OPEN-SET RECOGNITION INTERACTION EFFECTS: MODULAR GAINS AND WHERE TO FIND THEM

Anonymous authors

Paper under double-blind review

Abstract

Open-set recognition (OSR) requires neural networks to classify known classes while rejecting unknown samples, which is critical for real-world deployment. So far, OSR research studied and developed representation learning and postprocessing methods independently and their interaction effects remain unexplored, leaving potential performance gains untapped. In this paper, we present the first systematic study of these interactions across dataset scales and auxiliary data usage. First, we discover a failure mode we term magnitude collapse, where representation learning methods that utilize auxiliary data can suffer performance degradation at large scale and irreversibly destroy discriminative information, despite excelling at small scale. Second, we study the interaction effects between representation learning and postprocessing methods, and reveal when they can be leveraged for modular performance gains via two-stage processing. We also show where interaction effects amplify performance degradation due to magnitude collapse. Third, we show how these findings can be used to achieve state-of-the-art performance with a simple baseline and twostage processing of OSR techniques. Finally, our results demonstrate that small-scale evaluations with auxiliary data are not predictive of large-scale performance, invalidating current best practices in OSR research.

1 Introduction

The rapid advancement of deep learning methods for image recognition increasingly promotes their real-world adoption, which requires them to adequately detect and handle unknown inputs for the reliability and safety of these systems (Scheirer et al., 2013; Hendrycks & Gimpel, 2017; Vaze et al., 2022). This task is typically studied under the two closely-related problem formulations: *Open-set Recognition* (OSR) and *Out-of-Distribution* (OOD) detection. Both aim to improve the robustness of classifiers by detecting distributional shifts in test-time samples.

While the categorization of OSR methods into Representation Learning (RL) and Post-Processing (PP) methods is commonly understood, current OSR methods are studied in isolation or compared as standalone methods, neglecting their modular nature and potential for improvements through combinations. Since the *interaction effects* between RL and PP have neither been explored nor formalized for OSR methods, we ask: can RL methods enhance or shape feature representations to amplify downstream PP performance? Or vice versa: is the optimal choice of PP method dependent on the RL training objective?

In both RL and PP methods, the feature magnitude has been identified as a crucial factor for performance (Dhamija et al., 2018; Hendrycks et al., 2022; Vaze et al., 2022; Cruz et al., 2024; Rabinowitz et al., 2025). For instance, Wang et al. (2025) highlight that magnitude-aware (MA) OOD postprocessing generally outperforms alternatives. This raises the question: do MA postprocessors synergize with RL methods that purposefully manipulate feature magnitudes during training? We identify a sub-category of RL methods, which we term magnitude-manipulating (MM), that utilize auxiliary data to separate known and auxiliary classes during training based on feature magnitude. However, MM methods tend to be sensitive to auxiliary data distribution at large scale, with performance falling below baselines,

Figure 1: The modular two-stage OSR framework separates representation learning (RL) and postprocessing (PP), and reveals additional performance gains, by leveraging interaction effects between the two. Undesirable interaction effects exist for magnitude-manipulating RL (red) combined with magnitude-aware PP (blue), while beneficial effects are observed for AddON and magnitude-aware PP. Small-scale benchmarks are not predictive of large-scale performance and do not exhibit similar behavior due to limited similarity between known and auxiliary classes.

despite their success on small-scale datasets (Hendrycks et al., 2021; Wang et al., 2025). This raises concerns about their real-world applicability, and we seek to understand the underlying causes of this performance degradation at scale.

Our analysis reveals the mechanism behind the performance degradation of MM methods as the interplay of magnitude-manipulation and high similarity between auxiliary and known classes, a scenario not found on small-scale benchmarks. This causes a magnitude collapse in similar known classes and creates an undesirable linear dependency between feature magnitudes and class-wise accuracy, leading to systematically imbalanced class-wise detection performance. We show that magnitude collapse can be avoided by using an Additional Output Node (AddON) for auxiliary data, a simple and effective baseline that consistently outperforms other methods across scales and does not require hyperparameter tuning. This degradation of MM methods is further amplified by MA postprocessing, which otherwise experiences desirable interaction effects when combined with non-MM RL methods and outperforms other PP methods. Moreover, our experiments suggest that RL without auxiliary data and PP methods are highly independent components of OSR systems with clear separation of responsibilities, enabling modular additive performance gains.

Overall, our study advances the understanding of OSR systems and provides actionable guidelines for researchers and practitioners. First, leverage the modularity of OSR systems by augmenting non-MM RL methods with MA PP methods to achieve additional performance gains almost for free. Second, when training or fine-tuning a classifier with auxiliary data that is visually similar to known classes, avoid MM RL methods. Instead, use AddON as baseline to mitigate magnitude collapse and leverage positive interaction effects. Finally, validate OSR methods on large-scale benchmarks before deployment, as small-scale evaluations with auxiliary data are not predictive of large-scale performance.

In summary, our contributions are as follows:

- For the first time in OSR literature, we explore the modularity and interaction effects of representation learning and postprocessing methods, revealing where modular performance gains can be achieved and where to avoid negative synergies.
- We discover the magnitude collapse mechanism behind performance degradation at scale and how it impacts interaction effects.

- We demonstrate how interaction effects and auxiliary data *can* be leveraged at scale to achieve state-of-the-art performance regardless of auxiliary data distribution with the simple AddON baseline and two-stage processing of OSR techniques.
- Our experiments highlight that small-scale evaluations are not predictive of large-scale performance when using auxiliary data.

2 Related work

OSR and Relation to OOD Detection. OSR is formalized as the task of accurately classifying samples from known classes while rejecting samples from semantically unknown classes (Scheirer et al., 2013), thereby detecting test-time semantic shift (Vaze et al., 2022). OOD detection is a broader task (Yang et al., 2024) that aims to detect general distribution shift, which can include semantic or covariate shifts (Yang et al., 2024; Wang et al., 2025; Hendrycks et al., 2021) and is often posed as a binary classification problem (Hendrycks & Gimpel, 2017; Liang et al., 2017; Liu et al., 2020; Huang et al., 2021; Sun et al., 2021). As a result, OSR and OOD detection differ in their evaluation protocols (Vaze et al., 2022; Wang et al., 2025): OSR partitions a single dataset into known and unknown classes to remove covariate shifts (Neal et al., 2018; Palechor et al., 2023), while OOD detection typically uses different datasets for in-distribution (ID) and OOD classes (Hendrycks & Gimpel, 2017). Despite these differences, it has been indicated that methods that perform well on one task tend to perform well on the other (Vaze et al., 2022; Yang et al., 2024; Wang et al., 2025).

Auxiliary Data in OSR. Auxiliary samples serve as a proxy for unknown classes during training and are distinct from known or ID classes. Auxiliary samples are also referred to as known unknowns (Scheirer et al., 2014; Dhamija et al., 2018), outlier images (Kong & Ramanan, 2021), natural adversarial examples (Hendrycks et al., 2021), and negative samples (Palechor et al., 2023). Real auxiliary data is used for OOD detection (Hendrycks et al., 2019; Liu et al., 2020) and OSR (Dhamija et al., 2018; Palechor et al., 2023), dating back to the earliest approaches (Scheirer et al., 2014). While a large attention in OSR research is paid to artificially generate auxiliary samples (Ge et al., 2017; Neal et al., 2018; Chen et al., 2020; 2021), in this study we exclude generative methods and instead use real auxiliary data. The standard small-scale benchmarks MNIST, CIFAR, SVHN, and TinyImageNet partition all classes into known and unknown (Neal et al., 2018), therefore do not allow any auxiliary classes. The large-scale Semantic Shift Benchmark (SSB) (Vaze et al., 2022) uses the entire ImageNet-1K dataset as known classes and selects unknowns from a set of disjoint classes from ImageNet-21K-P.

Differences and Similarities to Prior Art. Wang et al. (2025) recently acknowledged the distinction between RL and PP methods and the potential for combined approaches in the context of disentangling OSR and OOD methods and benchmarks. They focus primarily on OOD detection methods, with 10 out of 12 methods being postprocessing, leaving modern OSR methods and their interaction effects unexplored.

3 Modular two-stage framework for osr

In this paper, we disentangle OSR methods into modular sequential components: Representation Learning (RL) via classifier training and PostProcessing (PP) of pre-computed representations. Within this two-stage framework, every OSR system can be viewed as a combination of one RL and one PP method, denoted as RL+PP, e. g., our baseline CE+MSP combines Cross-Entropy (CE) training with Maximum SoftMax Probability (MSP). We summarize key characteristics relevant to this study of RL and PP methods in Table 1. Section A.1 discusses how methods from Table 1 can be formalized in this framework.

Representation Learning Methods. RL methods train or fine-tune a classifier and extract the representations $\mathcal{R}_n = (\varphi_n, \mathbf{z}_n, \mathbf{y}_n)$ for sample \mathbf{x}_n , where φ_n are discriminative deep features, \mathbf{z}_n are the logits, and \mathbf{y}_n the probability distributions over the known classes. RL methods can modify the training process in various ways, typically by adapting the loss

Table 1: Key characteristics of (a) Representation Learning (RL) and (b) Postprocessing (PP) methods for OSR. RL methods highlight which types of auxiliary data they use, whether they are Magnitude-Manipulating (MM), and whether they use an additional output node for the unknown class. For PP methods, we list whether they require training, are Magnitude-Aware (MA), and which types of inputs they operate on.

