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ABSTRACT

Open-set recognition (OSR) requires neural networks to classify known
classes while rejecting unknown samples, which is critical for real-world
deployment. So far, OSR research studied and developed representation
learning and postprocessing methods independently and their interaction
effects remain unexplored, leaving potential performance gains untapped.
In this paper, we present the first systematic study of these interactions
across dataset scales and auxiliary data usage. First, we discover a failure
mode we term magnitude collapse, where representation learning meth-
ods that utilize auxiliary data can suffer performance degradation at large
scale and irreversibly destroy discriminative information, despite excelling
at small scale. Second, we study the interaction effects between repre-
sentation learning and postprocessing methods, and reveal when they can
be leveraged for modular performance gains via two-stage processing. We
also show where interaction effects amplify performance degradation due
to magnitude collapse. Third, we show how these findings can be used
to achieve state-of-the-art performance with a simple baseline and two-
stage processing of OSR techniques. Finally, our results demonstrate that
small-scale evaluations with auxiliary data are not predictive of large-scale
performance, invalidating current best practices in OSR research.

1 INTRODUCTION

The rapid advancement of deep learning methods for image recognition increasingly pro-
motes their real-world adoption, which requires them to adequately detect and handle un-
known inputs for the reliability and safety of these systems (Scheirer et al., 2013; Hendrycks
& Gimpell, |2017; [Vaze et al., 2022)). This task is typically studied under the two closely-
related problem formulations: Open-set Recognition (OSR) and Out-of-Distribution (OOD)
detection. Both aim to improve the robustness of classifiers by detecting distributional shifts
in test-time samples.

While the categorization of OSR methods into Representation Learning (RL) and Post-
Processing (PP) methods is commonly understood, current OSR methods are studied in
isolation or compared as standalone methods, neglecting their modular nature and poten-
tial for improvements through combinations. Since the interaction effects between RL and
PP have neither been explored nor formalized for OSR methods, we ask: can RL methods
enhance or shape feature representations to amplify downstream PP performance? Or vice
versa: is the optimal choice of PP method dependent on the RL training objective?

In both RL and PP methods, the feature magnitude has been identified as a crucial factor for
performance (Dhamija et al.,|2018;Hendrycks et al.| [2022; [Vaze et al.,[2022;|Cruz et al., [2024;
Rabinowitz et al., 2025). For instance, [Wang et al.[ (2025)) highlight that magnitude-aware
(MA) OOD postprocessing generally outperforms alternatives. This raises the question:
do MA postprocessors synergize with RL methods that purposefully manipulate feature
magnitudes during training? We identify a sub-category of RL methods, which we term
magnitude-manipulating (MM), that utilize auxiliary data to separate known and auxiliary
classes during training based on feature magnitude. However, MM methods tend to be sen-
sitive to auxiliary data distribution at large scale, with performance falling below baselines,
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Figure 1: The modular two-stage OSR, framework separates representation learning (RL)
and postprocessing (PP), and reveals additional performance gains, by leveraging interaction
effects between the two. Undesirable interaction effects exist for magnitude-manipulating
RL (red) combined with magnitude-aware PP (blue), while beneficial effects are observed for
AddON and magnitude-aware PP. Small-scale benchmarks are not predictive of large-scale
performance and do not exhibit similar behavior due to limited similarity between known
and auxiliary classes.

despite their success on small-scale datasets (Hendrycks et al., [2021; |Wang et all [2025).
This raises concerns about their real-world applicability, and we seek to understand the
underlying causes of this performance degradation at scale.

Our analysis reveals the mechanism behind the performance degradation of MM methods as
the interplay of magnitude-manipulation and high similarity between auxiliary and known
classes, a scenario not found on small-scale benchmarks. This causes a magnitude collapse
in similar known classes and creates an undesirable linear dependency between feature mag-
nitudes and class-wise accuracy, leading to systematically imbalanced class-wise detection
performance. We show that magnitude collapse can be avoided by using an Additional
Output Node (AddON) for auxiliary data, a simple and effective baseline that consistently
outperforms other methods across scales and does not require hyperparameter tuning. This
degradation of MM methods is further amplified by MA postprocessing, which otherwise
experiences desirable interaction effects when combined with non-MM RL methods and
outperforms other PP methods. Moreover, our experiments suggest that RL without aux-
iliary data and PP methods are highly independent components of OSR systems with clear
separation of responsibilities, enabling modular additive performance gains.

