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ABSTRACT

Open-set recognition (OSR) requires neural networks to classify known
classes while rejecting unknown samples, which is critical for real-world
deployment. So far, OSR research studied and developed representation
learning and postprocessing methods independently and their interaction
effects remain unexplored, leaving potential performance gains untapped.
In this paper, we present the first systematic study of these interactions
across dataset scales and auxiliary data usage. First, we discover a failure
mode we term magnitude collapse, where representation learning meth-
ods that utilize auxiliary data can suffer performance degradation at large
scale and irreversibly destroy discriminative information, despite excelling
at small scale. Second, we study the interaction effects between repre-
sentation learning and postprocessing methods, and reveal when they can
be leveraged for modular performance gains via two-stage processing. We
also show where interaction effects amplify performance degradation due
to magnitude collapse. Third, we show how these findings can be used
to achieve state-of-the-art performance with a simple baseline and two-
stage processing of OSR techniques. Finally, our results demonstrate that
small-scale evaluations with auxiliary data are not predictive of large-scale
performance, invalidating current best practices in OSR research.

1 INTRODUCTION

The rapid advancement of deep learning methods for image recognition increasingly pro-
motes their real-world adoption, which requires them to adequately detect and handle un-
known inputs for the reliability and safety of these systems (Scheirer et al., 2013; Hendrycks
& Gimpell, |2017; [Vaze et al., 2022)). This task is typically studied under the two closely-
related problem formulations: Open-set Recognition (OSR) and Out-of-Distribution (OOD)
detection. Both aim to improve the robustness of classifiers by detecting distributional shifts
in test-time samples.

While the categorization of OSR methods into Representation Learning (RL) and Post-
Processing (PP) methods is commonly understood, current OSR methods are studied in
isolation or compared as standalone methods, neglecting their modular nature and poten-
tial for improvements through combinations. Since the interaction effects between RL and
PP have neither been explored nor formalized for OSR methods, we ask: can RL methods
enhance or shape feature representations to amplify downstream PP performance? Or vice
versa: is the optimal choice of PP method dependent on the RL training objective?

In both RL and PP methods, the feature magnitude has been identified as a crucial factor for
performance (Dhamija et al.,|2018;Hendrycks et al.| [2022; [Vaze et al.,[2022;|Cruz et al., [2024;
Rabinowitz et al., 2025). For instance, [Wang et al.[ (2025)) highlight that magnitude-aware
(MA) OOD postprocessing generally outperforms alternatives. This raises the question:
do MA postprocessors synergize with RL methods that purposefully manipulate feature
magnitudes during training? We identify a sub-category of RL methods, which we term
magnitude-manipulating (MM), that utilize auxiliary data to separate known and auxiliary
classes during training based on feature magnitude. However, MM methods tend to be sen-
sitive to auxiliary data distribution at large scale, with performance falling below baselines,
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Figure 1: The modular two-stage OSR, framework separates representation learning (RL)
and postprocessing (PP), and reveals additional performance gains, by leveraging interaction
effects between the two. Undesirable interaction effects exist for magnitude-manipulating
RL (red) combined with magnitude-aware PP (blue), while beneficial effects are observed for
AddON and magnitude-aware PP. Small-scale benchmarks are not predictive of large-scale
performance and do not exhibit similar behavior due to limited similarity between known
and auxiliary classes.

despite their success on small-scale datasets (Hendrycks et al., [2021; |Wang et all [2025).
This raises concerns about their real-world applicability, and we seek to understand the
underlying causes of this performance degradation at scale.

Our analysis reveals the mechanism behind the performance degradation of MM methods as
the interplay of magnitude-manipulation and high similarity between auxiliary and known
classes, a scenario not found on small-scale benchmarks. This causes a magnitude collapse
in similar known classes and creates an undesirable linear dependency between feature mag-
nitudes and class-wise accuracy, leading to systematically imbalanced class-wise detection
performance. We show that magnitude collapse can be avoided by using an Additional
Output Node (AddON) for auxiliary data, a simple and effective baseline that consistently
outperforms other methods across scales and does not require hyperparameter tuning. This
degradation of MM methods is further amplified by MA postprocessing, which otherwise
experiences desirable interaction effects when combined with non-MM RL methods and
outperforms other PP methods. Moreover, our experiments suggest that RL without aux-
iliary data and PP methods are highly independent components of OSR systems with clear
separation of responsibilities, enabling modular additive performance gains.

Overall, our study advances the understanding of OSR systems and provides actionable
guidelines for researchers and practitioners. First, leverage the modularity of OSR systems
by augmenting non-MM RL methods with MA PP methods to achieve additional perfor-
mance gains almost for free. Second, when training or fine-tuning a classifier with auxiliary
data that is visually similar to known classes, avoid MM RL methods. Instead, use Ad-
dON as baseline to mitigate magnitude collapse and leverage positive interaction effects.
Finally, validate OSR methods on large-scale benchmarks before deployment, as small-scale
evaluations with auxiliary data are not predictive of large-scale performance.

In summary, our contributions are as follows:

o For the first time in OSR literature, we explore the modularity and interaction effects
of representation learning and postprocessing methods, revealing where modular perfor-
mance gains can be achieved and where to avoid negative synergies.

o We discover the magnitude collapse mechanism behind performance degradation at scale
and how it impacts interaction effects.
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¢ We demonstrate how interaction effects and auxiliary data can be leveraged at scale to
achieve state-of-the-art performance regardless of auxiliary data distribution with the
simple AddON baseline and two-stage processing of OSR techniques.

e Our experiments highlight that small-scale evaluations are not predictive of large-scale
performance when using auxiliary data.

2 RELATED WORK

OSR and Relation to OOD Detection. OSR is formalized as the task of accurately
classifying samples from known classes while rejecting samples from semantically unknown
classes (Scheirer et al [2013)), thereby detecting test-time semantic shift (Vaze et al., [2022)).
OOD detection is a broader task (Yang et al.||2024) that aims to detect general distribution
shift, which can include semantic or covariate shifts (Yang et al. 2024} [Wang et al., |2025}
Hendrycks et al. [2021) and is often posed as a binary classification problem (Hendrycks &]
Gimpel, 2017; Liang et al.,|2017; Liu et al., [2020; Huang et al., 2021} [Sun et al.,[2021)). As a
result, OSR and OOD detection differ in their evaluation protocols (Vaze et al., 2022 [Wang]
et al, [2025): OSR partitions a single dataset into known and unknown classes to remove
covariate shifts (Neal et al., 2018 Palechor et al.,2023), while OOD detection typically uses
different datasets for in-distribution (ID) and OOD classes (Hendrycks & Gimpell, |2017)).
Despite these differences, it has been indicated that methods that perform well on one task
tend to perform well on the other (Vaze et al., 2022; [Yang et all) [2024; [Wang et al., 2025).

Auxiliary Data in OSR. Auxiliary samples serve as a proxy for unknown classes during
training and are distinct from known or ID classes. Auxiliary samples are also referred
to as known unknowns (Scheirer et al., [2014; Dhamija et all, [2018), outlier images
[& Ramanan| [2021]), natural adversarial examples (Hendrycks et all [2021]), and negative
samples (Palechor et al., 2023). Real auxiliary data is used for OOD detection (Hendrycks|
let all |2019; Liu et al) 2020) and OSR (Dhamija et al., 2018} [Palechor et al., 2023), dating
back to the earliest approaches (Scheirer et al) [2014). While a large attention in OSR
research is paid to artificially generate auxiliary samples (Ge et al., 2017; Neal et al., 2018;
[Chen et all 2020} 2021)), in this study we exclude generative methods and instead use
real auxiliary data. The standard small-scale benchmarks MNIST, CIFAR, SVHN, and
TinyImageNet partition all classes into known and unknown (Neal et al., [2018]), therefore
do not allow any auxiliary classes. The large-scale Semantic Shift Benchmark (SSB) (Vaze
uses the entire ImageNet-1K dataset as known classes and selects unknowns
from a set of disjoint classes from ImageNet-21K-P.