(a) Representation Learning

Method	Auxiliary Data	MM	Output $K+1$
Cross-Entopy (CE)	none		
ARPL (Chen et al., 2021)	none		
AddON (Palechor et al., 2023)	real		Yes
Objectosphere (OS) (Dhamija et al., 2018)	real	Yes	
Outlier Exposure (OE) (Hendrycks et al., 2019)	real	Yes	

(b) Postprocessing

Method	Trainable	MA	Inputs
Maximum Softmax (MSP) (Hendrycks & Gimpel, 2017)			У
MaxLogits/MLS (Hendrycks et al., 2022; Vaze et al., 2022)		Yes	\mathbf{z}
OpenMax (Bendale & Boult, 2016)	Yes		φ
PostMax (Cruz et al., 2024)	Yes	Yes	φ , z
GHOST (Rabinowitz et al., 2025)	Yes	Yes	φ , z

function (Dhamija et al., 2018; Hendrycks et al., 2019; Chen et al., 2020; 2021), involving data augmentation, such as mixup (Zhang et al., 2018; Verma et al., 2019) or generative methods (Ge et al., 2017; Neal et al., 2018; Verma et al., 2019; Kong & Ramanan, 2021; Chen et al., 2021; Wilson et al., 2023; Huang et al., 2023), or combinations thereof (Zhou et al., 2021). RL methods are trained on a dataset $\mathcal{K}_{\text{train}} \cup \mathcal{A}_{\text{train}}$, where for input \mathbf{x}_n , $\mathcal{K} = \{(\mathbf{x}_n, \tau_n) \mid \tau_n \in \mathcal{Y}\}$ is the set of known samples with known class labels $\mathcal{Y} = \{1, \ldots, K\}$, and $\mathcal{A} = \{(\mathbf{x}_n, \tau_n) \mid \tau_n \notin \mathcal{Y}\}$ is the set of auxiliary samples. Evaluation is done on $\mathcal{K}_{\text{test}} \cup \mathcal{U}_{\text{test}}$, where $\mathcal{U} = \{(\mathbf{x}_n, \tau_n) \mid \tau_n \notin \mathcal{Y}\}$ denotes unknown samples. Note that while auxiliary and unknown samples do not require a specific target label, they are required to not share the label space with known classes \mathcal{Y} (Scheirer et al., 2013).

Postprocessing Methods. PP methods operate post-hoc on representations \mathcal{R}_n to add open-set capabilities to a pre-trained closed-set classifier, making them a cheap alternative to expensive RL training. However, PP methods cannot undo any damage to the feature representation learned by the pre-trained network, e. g., when deep feature distributions φ from known and unknown classes overlap, no PP method is able to separate those samples. Postprocessors can involve training a secondary classifier (Scheirer et al., 2014; Rudd et al., 2017), employing a statistics model (Bendale & Boult, 2016), modifying the inputs (Liang et al., 2017), or simply returning elements of \mathcal{R}_n (Hendrycks & Gimpel, 2017; Hendrycks et al., 2022). We formalize postprocessors as follows: for test sample \mathbf{x}_n^* with \mathcal{R}_n^* , we require a PP to produce two outputs $\mathcal{P}_n^* = (k_n^*, \gamma_n^*)$, where $k_n^* \in \mathcal{K}$ is the prediction of a known class label and γ_n^* is an OOD score, where high γ_n^* scores indicate known classes. In an operational setting, the OSR decision function can be defined as:

$$G_{\rm OSR}(\mathcal{R}_n^*; \theta) = \begin{cases} k_n^* & \text{if } \gamma_n^* \ge \theta \\ \text{unknown} & \text{otherwise} \end{cases}$$
 (1)

4 Study design and experimental setup

We choose five different RL approaches to cover a varied selection of models, based on whether the method requires auxiliary data and whether it (explicitly or implicitly) manip-

¹Note that most PP methods perform class predictions k^* based on the argmax of the logits (or monotonic transformations thereof) and therefore yield identical class predictions and closed-set accuracy, addressing exclusively the separation between known and unknown classes.

ulates the feature magnitude. As such we selected the following methods: Cross-Entropy (CE), ARPL (Chen et al., 2021), AddON (Palechor et al., 2023), Outlier Exposure (OE) (Hendrycks et al., 2019), and ObjectoSphere (OS) (Dhamija et al., 2018). We also choose five different PP methods to cover a varied selection of methods based on whether it takes the feature magnitude into account, *i. e.*, it is magnitude-aware. We select MSP (Hendrycks & Gimpel, 2017), MaxLogits/MLS (Hendrycks et al., 2022; Vaze et al., 2022), OpenMax (Bendale & Boult, 2016), PostMax (Cruz et al., 2024) and GHOST (Rabinowitz et al., 2025).

Datasets We conduct small-scale experiments on the standard OSR **CIFAR+N** benchmarks with $N \in \{10, 50\}$ (Neal et al., 2018). These protocols randomly sample 4 known classes from CIFAR-10 and N unknown classes from CIFAR-100 Krizhevsky & Hinton (2009).² To allow training with auxiliary samples, we randomly sample N auxiliary classes from the remaining classes in CIFAR-100. Large-scale experiments are conducted on the **ImageNet** protocols P_1 , P_2 , and P_3 (Palechor et al., 2023) based on the ILSVRC 2012 dataset (Russakovsky et al., 2015). These protocols offer increasing levels of difficulty from P_1 to P_3 by increasing semantic similarity between known, auxiliary, and unknown classes based on the WordNet hierarchy (Miller, 1998). While P_1 poses an easy open-set task with low similarity between known and auxiliary classes, P_2 and P_3 pose increasingly difficult open-set tasks with high similarity between known and auxiliary classes.

Evaluation Metrics To evaluate the binary unknown rejection and the closed-set performance in isolation, we use the Area Under the Receiver Operating Characteristics (AU-ROC) curve and closed-set accuracy, respectively. Note that these metrics do not measure OSR performance (Wang et al., 2022). Instead, we evaluate OSR performance via Correct Classification Rate (CCR) (Dhamija et al., 2018) and False Positive Rate (FPR) and their single-valued derivations: Area Under the Open-Set Classification Rate (AUOSCR) curve (Vaze et al., 2022), which provides a threshold-agnostic measure, and the Operational Open-set Accuracy (OOSA) (Cruz et al., 2024), which equally weights known and unknown samples and measures performance at an operational threshold. For detailed descriptions of all metrics, please refer to Section A.4 in the appendix. Given knowns \mathcal{K} , unknowns \mathcal{U} , predictions $\mathcal{P}_n^* = (k_n^*, \gamma_n^*)$, and threshold θ we compute CCR and FPR following the adjustments by (Rabinowitz et al., 2025) to allow for arbitrary OOD scores γ^* :

$$CCR(\theta) = \frac{\left| \left\{ (\mathbf{x}_n, \tau_n) \in \mathcal{K} \land k_n^* = \tau_n \land \gamma_n^* \ge \theta \right\} \right|}{|\mathcal{K}|}$$

$$FPR(\theta) = \frac{\left| \left\{ (\mathbf{x}_n, \tau_n) \in \mathcal{U} \land \gamma_n^* \ge \theta \right\} \right|}{|\mathcal{U}|}$$
(2)

Training Details We train all networks from scratch to ensure that no information from unknown classes is leaked into training of pre-trained networks, and to isolate the effect of representation learning as opposed to fine-tuning a closed-set network. All networks are trained using SGD with momentum of 0.9 and an initial learning rate of 0.1 with cosine annealing schedule (Loshchilov & Hutter, 2017). For large-scale experiments we train ResNet50 for 120 epochs with batch size of 32 and weight decay of 1e-4. The small-scale experiments are trained with the CNN architecture from Neal et al. (2018); Chen et al. (2021) for 100 epochs with batch size of 128 and weight decay of 5e-4. We perform early stopping according to validation confidence (Palechor et al., 2023). For CE and ARPL, we compute validation confidence on known classes only since including them yielded unreliable results. Where possible, we rely on recommended hyperparameters for each RL and PP method. Others are optimized on the validation set via grid search. Optimal hyperparameters and their ranges are reported in Section A.3 in the appendix.

²We use the same class allocations as Chen et al. (2021) for comparability.

Figure 2: OSR performance for RL+PP combinations across datasets in AUOSCR (top) and OOSA (bottom). The color of each heatmap is normalized independently and centered at the CE+MSP baseline, where blue shows an increase and red a decrease. Results for CIFAR+N are averaged over 5 trials.

Figure 3: The RL performance contribution $\Delta^{\rm RL}$ in AUOSCR is shown as distributions over PP methods and across protocols, with P_1, P_2 , and P_3 increasing in similarity between known and auxiliary classes. Methods that use auxiliary data are marked with blue background. CIFAR+N results are averaged over 5 trials.

5 Results and discussion

5.1 OSR representation learning with auxiliary data at large scale

The first set of experiments aims at answering if RL with auxiliary data can improve OSR performance on large-scale datasets, despite recent studies that suggest otherwise (Wang et al., 2025). We compare the performance of RL methods with auxiliary data (AddON, OE, and OS) to methods that only utilize known classes (CE and ARPL) across datasets. Here, we ignore interaction effects and consider MSP postprocessing or aggregate results over all postprocessors. The AUOSCR and OOSA for every RL+PP combination are shown in Figure 2, other metrics are reported in Tables 3 and 4 in the Appendix.