Overall, our study advances the understanding of OSR systems and provides actionable
guidelines for researchers and practitioners. First, leverage the modularity of OSR systems
by augmenting non-MM RL methods with MA PP methods to achieve additional perfor-
mance gains almost for free. Second, when training or fine-tuning a classifier with auxiliary
data that is visually similar to known classes, avoid MM RL methods. Instead, use Ad-
dON as baseline to mitigate magnitude collapse and leverage positive interaction effects.
Finally, validate OSR methods on large-scale benchmarks before deployment, as small-scale
evaluations with auxiliary data are not predictive of large-scale performance.

In summary, our contributions are as follows:

o For the first time in OSR literature, we explore the modularity and interaction effects
of representation learning and postprocessing methods, revealing where modular perfor-
mance gains can be achieved and where to avoid negative synergies.

o We discover the magnitude collapse mechanism behind performance degradation at scale
and how it impacts interaction effects.
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¢ We demonstrate how interaction effects and auxiliary data can be leveraged at scale to
achieve state-of-the-art performance regardless of auxiliary data distribution with the
simple AddON baseline and two-stage processing of OSR techniques.

e Our experiments highlight that small-scale evaluations are not predictive of large-scale
performance when using auxiliary data.

2 RELATED WORK

OSR and Relation to OOD Detection. OSR is formalized as the task of accurately
classifying samples from known classes while rejecting samples from semantically unknown
classes (Scheirer et al [2013)), thereby detecting test-time semantic shift (Vaze et al., [2022)).
OOD detection is a broader task (Yang et al.||2024) that aims to detect general distribution
shift, which can include semantic or covariate shifts (Yang et al. 2024} [Wang et al., |2025}
Hendrycks et al. [2021) and is often posed as a binary classification problem (Hendrycks &]
Gimpel, 2017; Liang et al.,|2017; Liu et al., [2020; Huang et al., 2021} [Sun et al.,[2021)). As a
result, OSR and OOD detection differ in their evaluation protocols (Vaze et al., 2022 [Wang]
et al, [2025): OSR partitions a single dataset into known and unknown classes to remove
covariate shifts (Neal et al., 2018 Palechor et al.,2023), while OOD detection typically uses
different datasets for in-distribution (ID) and OOD classes (Hendrycks & Gimpell, |2017)).
Despite these differences, it has been indicated that methods that perform well on one task
tend to perform well on the other (Vaze et al., 2022; [Yang et all) [2024; [Wang et al., 2025).

Auxiliary Data in OSR. Auxiliary samples serve as a proxy for unknown classes during
training and are distinct from known or ID classes. Auxiliary samples are also referred
to as known unknowns (Scheirer et al., [2014; Dhamija et all, [2018), outlier images
[& Ramanan| [2021]), natural adversarial examples (Hendrycks et all [2021]), and negative
samples (Palechor et al., 2023). Real auxiliary data is used for OOD detection (Hendrycks|
let all |2019; Liu et al) 2020) and OSR (Dhamija et al., 2018} [Palechor et al., 2023), dating
back to the earliest approaches (Scheirer et al) [2014). While a large attention in OSR
research is paid to artificially generate auxiliary samples (Ge et al., 2017; Neal et al., 2018;
[Chen et all 2020} 2021)), in this study we exclude generative methods and instead use
real auxiliary data. The standard small-scale benchmarks MNIST, CIFAR, SVHN, and
TinyImageNet partition all classes into known and unknown (Neal et al., [2018]), therefore
do not allow any auxiliary classes. The large-scale Semantic Shift Benchmark (SSB) (Vaze
uses the entire ImageNet-1K dataset as known classes and selects unknowns
from a set of disjoint classes from ImageNet-21K-P.