Differences and Similarities to Prior Art. [Wang et al| (2025) recently acknowledged
the distinction between RL and PP methods and the potential for combined approaches in
the context of disentangling OSR and OOD methods and benchmarks. They focus primarily
on OOD detection methods, with 10 out of 12 methods being postprocessing, leaving modern
OSR methods and their interaction effects unexplored.

3 MODULAR TWO-STAGE FRAMEWORK FOR OSR

In this paper, we disentangle OSR methods into modular sequential components: Repre-
sentation Learning (RL) via classifier training and PostProcessing (PP) of pre-computed
representations. Within this two-stage framework, every OSR system can be viewed as a
combination of one RL and one PP method, denoted as RL+PP, e. g., our baseline CE+MSP
combines Cross-Entropy (CE) training with Maximum SoftMax Probability (MSP). We
summarize key characteristics relevant to this study of RL and PP methods in Table [I]
Section [A]] discusses how methods from Table [l can be formalized in this framework.

Representation Learning Methods. RL methods train or fine-tune a classifier and
extract the representations R,, = (¢n, 2Zn,yn) for sample x,,, where ¢,, are discriminative
deep features, z, are the logits, and y,, the probability distributions over the known classes.
RL methods can modify the training process in various ways, typically by adapting the loss
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Table 1: Key characteristics of @ Representation Learning (RL) and @ Postprocess-
ing (PP) methods for OSR. RL methods highlight which types of auxiliary data they use,
whether they are Magnitude-Manipulating (MM), and whether they use an additional out-
put node for the unknown class. For PP methods, we list whether they require training, are
Magnitude-Aware (MA), and which types of inputs they operate on.

(a) Representation Learning

Method Auxiliary Data MM Output K +1
Cross-Entopy (CE) none
ARPL (Chen et al.} [2021)) none
AddON (Palechor et al., |2023) real Yes
Objectosphere (OS) (Dhamija et al.l [2018)) real Yes
Outlier Exposure (OE) (Hendrycks et al.; [2019) real Yes

(b) Postprocessing
Method Trainable MA Inputs
Maximum Softmax (MSP) (Hendrycks & Gimpell [2017) y
MaxLogits/MLS (Hendrycks et al.,|2022} |Vaze et al.| |2022) Yes Z
OpenMax (Bendale & Boult] [2016]) - B Yes ©
PostMax (Cruz et al.| [2024) Yes Yes Y, Z
GHOST (Rabinowitz et al., [2025) Yes Yes 0, Z

function (Dhamija et all [2018; [Hendrycks et all [2019; (Chen et al., |2020; 12021)), involving
data augmentation, such as mixup (Zhang et al., 2018} [Verma et al., |2019) or generative
methods (Ge et all |2017; [Neal et al., |2018; [Verma et al. [2019; [Kong & Ramanan| [2021}
Chen et al., [2021; Wilson et al., |2023; Huang et al., 2023|), or combinations thereof (Zhou
et al., [2021). RL methods are trained on a dataset KCipain U Atrain, where for input x,, K =
{(Xn, Tn) | T € Y} is the set of known samples with known class labels Y = {1,..., K}, and
A ={(Xn,Tn) | 7o & Y} is the set of auxiliary samples. Evaluation is done on Kiest U Urest
where U = {(xp,,7n) | Tn ¢ Y} denotes unknown samples. Note that while auxiliary and
unknown samples do not require a specific target label, they are required to not share the
label space with known classes ) (Scheirer et al.| 2013]).

Postprocessing Methods. PP methods operate post-hoc on representations R,, to add
open-set capabilities to a pre-trained closed-set classiﬁorE] making them a cheap alternative
to expensive RL training. However, PP methods cannot undo any damage to the feature
representation learned by the pre-trained network, e. g., when deep feature distributions ¢
from known and unknown classes overlap, no PP method is able to separate those samples.
Postprocessors can involve training a secondary classifier (Scheirer et al., 2014; |Rudd et al.,
2017), employing a statistics model (Bendale & Boult, [2016), modifying the inputs (Liang
et al., 2017)), or simply returning elements of R,, (Hendrycks & Gimpel, |2017; [Hendrycks
et al., 2022). We formalize postprocessors as follows: for test sample x; with R, we require
a PP to produce two outputs P} = (k},~.), where k) € K is the prediction of a known
class label and v, is an OOD score, where high v scores indicate known classes. In an
operational setting, the OSR decision function can be defined as:

ks, ify;, >0
unknown otherwise

Gosn(R%:0) = { 1)

4 STUDY DESIGN AND EXPERIMENTAL SETUP

We choose five different RL approaches to cover a varied selection of models, based on
whether the method requires auxiliary data and whether it (explicitly or implicitly) manip-

!Note that most PP methods perform class predictions k* based on the argmax of the logits (or
monotonic transformations thereof) and therefore yield identical class predictions and closed-set
accuracy, addressing exclusively the separation between known and unknown classes.
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ulates the feature magnitude. As such we selected the following methods: Cross-Entropy
(CE), ARPL (Chen et al. 2021), AddON (Palechor et al., 2023, Outlier Exposure (OE)
(Hendrycks et al., [2019), and ObjectoSphere (OS) (Dhamija et al., |2018). We also choose
five different PP methods to cover a varied selection of methods based on whether it takes
the feature magnitude into account, . e., it is magnitude-aware. We select MSP (Hendrycks
|& Gimpel, 2017), MaxLogits/MLS (Hendrycks et al. 2022; [Vaze et all 2022), OpenMax
(Bendale & Boult, [2016)), PostMax (Cruz et al. [2024) and GHOST (Rabinowitz et all

2025)).

Datasets We conduct small-scale experiments on the standard OSR CIFAR+N bench-
marks with N € {10,50} (Neal et al] [2018)). These protocols randomly sample 4 known
classes from CIFAR-10 and N unknown classes from CIFAR-100 [Krizhevsky & Hinton|
El To allow training with auxiliary samples, we randomly sample N auxiliary classes
from the remaining classes in CIFAR-100. Large-scale experiments are conducted on the
ImageNet protocols Pi, P, and Ps (Palechor et al., 2023) based on the ILSVRC 2012
dataset (Russakovsky et al., 2015)). These protocols offer increasing levels of difficulty from
P, to P53 by increasing semantic similarity between known, auxiliary, and unknown classes
based on the WordNet hierarchy . While P, poses an easy open-set task with
low similarity between known and auxiliary classes, P, and P3 pose increasingly difficult
open-set tasks with high similarity between known and auxiliary classes.

Evaluation Metrics To evaluate the binary unknown rejection and the closed-set per-
formance in isolation, we use the Area Under the Receiver Operating Characteristics (AU-
ROC) curve and closed-set accuracy, respectively. Note that these metrics do not measure
OSR performance (Wang et all 2022)). Instead, we evaluate OSR performance via Cor-
rect Classification Rate (CCR) (Dhamija et all 2018)) and False Positive Rate (FPR) and
their single-valued derivations: Area Under the Open-Set Classification Rate (AUOSCR)
curve (Vaze et al.,2022), which provides a threshold-agnostic measure, and the Operational
Open-set Accuracy (OOSA) (Cruz et al [2024), which equally weights known and unknown
samples and measures performance at an operational threshold. For detailed descriptions
of all metrics, please refer to Section [A:4] in the appendix. Given knowns K, unknowns
U, predictions P’ = (k¥,~*), and threshold 6 we compute CCR and FPR following the
adjustments by (Rabinowitz et al., 2025) to allow for arbitrary OOD scores v*:

{(%ns70) € KA KL =70 A > 6}
| K|
{(xn,70) €U N, > 6}]
| U |

CCR(0) =

FPR(§) = |

Training Details We train all networks from scratch to ensure that no information from
unknown classes is leaked into training of pre-trained networks, and to isolate the effect
of representation learning as opposed to fine-tuning a closed-set network. All networks
are trained using SGD with momentum of 0.9 and an initial learning rate of 0.1 with
cosine annealing schedule (Loshchilov & Hutter} 2017). For large-scale experiments we train
ResNet50 for 120 epochs with batch size of 32 and weight decay of le-4. The small-scale
experiments are trained with the CNN architecture from Neal et al.|(2018);/Chen et al.| (2021)
for 100 epochs with batch size of 128 and weight decay of 5e-4. We perform early stopping
according to validation confidence (Palechor et al.l [2023)). For CE and ARPL, we compute
validation confidence on known classes only since including them yielded unreliable results.
Where possible, we rely on recommended hyperparameters for each RL and PP method.
Others are optimized on the validation set via grid search. Optimal hyperparameters and
their ranges are reported in Section [A-3]in the appendix.