Small-scale Outperformace with Auxiliary Data. On CIFAR+N, all RL methods utilizing auxiliary data dramatically outperform those that do not by up to 5.9 percentage points in AUOSCR with MSP. State-of-the-art ARPL achieves consistent but negligible improvements over CE for any given PP. With known classes being held constant between CIFAR+10 and CIFAR+50, we can see that additional auxiliary data consistently improves AUOSCR by over 2 percentage points, even when evaluated on more unknown classes. For all RL methods, the variations across PP are comparably small, suggesting that RL contributes more toward overall performance than PP on small-scale benchmarks. Only MaxLogits provides substantial gains, up to 2.2 percentage points of AUOSCR over MSP for CE.

Performance Degradation at Large Scale. On large-scale ImageNet protocols, this outperformance from using auxiliary data vanishes, even underperforming the CE+MSP baseline on P_3 for most postprocessors, supporting Wang et al. (2025). We isolate the

Figure 4: Feature magnitude distributions of known, auxiliary, and unknown classes on protocols P_1 , P_3 , and EMNIST. OE and OS experience feature magnitude collapse on P_3 and EMNIST, pulling their feature magnitudes towards zero. For EMNIST, we show distributions for known classes 1 and 9 (black and grey) that are highly similar to auxiliary classes, and other known classes (blue) separately.

effect of RL by computing the RL contribution delta to the CE baseline as a function of the postprocessor PP. Similarly, we separate improvements of PP by computing the PP contribution delta to the MSP baseline:

$$\begin{split} \Delta_{\mathrm{method}}^{\mathrm{RL}}(\mathrm{PP}) &= \mathrm{``method} + \mathrm{PP"} - \mathrm{``CE} + \mathrm{PP"} \\ \Delta_{\mathrm{method}}^{\mathrm{PD}}(\mathrm{RL}) &= \mathrm{``CE} + \mathrm{method"} - \mathrm{``RL} + \mathrm{MSP"} \end{split} \tag{3}$$

This allows us to decompose the gains from any OSR system RL+PP to the CE+MSP baseline, e.g., on P_1 we have "ARPL+GHOST" – "CE+MSP" = $\Delta_{\text{ARPL}}^{\text{RL}}(MSP)$ + $\Delta_{\text{GHOST}}^{\text{PP}}(CE) \approx 0.8 + 1.5 = 2.3$. Figure 3 depicts the RL contribution deltas across datasets as distribution over all postprocessors. The RL contribution delta for MM methods OE and OS degrades and turns negative with increasing similarity of known and auxiliary classes on P_2 and P_3 , destroying performance across most PP. Wang et al. (2025) attribute their findings of poor OE performance to low correlation between auxiliary and unknown classes or high correlation between known and unknown classes. However, AddON does not experience this performance degradation with identical data, demonstrating that it cannot be explained by the data distributions alone. Strong OOD detection performance with MSP and high correlation between AUOSCR and closed-set accuracy (cf. Figure 8d in Appendix) suggest that the performance degradation can partially be explained by a loss of discriminative information for known classes.

The Risk of Magnitude-Manipulation: Magnitude Collapse. To understand why MM methods degrade in accuracy, AUOSCR, and OOSA, we analyze the feature magnitude distributions of known, auxiliary, and unknown samples (Figure 4). With highly similar auxiliary samples, MM methods inadvertently draw features of known classes towards the origin of the feature space, resulting in magnitude collapse and effectively overlapping them with auxiliary, unknown, and other known samples. We analyze the relationship between feature magnitude and class-wise CCR (Rabinowitz et al., 2025) at the operational threshold, $CCR_c(\theta^*)$, see Section A.4, and perform linear regression³ against the class-wise average feature magnitude for each known class c (Figure 10 in the appendix). On CIFAR+N, only MM methods exhibit a statistically significant positive correlation between average feature magnitude and $CCR_c(\theta^*)$, with large effect sizes of R^2 up to 80%. On the easily separable P_1 , most models exhibit significant positive correlations, but often with meaningless effect sizes below 10%. However, with increasing similarity in known and auxiliary samples on P_2 and P_3 , MM methods learn much stronger and statistically significant relationships, resulting in practically significant effect sizes of R^2 up to 38% on P_3 (Figure 5). This shows how magnitude-manipulation increases the dependency between feature magnitude and CCR by systematically reducing performance on a few classes in a trade-off to maintain overall high binary ID-vs-OOD separation via MSP and increasing the minimal class-wise CCR.

³All regression assumptions are reasonably met.

Figure 5: Linear relationship between classwise CCR, CCR $_c(\theta^{\star})$, at the operational threshold and class-wise average feature magnitude for known classes on P_3 . We perform regression for each RL method independently and over all PP methods.

Figure 6: Interaction effects of RL and PP components as correlation between RL contribution $\Delta^{\rm RL}$ and PP contribution $\Delta^{\rm PP}$ for AUOSCR (top row) and OOSA (bottom row).

In contrast, AddON counteracts magnitude collapse by learning sufficiently-large feature magnitudes to achieve high SoftMax probabilities for the additional output node.

Qualitative Analysis on Class Similarity. We replicate and qualitatively investigate the feature collapse for MM methods at small scale by curating a hard EMNIST benchmark that includes auxiliary classes which are highly similar to known classes 1 and to a lesser extent 9 or even indistinguishable without context (see Section A.2 for details). Experiments are identical to CIFAR+N but networks are trained for 50 epochs. Observable from Figure 4 (right), for MM methods, the feature representations of digits 1 and 9 are pulled towards the origin. We compute $CCR_c(\theta^*)$ per RL method for classes 1, 9, and rest (all other known classes). For OS and OE combined, these classes experience $CCR_c(\theta^*)$ in the range [58.1%, 88.7%] (digit 1) and [93.6%, 97.2%] (digit 9), while other digits achieve over 96.7% CCR, showing dramatically imbalanced detection performance on known classes. See Table 5 in the appendix for all RL methods. Non-MM methods have $CCR_c(\theta^*)$ evenly distributed between 83.8% and 98% over all postprocessors. This clearly demonstrates how high similarity of known and auxiliary classes in conjunction with magnitude-manipulation irreparably damages the feature representation, and ruin the consecutive classification of known classes with similar appearance.

5.2 Interaction effects

The second set of experiments aims to answer whether the optimal PP method should be informed by the RL method, and whether magnitude-manipulating RL can enhance the performance of magnitude-aware PP methods. We analyze the relationship and interactions between RL and PP contributions by plotting the RL contribution delta $\Delta^{\rm RL}$ against the PP contribution delta $\Delta^{\rm PP}$ for each RL+PP combination in Figure 6.

Independent Contributions for RL without Auxiliary Data. Across all evaluation metrics and protocols, all experiments reveal that PP contributions are almost perfectly independent from RL contributions, when trained without auxiliary data, e. g., the PP contribution of GHOST is independent of the used RL method: $\Delta_{\rm GHOST}^{\rm PP}(CE) \approx \Delta_{\rm GHOST}^{\rm PP}(ARPL) = 1.5$. This suggests that OSR system components have separate responsibilities when trained on known classes only, with RL addressing the ID classification and PP addressing the open-set capabilities. This allows to combine any RL with any PP method, with magnitude-aware PP consistently favored (Wang et al., 2025), to achieve additive performance gains without the risk of undesirable interactions.

Interaction Effects for RL with Auxiliary Data. RL methods that train with auxiliary data only show interaction effects with high similarity of known and auxiliary classes. Interaction effects are characterized by a correlation between $\Delta^{\rm RL}$ and $\Delta^{\rm PP}$ in Figure 6. On ImageNet benchmarks, RL methods with auxiliary data show interaction effects, with particularly MA PP methods strongly amplifying positive and negative gains from RL. While magnitude-aware PP consistently outperform others for non-MM methods, they can amplify performance degradation for MM methods due to their sensitivity to the magnitude collapse. In particular, PostMax, and to a lesser extent GHOST, demonstrate both the highest gains for non-MM methods (8.3 percentage points or +11.7% for AddON), as well as the most severe performance degradation for MM methods (-1.2 percentage points or -1.5% for OS) on P_3 . These interaction effects are even clearer when evaluated via OOSA, which equally weights known and unknown test samples.

Generally speaking, MM methods across all protocols did not benefit significantly from PP methods. Furthermore, we can see a clear trend, where small-scale experiments are primarily driven by RL via inclusion of auxiliary data and favor the simpler PP methods like MaxLogits, while large-scale experiments benefit from combining RL and PP, mainly through joining AddON with MA PP methods like PostMax or GHOST.

6 Conclusion

In this study, we adopt a two-stage framework for systematically disentangling Representation Learning (RL) and PostProcessing (PP) methods for Open-Set Recognition (OSR). We show that RL without auxiliary data leads to independent OSR components, that can be freely combined to achieve additive performance gains, whereas RL with auxiliary data can experience interaction effects with PP methods that can improve or degrade OSR performance. We explain this performance degradation and the key role of feature magnitude in interaction effects via the magnitude collapse mechanism, revealing several insights. First, the similarity between auxiliary and known classes is a key factor for performance degradation at scale, a scenario that does not occur on small-scale benchmarks. Second, magnitude collapse creates an undesirable linear dependency between feature magnitude and classwise detection performance on the in-distribution and OSR task, leading to systematically imbalanced detection across known classes. However, we demonstrate via the simple yet effective baseline AddON that auxiliary data can improve OSR performance at any scale and regardless of auxiliary data selection. Our findings invalidate current best practices in OSR, demonstrating that small-scale evaluations with auxiliary data do not translate to large-scale performance. RL methods considered state-of-the-art based on CIFAR benchmarks, such as Outlier Exposure, can suffer from significant performance degradation below baselines when deployed at scale.

7 ETHICS STATEMENT

We do not foresee any ethical concerns with our work.