Differences and Similarities to Prior Art. [Wang et al| (2025) recently acknowledged
the distinction between RL and PP methods and the potential for combined approaches in
the context of disentangling OSR and OOD methods and benchmarks. They focus primarily
on OOD detection methods, with 10 out of 12 methods being postprocessing, leaving modern
OSR methods and their interaction effects unexplored.

3 MODULAR TWO-STAGE FRAMEWORK FOR OSR

In this paper, we disentangle OSR methods into modular sequential components: Repre-
sentation Learning (RL) via classifier training and PostProcessing (PP) of pre-computed
representations. Within this two-stage framework, every OSR system can be viewed as a
combination of one RL and one PP method, denoted as RL+PP, e. g., our baseline CE+MSP
combines Cross-Entropy (CE) training with Maximum SoftMax Probability (MSP). We
summarize key characteristics relevant to this study of RL and PP methods in Table [I]
Section [A]] discusses how methods from Table [l can be formalized in this framework.

Representation Learning Methods. RL methods train or fine-tune a classifier and
extract the representations R,, = (¢n, 2Zn,yn) for sample x,,, where ¢,, are discriminative
deep features, z, are the logits, and y,, the probability distributions over the known classes.
RL methods can modify the training process in various ways, typically by adapting the loss
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Table 1: Key characteristics of @ Representation Learning (RL) and Postprocess-
ing (PP) methods for OSR. RL methods highlight which types of auxiliary data they use,
whether they are Magnitude-Manipulating (MM), and whether they use an additional out-
put node for the unknown class. For PP methods, we list whether they require training, are
Magnitude-Aware (MA), and which types of inputs they operate on.

(a) Representation Learning

Method Auxiliary MM Output K +1

Cross-Entopy (CE) none

ARPL (Chen et al.|[2021) none

AddON ([Palechor et al.,|2023) real Yes

Objectosphere (OS) (Dhamija et al.l|2018) real Yes

Outlier Exposure (OE) (Hendrycks et al.l [2019) real Yes

(b) Postprocessing

Method Trainable MA Inputs
Maximum Softmax (MSP) (Hendrycks & Gimpell [2017) y
MaxLogits/MLS (Hendrycks et al.;[2022; |Vaze et al.| [2022) Yes z
OpenMax (Bendale & Boult, [2016 Yes ®
PostMax (Cruz et al., |2024) Yes Yes 0, Z
GHOST (Rabinowitz et al., [2025]) Yes Yes 0, Z

function (Dhamija et al., 2018} [Hendrycks et al.l 2019 |Chen et al., [2020} 2021)), involving
data augmentation, such as mixup (Zhang et al., |2018; |[Verma et al., 2019) or generative
methods Ge et al 2017; Neal et al.| 2018; [Verma et al., |2019; [Kong & Ramanan| [2021}
Chen et al., 2021} [Wilson et al. 2023} [Huang et al., [2023), or combinations thereof (Zhou
et al., [2021)). RL methods are trained on a dataset /Cirain U Atrain, where for input x,,, I =
{(xn,7n) Tn € Y} is the set of known samples with known class labels Y = {1,..., K}, and
A ={(Xn,Tn) | 7o & Y} is the set of auxiliary samples. Evaluation is done on ICtebt U Usest s
where U = {(xp,,7n) | Tn ¢ Y} denotes unknown samples. Note that while auxiliary and
unknown samples do not require a specific target label, they are required to not share the
label space with known classes ) (Scheirer et al.l [2013).

