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Abstract

Recent advancements in financial problem-solving have leveraged LLMs and agent-
based systems, with a primary focus on trading and financial modeling. However,
credit assessment remains an underexplored challenge, traditionally dependent on
rule-based methods and statistical models. In this paper, we introduce MASCA,
an LLM-driven multi-agent system designed to enhance credit evaluation by mir-
roring real-world decision-making processes. The framework employs a layered
architecture where specialized LLM-based agents collaboratively tackle sub-tasks.
We further present a signaling game theory perspective on hierarchical multi-agent
systems, offering theoretical insights into their structure and interactions. Our
paper also includes a detailed bias analysis in credit assessment, addressing fairness
concerns. Experimental results demonstrate that MASCA outperforms baseline
approaches, highlighting the effectiveness of hierarchical LLM-based multi-agent
systems in financial applications, particularly in credit scoring.

1 Introduction

The financial domain has witnessed a major shift with the introduction of Large Language Models
(LLMs), which have demonstrated potential across various financial tasks. Recent studies have
showcased the capabilities of advanced LLMs, such as GPT-4, in financial text analysis [[7]], prediction
tasks [|18], and financial reasoning [|11]. These models have proven particularly effective in processing
and analyzing complex financial data, offering insights that were previously challenging to obtain
through traditional methods.

Building upon the capabilities of LLMs, autonomous agents leveraging these models to tackle complex
financial problems, have emerged as a powerful approach. Autonomous agents leverage LLMs to
comprehend, generate, and reason with natural language, and this capability has been extended to
the financial domain where they assist in tasks ranging from real-time market analysis to automated
trading decisions [[15[]. Such agents have shown promise not only in processing large volumes of
financial data but also in engaging in strategic and collaborative decision-making. However, one area
where their potential remains underexplored is credit assessment, a domain that requires processing
diverse data sources and navigating dynamic borrower-lender interactions.

Traditional credit assessment and scoring methods, while widely used, face several critical challenges:
they rely heavily on historical credit data, overlooking alternative data sources that could provide
a more comprehensive view of creditworthiness. Historical data can also inadvertently perpetuate
existing biases leading to unfair lending practices [5]]. Traditional models operate as “black boxes" in
the decision-making processes of these systems, making it difficult to understand for consumers and



regulators to interpret [2]. Static models struggle to adapt quickly to changing economic conditions
or evolving financial behaviors.

LLMs are uniquely positioned to address these challenges. Their ability to process unstructured and
diverse data sources enables them to incorporate alternative data into credit assessments. Furthermore,
their reasoning capabilities can enhance transparency by providing interpretable explanations for
decisions. By integrating these models into a multi-agent framework, it becomes possible to create
adaptive systems that respond dynamically to changing market conditions while promoting fairness
and inclusivity.

This paper makes three contributions:

e LLM-based multi-agent framework for credit assessment: improving accuracy, fairness,
and adaptability in decision-making.

* Hierarchical multi-agent structure with Signaling Game Theory: capturing borrower-
lender strategic interactions and information flow.

* Bias analysis in LLM-based credit assessment: identifying and mitigating systemic risks
in financial decision-making.

2 Related Work

LLMs have demonstrated strong capabilities across various financial applications [8]], such as ana-
lyzing sentiment in financial news and social media [[10], predicting market trends [4]], interpreting
financial time series data [[19} [12]], and finding factors that influence stock movements [[13]]. Their
ability to extract relevant financial metrics and ratios from unstructured data has enhanced the speed
and accuracy of financial assessments [[14]].

Multi-agent systems (MAS) have long been used in financial applications for their ability to model
complex, dynamic environments [6], [[1]. Agents in these systems operate autonomously, interact
with each other, and collaborate to achieve shared goals. MAS has been applied to tasks such as
algorithmic trading, fraud detection, and dynamic portfolio management.

There has been previous research work on LLM-based agents such as FinMem [21]], a trading agent
with layered memory to convert the insights gained from memories into investment decisions and
FinAgent [22]], which proposes a multimodal agent to reason for financial trading. Previous work
on LLM-based multi-agent systems include financial decision-making [20]] and trading systems [3],
[15].

