyses, that all of the decisions we explore do impact the final fit of the power law, supporting our
conclusion that more thorough reporting of these decisions is critical for scaling law reproducibility.
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E RECOMMENDATIONS

As seen in our analyses, many decisions in our checklist have a number of reasonable options, but
those reasonable choices lead to a wide range of scaling law fits, and the observed variations do not
follow any clear pattern. It is probable that variations would be even harder to predict when varying
model architectures or other design decisions, removing the possibility of a universal set of best
practices. However, it is certainly possible to determine that some scaling law fits are plausible or
highly implausible, and to observe the stability of the fitting procedure. With the caveat that following
any recommendations can not guarantee good scaling law fit, we can make some more concrete
recommendations based on these observations:

Scaling Law Hypothesis

• Fitting fewer scaling law parameters at a time typically results in greater stability. In some
cases, it may be beneficial to decompose the scaling law fitting problem into two separate
procedures. Examples of this approach are the IsoFLOP procedure from Hoffmann et al.
(2022), as well as fitting first the relation between L and C, then finding the optimal N and
D for a C, as seen in Porian et al. (2024).

Training Setup

• The trained models should include a wide range of input variables settings. For example,
when the input variables to the scaling law are L, N , D, the included models should include
a wide range of N and D values for each C, or equivalently, should include a wide range of
D/N ratios. If the included settings do not include the true optimum, the procedure will
struggle to fit to the optimum.

• Sweeping for the optimal learning rate results in a less stable fit than fixing the learning
rate. We hypothesize that this may be because the true optimal learning rate for each model
and data budget size is not any of the options we consider, and thus, each model varies in
the difference between its true and approximate optimal learning rate. This may introduce
additional noise to the data. Due to resource constraints, we are unable to fully test this
hypothesis, and it may not hold at significantly larger scale, but we recommend fixing the
learning rate, or changing it according to, say, model size, according to a fixed formula.

Data Collection

• Results across tasks or datasets should not be mixed. Neither performance predictions nor
optimal D/N ratios are fixed across different evaluation settings for the same set of models.

Fitting Algorithm

• Scaling law fitting is sensitive to initialization; most known optimization methods for scaling
laws are only able, in practice, to the shift parameters near to their initialization values. Thus,
a dense search over initialization values is necessary. If there is a strong hypothesis guiding
the choice of one specific initialization, such as a previously fit and validated scaling law,
this will also limit the set of possible final scaling law parameter values.

• Different losses emphasize the contribution of errors from certain datapoints. The chosen
loss should be suited to the distribution of datapoints and sources of noise.

• A simple grid search is unlikely to result in a good scaling law fit. Additionally, optimizers
designed to fit linear relations may make assumptions about the distribution of errors and
should not be used to fit a power law.

E.1 EXAMPLE CHECKLIST

We provide one possible set of responses to our checklist, reflective of some recommendations
enumerated above, and loosely based on Hoffmann et al. (2022). These answers roughly correspond
to a subset of the experiments we run in §7
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(MIS)FITTING: SCALING LAW REPRODUCILIBILITY CHECKLIST

Scaling Law Hypothesis (§3)
• What is the form of the power law? L(N,D) = E + A

Nα + B
Dβ

• What are the variables related by (included in) the power law? N : the number of model
parameters, D: the number of data tokens, and L: the model’s validation loss

• What are the parameters to fit? A, B, E, α, β

• On what principles is this form derived? This is taken from Hoffmann et al. (2022), who
hypothesize this form on the basis of prior work in risk decomposition.

• Does this form make assumptions about how the variables are related? This form inherently
assumes that N and D do not have any interaction in their effect on the scaling of L. For
some experiments, we use the assumption α = β to simplify optimization.

Training Setup (§4)
• How many models are trained? Refer to Table 10

• At which sizes? Refer to Table 10

• On how much data each? On what data? Is any data repeated within the training for a model?
Refer to Table 10.