Postprocessing Methods. PP methods operate post-hoc on representations R, to add
open-set capabilities to a pre-trained closed-set class1ﬁ0rE| making them a cheap alternative
to expensive RL training. However, PP methods cannot undo any damage to the feature
representation learned by the pre—trained network, e. g., when deep feature distributions ¢
from known and unknown classes overlap, no PP method is able to separate those samples.
Postprocessors can involve training a secondary classifier (Scheirer et all [2014; Rudd et al.,
2017)), employing a statistics model (Bendale & Boult, [2016), modifying the inputs (Liang
et al!, 2017), or simply returning elements of R,, (Hendrycks & Gimpell, 12017; Hendrycks
et al

2022). We formalize postprocessors as follows: for test sample x7 with R, we require
a PP to produce two outputs P = (kX,~r), where kf € K is the predlctlon of a known
class label and v, is an OOD score, where high v scores indicate known classes. In an
operational setting, the OSR decision function can be defined as:

k;: if vy >0
unknown otherwise

Gosr(R:0) = { 1)

4 STUDY DESIGN AND EXPERIMENTAL SETUP

We choose five different RL approaches to cover a varied selection of models, based on
whether the method requires auxiliary data and whether it (explicitly or implicitly) manip-

!Note that most PP methods perform class predictions &* based on the argmax of the logits (or
monotonic transformations thereof) and therefore yield identical class predictions and closed-set
accuracy, addressing exclusively the separation between known and unknown classes.
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ulates the feature magnitude. As such we selected the following methods: Cross-Entropy
(CE), ARPL (Chen et al. 2021), AddON (Palechor et al., 2023, Outlier Exposure (OE)
(Hendrycks et al., [2019), and ObjectoSphere (OS) (Dhamija et al., |2018). We also choose
five different PP methods to cover a varied selection of methods based on whether it takes
the feature magnitude into account, . e., it is magnitude-aware. We select MSP (Hendrycks
|& Gimpel, 2017), MaxLogits/MLS (Hendrycks et al. 2022; [Vaze et all 2022), OpenMax
(Bendale & Boult, [2016)), PostMax (Cruz et al. [2024) and GHOST (Rabinowitz et all

2025)).

Datasets We conduct small-scale experiments on the standard OSR, CIFAR+N bench-
marks with N € {10,50} (Neal et al| 2018)). These protocols randomly sample 4 known
classes from CIFAR-10 and N unknown classes from CIFAR-100 [Krizhevsky & Hinton|
El To allow training with auxiliary samples, we randomly sample N auxiliary classes
from the remaining classes in CIFAR-100. Large-scale experiments are conducted on the
ImageNet protocols Pj, P, and P; (Palechor et all [2023) based on the ILSVRC 2012
dataset (Russakovsky et al. |2015). These protocols offer increasing levels of difficulty from
P; to P5 by increasing semantic similarity between known, auxiliary, and unknown classes
based on the WordNet hierarchy . While P, poses an easy open-set task with
low similarity between known and auxiliary classes, P, and Ps pose increasingly difficult
open-set tasks with high similarity between known and auxiliary classes.

Evaluation Metrics To evaluate the binary unknown rejection and the closed-set perfor-
mance in isolation, we use the Area Under the Receiver Operating Characteristics (AUROC)
curve and closed-set accuracy, respectively. To evaluate OSR performance we use Correct
Classification Rate (CCR) (Dhamija et all] 2018)) and False Positive Rate (FPR) and their
single-valued derivations: Area Under the Open-Set Classification Rate (AUOSCR) curve
(Vaze et al.,[2022)), which provides a threshold-agnostic measure, and the Operational Open-
set Accuracy (OOSA) (Cruz et all [2024), which equally weights known and unknown sam-
ples and measures performance at an operational threshold. For detailed descriptions of all
metrics, please refer to Section [A.5|in the appendix. Given knowns K, unknowns U, predic-
tions P = (k¥,~*), and threshold § we compute CCR and FPR following the adjustments
by (Rabinowitz et al., 2025) to allow for arbitrary OOD scores v*:

|{(Xn77—n) GIC/\]C; :Tn/\’)/;: 20}|
[
{(Xan) Eu/\’}/;; > 9}}
U

CCR(0) =

(2)