3 Methodology

Our hierarchical multi-agent system (MAS) for credit assessment (Figure[T)) mirrors real-world credit
teams by decomposing the task into specialized, modular agents. This design ensures Modularity,
Explainability, Specialization, and Scalability (MESS). Each layer focuses on distinct aspects of
credit evaluation, enabling transparent, accurate, and efficient decision-making.

Data Ingestion & Contextualization Layer: Transforms raw applicant data into structured profiles
via three agents: Data Analyst: Aggregates, formats, and validates structured/unstructured data,
Contextualizer: Builds applicant personas, integrating financial and behavioral insights, Feature
Engineer: Derives key metrics (e.g., DT, DAR, Credit Utilization, Employment Stability).

Multidimensional Assessment Layer: Conducts parallel evaluation of risks and rewards: The
Risk Team: contains Risk Modeler (credit history, red flags), Income & Stability Analyst (income
consistency, employment history, stress tests), Debt Analyst (debt burden, loan specifics). The
Reward Modeler: highlights profitability, creditworthiness, and mitigating factors.

Strategic Optimization Layer & Decision Orchestrator: This layer contains Risk-Reward Opti-
mizer which balances downsides and upsides via risk-reward ratios, weighted scoring, and scenario
simulations. Finally, it synthesizes inputs from all layers to deliver the final approval decision.

Signaling Game Theory: Our framework models borrower-lender interactions as a signaling game.
Borrowers send signals (credit history, income, loan details), while agents act as receivers, updating
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Figure 1: MASCA: The multi agent framework for credit assessment

beliefs based on signals. Hierarchical signaling enables higher-level agents (senders) to guide lower-
level ones (receivers), promoting efficient exploration—exploitation trade-offs. The system converges
toward Perfect Bayesian Equilibrium, refining beliefs and balancing risk-reward assessments. This
mirrors how lenders dynamically infer creditworthiness from borrower signals. Theoretical analysis
is presented at[E]

4 Experiments

Dataset: We use credit scoring dataset based on the German Credit Dataset used in financial risk
assessment provided by the TheFinAl where it benchmarks multiple datasets and tasks on various
LLM:s [17,[16]). Results on cra-lending dataset are reported in the Appendix [B]

Models: Our experiments primarily use GPT [9]] family models, specifically gpt-40 and 03-mini.
We consider 03-mini to be more effective in reasoning tasks, making it a suitable choice for decision-
making and overall assessment within our framework. We also show results using Llama3-70B
model.

4.1 Baselines

We compare our framework against multiple baselines:

* Zero shot performance: Evaluate the input query with zero-shot baseline for comparison.

* Chain of Thought(CoT): To assess reasoning ability, we prompt the model with “Think
step by step” and analyze its response trace within the CoT framework.

* Single Agent performing Multiple Tasks: A single agent is assigned the responsibility of
performing all subtasks.

* Multi Agent System(OURS): We experiment with both homogeneous(same model) and
heterogeneous setups(different models).

To evaluate the robustness of our proposed hierarchical framework, we introduce the following
ablations:



Table 1: Performance metrics comparing various credit assessment approaches

Evaluation | Accuracy | Precision | Recall | Fl Score
Zero Shot (gpt4o) 45.5% 3333% | 67.69% | 44.67%
Zero Shot (03-mini) 44% 47.73% | 59.43% | 52.94%
Zero Shot (L1ama3-70B) 41.5% 63.20% | 27.30% | 38.00%
Chain of Thought (gpt-4o0) 36% 37.12% | 52.13% | 43.36%
Single Agent performing multitasks(gpt-4o0) 42.5% | 28.79% | 64.41% | 39.79 %
Single Agent performing multitasks(o3-mini) 455% | 43.18% | 62.64% | 51.12%
MultiAgent(OURS) (L1ama3-70B & 03-mini) 48.50% | 67.90% | 41.70% | 51.70%
MultiAgent(OURS) (gpt-40) 51% 65.18% 553% | 59.84%
MultiAgent(OURS) (03-mini) 53.5% 65.12% | 63.64% | 64.37%
MultiAgent(OURS) (gpt-40 & 03-mini) 60% 65.48% | 83.33% 73.33%

* A single-level architecture with multiple agents: All agents operate at the same level
without a hierarchical structure, independently processing different aspects of the credit
assessment task.