8 Reproducibility Statement

We provide a detailed description of our experimental setup in Section 4 and in-depth descriptions of the used methods and applied evaluation metrics in the appendix, alongside extensive results. We will open source our modular code package used for this work upon publication to facilitate reproducibility and expansion to further research, $e.\ g.$, inclusion of additional datasets or methods.

References

- Abhijit Bendale and Terrance E. Boult. Towards open set deep networks. In *Conference on Computer Vision and Pattern Recognition (CVPR)*. IEEE, 2016.
- Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia Li, Tiejun Huang, Shiliang Pu, and Yonghong Tian. Learning open set network with discriminative reciprocal points. In European Conference on Computer Vision (ECCV). Springer, 2020.
- Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian. Adversarial reciprocal points learning for open set recognition. *Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 44(11), 2021.
- Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending MNIST to handwritten letters. In *International Joint Conference on Neural Networks* (*IJCNN*), 2017.
- Steve Cruz, Ryan Rabinowitz, Manuel Günther, and Terrance E. Boult. Operational openset recognition and postmax refinement. In *European Conference on Computer Vision* (ECCV), 2024.
- Akshay Raj Dhamija, Manuel Günther, and Terrance E. Boult. Reducing network agnostophobia. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- Akshay Raj Dhamija, Manuel Günther, Jonathan Ventura, and Terrance E. Boult. The overlooked elephant of object detection: Open set. In *Winter Conference on Applications of Computer Vision (WACV)*, 2020.
- Zongyuan Ge, Sergey Demyanov, and Rahil Garnavi. Generative OpenMax for multi-class open set classification. In *British Machine Vision Conference (BMVC)*, 2017.
- Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-ofdistribution examples in neural networks. In *International Conference on Learning Rep*resentations (ICLR), 2017.
- Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier exposure. In *International Conference on Learning Representations (ICLR)*, 2019.
- Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.
- Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza Mostajabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings. In *International Conference on Machine Learning (ICML)*. PMLR, 2022.
- Hongzhi Huang, Yu Wang, Qinghua Hu, and Ming-Ming Cheng. Class-specific semantic reconstruction for open set recognition. *Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 45(4), 2023.
- Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional shifts in the wild. In *Advances in Neural Information Processing Systems* (NeurIPS), 2021.

- Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. In International Conference on Computer Vision (ICCV), 2021.
- Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 Technical report, University of Toronto, 2009.
 - Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution image detection in neural networks. In *International Conference on Learning Representations (ICLR)*, 2017.
 - Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection. In Advances in Neural Information Processing Systems (NeurIPS), 2020.
 - Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In *International Conference on Learning Representations (ICLR)*, 2017.
 - George A Miller. WordNet: An electronic lexical database. MIT press, 1998.
 - Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning with counterfactual images. In *European Conference on Computer Vision (ECCV)*, 2018.
 - Andres Palechor, Annesha Bhoumik, and Manuel Günther. Large-scale open-set classification protocols for imagenet. In Winter Conference on Applications of Computer Vision (WACV), 2023.
 - Ryan Rabinowitz, Steve Cruz, Manuel Günther, and Terrance E. Boult. GHOST: Gaussian hypothesis open-set technique. In AAAI Conference on Artificial Intelligence, 2025.
 - Ethan M. Rudd, Lalit P. Jain, Walter J. Scheirer, and Terrance E. Boult. The extreme value machine. *Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2017.
 - Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision (IJCV)*, 115(3), 2015.
 - Walter J. Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E. Boult. Towards open set recognition. *Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 35(7), 2013.
 - Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Probability models for open set recognition. *Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 36 (11), 2014.
 - Yiyou Sun, Chuan Guo, and Yixuan Li. ReAct: Out-of-distribution detection with rectified activations. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
 - Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zissermann. Open-set recognition: A good closed-set classifier is all you need? In *International Conference on Learning Representations (ICLR)*, 2022.
 - Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In *International Conference on Machine Learning (ICML)*. PMLR, 2019.
 - Hongjun Wang, Sagar Vaze, and Kai Han. Dissecting out-of-distribution detection and openset recognition: A critical analysis of methods and benchmarks. *International Journal of Computer Vision (IJCV)*, 133(3), 2025.
 - Zitai Wang, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, and Qingming Huang. Openauc: Towards auc-oriented open-set recognition. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

Samuel Wilson, Tobias Fischer, Feras Dayoub, Dimitry Miller, and Niko Sünderhauf. SAFE: Sensitivity-aware features for out-of-distribution object detection. In *International Conference on Computer Vision (ICCV)*, 2023.
Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A survey. *International Journal of Computer Vision (IJCV)*, 132(12), 2024.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In *International Conference on Learning Representations (ICLR)*, 2018.

Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learning placeholders for open-set recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

A Appendix

A.1 Method selection and background

An overall view of the two-stage processing pipeline, including the nomenclature as used in this section, is given in Figure 7. Below, we provide details for the RL and PP methods that we investigate in this work.

Figure 7: Two-stage processing framework for OSR. An image is presented to the backbone network F, which extracts deep features φ that are then processed with a linear layer \mathbf{W} to logits \mathbf{z} , and further with SoftMax to probabilities \mathbf{y} . Solid lines indicate (potentially) learnable connections, while dashed lines highlight non-learnable connections. The postprocessor takes the deep features, logits, or probabilities as input and outputs a class prediction k^* and a score γ^* .

A.1.1 Representation learning methods

CE Our baseline (Hendrycks & Gimpel, 2017) training-based approach is the categorical Cross-Entropy (CE) loss trained only on samples from K known classes. For an input sample $(\mathbf{x}_n, \tau_n) \in \mathcal{K}$ and an arbitrary backbone network we obtain the deep features $\varphi_n \in \mathbb{R}^D$ for some deep feature dimension D. These features are then passed through a fully-connected logit layer $\mathbf{W} \in \mathbb{R}^{C \times D}$ with C = K output logits $\mathbf{z}_n = \mathbf{W} \varphi_n \in \mathbb{R}^C$. The logits are then turned into probabilities $\mathbf{y}_n \in \mathbb{R}^K$ through SoftMax activation:

$$y_{n,c} = \frac{e^{z_{n,c}}}{\sum_{c'=1}^{C} e^{z_{n,c'}}}.$$
 (4)

Based on these, the CE loss is computed as:

$$\mathcal{J}_{CE} = -\mathbb{E}_{(\mathbf{x}_n, \tau_n) \in \mathcal{K}} \log y_{n, \tau_n}. \tag{5}$$

OE We include Outlier Exposure (OE) (Hendrycks et al., 2019) as state-of-the-art RL method from the OOD detection literature that utilize auxiliary data (Wang et al., 2025). OE adds a regularization term to (5) that maximizes the entropy for auxiliary samples by computing the CE loss between the uniform distribution and the SoftMax confidences of the network:

$$\mathcal{J}_{\text{OE}} = \mathcal{J}_{\text{CE}} - \lambda_{\text{OE}} \, \mathbb{E}_{(\mathbf{x}_n, \tau_n) \in \mathcal{A}} \, \frac{1}{C} \sum_{c=1}^{C} \log y_{n,c}$$
 (6)

OE essentially is equivalent to the Entropic Open-Set (EOS) loss \mathcal{J}_{EOS} proposed by Dhamija et al. (2018), with the only exception that OE provides a more intuitive way to weight the

⁴Note that we can express the logit for class c through the angle of the feature to the class center \mathbf{W}_c as $\mathbf{z}_{n,c} = \mathbf{W}\varphi_n = \|\varphi_n\| \|W_c\| \cos(\alpha)$, where \mathbf{W}_c is the c-th row vector of \mathbf{W} and α is the angle between φ_n and \mathbf{W}_c .

impact of auxiliary samples to the training (with $\lambda_{\rm OE}=0.5$ for computer vision tasks), whereas EOS does so via class weighting (set to 1). From Dhamija et al. (2018) we know that EOS and, by extension, OE *implicitly* manipulate feature magnitudes, by encouraging the network to learn small feature magnitudes for auxiliary samples and large magnitudes for known samples.

OS We employ the ObjectoSphere (OS) loss (Dhamija et al., 2018) as an extension to the EOS loss which *explicitly* manipulates feature magnitudes. It learns vanishing vectors for auxiliary samples and large magnitudes for known samples by using the following regularization term combined with the EOS loss:

$$\mathcal{J}_{OS} = \mathcal{J}_{EOS} + \lambda_{OS} \begin{cases} \max(0, \xi - \|\varphi_n\|_2^2) & \text{if } \mathbf{x}_n \in \mathcal{K} \\ \|\varphi_n\|_2^2 & \text{if } \mathbf{x}_n \in \mathcal{A} \end{cases}$$
 (7)

where the hyperparameter ξ is the lower bound for the feature magnitude of known samples.

AddON We use an RL method for OSR and OOD methods that utilize auxiliary data, which we term Additional Output Node (AddON). AddON uses the known data K as in CE, and auxiliary data A to train an additional output node $z_{n,K+1}$, so that we have a total of C = K + 1 outputs, creating a default class for all auxiliary and unknown samples. It is trained with the standard CE loss (5) with label $\tau = K + 1$ for auxiliary samples. While this is a common approach in object detection models (Dhamija et al., 2020), which collect a lot of background samples, it is only rarely applied directly to OSR problems (Dhamija et al., 2018; Palechor et al., 2023) or as component of more complex architectures such as PROSER or G-OpenMax (Zhou et al., 2021; Ge et al., 2017). Depending on the context, AddON is known as Background Class (Dhamija et al., 2020; 2018; Palechor et al., 2023), K + 1 (Kong & Ramanan, 2021), or Dummy Classifier (Zhou et al., 2021).