FPR(6) = |

To evaluate our methods we use multiple metrics to capture different aspects of performance.
AUOSCR and OOSA lack the interpretability of closed-set accuracy and AUROC, and
therefore should not be solely relied upon. On the other hand, the latter do not measure OSR
performance holistically (Wang et all [2022). For example, closed-set accuracy is incapable
of measuring interaction effects because all PP methods except OpenMax exclusively rely on
the logit order from upstream RL methods to produce predictions k* and ignore v* resulting
in identical accuracy scores (Figure in the appendix). AUROC measures the ability to
separate known and unknown samples across all thresholds via v* and ignores k*. AUOSCR
and OOSA however jointly measure the quality of £* and +* for any given threshold 6 via
CCR(#) and FPR(#). As such we rely primarily on AUOSCR and OOSA to answer our
research questions but draw complementary insights from closed-set accuracy and AUROC.

Training Details We train all networks from scratch to ensure that no information from
unknown classes is leaked into training of pre-trained networks, and to isolate the effect
of representation learning as opposed to fine-tuning a closed-set network. All networks
are trained using SGD with momentum of 0.9 and an initial learning rate of 0.1 with
cosine annealing schedule (Loshchilov & Hutter} [2017)). For large-scale experiments we train

2We use the same class allocations as |Chen et al| (2021) for comparability.
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Figure 2: OSR performance for RL+PP combinations across datasets in AUOSCR, (top)
and OOSA (bottom). The color of each heatmap is normalized independently and centered
at the CE4+MSP baseline, where blue shows an increase and red a decrease. Baseline RL
and PP methods are surrounded by a black border. Results for CIFAR+N are averaged
over b trials.

ResNet50 for 120 epochs with batch size of 32 and weight decay of le-4. The small-scale
experiments are trained with the CNN architecture from Neal et al.|(2018);/Chen et al.| (2021)
for 100 epochs with batch size of 128 and weight decay of be-4. We perform early stopping
according to validation confidence (Palechor et al [2023). For CE and ARPL, we compute
validation confidence on known classes only since including them yielded unreliable results.
Where possible, we rely on recommended hyperparameters for each RL and PP method.
Others are optimized on the validation set via grid search. Optimal hyperparameters and
their ranges are reported in Section[A-4]in the appendix. All experiments are run on NVIDIA
RTX GeForce 2080 Ti.

5 RESULTS AND DISCUSSION

5.1 OSR REPRESENTATION LEARNING WITH AUXILIARY DATA AT LARGE SCALE

The first set of experiments aims at answering if RL with auxiliary data can improve OSR
performance on large-scale datasets, despite recent studies that suggest otherwise (Wang
. We compare the performance of RL methods with auxiliary data (AddON,
OE, and OS) to methods that only utilize known classes (CE and ARPL) across datasets.
Here, we ignore interaction effects and consider MSP postprocessing or aggregate results over
all postprocessors. The AUOSCR and OOSA for every RL+PP combination are shown in
Figure [2] other metrics are reported in Tables [3] and [ in the Appendix.

Small-scale Outperformace with Auxiliary Data. On CIFAR+N, all RL methods
utilizing auxiliary data dramatically outperform those that do not by up to 5.9 percentage
points in AUOSCR with MSP. State-of-the-art ARPL achieves consistent but negligible
improvements over CE for any given PP. With known classes being held constant between
CIFAR+10 and CIFAR+50, we can see that additional auxiliary data consistently improves
AUOSCR by over 2 percentage points, even when evaluated on more unknown classes.
For all RL methods, the variations across PP are comparably small, suggesting that RL
contributes more toward overall performance than PP on small-scale benchmarks. Only
MaxLogits provides substantial gains, up to 2.2 percentage points of AUOSCR over MSP
for CE.