* A two-level architecture with multiple agents: Agents are organized into two layers,
where the first layer performs the initial pre-processing and assessment, while the second
layer performs risk and reward assessment.

5 Results and Discussion

Table [T) and 2] highlights that our hierarchical MAS significantly outperforms baselines. Combin-
ing GPT-40 and 03-mini yields 60% Accuracy (+15.5% over Zero-Shot GPT-40), 83.33% Recall
(+15.64%), and 73.33% F1 (+20.39%), while even MAS with 03-mini alone surpasses all non-MAS
setups (+9.5% Accuracy, +13.25% F1). Baseline methods reveal clear limitations: Zero-shot GPT-40
achieves high Recall (67.69%) but low Precision (33.33%), showing over-approval bias. 03-mini
favors Precision (47.73%) at Recall’s cost (59.43%). CoT performs worst overall (36% Accuracy),
suggesting reasoning chains propagate errors in credit tasks. Single-agent multitasking proves
suboptimal (GPT-40: 42.5% Accuracy, 28.79% Precision). Conflicting priorities hinder decision
quality, whereas MAS cross-validation reduces false positives and balances Precision—Recall trade-
offs. Ablations (Table [3) show flat architectures yield 9.23% lower F1 than hierarchical systems.
Division of labor enables specialization, error correction, and refinement, with later layers val-
idating earlier assessments. Finally, heterogeneous MAS combining GPT-40’s reasoning with
03-mini’s efficiency achieves the most robust and balanced predictions, reflected in superior Recall
and F1 scores.

6 Biasness Perspective: Towards Fair Lending

We analyze potential gender and ethnicity biases in our multi-agent credit assessment system. For
gender [2a] accuracy dropped from 65.22% for male applicants to 58.26% when gender was switched
to female while keeping all other features constant. Out of 115 samples, 14 cases showed differing
outcomes solely due to gender, indicating bias. Even with gender removed, accuracy further declined
to 51.30%, suggesting indirect bias from correlated features. Loans approved for female applicants
also showed lower confidence scores, though strong attributes like stable employment and positive
credit history acted as counterbias factors.

For ethnicity [2b] performance varied across groups. African/Black applicants achieved the highest
accuracy (57.5%) but still fell below ground truth (60%), while Asian applicants had the lowest
(52.5%, -7.5% below ground truth). All groups underperformed ground truth recall (83.33%),
indicating reduced ability to identify creditworthy applicants. The Asian approval rate (52.5%)
reached only 87.5% of the baseline, nearing the disparate impact threshold under the 4/5th rule.
Additionally, African/Black applicants showed higher recall (75.76%) but lower precision (65.36%),
implying approval bias despite higher risk. Overall, results demonstrate that both gender and ethnicity
significantly influence system outcomes, reinforcing the need for bias mitigation strategies.
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A Dataset Information

The results are primarily evaluated on two datasets:

o german-flare dataset: 200 test samples of the datatset.
* cra-lending dataset: 2690 test samples of the dataset.

There are 20 features/attributes(13 categorical, 7 numerical) present for each query in the test samples.
The credit assessment classifies individuals as “good" or “bad" credit risks using historical customer

data.