ARPL Finally, we include the Adversarial Reciprocal Point Learning (ARPL) loss (Chen et al., 2021), which currently is the state of the art for OSR⁵ and trained solely on the known data \mathcal{K} . Unlike most training-based methods, ARPL does not learn a prototype for a class c, but a reciprocal point $\mathbf{p}_c \in \mathbb{R}^D$ in deep feature space, i.e., a point that represents everything but class c. The ARPL objective maximizes the distance between the reciprocal point and the features of samples from the respective class by computing logits \mathbf{z}_n via distance measures between deep features φ_n and the reciprocal points \mathbf{p}_c :

$$z_{n,c} = \frac{1}{D} \|\varphi_n - \mathbf{p}_c\|_2^2 - \varphi_n^{\mathrm{T}} \mathbf{p}_c, \qquad (8)$$

which are used via SoftMax (4) in the CE loss (5). To constrain open space, the distance between deep features and reciprocal points is bound by a learnable constant ρ via the regularization term with weight $\lambda_{\text{ARPL}} = 0.1$:

$$\mathcal{J}_{ARPL} = \mathcal{J}_{CE} + \lambda_{ARPL} \mathbb{E}_{(\mathbf{x}_n, \tau_n) \in \mathcal{K}} \max \left(0, \frac{1}{D} \| \varphi_n - \mathbf{p}_{\tau_n} \|_2^2 - \rho \right)$$
(9)

A.1.2 Postprocessing methods

MSP The Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017) is the defacto default PP method for OSR and OOD detection and serves as our baseline. Class predictions and OOD scores are computed from probabilities for known classes as:⁶

$$k_n^* = \underset{1 \le c \le K}{\operatorname{arg \, max}} y_{n,c} \quad \text{and} \quad \gamma_n^* = y_{n,k_n^*}.$$
 (10)

MSP is not magnitude-aware since SoftMax (4) normalizes the logits and only considers their relative differences.

⁵Note that we do not use ARPL+CS with the generator for confusing samples (CS), since it is prohibitively expensive to train at large scale (Vaze et al., 2022).

⁶Please note that for computing OOD scores γ_n^* , we purposefully ignore the unknown class $(y_{n,K+1} \text{ or } z_{n,K+1})$ if it exists. A low probability for the unknown class $y_{n,K+1}$ does not indicate a high probability for any of the known classes. On the other hand, due to Softmax requiring probabilities sum up to 1, a large probability $y_{n,K+1}$ enforces low probabilities for all known classes. Therefore, $y_{n,K+1}$ does not add any new information.

MLS MaxLogits (Hendrycks et al., 2022) or MLS (Vaze et al., 2022) exploit the magnitude of the logits \mathbf{z}_n , which contains useful information for OSR and OOD detection that is lost during softmax. MLS is magnitude-aware since logit magnitude is linked to feature magnitude (Wang et al., 2025).⁴ Class predictions and OOD scores are computed from known logits as:

$$k_n^* = \underset{1 \le c \le K}{\operatorname{arg} \max} z_{n,c} \quad \text{and} \quad \gamma_n^* = z_{n,k_n^*}.$$
 (11)

OpenMax OpenMax (Bendale & Boult, 2016) uses deep features φ_n , referred to as Activation Vectors (AVs), to statistically model probabilities for an additional output node for the unknown class. During training, for each known class c, the Mean Activation Vector (MAV) μ_c is computed by averaging the deep features φ_n extracted from all correctly classified training samples. Then, the cosine distances of the MAV μ_c to all the AVs $\varphi_{n,c}$ of the same class are computed. Here, we make use of a twist implemented in the VAST package of the original authors:⁷ instead of using the original distances to model the distribution, we multiply the cosine distances by a factor κ , which allows modeling more compact class representations:

$$d_{n,c} = \kappa (1 - \cos(\varphi_n, \mu_c)) \tag{12}$$

Then, a per-class Weibull distribution Ψ_c is fitted to the top λ largest cosine distances $d_{n,c}$. For features φ_n of a test sample, the class-wise Weibull distributions estimate a logit $\hat{z}_{n,K+1}$ for the unknown class, as well as modifying the logits for the top α classes, giving newly estimated logits $\hat{z}_{n,c}$. From these, the output $\hat{y}_{n,c}$ is computed⁶ via softmax (4) and the output \mathcal{P}_n is computed as:

$$k_n^* = \underset{1 \le c \le K}{\arg \max} \hat{z}_{n,c} \quad \text{and} \quad \gamma_n^* = \hat{y}_{n,k_n^*}.$$
 (13)

OpenMax is not magnitude-aware since the cosine distance ignores the feature magnitude.

PostMax Postnormalization of Maxima (PostMax) (Cruz et al., 2024) uses Extreme Value Theory (EVT) by applying a Generalized Pareto Distribution (GPD) to maximum logits post-normalized by the feature magnitude. Based on their findings that unknown samples have larger feature magnitude than known samples on large-scale data, they normalize logits by dividing them by their deep feature magnitude to further increase the separation between known and unknown samples:

$$\hat{\mathbf{z}}_n = \frac{\mathbf{z}_n}{\|\boldsymbol{\varphi}_n\|_2 + 1} \,. \tag{14}$$

This makes it an explicitly magnitude-aware method. We modify the original implementation to shift the magnitudes by 1 to avoid issues with magnitudes $\|\varphi\|_2 < 1$ which reverse the desired effect of normalization.⁸ This occurs consistently for features from magnitude-manipulating RL methods, but not for others. The class-agnostic GPD $\Psi_{\mu,\sigma,\xi}$ is fitted only on the maximum normalized logits of correctly classified known training samples, which is then used to compute a probability of the sample being known. Following Cruz et al. (2024), the scores \mathcal{P}_n are computed as:

$$k_n^* = \underset{1 \le c \le K}{\operatorname{arg max}} \, \hat{z}_{n,c} \quad \text{and} \quad \gamma_n^* = \Psi_{\mu,\sigma,\xi}(\hat{z}_{n,k_n^*}) \,. \tag{15}$$

GHOST The Gaussian Hypothesis Open-Set Technique (GHOST) (Rabinowitz et al., 2025) models each class in deep feature space as a multivariate Gaussian distribution with the intuition that features φ from known and unknown samples deviate by feature magnitude even if the angular direction overlaps, making it magnitude-aware. During training, GHOST fits a Gaussian distribution (μ_c , σ_c) for each known class c based on the deep features φ_n

⁷https://github.com/Vastlab/vast

⁸We also tried different normalization techniques, including to multiply with the norm, which seems more reasonable for MM RL methods. However, the detrimental effects of MM RL with PostMax for large-scale evaluations was present in any case. This modification does not harm performance with non-MM RL methods.

of correctly classified training samples. During inference, GHOST first computes a class prediction from the logits:

$$k_n^* = \operatorname*{arg\,max}_{1 \le c \le K} z_{n,c} \,, \tag{16}$$

as well as z-score s_n for each sample \mathbf{x}_n and corresponding Gaussian $(\mu_{k_n^*}, \sigma_{k_n^*})$. This is then used to compute the score γ_n^* by dividing the original logit:

$$s_n = \sum_{d=1}^{D} \frac{|\varphi_{n,d} - \mu_{k_n^*,d}|}{\sigma_{k_n^*,d}}, \qquad \gamma_n^* = \frac{z_{n,k_n^*}}{s_n}.$$
 (17)

A.2 EMNIST BENCHMARK

We perform qualitative small-scale experiments on the **EMNIST** protocol (Dhamija et al., 2018) to replicate settings of high similarity between known and auxiliary classes at small scale. This benchmark contains a wide spectrum of clearly attributable visual similarities between known and auxiliary classes because the samples do not contain any image background. It consists of EMNIST MNIST split as knowns, the first half of EMNIST letters (a-m) as auxiliary data, and the second half (n-z) as unknowns. While most digits (known) do not contain any visually similar letters, digits 1 and 9 contain auxiliary classes ("i", "l" and "g", "q" respectively) that are visually very similar or indistinguishable without context depending on handwriting and capitalization.

A.3 Hyperparameter optimization

For most methods, we rely on the hyperparameters as provided by the according papers. Few methods however do not provide any, namely: λ and ξ for ObjectoSphere and λ , κ , and α for OpenMax, where we perform hyperparameter optimization on the validation set using grid search, based on the maximum AUOSCR. For OpenMax the parameter optimization is performed for each upstream RL method separately to ensure optimal settings, since the feature representations differ significantly. The considered hyperparameter ranges are as follows:

- OS: $\lambda \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10\}, \xi \in \{10, 20, 30\}$
- OpenMax: $\alpha \in \{1, 2, 3, 5, 10\}, \kappa \in \{1.5, 1.7, 2, 2.3\}, \lambda \in \{10, 50, 100, 250, 500, 750, 1000\}$

The best hyperparameter values for each method and protocol are summarized in Table 2.

A.4 Performance metrics

CCR@FPR CCR@FPR computes the CCR at a specific FPRs $\zeta \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}\}$ and provides insights into the classification performance at various tolerances for errors caused by missed rejections. It is therefore highly relevant for practical applications where a fixed threshold θ is required, which is typically selected based on a certain FPR. It is computed as:

$$CCR@FPR = \begin{cases} CCR(\theta_{\zeta}) & \text{if } \theta_{\zeta} \text{ exists} \\ 0 & \text{otherwise} \end{cases}, \tag{18}$$

where $\theta_{\zeta} = \text{FPR}^{-1}(\zeta)$ is the threshold that yields FPR = ζ . CCR@FPR for $\zeta = 10^0$ resembles closed-set accuracy.