Performance Degradation at Large Scale. On large-scale ImageNet protocols, this
outperformance from using auxiliary data vanishes, even underperforming the CE+MSP
baseline on Ps for most postprocessors, supporting [Wang et al.| (2025). We isolate the
effect of RL by computing the RL contribution delta to the CE baseline as a function of
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the postprocessor PP. Similarly, we separate improvements of PP by computing the PP
contribution delta to the MSP baseline:

ARL od(PP) = “method+PP” — “CE+PP”

APP 1 od(RL) = “CE+method” — “RL+MSP” ®)
method

This allows us to decompose the gains from any OSR system RL+PP to the CE4+MSP
baseline, e.g., on P; we have “ARPL+GHOST” — “CE4+MSP” = ARL, (MSP) +
APE 0s1(ARPL) ~ 0.8 + 1.5 = 2.3. Figure [3| depicts the RL contribution deltas across
datasets as distribution over all postprocessors. The RL contribution delta for MM methods
OE and OS degrades and turns negative with increasing similarity of known and auxiliary
classes on P, and P, destroying performance across most PP. [Wang et al.| (2025) attribute
their findings of poor OE performance to low correlation between auxiliary and unknown
classes or high correlation between known and unknown classes. However, AddON does not
experience this performance degradation with identical data, demonstrating that it cannot
be explained by the data distributions alone but by the interplay between data distributions
and training objective. Strong OOD detection performance with MSP (see AUROC in Fig-
ure and high correlation between AUOSCR and closed-set accuracy (cf. Figure in
Appendix) suggest that the performance degradation can partially be explained by a loss
of discriminative information for known classes.

The Risk of Magnitude-Manipulation: Magnitude Collapse. To understand why
MM methods degrade in accuracy, AUOSCR, and OOSA, we analyze the feature magnitude
distributions of known, auxiliary, and unknown samples (Figure E[) With highly similar
auxiliary samples, MM methods inadvertently draw features of known classes towards the
origin of the feature space, resulting in magnitude collapse and effectively overlapping them
with auxiliary, unknown, and other known samples. We analyze the relationship between
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feature magnitude and class-wise CCR (Rabinowitz et al.,[2025) at the operational threshold,
CCR.(6%), see Section and perform linear regressionf’| against the class-wise average
feature magnitude for each known class ¢ (Figure in the appendix). On CIFAR+N, only
MM methods exhibit a statistically significant positive correlation between average feature
magnitude and CCR..(6*), with large effect sizes of R? up to 80%. On the easily separable Py,
most models exhibit significant positive correlations, but often with meaningless effect sizes
below 10%. However, with increasing similarity in known and auxiliary samples on P, and
P3, MM methods learn much stronger and statistically significant relationships, resulting
in practically significant effect sizes of R? up to 38% on P3 (Figure [5). This shows how
magnitude-manipulation increases the dependency between feature magnitude and CCR by
systematically reducing performance on a few classes in a trade-off to maintain overall high
binary ID-vs-OOD separation via MSP (see AUROC Figure[l1d) and increasing the minimal
class-wise CCR.

In contrast, AddON counteracts magnitude collapse by learning sufficiently large feature
magnitudes to achieve high SoftMax probabilities for the additional output node during
training. Since AddON is trained via CE loss, it forces probabilities corresponding to any
output node (known or auxiliary) to be close to 1 for samples of the respective class. For-
mally, we want the trained network to be able to achieve y. > 1 — € for any sample and
output class ¢ € {1,...,C}, for some small € > 0. This holds if (but not only if) the differ-
ence between the maximal two logits surpasses a lower bound [, which is equivalent to (see

Section |A.2):
log(17¢) +log(C — 1)

l
lelly > = —vy.>1—¢, (4
’ 5zc/|\¢|\2 [Welly cos(ae) — maxe 2o {[|We |, cos(ae) }