2We use the same class allocations as |Chen et al| (2021) for comparability.
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Figure 2: OSR performance for RL+PP combinations across datasets in AUOSCR, (top)
and OOSA (bottom). The color of each heatmap is normalized independently and centered
at the CE4+MSP baseline, where blue shows an increase and red a decrease. Results for
CIFAR+N are averaged over 5 trials.

8 1 ARPL Figure 3: The RL performance
feray contribution ARL in AUOSCR is
shown as distributions over PP
methods and across protocols, with
Py, Py, and P; increasing in simi-
larity between known and auxiliary
classes. Methods that use auxiliary
data are marked with blue back-
ground. CIFAR+N results are av-
eraged over 5 trials.

AUOSCR AR-
N I )
e o 0 o
o
m

CIFAR+10 CIFAR+50 Py
Protocol

5 RESULTS AND DISCUSSION

5.1 OSR REPRESENTATION LEARNING WITH AUXILIARY DATA AT LARGE SCALE

The first set of experiments aims at answering if RL with auxiliary data can improve OSR
performance on large-scale datasets, despite recent studies that suggest otherwise (Wang
. We compare the performance of RL methods with auxiliary data (AddON,
OE, and OS) to methods that only utilize known classes (CE and ARPL) across datasets.
Here, we ignore interaction effects and consider MSP postprocessing or aggregate results over
all postprocessors. The AUOSCR and OOSA for every RL+PP combination are shown in
Figure [2| other metrics are reported in Tables [3] and [4] in the Appendix.

Small-scale Outperformace with Auxiliary Data. On CIFAR+N, all RL methods
utilizing auxiliary data dramatically outperform those that do not by up to 5.9 percentage
points in AUOSCR. with MSP. State-of-the-art ARPL achieves consistent but negligible
improvements over CE for any given PP. With known classes being held constant between
CIFAR+10 and CIFAR450, we can see that additional auxiliary data consistently improves
AUOSCR by over 2 percentage points, even when evaluated on more unknown classes.
For all RL methods, the variations across PP are comparably small, suggesting that RL
contributes more toward overall performance than PP on small-scale benchmarks. Only
MaxLogits provides substantial gains, up to 2.2 percentage points of AUOSCR over MSP
for CE.

Performance Degradation at Large Scale. On large-scale ImageNet protocols, this
outperformance from using auxiliary data vanishes, even underperforming the CE4+MSP
baseline on P; for most postprocessors, supporting [Wang et al| (2025). We isolate the
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effect of RL by computing the RL contribution delta to the CE baseline as a function of
the postprocessor PP. Similarly, we separate improvements of PP by computing the PP
contribution delta to the MSP baseline:

AR oa(PP) = “method+PP” — “CE+PP”

PP (3)

Al ethod (RL) = “CE+method” — “RL+MSP”
This allows us to decompose the gains from any OSR system RL+PP to the CE+MSP
baseline, e.g., on P; we have “ARPL+GHOST” — “CE+MSP” = ARL_ (MSP) +
APP g1 (CE) ~ 0.8+1.5 = 2.3. Figuredepicts the RL contribution deltas across datasets
as distribution over all postprocessors. The RL contribution delta for MM methods OE and
OS degrades and turns negative with increasing similarity of known and auxiliary classes
on P, and Ps, destroying performance across most PP. Wang et al.| (2025) attribute their
findings of poor OE performance to low correlation between auxiliary and unknown classes
or high correlation between known and unknown classes. However, AddON does not expe-
rience this performance degradation with identical data, demonstrating that it cannot be
explained by the data distributions alone. Strong OOD detection performance with MSP
and high correlation between AUOSCR, and closed-set accuracy (cf. Figure [8d|in Appendix)
suggest that the performance degradation can partially be explained by a loss of discrimi-
native information for known classes.

The Risk of Magnitude-Manipulation: Magnitude Collapse. To understand why
MM methods degrade in accuracy, AUOSCR, and OOSA, we analyze the feature magnitude
distributions of known, auxiliary, and unknown samples (Figure . With highly similar
auxiliary samples, MM methods inadvertently draw features of known classes towards the
origin of the feature space, resulting in magnitude collapse and effectively overlapping them
with auxiliary, unknown, and other known samples. We analyze the relationship between
feature magnitude and class-wise CCR (Rabinowitz et al.l [2025)) at the operational threshold,
CCR.(0%), see Section and perform linear regression’| against the class-wise average
feature magnitude for each known class ¢ (Figure [L0|in the appendix). On CIFAR+N, only
MM methods exhibit a statistically significant positive correlation between average feature
magnitude and CCR.(6*), with large effect sizes of R? up to 80%. On the easily separable Py,
most models exhibit significant positive correlations, but often with meaningless effect sizes
below 10%. However, with increasing similarity in known and auxiliary samples on P and
P53, MM methods learn much stronger and statistically significant relationships, resulting
in practically significant effect sizes of R? up to 38% on P3 (Figure . This shows how
magnitude-manipulation increases the dependency between feature magnitude and CCR
by systematically reducing performance on a few classes in a trade-off to maintain overall
high binary ID-vs-OOD separation via MSP and increasing the minimal class-wise CCR.

3 All regression assumptions are reasonably met.
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Figure 6: Interaction effects of RL and PP components as correlation between RL contri-
bution ARE and PP contribution AP for AUOSCR (top row) and OOSA (bottom row).

In contrast, AddON counteracts magnitude collapse by learning sufficiently-large feature
magnitudes to achieve high SoftMax probabilities for the additional output node.

Qualitative Analysis on Class Similarity. We replicate and qualitatively investigate
the feature collapse for MM methods at small scale by curating a hard EMNIST benchmark
that includes auxiliary classes which are highly similar to known classes 1 and to a lesser
extent 9 or even indistinguishable without context (see Sectionfor details). Experiments
are identical to CIFAR+N but networks are trained for 50 epochs. Observable from Figure 4]
(right), for MM methods, the feature representations of digits 1 and 9 are pulled towards
the origin. We compute CCR.(6*) per RL method for classes 1, 9, and rest (all other known
classes). For OS and OE combined, these classes experience CCR.(6*) in the range [58.1%,
88.7%)] (digit 1) and [93.6%, 97.2%] (digit 9), while other digits achieve over 96.7% CCR,
showing dramatically imbalanced detection performance on known classes. See Table[5]in the
appendix for all RL methods. Non-MM methods have CCR.(6*) evenly distributed between
83.8% and 98% over all postprocessors. This clearly demonstrates how high similarity
of known and auxiliary classes in conjunction with magnitude-manipulation irreparably
damages the feature representation, and ruin the consecutive classification of known classes
with similar appearance.

5.2 INTERACTION EFFECTS

The second set of experiments aims to answer whether the optimal PP method should
be informed by the RL method, and whether magnitude-manipulating RL can enhance the
performance of magnitude-aware PP methods. We analyze the relationship and interactions
between RL and PP contributions by plotting the RL contribution delta ARL against the
PP contribution delta APP for each RL+PP combination in Figure [6]
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Independent Contributions for RL without Auxiliary Data. Across all evalua-
tion metrics and protocols, all experiments reveal that PP contributions are almost per-
fectly independent from RL contributions, when trained without auxiliary data, e.g., the
PP contribution of GHOST is independent of the used RL method: A} osp(CE) ~
AE%OST(ARPL) = 1.5. This suggests that OSR system components have separate re-
sponsibilities when trained on known classes only, with RL addressing the ID classification
and PP addressing the open-set capabilitiesE This allows to combine any RL with any
PP method, with magnitude-aware PP consistently favored (Wang et al., [2025), to achieve
additive performance gains without the risk of undesirable interactions.