B Results on cra-lending dataset

Table 2: Performance metrics comparing various credit assessment approaches on cra-lending dataset

Evaluation | Accuracy | Precision | Recall | F1 Score
Zero Shot (gpt-40) 60.5% 88.80% | 58.60% 70.60%
Zero Shot (03-mini) 61% 89.60% | 58.60% 70.90%
MultiAgent (OURS) (gpt-40 & 03-mini as expert) 66.67 % 87.90% | 68.10% | 76.70%

C Ablations study

Table 3: Ablations to evaluate the robustness of our proposed hierarchical framework

Evaluation | Accuracy | Precision | Recall | Fl Score
Single-level with multiple agents 46% 59.38% | 57.58% | 58.46%
Two-level with multiple agents 53.77% 63.70% | 70.45% | 66.91%

D Biasness Figures

E Signalling Game Theory in Multi Agent Setup

We define our hierarchical MASCA system formally as a signaling game:

(Tv M, A, p,0,Us, UR)

where:
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Figure 2: Bias Analysis for Gender and Race

T Set of borrower types (creditworthy ¢; / risky ¢2)
* M: Signals (from initial layer)
» A: Actions (approve/reject decisions)

w(t|m): Receiver’s belief about borrower type ¢ given signal m

o(m|t): Sender’s strategy mapping types to signals
» Us(t, a): Payoff function for sender (borrower)
» Ug(t,a): Payoff function for receiver (MAS)

E.1 Mapping to MASCA

Element Our Implementation

Sender Borrower transmitting financial signals

Receiver MASCA’s hierarchical agents analyzing signals

Types (¢) Borrower creditworthiness: Creditworthy (¢1) vs. Risky (¢2)
Signals (m) Processed outputs from initial layer

Actions (a) Approve/Reject decisions by Decision Orchestrator

Beliefs (u(t|m)) Updated risk probabilities via Bayesian inference

E.2 Sender Strategy
A borrower of type t € {t1,t2} chooses signal m with probability:
o(m|t) = P(Send m|Type t)
Example:
* Creditworthy borrowers (¢1) send “Strong Credit History” (mq) with o(mq|t1) = 1.
* Risky borrowers (t2) may mimic m; with o(mq|ty) = 0.3.
E.3 Receiver Beliefs

Posterior probability of borrower type given signal m:

C o(mlt) - p)
HEm) = =l - p(7)

where p(¢) is the prior (e.g., 60% creditworthy, 40% risky).




E.4 Receiver Strategy

Decision Orchestrator chooses action a € { Approve, Reject} to maximize expected utility:

a*(m) = argmax E{Ug(t, a)|m] = 3 u(t}m) - Ug(t.a)

E.5 Equilibrium Conditions
Sequential Rationality:

* Senders: o(m|t) maximizes E[Ug (¢, a)|m].
* Receivers: a*(m) optimizes utility given u(t|m).

Belief Consistency: Posterior beliefs yi(¢|m) align with sender strategies via Bayes’ rule.

Example: If risky borrowers often mimic mq, then u(t2|m;) increases, reducing approval rates.

E.6 Equilibrium Types in MASCA

Equilibrium Type MASCA Implementation Empirical Evidence
Separating t; and t5 send distinct signals 83.33% recall [Table 1]
Pooling Both types send identical signals  9.23% F1 drop [Table 2]

E.7 Case Study: Employment History Signaling Game
Agents:

* Sender: Contextualizer (Data Ingestion & Contextualization Layer)
* Receiver: Income Stability Analyst (Assessment Layer)

Payoff Matrix:
Sender Type Signal Receiver Action  Sender Payoff —Receiver Payoff
Stable Employment Low variance Approve 5 4
Unstable Employment  High variance Reject 1 5
Unstable Employment Mimics Low variance  Approve (Error) 3 -2

Table 4: Signaling game payoff matrix for employment stability and credit approval

E.8 Equilibrium Analysis
Separating Equilibrium:
o(Low|Stable) = 1, o (High|Unstable) = 1

- Stable applicants truthfully signal low variance — Approval. - Unstable applicants truthfully signal
high variance — Rejection.

Pooling Equilibrium Failure: If both types send “Low variance”:

0.4-0.3
Unstabl =L =— — —16.
p(Unstable|m ow) 06 110403 6.7%

Receiver utility for Approve:
0.833-4+0.167-(-2) =3.0<5

Thus Reject dominates, and pooling equilibrium collapses.
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