where 9§, /llell, is the difference logits divided by their feature magnitude. Note that [ is
constant for any dataset, loss and €, and 9, /llell, 18 generally small because weight mag-
nitudes are minimized through weight decay and the cosines are bounded between -1 and
1. This provides upward pressure on feature magnitudes during and requires deep feature
magnitudes to exceed a lower bound on the feature magnitude for any sample given a trained
classifier. In other words, learning sufficiently large feature magnitudes is a sufficient con-
dition to achieve high confidence for some class given trained classifier weights W. This
training incentive prevents magnitude collapse in AddON and ensures that AddON learns
feature magnitude distributions similar to CE and ARPL. Surprisingly, despite training on
auxiliary data, AddON learns lower feature magnitudes for auxiliary and unknown classes
while maintaining sufficiently large feature magnitudes to achieve high confidences for known
and auxiliary classes. The difference in feature magnitudes between known, auxiliary, and
unknown classes is analogous to CE but slightly more pronounced, esp. on Ps. (Figure.
Furthermore, this provides theoretical support for combinations of AddON with MA PP
methods, because assumptions as well as high level magnitude distribution statistics are
similar to CE, for which those PP methods were designed.

Qualitative Analysis on Class Similarity. We replicate and qualitatively investigate
the feature collapse for MM methods at small scale by curating a hard EMNIST benchmark

3 All regression assumptions are reasonably met.
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Figure 6: Interaction effects of RL and PP components as correlation between RL contri-
bution ARY and PP contribution APP for AUOSCR (top row) and OOSA (bottom row).

that includes auxiliary classes which are highly similar to known classes 1 and to a lesser
extent 9 or even indistinguishable without context (see Sectionfor details). Experiments
are identical to CIFAR+N but networks are trained for 50 epochs. Observable from Figure 4]
(right), for MM methods, the feature representations of digits 1 and 9 are pulled towards
the origin. We compute CCR.(6*) per RL method for classes 1, 9, and rest (all other known
classes). For OS and OE combined, these classes experience CCR.(6*) in the range [58.1%,
88.7%] (digit 1) and [93.6%, 97.2%] (digit 9), while other digits achieve over 96.7% CCR,
showing dramatically imbalanced detection performance on known classes. See Table[f]in the
appendix for all RL methods. Non-MM methods have CCR.(6*) evenly distributed between
83.8% and 98% over all postprocessors. This clearly demonstrates how high similarity
of known and auxiliary classes in conjunction with magnitude-manipulation irreparably
damages the feature representation, and ruin the consecutive classification of known classes
with similar appearance.

5.2 INTERACTION EFFECTS

The second set of experiments aims to answer whether the optimal PP method should
be informed by the RL method, and whether magnitude-manipulating RL can enhance the
performance of magnitude-aware PP methods. We analyze the relationship and interactions
between RL and PP contributions by plotting the RL contribution delta ARL against the
PP contribution delta APP for each RL+PP combination in Figure @

Independent Contributions for RL without Auxiliary Data. Across all evalua-
tion metrics and protocols, all experiments reveal that PP contributions are almost per-
fectly independent from RL contributions, when trained without auxiliary data, e.g., the
PP contribution of GHOST is independent of the used RL method: AEY op(CE) ~
APV osT(ARPL) = 1.5. This suggests that OSR system components have separate re-
sponsibilities when trained on known classes only, with RL addressing the ID classification
and PP addressing the open-set capabilitiesE This allows to combine any RL with any
PP method, with magnitude-aware PP consistently favored (Wang et al., 2025)), to achieve
additive performance gains without the risk of undesirable interactions.

Interaction Effects for RL with Auxiliary Data. RL methods that train with auxil-
iary data only show interaction effects with high similarity of known and auxiliary classes.
Interaction effects are characterized by a correlation between AR and APP in Figure @ On
ImageNet benchmarks, RL methods with auxiliary data show interaction effects, with par-
ticularly MA PP methods strongly amplifying positive and negative gains from RL. While
magnitude-aware PP consistently outperform others for non-MM methods, they can amplify
performance degradation for MM methods due to their sensitivity to the magnitude collapse.
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Figure 7: OSR performance on P, with Swin-B backbone, showing accuracy, AUROC, and
AUOSCR metrics. Similar interaction effects between RL and PP methods are observed as
with ResNet-50 backbones. Note that ARPL training was unstable and did not converge
properly.

In particular, PostMax, and to a lesser extent GHOST, demonstrate both the highest gains
for non-MM methods (8.3 percentage points or +11.7% for AddON), as well as the most
severe performance degradation for MM methods (-1.2 percentage points or -1.5% for OS)
on P3. These interaction effects are even clearer when evaluated via OOSA, which equally
weights known and unknown test samples.