Interaction Effects for RL with Auxiliary Data. RL methods that train with auxil-
iary data only show interaction effects with high similarity of known and auxiliary classes.
Interaction effects are characterized by a correlation between ARY and AP in Figure[6l On
ImageNet benchmarks, RL methods with auxiliary data show interaction effects, with par-
ticularly MA PP methods strongly amplifying positive and negative gains from RL. While
magnitude-aware PP consistently outperform others for non-MM methods, they can amplify
performance degradation for MM methods due to their sensitivity to the magnitude collapse.
In particular, PostMax, and to a lesser extent GHOST, demonstrate both the highest gains
for non-MM methods (8.3 percentage points or +11.7% for AddON), as well as the most
severe performance degradation for MM methods (-1.2 percentage points or -1.5% for OS)
on P3. These interaction effects are even clearer when evaluated via OOSA, which equally
weights known and unknown test samples.

Generally speaking, MM methods across all protocols did not benefit significantly from
PP methods. Furthermore, we can see a clear trend, where small-scale experiments are
primarily driven by RL via inclusion of auxiliary data and favor the simpler PP methods
like MaxLogits, while large-scale experiments benefit from combining RL and PP, mainly
through joining AddON with MA PP methods like PostMax or GHOST.

6 CONCLUSION

In this study, we adopt a two-stage framework for systematically disentangling Representa-
tion Learning (RL) and PostProcessing (PP) methods for Open-Set Recognition (OSR). We
show that RL without auxiliary data leads to independent OSR components, that can be
freely combined to achieve additive performance gains, whereas RL with auxiliary data can
experience interaction effects with PP methods that can improve or degrade OSR, perfor-
mance. We explain this performance degradation and the key role of feature magnitude in
interaction effects via the magnitude collapse mechanism, revealing several insights. First,
the similarity between auxiliary and known classes is a key factor for performance degrada-
tion at scale, a scenario that does not occur on small-scale benchmarks. Second, magnitude
collapse creates an undesirable linear dependency between feature magnitude and class-
wise detection performance on the in-distribution and OSR task, leading to systematically
imbalanced detection across known classes. However, we demonstrate via the simple yet
effective baseline AddON that auxiliary data can improve OSR performance at any scale
and regardless of auxiliary data selection. Our findings invalidate current best practices in
OSR, demonstrating that small-scale evaluations with auxiliary data do not translate to
large-scale performance. RL methods considered state-of-the-art based on CIFAR bench-
marks, such as Outlier Exposure, can suffer from significant performance degradation below
baselines when deployed at scale.

7 ETHICS STATEMENT

We do not foresee any ethical concerns with our work.
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8 REPRODUCIBILITY STATEMENT

We provide a detailed description of our experimental setup in Section [4] and in-depth
descriptions of the used methods and applied evaluation metrics in the appendix, alongside
extensive results. We will open source our modular code package used for this work upon
publication to facilitate reproducibility and expansion to further research, e. g., inclusion of
additional datasets or methods.
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A APPENDIX

A.1 METHOD SELECTION AND BACKGROUND
An overall view of the two-stage processing pipeline, including the nomenclature as used in

this section, is given in Figure [7] Below, we provide details for the RL and PP methods
that we investigate in this work.

Representation Learning (RL) Postprocessing (PP)

w : Class

=8 Prediction k*
=

®

"

M | reourg

£ sonIIqeqord

Input Image x

| & soanyes dea(g |- -

| A JIOMION SUOQIDRY |

: OOD Score v*

Figure 7: Two-stage processing framework for OSR. An image is presented to the backbone
network F', which extracts deep features ¢ that are then processed with a linear layer W
to logits z, and further with SoftMax to probabilities y. Solid lines indicate (potentially)
learnable connections, while dashed lines highlight non-learnable connections. The postpro-
cessor takes the deep features, logits, or probabilities as input and outputs a class prediction
k* and a score v*.

A.1.1 REPRESENTATION LEARNING METHODS

CE Our baseline (Hendrycks & Gimpel, 2017)) training-based approach is the categorical
Cross-Entropy (CE) loss trained only on samples from K known classes. For an input sample
(Xn,Tn) € K and an arbitrary backbone network we obtain the deep features o, € RP for
some deep feature dimension D. These features are then passed through a fully-connected
logit layer W € RE*P with C = K output logits z,, = W, € RCH The logits are then
turned into probabilities y,, € R through SoftMax activation:

ezn,c

5 : (4)
Z e?n.c’
c'=1

Yn,ce =

Based on these, the CE loss is computed as:

jCE = _E(x",‘r")elC log Yn,p + (5)

OE We include Outlier Exposure (OE) (Hendrycks et all |2019)) as state-of-the-art RL
method from the OOD detection literature that utilize auxiliary data (Wang et al., 2025)).
OE adds a regularization term to that maximizes the entropy for auxiliary samples by
computing the CE loss between the uniform distribution and the SoftMax confidences of

the network:
c

1
Joe = Jce — AoE E(x, 7 )ea ° Z log yn,c (6)

c=1

OE essentially is equivalent to the Entropic Open-Set (EOS) loss Jros proposed by Dhamija
et al.| (2018)), with the only exception that OE provides a more intuitive way to weight the

4Note that we can express the logit for class ¢ through the angle of the feature to the class
center W as zn,c = Wpn = ||@nl|||We|| cos(a), where W, is the c-th row vector of W and « is the
angle between ¢,, and W.
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impact of auxiliary samples to the training (with Aog = 0.5 for computer vision tasks),
whereas EOS does so via class weighting (set to 1). From Dhamija et al.| (2018) we know
that EOS and, by extension, OE implicitly manipulate feature magnitudes, by encouraging
the network to learn small feature magnitudes for auxiliary samples and large magnitudes
for known samples.

OS We employ the ObjectoSphere (OS) loss (Dhamija et al., 2018) as an extension to the
EOS loss which explicitly manipulates feature magnitudes. It learns vanishing vectors for
auxiliary samples and large magnitudes for known samples by using the following regular-
ization term combined with the EOS loss:

i max(0,€ ~ llenlld) i o € K
Jos —«7EOS+)\OS{()O”H§ ifx, e A

(7)
where the hyperparameter £ is the lower bound for the feature magnitude of known samples.

AddON We use an RL method for OSR and OOD methods that utilize auxiliary data,
which we term Additional Output Node (AddON). AddON uses the known data K as in
CE, and auxiliary data A to train an additional output node z,, x41, so that we have a total
of C' = K + 1 outputs, creating a default class for all auxiliary and unknown samples. It is
trained with the standard CE loss with label 7 = K + 1 for auxiliary samples. While
this is a common approach in object detection models (Dhamija et al., [2020), which collect
a lot of background samples, it is only rarely applied directly to OSR problems (Dhamija
et all [2018; [Palechor et all, [2023) or as component of more complex architectures such as
PROSER or G-OpenMax (Zhou et al.l 2021} |Ge et al., 2017). Depending on the context,
AddON is known as Background Class (Dhamija et al., 2020; 2018; |Palechor et al.| [2023]),
K +1 (Kong & Ramanan, [2021)), or Dummy Classifier (Zhou et al., 2021)).