⁹Contrary to (Dhamija et al., 2018) we use EMNIST MNIST instead of the original MNIST because the preprocessing, while similar, is not exact (Cohen et al., 2017). EMNIST MNIST and letters contain noticeably softer and thicker digits than MNIST. In order to focus on semantic shift and not introduce easily learnable covariate shift through softness and sharpness, we use EMNIST MNIST.

		CIFA	ImageNet			
Method	Parameter	CIFAR+10	CIFAR+50	P_1	P_2	P_3
OS	λ_{OS}	$10^{-3}/10^{-2}/10^{-2}/10^{-2}/10^{-2}$	$10^{-3}/10^{-2}/10^{-2}/10^{-3}/10^{-2}$	10^{-3}	10^{-3}	10^{-3}
	ξ	10/10/10/10/10	20/10/10/10/10	30	20	10
CE+OpenMax	α	3/3/3/1/3	3/2/3/3/3	5	5	2
	κ	1.5/1.5/2.3/2/1.7	1.7/1.5/2.3/1.5/2.3	2.3	2.3	2
	λ	100/100/250/10/100	250/100/500/100/100	750	750	100
ARPL+OpenMax	α	3/3/1/3/3	3/2/3/3/3	5	3	2
	κ	1.5/2.3/2/1.5/1.7	2/1.5/1.5/1.5/1.5	2.3	2.3	2.3
	λ	100/250/10/100/100	100/100/100/100/100	750	750	10
AddON+OpenMax	α	1/1/1/1	1/1/1/1	5	3	5
	κ	1.5/2/2.3/1.7/2	1.7/2/1.5/1.5/2.3	1.7	2.3	2
	λ	100/250/100/100/100	250/500/250/250/250	750	750	100
OE+OpenMax	α	1/2/1/3/3	3/3/1/2/1	3	2	2
	κ	1.5/1.7/2/2/2	2.3/1.5/1.5/2/1.5	1.7	1.5	2.3
	λ	10/100/10/100/250	100/100/10/100/10	10	10	10
OS+OpenMax	α	1/1/3/2/2	3/2/3/3/2	10	5	10
	κ	1.5/2.3/1.5/1.5/2.3	2.3/1.7/2/2.3/2	2.3	2.3	2
	λ	10/10/10/10/10	100/10/10/100/10	10	10	10

Table 2: Optimized hyperparameter values for each method and protocol. CIFAR+N results are reported for each trial separately.

AUOSCR The OSCR curve (Dhamija et al., 2018) simultaneously evaluates classification of known samples via CCR as well as the rejection of unknown samples via FPR over all possible thresholds. It is computed by varying the threshold θ from the smallest to the largest possible score value, and plotting the CCR over the FPR, *i. e.*, computing CCR@FPR at all thresholds. The Area Under the OSCR curve (AUOSCR) is computed by integrating the OSCR curve from $\zeta=0$ to $\zeta=1$. Since the OSCR curve is a monotonically increasing function, the AUOSCR is maximized at and bounded by the closed-set accuracy.

OOSA The Operational Open-set Accuracy (OOSA) (Cruz et al., 2024) evaluates the open-set performance at a fixed operational threshold θ^* , determined on the validation set, and provides insights into the performance of a method in a real-world setting. It is defined as a trade-off between the CCR and the Unknown Rejection Rate (URR), URR(θ) = $1 - \text{FPR}(\theta)$:

$$OOSA = \alpha_{CCR}CCR(\theta^*) + (1 - \alpha_{CCR})URR(\theta^*)$$
(19)

where θ^* is the operational threshold that maximizes this equation on the validation set. We follow Cruz et al. (2024) and set $\alpha_{\rm CCR} = \frac{|\mathcal{K}_{\rm test}|}{|\mathcal{K}_{\rm test}| + |\mathcal{U}_{\rm test}|}$ to equally weight known and unknown test samples.

AUROC In order to evaluate the OOD detection capabilities independently of the ID classification task, we use the Area Under the Receiver Operating Characteristics (AUROC) curve (Hendrycks & Gimpel, 2017; Hendrycks et al., 2019; Chen et al., 2021; Hendrycks et al., 2022; Vaze et al., 2022; Yang et al., 2024; Wang et al., 2025). AUROC concerns how well known and unknown classes can be distinguished by computing FPR (2), as well as the True Positive Rate (TPR):

$$TPR(\theta) = \frac{\left| \{ (\mathbf{x}_n, \tau_n) \in \mathcal{K} \land \gamma_n^* \ge \theta \} \right|}{N_K}$$
 (20)

The ROC is computed by varying θ , and the area under that curve is determined.

A.5 Additional figures and tables

The main paper contained only a subset of evaluation metrics and visualizatrions. Here we provide remaining figures and tables containing the exact results.

Table 3: Small-scale evaluation. This table includes a performance overview of all RL and PP methods on the small-scale protocols. Metrics include CCR@ ζ for $\zeta \in 10^{-2}, 10^{-1}, 10^{-0}, 10^{1}, 10^{2}$, AUOSCR, AUROC, and OOSA. All scores are reported in percent and CCR@100 is the closed-set accuracy. Performance metrics are reported as mean \pm standard deviation over 5 randomized trials. The best performing combination for each protocol and metric w.r.t mean score is highlighted in bold. The best performing PP method for each RL method and metric w.r.t mean score is highlighted in italic.