• How are model size, dataset size, and compute budget size counted? For example, how are
parameters of the model counted? Are any parameters excluded (e.g., embedding layers)?
How is compute cost calculated? We include the results including and excluding embedding
layers for both the total parameter count N and the total FLOP count C. We also include, for
comparison, results using the estimate C = 6ND.

• Are code/code snippets provided for calculating these variables if applicable? Code will be
provided upon acceptance

• How are hyperparameters chosen (e.g., optimizer, learning rate schedule, batch size)? Do they
change with scale? Most hyperparameters are chosen based on best practices in current
literature; several are taken directly from the settings in Hoffmann et al. (2022). For learning
rate, we conduct an extensive hyperparameter search across 2-3 orders of magnitude,
multiplying by 2-2.5, and then conduct training at 3 learning rates, including the optimum, for
nearly all (N , D) configurations.

• What other settings must be decided (e.g., model width vs. depth)? Do they change with
scale? Refer to Table 10

• Is the training code open source? Code will be provided upon acceptance

Model size # layers Hidden Dim # Attn Heads # Steps

12M 5 448 7 {200, 250, 360, 500, 750, 1,000,
4,000, 6,122, 7,346, 8,888, 11,851}

17M 7 448 7 {200, 250, 500, 750, 1,000,
1,250, 1,500, 10,581}

25M 8 512 8 {250, 360, 500, 750, 1,000, 1,500,
2,000, 8,000, 16,000, 31,635}

35M 9 576 9 {200, 250, 360, 500, 750, 1,000,
1,250, 1,500, 22,219}

50M 10 640 10 {500, 750, 1,000, 1,250, 1,500, 1,800,
2,000, 2,500, 4,000, 16,000, 63,991}

70M 12 704 11 {500, 750, 1,000, 1,250, 1,500,
2,000, 2,500, 3,000}

100M 14 768 12 {1,000, 1,500, 2,000, 2,500, 3,000, 4,000}

200M 18 960 15 {2,000, 4,000}

400M 20 1280 20 {8,000}

Table 10: Architecture and Data budget details for models trained in §7
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Data Collection(§5)
• Are the model checkpoints provided openly? Raw evaluation metrics are provided upon

acceptance.

• How many checkpoints per model are evaluated to fit each scaling law? Which ones, if so?
One checkpoint per model is evaluated; the last checkpoint. No mid-training checkpoints are
used, i.e., from before the termination of the cosine learning rate schedules.

• What evaluation metric is used? On what dataset? We use cross-entropy loss, measured on a
held-out validation subset of the Common Crawl (Raffel et al., 2020) and Wikipedia
(Foundation) datasets.

• Are the raw evaluation metrics modified? Some examples include loss interpolation, centering
around a mean or scaling logarithmically. No.

• If the above is done, is code for modifying the metric provided? Code is provided upon
acceptance.

Fitting Algorithm (§6)
• What objective (loss) is used? We try various loss objectives (1) log-Huber loss, (2) MSE, (3)

MAE and (4) Huber loss

• What algorithm is used to fit the equation? Mainly L-BFGS, but we also experiment with
BFGS, non-linear least squares and grid search.

• What hyperparameters are used for this algorithm? Thresholds of {1e− 4, 1e− 6, 1e− 8},

• How is this algorithm initialized? We initialize with 4500 initializations similar to Hoffmann
et al. (2022).

• Are all datapoints collected used to fit the equations? For example, are any outliers dropped?
Are portions of the datapoints used to fit different equations? No outliers are dropped in
general, but we do show some results on specific subsets of models. For example, we compare
the result of a scaling law fit when using only models trained at a peak learning rate of 1e− 4
or 4e− 4.

• How is the correctness of the scaling law considered? Extrapolation, Confidence Intervals,
Goodness of Fit? Currently, we do not evaluate the correctness beyond comparing to results in
literature (Hoffmann et al., 2022; Kaplan et al., 2020).
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