ARPL Finally, we include the Adversarial Reciprocal Point Learning (ARPL) loss (Chen
et all 2021)), which currently is the state of the art for OSRE| and trained solely on the
known data K. Unlike most training-based methods, ARPL does not learn a prototype for
a class ¢, but a reciprocal point p. € R” in deep feature space, i. e., a point that represents
everything but class c. The ARPL objective maximizes the distance between the reciprocal
point and the features of samples from the respective class by computing logits z, via
distance measures between deep features ¢,, and the reciprocal points p.:

1
Zn,c = BHWVL - pcllg - szc’ (8)

which are used via SoftMax in the CE loss . To constrain open space, the distance
between deep features and reciprocal points is bound by a learnable constant p via the
regularization term with weight Aagpr, = 0.1:

1
JarpL = Jck + AarpPLE (x,, 7,,)ex max (O: BH%L —prl3— p) 9)

A.1.2 POSTPROCESSING METHODS

MSP The Mazimum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017)) is the de-
facto default PP method for OSR and OOD detection and serves as our baseline. Class
predictions and OOD scores are computed from probabilities for known classes asﬂ
k; = argmaxyp, . and Yo = Yn,kr - (10)
1<e<K '
MSP is not magnitude-aware since SoftMax normalizes the logits and only considers
their relative differences.

®Note that we do not use ARPLA+CS with the generator for confusing samples (CS), since it is
prohibitively expensive to train at large scale (Vaze et al.| 2022]).

SPlease note that for computing OOD scores 7;,, we purposefully ignore the unknown class
(Yn,Kk+1 OF Zn,k+1) if it exists. A low probability for the unknown class y,, x+1 does not indicate
a high probability for any of the known classes. On the other hand, due to Softmax requiring
probabilities sum up to 1, a large probability y,, x+1 enforces low probabilities for all known classes.
Therefore, yn,k+1 does not add any new information.
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MLS MaxLogits (Hendrycks et al.,[2022)) or MLS (Vaze et al.| 2022)) exploit the magnitude
of the logits z,, which contains useful information for OSR and OOD detection that is
lost during softmax. MLS is magnitude-aware since logit magnitude is linked to feature
magnitude (Wang et al.| 2025)H Class predictions and OOD scores are computed from
known logits as:

k; = argmax 2z, . and Yo = Zn ks - (11)
1<e<K

OpenMax OpenMax (Bendale & Boult| |2016) uses deep features ¢,,, referred to as Acti-
vation Vectors (AVs), to statistically model probabilities for an additional output node for
the unknown class. During training, for each known class ¢, the Mean Activation Vector
(MAV) pu, is computed by averaging the deep features ¢, extracted from all correctly clas-
sified training samples. Then, the cosine distances of the MAV p. to all the AVs ¢, . of the
same class are computed. Here, we make use of a twist implemented in the VAST package
of the original authorsﬂ instead of using the original distances to model the distribution,
we multiply the cosine distances by a factor k, which allows modeling more compact class
representations:

dp,e = k(1 — cos(pn, fic)) (12)

Then, a per-class Weibull distribution W, is fitted to the top A largest cosine distances d,, ..
For features ¢,, of a test sample, the class-wise Weibull distributions estimate a logit 2,, g1
for the unknown class, as well as modifying the logits for the top a classes, giving newly
estimated logits 2,, .. From these, the output ¢, . is computecﬂp via softmax (4)) and the
output P, is computed as:

ky = argmax 2, . and Vo = U kor - (13)
1<c<K "

OpenMax is not magnitude-aware since the cosine distance ignores the feature magnitude.

PostMax Postnormalization of Maxima (PostMax) (Cruz et al.,[2024) uses Extreme Value
Theory (EVT) by applying a Generalized Pareto Distribution (GPD) to maximum logits
post-normalized by the feature magnitude. Based on their findings that unknown samples
have larger feature magnitude than known samples on large-scale data, they normalize logits
by dividing them by their deep feature magnitude to further increase the separation between
known and unknown samples:
Zn
lenllz +1°

This makes it an explicitly magnitude-aware method. We modify the original implementa-
tion to shift the magnitudes by 1 to avoid issues with magnitudes ||¢|2 < 1 which reverse
the desired effect of normalizationﬁ This occurs consistently for features from magnitude-
manipulating RL methods, but not for others. The class-agnostic GPD ¥, ,, . is fitted only
on the maximum normalized logits of correctly classified known training samples, which is
then used to compute a probability of the sample being known. Following|Cruz et al.[(2024),
the scores P,, are computed as:

A

Zn

(14)

ky = argmax 2, . and Yo = Vyoe(Znp:)- (15)
1<e<K

GHOST The Gaussian Hypothesis Open-Set Technique (GHOST) (Rabinowitz et al.,
2025)) models each class in deep feature space as a multivariate Gaussian distribution with
the intuition that features ¢ from known and unknown samples deviate by feature magnitude
even if the angular direction overlaps, making it magnitude-aware. During training, GHOST
fits a Gaussian distribution (p., o) for each known class ¢ based on the deep features ¢,

"https://github.com/Vastlab/vast

8We also tried different normalization techniques, including to multiply with the norm, which
seems more reasonable for MM RL methods. However, the detrimental effects of MM RL with
PostMax for large-scale evaluations was present in any case. This modification does not harm
performance with non-MM RL methods.
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of correctly classified training samples. During inference, GHOST first computes a class
prediction from the logits:
k; = argmax zp ., (16)
1<c<K
as well as z-score s, for each sample x,, and corresponding Gaussian (i, 0% ). This is
then used to compute the score v;; by dividing the original logit:

n
Okx.d Sn

no

D
— * z. *
=3 e il Sk )
d=1

A.2 EMNIST BENCHMARK

We perform qualitative small-scale experiments on the EMINIST protocol (Dhamija et al.,
2018) to replicate settings of high similarity between known and auxiliary classes at small
scale. This benchmark contains a wide spectrum of clearly attributable visual similarities
between known and auxiliary classes because the samples do not contain any image back-
ground. It consists of EMNIST MNIST split as knowns, the first half of EMNIST letters
(a-m) as auxiliary data, and the second half (n-z) as unknownsﬂ While most digits (known)
do not contain any visually similar letters, digits 1 and 9 contain auxiliary classes (“i”, “1”
Wee? W

and “g”, “q” respectively) that are visually very similar or indistinguishable without context
depending on handwriting and capitalization.

A.3 HYPERPARAMETER OPTIMIZATION

For most methods, we rely on the hyperparameters as provided by the according papers.
Few methods however do not provide any, namely: A\ and £ for ObjectoSphere and A, k, and
a for OpenMax, where we perform hyperparameter optimization on the validation set using
grid search, based on the maximum AUOSCR. For OpenMax the parameter optimization
is performed for each upstream RL method separately to ensure optimal settings, since the
feature representations differ significantly. The considered hyperparameter ranges are as
follows:

« 0S: e {1073,102,107%,1,10}, ¢ € {10, 20, 30}
« OpenMax: a € {1,2,3,5,10}, x € {1.5,1.7,2,2.3}, A € {10, 50, 100, 250, 500, 750, 1000}

The best hyperparameter values for each method and protocol are summarized in Table

A.4 PERFORMANCE METRICS

CCRQ@QFPR CCRQ@FPR computes the CCR at a specific FPRs ( €
{107%,1073,1072,1071,10°} and provides insights into the classification performance
at various tolerances for errors caused by missed rejections. It is therefore highly relevant
for practical applications where a fixed threshold 6 is required, which is typically selected
based on a certain FPR. It is computed as:

CCR(6;) if 0; exists

18
0 otherwise (18)

CCRQFPR = {

where 6, = FPR™'(({) is the threshold that yields FPR = (. CCRQFPR for ¢( = 10°
resembles closed-set accuracy.