Dataset	RL	PP	CCR@0.01	CCR@0.1	CCR@1	CCR@10	CCR@100	AUOSCR	AUROC	OOSA
CIFAR+10	CE	MSP OpenMax MaxLogits PostMax GHOST		40.5 ± 13.3 44.1 ± 12.3 46.5 ± 9.2 33.6 ± 15.3 2.6 ± 3.5	$63.8 \pm 5.1 \\ 67.8 \pm 3.0 \\ 72.5 \pm 2.7 \\ 64.6 \pm 4.3 \\ 28.1 \pm 10.2$	$\begin{array}{c} 84.5 \pm 2.4 \\ 86.1 \pm 1.9 \\ 89.8 \pm 1.7 \\ 85.3 \pm 1.6 \\ 87.7 \pm 1.3 \end{array}$	$\begin{array}{c} 97.0 \pm 0.7 \\ 97.0 \pm 0.7 \end{array}$	$\begin{array}{c} 92.2 \pm 1.1 \\ 92.9 \pm 0.9 \\ 94.4 \pm 0.9 \\ 92.8 \pm 0.7 \\ 93.0 \pm 0.7 \end{array}$	$\begin{array}{c} 93.7 \pm 0.8 \\ 94.5 \pm 0.5 \\ 96.6 \pm 0.5 \\ 94.7 \pm 0.3 \\ 95.1 \pm 0.3 \end{array}$	$\begin{array}{c} 87.8 \pm 1.1 \\ 88.4 \pm 1.0 \\ 90.5 \pm 1.0 \\ 88.3 \pm 1.0 \\ 90.0 \pm 1.1 \end{array}$
	ARPL	MSP OpenMax MaxLogits PostMax GHOST	$41.0 \pm 11.8 44.4 \pm 9.4 48.8 \pm 12.4 36.3 \pm 15.0 3.6 \pm 4.3$	$42.8 \pm 9.6 44.6 \pm 9.2 48.8 \pm 12.4 36.3 \pm 15.0 3.6 \pm 4.3$	$65.3 \pm 1.7 \\ 68.2 \pm 1.5 \\ 73.2 \pm 2.9 \\ 64.3 \pm 2.4 \\ 23.3 \pm 7.1$	$\begin{array}{c} 84.6 \pm 2.1 \\ 86.4 \pm 1.6 \\ 90.2 \pm 1.2 \\ 85.5 \pm 1.4 \\ 88.1 \pm 1.4 \end{array}$	$\begin{array}{c} 97.1 \pm 0.7 \\ 97.1 \pm 0.7 \end{array}$	$\begin{array}{c} 92.4 \pm 1.1 \\ 93.0 \pm 0.9 \\ 94.5 \pm 0.8 \\ 93.0 \pm 0.8 \\ 93.0 \pm 0.8 \end{array}$	$\begin{array}{c} 93.9 \pm 0.8 \\ 94.7 \pm 0.5 \\ 96.8 \pm 0.4 \\ 94.9 \pm 0.4 \\ 95.2 \pm 0.4 \end{array}$	87.9 ± 1.1 88.6 ± 0.9 90.7 ± 1.0 88.7 ± 0.7 90.2 ± 1.0
	AddON	MSP OpenMax MaxLogits PostMax GHOST		58.1 ± 18.2 61.8 ± 12.9 63.1 ± 22.8 57.9 ± 19.8 34.8 ± 31.4	$\begin{array}{c} 80.7 \pm 7.6 \\ 80.8 \pm 4.0 \\ \textbf{84.2} \pm \textbf{4.4} \\ 81.3 \pm 7.8 \\ 81.1 \pm 7.7 \end{array}$	$\begin{array}{c} 92.6\pm2.5\\ 92.0\pm1.6\\ \textbf{94.2}\pm\textbf{0.9}\\ 93.5\pm1.9\\ 94.1\pm1.3 \end{array}$	$\begin{array}{c} 97.3 \pm 0.7 \\ \textbf{97.4} \pm \textbf{0.7} \\ 97.3 \pm 0.7 \\ 97.3 \pm 0.7 \\ 97.3 \pm 0.7 \end{array}$		$\begin{array}{c} 97.9 \pm 1.4 \\ 97.3 \pm 0.9 \\ \textbf{98.6} \pm \textbf{0.6} \\ 98.3 \pm 1.0 \\ 98.4 \pm 0.8 \end{array}$	$\begin{array}{c} 92.2 \pm 2.5 \\ 91.9 \pm 1.2 \\ \textbf{93.7} \pm \textbf{0.7} \\ 93.0 \pm 1.8 \\ 93.6 \pm 1.1 \end{array}$
	OE	MSP OpenMax MaxLogits PostMax GHOST		57.4 ± 17.3 58.2 ± 18.2 58.8 ± 19.5 52.3 ± 19.6 36.0 ± 32.5	$\begin{array}{c} 81.4 \pm 6.1 \\ 81.5 \pm 5.7 \\ 82.4 \pm 5.8 \\ 81.3 \pm 6.2 \\ 81.7 \pm 6.4 \end{array}$	$\begin{array}{c} 92.9 \pm 1.8 \\ 93.2 \pm 1.8 \\ 93.3 \pm 1.5 \\ 93.2 \pm 1.5 \\ 93.3 \pm 1.5 \end{array}$	$\begin{array}{c} 97.1 \pm 0.8 \\ 97.2 \pm 0.7 \\ 97.1 \pm 0.8 \\ 97.1 \pm 0.8 \\ 97.1 \pm 0.8 \end{array}$	$\begin{array}{c} 95.6 \pm 0.6 \\ 95.7 \pm 0.6 \\ 95.6 \pm 0.6 \\ 95.6 \pm 0.6 \\ 95.6 \pm 0.6 \end{array}$	$\begin{array}{c} 98.0 \pm 1.0 \\ 98.0 \pm 0.9 \\ 98.2 \pm 0.9 \\ 98.1 \pm 0.9 \\ 98.1 \pm 1.0 \end{array}$	$\begin{array}{c} 92.6 \pm 1.6 \\ 92.7 \pm 1.5 \\ 92.6 \pm 1.6 \\ 92.8 \pm 1.5 \\ 92.7 \pm 1.6 \end{array}$
	OS	MSP OpenMax MaxLogits PostMax GHOST	65.0 ± 17.7	$\begin{array}{c} \textbf{65.5} \pm \textbf{14.8} \\ 65.0 \pm 17.7 \\ 65.2 \pm 19.4 \\ 44.0 \pm 18.2 \\ 42.0 \pm 33.9 \end{array}$	$\begin{array}{c} 82.1 \pm 6.5 \\ 81.9 \pm 6.9 \\ 82.9 \pm 6.6 \\ 72.1 \pm 10.2 \\ 78.8 \pm 10.0 \end{array}$	92.6 ± 1.8	97.4 ± 0.7 97.3 ± 0.8 97.4 ± 0.7 97.4 ± 0.7 97.4 ± 0.7	95.4 ± 0.9	98.0 ± 1.1 98.1 ± 1.1 98.3 ± 1.0 97.5 ± 1.0 98.1 ± 1.2	$\begin{array}{c} 92.7 \pm 1.9 \\ 92.7 \pm 1.7 \\ 92.7 \pm 1.8 \\ 92.5 \pm 1.1 \\ 92.6 \pm 2.0 \end{array}$
_	CE	MSP OpenMax MaxLogits PostMax GHOST		31.9 ± 3.7 35.4 ± 5.3 38.0 ± 6.3 24.2 ± 6.8 1.4 ± 0.9	$\begin{array}{c} 54.2 \pm 3.9 \\ 58.4 \pm 3.4 \\ 61.1 \pm 2.8 \\ 51.8 \pm 5.1 \\ 11.6 \pm 4.2 \end{array}$	$79.4 \pm 1.6 81.8 \pm 1.3 84.3 \pm 1.0 79.5 \pm 1.2 80.8 \pm 0.7$	97.1 ± 0.7 97.1 ± 0.7 97.1 ± 0.7 97.1 ± 0.7 97.1 ± 0.7	$\begin{array}{c} 90.4 \pm 0.7 \\ 91.2 \pm 0.6 \\ 92.5 \pm 0.4 \\ 90.7 \pm 0.4 \\ 90.0 \pm 0.3 \end{array}$	$\begin{array}{c} 91.6 \pm 0.6 \\ 92.7 \pm 0.5 \\ 94.5 \pm 0.4 \\ 92.3 \pm 0.4 \\ 91.8 \pm 0.4 \end{array}$	$\begin{array}{c} 84.4 \pm 0.7 \\ 85.5 \pm 0.8 \\ 86.0 \pm 0.7 \\ 84.0 \pm 0.9 \\ 85.5 \pm 0.6 \end{array}$
	ARPL	MSP OpenMax MaxLogits PostMax GHOST		38.3 ± 3.3 36.1 ± 8.2 36.6 ± 6.6 23.1 ± 7.2 1.2 ± 0.9	$\begin{array}{c} 55.3 \pm 5.3 \\ 58.5 \pm 5.0 \\ 62.1 \pm 4.7 \\ 51.8 \pm 4.0 \\ 12.0 \pm 5.6 \end{array}$	$\begin{array}{c} 80.3 \pm 1.6 \\ 82.1 \pm 1.3 \\ 85.0 \pm 1.0 \\ 80.1 \pm 1.3 \\ 81.3 \pm 1.4 \end{array}$	$\begin{array}{c} 97.2 \pm 0.6 \\ 97.1 \pm 0.5 \\ 97.2 \pm 0.6 \\ 97.2 \pm 0.6 \\ 97.2 \pm 0.6 \end{array}$	$\begin{array}{c} 90.6 \pm 0.9 \\ 91.3 \pm 0.8 \\ 92.7 \pm 0.6 \\ 90.9 \pm 0.6 \\ 90.2 \pm 0.6 \end{array}$	$\begin{array}{c} 91.8 \pm 0.6 \\ 92.8 \pm 0.5 \\ 94.7 \pm 0.4 \\ 92.5 \pm 0.4 \\ 92.0 \pm 0.5 \end{array}$	$\begin{array}{c} 85.0 \pm 0.9 \\ 85.2 \pm 1.2 \\ 86.4 \pm 0.8 \\ 84.9 \pm 0.7 \\ 86.0 \pm 0.6 \end{array}$
	AddON	MSP OpenMax MaxLogits PostMax GHOST		65.4 ± 4.4 60.8 ± 6.4 60.2 ± 6.9 60.5 ± 4.2 36.1 ± 14.8	$83.8 \pm 2.9 79.3 \pm 2.9 79.8 \pm 2.3 81.8 \pm 3.0 80.8 \pm 2.7$		$egin{array}{c} {\it 97.7} \pm {\it 0.7} \ {\it 97.4} \pm {\it 0.7} \ {\it 97.7} \pm {\it 0.7} \ \end{array}$	95.2 ± 0.7 95.9 ± 0.4 96.2 ± 0.4	98.4 ± 0.5 96.9 ± 0.4 97.8 ± 0.4 98.1 ± 0.5 97.9 ± 0.4	$\begin{array}{c} 93.6 \pm 1.0 \\ 91.8 \pm 1.0 \\ 92.3 \pm 0.6 \\ 93.1 \pm 0.8 \\ 92.8 \pm 0.5 \end{array}$
	OE	MSP OpenMax MaxLogits PostMax GHOST		66.7 ± 7.6 67.8 ± 6.7 67.1 ± 7.7 67.0 ± 6.8 46.8 ± 21.1	$83.5 \pm 3.4 83.5 \pm 3.5 83.7 \pm 3.7 83.2 \pm 3.5 83.4 \pm 3.6$	94.0 ± 1.1 94.1 ± 1.0 94.2 ± 1.0 94.0 ± 1.1 94.1 ± 1.0		$\begin{array}{c} 96.2 \pm 0.3 \\ \textbf{96.4} \pm \textbf{0.3} \\ 96.2 \pm 0.3 \\ 96.2 \pm 0.3 \\ 96.2 \pm 0.3 \end{array}$	$\begin{array}{c} 98.2 \pm 0.6 \\ 98.2 \pm 0.5 \\ 98.3 \pm 0.6 \\ 98.2 \pm 0.6 \\ 98.2 \pm 0.6 \end{array}$	$\begin{array}{c} 93.4 \pm 1.0 \\ 93.6 \pm 0.9 \\ 93.6 \pm 1.0 \\ 93.4 \pm 0.9 \\ 93.6 \pm 0.9 \end{array}$
	OS	MSP OpenMax MaxLogits PostMax GHOST	51.2 ± 11.8 48.0 ± 11.8 51.6 ± 11.9 35.9 ± 19.7 8.2 ± 9.9	70.2 ± 8.2 70.1 ± 8.8 70.4 ± 8.4 53.5 ± 8.1 56.8 ± 28.2	85.1 ± 2.5 85.1 ± 2.6 85.5 ± 2.6 78.2 ± 4.2 85.5 ± 3.0	$\begin{array}{c} 94.0 \pm 1.1 \\ 94.0 \pm 1.1 \\ 94.1 \pm 1.0 \\ 92.7 \pm 1.4 \\ 94.1 \pm 1.1 \end{array}$	$\begin{array}{c} 97.4 \pm 0.5 \\ 97.4 \pm 0.5 \end{array}$	$\begin{array}{c} 96.2 \pm 0.4 \\ 96.2 \pm 0.4 \\ 96.2 \pm 0.4 \\ 96.2 \pm 0.4 \\ 95.6 \pm 0.6 \\ 96.2 \pm 0.4 \end{array}$	$\begin{array}{c} 98.3 \pm 0.5 \\ 98.3 \pm 0.5 \\ 98.3 \pm 0.5 \\ 97.5 \pm 0.6 \\ 98.3 \pm 0.6 \end{array}$	93.9 ± 0.8 93.8 ± 0.8 93.9 ± 0.8 92.5 ± 0.7 94.0 ± 0.8

Table 4: Large-scale evaluation. This table repeats the performance overview of Table 3 on large-scale protocols. — indicates that at no threshold θ_{ζ} for corresponding FPR ζ could be achieved.