9Contrary to (Dhamija et al., [2018) we use EMNIST MNIST instead of the original MNIST
because the preprocessing, while similar, is not exact (Cohen et al.|2017). EMNIST MNIST and
letters contain noticeably softer and thicker digits than MNIST. In order to focus on semantic shift

and not introduce easily learnable covariate shift through softness and sharpness, we use EMNIST
MNIST.
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CIFAR+N ImageNet
Method Parameter CIFAR+10 CIFAR+50 Py P P
0s Aos 10-3/102/1072/1072/102 103/10~2/10-2/10~%/10~2 10=3 10~* 103
13 10/10/10/10/10 20/10/10/10/10 30 20 10
CE+OpenMax e! 3/3/3/1/3 3/2/3/3/3 5 5 2
K 1.5/1.5/2.3/2/1.7 1.7/15/2.3/1.5/2.3 23 23 2
A 100,/100,/250,/10,/100 250/100/500/100/100 750 750 100
ARPL+OpenMax @ 3/3/1/3/3 3/2/3/3/3 5 3 2
. 1.5/2.3/2/1.5/1.7 2/1.5/1.5/1.5/1.5 23 23 23
A 100/250/10/100/100 100/100,/100,/100,/100 750 750 10
AddON+OpenMax e 1/1/1/1/1 1/1/1/1/1 5 3 5
K 1.5/2/2.3/1.7/2 1.7/2/15/1.5/2.3 L7 23 2
A 100/250/100,/100,/100 250/500/250/250/250 750 750 100
OE+OpenMax a 1/2/1/3/3 3/3/1/2/1 3 2 2
p 1.5/1.7/2/2/2 2.3/1.5/1.5/2/1.5 1.7 15 23
A 10/100/10/100/250 100,/100,/10/100/10 0 10 10
OS+OpenMax @ 1/1/3/2/2 3/2/3/3/2 10 5 10
% 1.5/2.3/1.5/1.5/2.3 2.3/1.7/2/2.3/2 23 23 2
A 10/10/10/10/10 100/10/10/100/10 10 10 10

Table 2: Optimized hyperparameter values for each method and protocol. CIFAR+N results
are reported for each trial separately.

AUOSCR The OSCR curve (Dhamija et al.||2018) simultaneously evaluates classification
of known samples via CCR as well as the rejection of unknown samples via FPR over all
possible thresholds. It is computed by varying the threshold 6 from the smallest to the largest
possible score value, and plotting the CCR over the FPR), i. e., computing CCRQFPR at
all thresholds. The Area Under the OSCR curve (AUOSCR) is computed by integrating
the OSCR curve from ¢ =0 to ( = 1. Since the OSCR curve is a monotonically increasing
function, the AUOSCR is maximized at and bounded by the closed-set accuracy.

OOSA The Operational Open-set Accuracy (OOSA) (Cruz et al. [2024) evaluates the
open-set performance at a fixed operational threshold #*, determined on the validation
set, and provides insights into the performance of a method in a real-world setting. It is
defined as a trade-off between the CCR and the Unknown Rejection Rate (URR), URR(6) =
1 —FPR(0):

OOSA = accrCCR(6%) + (1 — accr)URR(6%) (19)
where 6* is the operational threshold that maximizes this equation on the validation set.
We follow (Cruz et al.| (2024) and set accr = % to equally weight known and
unknown test samples.

AUROC In order to evaluate the OOD detection capabilities independently of the ID
classification task, we use the Area Under the Receiver Operating Characteristics (AUROC)
curve (Hendrycks & Gimpel, |2017; [Hendrycks et al.l 2019} |Chen et al., |2021; |[Hendrycks et al.,
2022; [Vaze et al., 2022 [Yang et al [2024; Wang et al., 2025). AUROC concerns how well
known and unknown classes can be distinguished by computing FPR , as well as the True
Positive Rate (TPR):

|{(xn,7'n) eELAN: > 9}|
Nk

TPR() = (20)
The ROC is computed by varying 6, and the area under that curve is determined.

A.5 ADDITIONAL FIGURES AND TABLES

The main paper contained only a subset of evaluation metrics and visualizatrions. Here we
provide remaining figures and tables containing the exact results.

17



Under review as a conference paper at ICLR 2026

Table 3: Small-scale evaluation.
RL and PP methods on the small-scale protocols.

This table includes a performance overview of all
Metrics include CCRQ( for ( €

1072,107%,1079,10%, 102, AUOSCR, AUROC, and OOSA. All scores are reported in per-
cent and CCR@100 is the closed-set accuracy. Performance metrics are reported as mean
+ standard deviation over 5 randomized trials. The best performing combination for each
protocol and metric w.r.t mean score is highlighted in bold. The best performing PP method
for each RL method and metric w.r.t mean score is highlighted in italic.

Dataset RL

PP

CCR@0.01

CCR@0.1

CCRaQ1

CCRQ@10

CCR@100

AUOSCR

AUROC

OOSA

CIFAR+10 CE

MSP
OpenMax
MaxLogits
PostMax
GHOST

43.0 £ 13.2
43.8 £ 12.6
46.5 £ 9.2
33.6 £ 15.3
32+37

40.5 + 13.3
44.1 £ 123
46.5 £ 9.2
33.6 £ 15.3
2.6 £3.5

63.8 £5.1
67.8 £ 3.0
72.5 £ 2.7
64.6 = 4.3
28.1 +£10.2

84.5 + 24
86.1 £ 1.9
89.8 & 1.7
85.3 £ 1.6
87.7+1.3

97.0 £ 0.7
97.0 £ 0.7
97.0 £ 0.7
97.0 £ 0.7
97.0 £ 0.7

92.2 + 1.1
92.9 £ 0.9
9.4+ 0.9
92.8 + 0.7
93.0 + 0.7

93.7 £ 0.8
94.5 £ 0.5
96.6 = 0.5
94.7 £ 0.3
95.1 £ 0.3

87.8 £ 1.1
88.4 + 1.0
90.5 + 1.0
88.3 £ 1.0
90.0 £ 1.1

ARPL

MSP
OpenMax
MaxLogits
PostMax
GHOST

41.0 £ 11.8
44.4 + 9.4
48.8+ 124
36.3 + 15.0
3.6 + 4.3

128 £ 9.6
44.6 £ 9.2
48.8 + 12.4
36.3 + 15.0
3.6 +£4.3

65.3 £ 1.7
68.2 £ 1.5
73.2+ 2.9
64.3 £ 2.4
233 £7.1

84.6 £ 2.1
86.4 £ 1.6
90.2 £ 1.2
85.5 £ 1.4
88.1 £ 1.4

97.1 + 0.7
97.1 £ 0.7
97.1 £ 0.7
97.1+ 0.7
97.1 £ 0.7

924 + 1.1
93.0 + 0.9
94.5 % 0.8
93.0 £ 0.8
93.0 + 0.8

93.9 + 0.8
94.7 £ 0.5
96.8 £ 0.4
94.9 + 0.4
95.2 £ 0.4

879 £ 1.1
88.6 £ 0.9
90.7+ 1.0
88.7 £ 0.7
90.2 £ 1.0

AddON

MSP
OpenMax
MaxLogits
PostMax
GHOST

58.0 £ 18.2
61.8 £ 12.9
63.1 & 22.8
57.9 £ 19.8
34.8 £ 31.4

58.1 = 18.2
61.8 +£12.9
63.1 & 22.8
57.9 +19.8
34.8 £ 31.4

80.7 + 7.6
80.8 + 4.0
84.2 + 4.4
81.3 + 7.8
811+ 7.7

92.6 + 2.5
92.0 + 1.6
94.2 + 0.9
93.5 + 1.9
941 + 1.3

97.3 £ 0.7
97.4 + 0.7
97.3 £ 0.7
97.3 £ 0.7
97.3 £ 0.7

95.5 £ 0.9
954 + 0.7

96.2 + 0.4

95.8 + 0.6
96.0 + 0.5

97.9 + 1.4
97.3 £ 0.9
98.6 = 0.6
98.3 = 1.0
98.4 + 0.8

922+ 25
91.9 £ 1.2
93.7+ 0.7
93.0 £ 1.8

OE

MSP
OpenMax
MaxLogits
PostMax
GHOST

57.4 £17.4
58.2 £ 18.2
58.8 £ 19.5
52.3 £ 19.6
36.0 = 32.5

57.4 £ 17.3
58.2 £ 18.2
58.8 £ 19.5
52.3 £ 19.6
36.0 = 32.5

81.4 £ 6.1
81.5 £ 5.7
82.4+ 5.8
81.3 £ 6.2
81.7 £ 6.4

929 £ 1.8
93.2 £ 1.8
93.8+ 1.5
932 £ 1.5
93.8 & 1.5

97.1 £ 0.8
97.2 £ 0.7
97.1 £ 0.8
97.1 £ 0.8
97.1 £ 0.8

95.6 + 0.6
95.7+ 0.6
95.6 + 0.6
95.6 + 0.6
95.6 & 0.6

98.0 £ 1.0
98.0 0.9
98.2 + 0.9
98.1 £ 0.9
98.1 £ 1.0

oS

MSP
OpenMax
MaxLogits
PostMax
GHOST

65.5 + 14.8
65.0 + 17.7
65.2 + 19.4
44.0 £ 182
42.0 + 33.9

65.5 + 14.8
65.0 + 17.7
65.2 + 19.4
44.0 + 182
42,0 + 33.9

82.1 £ 6.5
81.9 £ 6.9
82.9+ 6.6
72.1 £10.2
78.8 £ 10.0

932 £2.0
93.3 £2.0
95.6 = 1.8
92.6 £ 1.8
93.5 £ 1.8

95.8 £ 0.8
95.8 £ 0.9
95.9+ 0.7
954+ 0.9
95.7 £ 0.8

98.0 £ 1.1
98.1 £ 1.1
98.3 £ 1.0
97.5 £ 1.0
98.1 +£ 1.2

92.7% 1.8
925 £ 1.1
92.6 + 2.0

CIFAR+50 CE

MSP
OpenMax
MaxLogits
PostMax
GHOST

229 + 0.0
247+ 7.2
204 £ 6.3
114+14
0.3 £0.2

31.9 £ 3.7
35.4 £ 5.3
38.0+ 6.5
242+ 6.8
1.4+£09

542 £ 3.9
58.4 £+ 3.4
61.1 % 2.8
51.8 £5.1
11.6 £ 4.2

794 + 1.6
81.8 + 1.3
84.8+ 1.0
79.5 + 1.2
80.8 + 0.7

90.4 + 0.7
91.2 + 0.6
92.5 + 0.4
90.7 + 0.4
90.0 + 0.3

91.6 + 0.6
92.7 £ 0.5
94.5+ 0.4
92.3 + 0.4
91.8 + 0.4

84.4 £ 0.7
85.5 + 0.8
86.0 £ 0.7
84.0 £ 0.9
85.5 4+ 0.6

ARPL

MSP
OpenMax
MaxLogits
PostMax
GHOST

30.0 = 0.0
23.3 £ 8.3
23.5 £ 12.8
10.3 £ 5.0
0.1+0.2

38.83+ 3.9
36.1 £ 8.2
36.6 = 6.6
23.1£72
1.2 +£09

55.3 + 5.3
58.5 + 5.0
62.1 + 4.7
51.8 + 4.0
12.0 £ 5.6

80.3 £ 1.6
821 £1.3
85.0+ 1.0
80.1 £ 1.3
81.3 £ 1.4

97.2 % 0.6
97.1 £ 0.5
972+ 0.6
97.2% 0.6
97.2+ 0.6

90.6 = 0.9
91.3 £ 0.8
92.7+ 0.6
90.9 & 0.6
90.2 + 0.6

91.8 £ 0.6
92.8 £ 0.5
947+ 0.4
925 + 0.4
92.0 £ 0.5

85.0 £ 0.9
852+ 1.2
86.4+ 0.8
84.9 £ 0.7
86.0 + 0.6

AddON

MSP
OpenMax
MaxLogits
PostMax
GHOST

18.9 + 12.6
40.4 + 6.7
38.9 + 6.6
41.9 + 176
5.5+ 5.3

65.4 £ 4.4
60.8 £ 6.4
60.2 + 6.9
60.5 + 4.2
36.1 + 14.8

83.8+ 2.9
79.3 £2.9
79.8 £ 2.3
81.8 £ 3.0
80.8 £ 2.7

93.8 £0.9
91.6 £ 1.2
93.0 £ 0.5
93.9+ 0.7
93.5 £ 0.6

97.7+ 0.7
97.4 £ 0.7
97.7 £ 0.7
97.7+ 0.7
971.7 £ 0.7

96.9 + 0.4
95.2 + 0.7
95.9 + 0.4
96.2 + 0.4
96.0 £ 0.5

98.4 + 0.5
96.9 = 0.4
97.8 £ 0.4
98.1 +£ 0.5
97.9 £ 0.4

93.6 £ 1.0
91.8 £ 1.0
92.3 £ 0.6
93.1 £ 0.8
92.8 £ 0.5

OE

MSP
OpenMax
MaxLogits
PostMax
GHOST

50.1 + 14.4
49.6 + 13.1
50.4 + 14.3
46.8 + 174
77 +52

66.7 + 7.6
67.8 + 6.7
67.1 £ 7.7
67.0 + 6.8
46.8 + 21.1

83.5 + 34
83.5 £ 3.5
83.7+ 3.7
83.2 £3.5
83.4 £+ 3.6

94.0 + 1.1
94.1 + 1.0
94.2+ 1.0
94.0 + 1.1
941 + 1.0

97.6 £ 0.4

97.7+ 0.5 96.4 + 0.3

97.6 £ 0.4
97.6 + 0.4
97.6 £ 0.4

96.2 + 0.3

96.2 £ 0.3
96.2 £ 0.3
96.2 + 0.3

98.2 + 0.6
98.2 +£ 0.5
98.3 £ 0.6
98.2 £ 0.6
98.2 + 0.6

93.4+ 1.0
93.6 + 0.9
93.6 £ 1.0
93.4 4+ 0.9
93.6 £ 0.9

oS

MSP
OpenMax
MaxLogits
PostMax
GHOST

51.2 £ 11.8
48.0 £ 11.8
51.6 + 11.9
35.9 £ 19.7
82£99

702 £ 8.2
70.1 £ 8.8
70.4 + 8.4
53.5 + 8.1
56.8 + 28.2

85.1 £ 2.5
85.1 £ 2.6
85.5 £ 2.6
782 £ 4.2
85.5 £ 3.0

94.0 + 1.1
94.0 & 1.1
94.1+ 1.0
92.7 + 1.4
941+ 1.1

97.4 +
97.4 +
97.4 +
97.4 +
97.4 +

0.
0.

0.
0.
0.

&

s

RS S

96.2 + 0.4
96.2 % 0.4
96.2 + 0.
95.6 + 0.6
96.2 % 0.4

98.3 £ 0.5
98.3 + 0.5
98.3 + 0.5
97.5 £ 0.6
98.3 + 0.6

93.9 + 0.8
93.8 4+ 0.8
93.9 +0.8
92.5 + 0.7
94.0 + 0.8
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Table 4: Large-scale evaluation. This table repeats the performance overview of Table [3|on
large-scale protocols. — indicates that at no threshold 6. for corresponding FPR ¢ could
be achieved.