Dataset	t RL	PP	CCR@0.01	CCR@0.1	CCR@1	CCR@10	CCR@100	AUOSCR	AUROC	COOSA
P1	CE	MSP	7.8	22.7	53.4	71.8	77.4	75.6	95.3	83.7
		OpenMax	13.2	34.4	65.0	76.6	77.0	76.5	98.7	86.2
		MaxLogits	6.1	31.3	64.1	76.6	77.4	76.8	98.5	86.3
		PostMax GHOST	14.0 18.3	33.0 44.9	$65.9 \\ 71.4$	$75.9 \\ 77.0$	77.4 77.4	76.7 77.1	98.0 99.1	86.6 87.5
	ARPL	MSP	10.6	27.2	54.8	72.5	78.2	76.4	95.6	83.6
	AIGL	OpenMax	8.0	44.6	66.1	77.0	77.3	76.4	98.8	86.1
		MaxLogits		35.1	66.3	77.4	78.2	77.7	98.7	86.8
		PostMax	20.6	41.5	65.6	76.8	78.2	77.5	98.1	86.5
		GHOST	21.1	48.9	72.3	77.9	78.2	77.9	99.2	87.7
	AddON	MSP	11.6	32.2	62.2	77.4	78.4	77.5	97.9	79.0
		OpenMax	16.2	41.4	65.5	77.8	78.3	77.7	98.7	87.4
		MaxLogits PostMax	$17.1 \\ 14.6$	$39.5 \\ 35.9$	$72.6 \\ 67.2$	78.1 77.0	78.4 78.4	78.1 77.7	$99.3 \\ 98.4$	88.7 86.9
		GHOST	19.7	51.3	74.8	78.1	78.4	78.2	99.5	89.0
	OE	MSP	5.6	27.9	62.7	77.6	78.1	77.4	98.2	84.3
		OpenMax	5.6	28.2	62.4	77.4	78.0	77.3	98.2	83.7
		MaxLogits		36.7	73.1	77.7	78.1	77.8	99.0	84.3
		PostMax	8.8	27.2	63.3	77.1	78.1	77.4	98.2	84.2
		GHOST	12.1	48.0	74.4	77.8	78.1	77.8	99.1	86.4
	OS	MSP	18.0	34.2	64.9	77.8	78.3	77.7	98.6	83.4
		OpenMax MaxLogits	$22.5 \\ 16.4$	33.4 46.0	64.6 73.9	77.6 78.0	78.0 78.3	$77.4 \\ 78.0$	$98.6 \\ 99.3$	84.3 86.4
		PostMax	21.4	41.4	70.7	78.0	78.3	77.9	99.3	87.3
		GHOST	19.5	54.5	75.9	78.0	78.3	78.0	99.4	83.9
P2	CE	MSP		<u> </u>	21.8	50.5	74.0	64.9	80.1	76.4
		OpenMax	2.5	3.6	24.5	51.5	73.7	66.3	83.4	77.1
		MaxLogits	7.6	8.4	25.0	58.9	74.0	68.5	87.8	78.8
		PostMax	6.0	7.4	30.5	59.9	74.0	68.8	88.2	79.4
		GHOST	8.1	10.3	30.3	61.3	74.0	69.1	88.9	80.0
	ARPL	MSP	_	_	24.4	49.9	75.4	66.1	80.7	76.3
		OpenMax	2.6	4.1	29.5	52.2 58.5	$73.8 \\ 75.4$	66.7	$83.6 \\ 87.5$	77.2
		MaxLogits PostMax	3.1 5.7	3.7 1 3.6	$\frac{26.9}{34.5}$	59.8	75.4 75.4	69.2 69.8	88.3	78.8 80.2
		GHOST	4.5	13.3	34.5	60.1	75.4	70.1	88.9	80.5
	AddON	MSP			25.8	55.8	76.9	68.5	84.5	65.2
	1144011	OpenMax	3.5	5.9	33.6	59.1	76.4	70.5	87.2	78.8
		MaxLogits	2.3	4.3	33.0	62.5	76.9	71.5	89.2	79.7
		PostMax	8.3	11.0	34.5	63.4	76.9	71.8	89.4	79.2
		GHOST	10.1	10.6	40.1	64.4	76.9	72.2	90.3	79.0
	OE	MSP	_	5.0	20.9	54.8	74.3	66.9	84.5	71.6
		OpenMax MaxLogits	2.5	$\frac{3.3}{2.7}$	$21.5 \\ 23.1$	55.1 55.7	$74.5 \\ 74.3$	67.1 66.9	84.6 85.1	72.2 71.0
		PostMax	2.3	8.3	$\frac{23.1}{24.5}$	55.7 57.8	74.3	67.9	85.9	73.3
		GHOST	4.7	10.3	27.3	57.9	74.3	67.6	85.9	71.5
	OS	MSP	3.1	4.4	25.1	56.5	74.9	67.8	85.1	71.2
		OpenMax	4.2	4.7	25.7	57.1	74.9	67.9	85.3	71.1
		MaxLogits	6.3	6.5	26.1	58.1	74.9	68.0	85.9	71.2
		PostMax	5.8	9.3	27.9	58.6	74.9	68.4	85.8	73.9
		GHOST	7.5	10.0	32.3	58.5	74.9	68.1	86.0	70.2
P3	$^{\mathrm{CE}}$	MSP	_	_	21.4	64.9	85.7	78.1	86.4	78.2
		OpenMax MaxLogits	1.2	3.2	$\frac{20.9}{14.6}$	64.6 62.6	$85.3 \\ 85.7$	77.9 77.9	86.4 87.7	78.0 78.1
		PostMax	0.1	1.9	17.7	66.3	85.7	78.9	88.7	79.1
		GHOST	0.4	2.3	20.1	65.9	85.7	78.8	88.6	78.7
	ARPL	MSP		6.8	21.5	64.5	86.5	78.4	86.0	78.0
		OpenMax	_	6.8	21.7	64.4	86.3	78.3	86.0	78.0
		MaxLogits		2.5	15.8	62.0	86.5	78.4	87.6	77.9
		PostMax	1.4	4.8	17.4	65.4	86.5	79.3	88.6	79.0
		GHOST	2.3	3.4	19.5	65.0	86.5	79.2	88.5	78.6
	AddON	MSP	_	3.7	24.5	65.6	85.6	77.8	86.5	70.7
		OpenMax MaxLogits	1.0	3.2	$\frac{22.5}{19.1}$	65.6 66.0	$85.6 \\ 85.6$	78.5 78.7	87.0 88.5	$77.1 \\ 77.5$
		PostMax	2.1	4.2	23.5	69.1	85.6	79.7	89.5	79.4
		GHOST	0.5	4.7	25.4	68.8	85.6	79.6	89.4	78.5
	OE	MSP	_		21.8	66.9	84.6	77.7	87.5	72.6
		OpenMax	_	_	21.7	66.7	84.7	77.8	87.5	72.8
		MaxLogits		2.7	17.7	65.0	84.6	77.1	87.2	72.7
		PostMax	0.3	1.5	12.7	61.5	84.6	77.0	86.8	75.5
		GHOST	0.1	2.6	22.6	67.3	84.6	77.8	87.8	73.8
	OS	MSP		_	26.6	67.4	84.9	78.1	87.8	75.2
		OpenMax	_	_	26.1	67.2	84.8	78.0	87.8	75.4
			0.8	97	20.1	66.0	81. a	77.6	87.6	747
		MaxLogits PostMax	0.8	$\frac{2.7}{1.4}$	$20.1 \\ 11.4$	66.9 60.6	84.9 84.9	77.6 76.9	87.6 86.3	$74.7 \\ 71.4$

Table 5: EMNIST ranges of class-wise CCR at the operational threshold, $CCR_c(\theta^*)$, for classes 1, 9, and rest (all other known classes) per RL method.

Model	Class 1		ass 1 Class 9		Knowns Except 1 and		
	min	min max		min max		max	
CE	94.1	97.6	89.5	91.9	86.7	97.9	
ARPL	86.7	96.9	89.5	92.2	83.8	98.0	
AddON	67.0	94.8	92.4	95.6	95.2	99.5	
OE	65.7	86.6	94.2	97.2	96.7	99.8	
OS	58.1	88.7	93.6	95.3	97.7	99.6	

Figure 8: Theas heatmaps show the absolute values for evaluations of (a) AUOSCR, (b) OOSA, (c) AUROC, and (d) Accuracy. Each heatmap is normalized independently and centered around CE+MSP, where blue shows an increase and red a decrease. Results for CIFAR+N are averaged over 5 trials.

Figure 9: This figure shows the interaction effects of RL and PP components as correlation between RL performance contribution $\Delta^{\rm RL}$ and PP contribution $\Delta^{\rm PP}$ in terms of (a) AUOSCR, (b) OOSA, (c) AUROC, and (d) Accuracy. Results for CIFAR+N are averaged over 5 trials.

Figure 10: Linear regressions of class-wise CCR at the operational threshold, $CCR_c(\theta^*)$, against class-wise average feature magnitude for known classes. Regression is performed for each RL method independently and over all postprocessors. For CIFAR+N results are reported for the first trial only.