Dataset RL PP CCR@0.01 CCR@0.1 CCR@1 CCR@10 CCR@100 AUOSCR AUROC OOSA
Pl CE MSP 7.8 227 534 718 774 75.6 95.3  83.7
OpenMax 132 34.4 650  76.6 77.0 76.5 98.7 862
MaxLogits 6.1 31.3 641  76.6 774 76.8 985  86.3
PostMax  14.0 33.0 65.9  75.9 774 76.7 98.0  86.6
GHOST  18.8 4.9 14 710 774 7.1 99.1 815
ARPL MSP 10.6 27.2 548 725 78.2 76.4 95.6  83.6
OpenMax 8.0 44.6 66.1  77.0 77.3 76.8 98.8  86.1
MaxLogits ~ 27.8 35.1 663 774 78.2 777 98.7 868
PostMax  20.6 415 656  76.8 78.2 775 98.1 865
GHOST 211 48.9 128 119 78.2 77.9 99.2 877
AddON MSP 11.6 32.2 622 774 78.4 775 97.9  79.0
OpenMax 162 41.4 65.5 778 78.3 7.7 98.7 874
MaxLogits ~ 17.1 39.5 726 78.1 78.4 78.1 99.3  88.7
PostMax 146 35.9 672 770 78.4 777 984  86.9
GHOST  19.7 51.8 4.8  78.1 78.4 78.2  99.5 89.0
OE MSP 5.6 27.9 62.7 776 78.1 774 982 843
OpenMax 5.6 28.2 624 774 78.0 77.3 98.2  83.7
MaxLogits ~ 16.1 367 731 T 78.1 7.8 99.0 843
PostMax 8.8 27.2 63.3 771 78.1 77.4 98.2 842
GHOST 1211 48.0 14 T8 78.1 7.8 99.1  86.4
08 MSP 18.0 34.2 649 778 78.3 7.7 986 834
OpenMax ~ 22.5 33.4 64.6 776 78.0 77.4 98.6 843
MaxLogits ~ 16.4 46.0 739 78.0 78.8 78.0 99.3 864
PostMax  21.4 41.4 707 78.0 78.3 77.9 99.1  87.3
GHOST 19.5 54.5  75.9  78.0 78.3 78.0 99.4 839
P2 CE MSP 218 505 74.0 64.9 80.1 764
OpenMax 2.5 3.6 245 515 73.7 66.3 834 771
MaxLogits 7.6 8.4 250 589 7.0 68.5 87.8 788
PostMax 6.0 74 50.5  59.9 7.0 63.8 882 794
GHOST 8.1 0.5 303 61.8 74.0 69.1 88.9  80.0
ARPL MSP — — 244 499 75.4 66.1 80.7 763
OpenMax 2.6 41 295 52.2 73.8 66.7 83.6 772
MaxLogits 3.1 3.7 269 585 75.4 69.2 87.5 788
PostMax 5.7 13.6 8.5  59.8 75.4 69.8 88.3 802
GHOST 45 133 345  60.1 75.4 7.1 88.9 80.5
AddON MSP — — 258  55.8 76.9 68.5 845 652
OpenMax 3.5 5.9 336 59.1 76.4 70.5 87.2 788
MaxLogits 2.3 43 330 625 76.9 715 89.2  79.7
PostMax 8.3 1.0 345 634 76.9 71.8 89.4  79.2
GHOST  10.1 106 40.1  64.4 76.9 72.2  90.8 790
OE MSP — 5.0 209 548 74.3 66.9 845 716
OpenMax 3.3 215 55.1 4.5 67.1 84.6 722
MaxLogits 2.5 2.7 231 55.7 74.3 66.9 85.1  71.0
PostMax 2.3 8.3 245 578 74.3 67.9 85.9 13.8
GHOST 4.7 108 21.8  57.9 74.3 67.6 85.9 715
08 MSP 3.1 4.4 251 565 74.9 67.8 85.1 712
OpenMax 4.2 4.7 257 57.1 7.9 67.9 85.3 711
MaxLogits 6.3 6.5 261 58.1 7.9 68.0 85.9 712
PostMax 5.8 9.3 279  58.6 74.9 68.4 85.8  75.9
GHOST 7.5 10.0 323 585 7.9 68.1 86.0 702
P3 CE MSP — — 214  64.9 85.7 78.1 86.4 782
OpenMax ~ — - 209 646 85.3 77.9 86.4 780
MaxLogits 1.2 3.2 146 626 85.7 77.9 87.7 781
PostMax 0.1 1.9 177 66.3 85.7 78.9 88.7  79.1
GHOST 0.4 2.3 201 65.9 85.7 78.8 88.6  78.7
ARPL MSP 6.8 215 645 86.5 78.4 86.0  78.0
OpenMax ~ — 6.8 217 64.4 86.3 78.3 86.0  78.0
MaxLogits 0.5 25 158 620 86.5 78.4 87.6 779
PostMax 14 4.8 174 65.4 86.5 79.8 88.6  79.0
GHOST 2.3 3.4 195 650 86.5 79.2 88.5 786
AddON MSP — 3.7 245  65.6 85.6 77.8 86.5  70.7
OpenMax 225  65.6 85.6 785 87.0 771
MaxLogits 1.0 3.2 191 66.0 85.6 78.7 885 775
PostMax 2.1 4.2 235  69.1 85.6 79.7  89.5 719.4
GHOST 05 1.7 254 688 85.6 79.6 89.4 785
OE MSP — — 218 66.9 84.6 7.7 875 726
OpenMax ~ — — 217 66.7 84.7 77.8 875 728
MaxLogits 1.1 2.7 177 65.0 84.6 771 872 727
PostMax . 15 127 6L5 84.6 77.0 86.8  75.5
GHOST 0.1 2.6 22.6  67.3 84.6 7.8 87.8 738
0S MSP — — 26.6 674 84.9 78.1 878 752
OpenMax 261 67.2 84.8 78.0 87.8  75.4
MaxLogits 0.8 2.7 201 66.9 84.9 77.6 87.6 74T
PostMax — 14 114 606 84.9 76.9 86.3 714
GHOST 1.1 4.8 252 685 84.9 78.8 88.4 749
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Table 5: EMNIST ranges of class-wise CCR at the operational threshold, CCR.(6*), for
classes 1, 9, and rest (all other known classes) per RL method.

Model Class 1 Class 9 Knowns Except 1 and 9
min max | min max | min max
CE 94.1 976 | 89.5 91.9 | 86.7 97.9
ARPL 86.7 969 | 89.5 92.2 | 83.8 98.0
AddON | 67.0 94.8 | 924 95.6 | 95.2 99.5
OE 65.7 86.6 | 94.2 97.2 | 96.7 99.8
0S 58.1 88.7 | 93.6 95.3 | 97.7 99.6
CIFAR+10 CIFAR+50 ImageNet P, ImageNet P, ImageNet P3
CE-92.2 92.9@92.8 93.0 -90.4 912 925 90.7 90.0 -75.6 76.5 -64.9 66.3- el - 781 77.9 77.9
é ARPL-92.3 93.0 :Li5 93.0 93.0 -90.6 91.3 92.7 91.0 90.2 -76.4 775 -66.1 66.7 i) CEIAVIRN - 78.4 78.3 78.4 LK)
[SPXLCIE 055 954 96.2 95.8 77.5 77.7 78.1 | 77.7 70.5 715 71.8 72.2 [EREKRNENRNENE 79.7
RN o5 5 057 956 956 77.4 77.3 77.8 | 77.4 -66.9 67.1 66.9 67.9 67.6 -77.7 77.8 17\ 7hh)
[ 95.8 95.8 95.9 95.4 77.7 71.4|78.0 77.9 -67.8 67.9 68.0-68.1 -78.1 78.0 77.6 Wil 78.3
(a) AUOSCR
CIFAR+10 CIFAR+50 ImageNet Py ImageNet P, ImageNet P3
CE-87.8 88.4 90.5 88.3 90.0 -84.4 855 86.0 84.0 85.5 -69.5 70.3 72.1- -77.9 77.7 77.9 78.8 78.3
ARPL - 88.0 88.6 88.6 90.2 -85.0 85.2 86.4 84.9 86.0 -69.8 70.5 72.1 RLNANESR  -77.7 77.7 77.7 78.6 78.3

OINON 93.7 91.8|92.3|93.1|92.8

92.7 92.6 93.6 93.6 93.4 93.6
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Figure 8: Theas heatmaps show the absolute values for evaluations of @ AUOSCR, @

OO0SA, [[)

AUROC, and

@ Accuracy. Each heatmap is normalized independently and

centered around CE-+MSP, where blue shows an increase and red a decrease. Results for

CIFAR+N are averaged over 5 trials.
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Figure 9: This figure shows the interaction effects of RL and PP components as correlation
between RL performance contribution AR and PP contribution AF? in terms of I@l AUO-
SCR, OOSA, [(c)] AUROC, and [(d)] Accuracy. Results for CIFAR+N are averaged over

5 trials.
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Figure 10: Linear regressions of class-wise CCR at the

operational threshold, CCR.(0*),

against class-wise average feature magnitude for known classes. Regression is performed
for each RL method independently and over all postprocessors. For CIFAR+N results are

reported for the first trial only.
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