Generally speaking, MM methods across all protocols did not benefit significantly from
PP methods. Furthermore, we can see a clear trend, where small-scale experiments are
primarily driven by RL via inclusion of auxiliary data and favor the simpler PP methods
like MaxLogits, while large-scale experiments benefit from combining RL and PP, mainly
through joining AddON with MA PP methods like PostMax or GHOST.

Robustness to Backbone Architecture. To ensure that our findings are not specific
to the chosen ResNet-50 architecture, we replicate the experiments on P», which balances
difficulty and computational cost, using a Swin-B transformer . Training
is conducted with original hyperparameters, except for a reduced learning rate of 0.0002
to account for a lower batch size of 90. While overall performance is lower compared to
ResNet-50 backbones, likely due to the increased data requirement of a transformer, we
observe similar interaction effects between RL and PP methods as with ResNet-50 (Figurelﬂ)7
where accuracy and AUROC are slightly lower for MM methods while AddON performed
best with MA PP methods across all metrics. Notably, ARPL training was unstable and
did not converge with an a priori selected seed and identical training parameters, resulting
in significantly lower performance.

6 CONCLUSION

In this study, we adopt a two-stage framework for systematically disentangling Representa-
tion Learning (RL) and PostProcessing (PP) methods for Open-Set Recognition (OSR). We
show that RL without auziliary data leads to independent OSR, components, that can be
freely combined to achieve additive performance gains, whereas RL with auxiliary data can
experience interaction effects with PP methods that can improve or degrade OSR. perfor-
mance. We explain this performance degradation and the key role of feature magnitude in
interaction effects via the magnitude collapse mechanism, revealing several insights. First,
the similarity between auxiliary and known classes is a key factor for performance degrada-
tion at scale, a scenario that does not occur on small-scale benchmarks. Second, magnitude
collapse creates an undesirable linear dependency between feature magnitude and class-
wise detection performance on the in-distribution and OSR task, leading to systematically
imbalanced detection across known classes. However, we demonstrate via the simple yet
effective baseline AddON that auxiliary data can improve OSR performance at any scale
and regardless of auxiliary data selection. Our findings invalidate current best practices in
OSR, demonstrating that small-scale evaluations with auxiliary data do not translate to
large-scale performance. RL methods considered state-of-the-art based on CIFAR bench-
marks, such as Outlier Exposure, can suffer from significant performance degradation below
baselines when deployed at scale.

10
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7 ETHICS STATEMENT

We do not foresee any ethical concerns with our work.

8 REPRODUCIBILITY STATEMENT

We provide a detailed description of our experimental setup in Section [] and in-depth
descriptions of the used methods and applied evaluation metrics in the appendix, alongside
extensive results. We will open-source our modular code package used for this work upon
publication and provide all scripts and parameter settings to facilitate reproducibility of all
plots and tables provided within this work. The code package also allows for expansion to
further research, e. g., the inclusion of additional datasets and RL or PP methods.
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A APPENDIX

A.1 METHOD SELECTION AND BACKGROUND

An overall view of the two-stage processing pipeline, including the nomenclature as used in
this section, is given in Figure Below, we provide details for the RL and PP methods
that we investigate in this work as well as a discussion on method selection to answer our
research questions.

Representation Learning (RL) Postprocessing (PP)

w0 0 Class
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Figure 8: Two-stage processing framework for OSR. An image is presented to the backbone
network F', which extracts deep features ¢ that are then processed with a linear layer W
to logits z, and further with SoftMax to probabilities y. Solid lines indicate (potentially)
learnable connections, while dashed lines highlight non-learnable connections. The postpro-
cessor takes the deep features, logits, or probabilities as input and outputs a class prediction
k* and a score v*.

A.1.1 REPRESENTATION LEARNING METHODS

Methods Selection Our model selection for RL aims to cover a representative set of
methods that reflect the current state of the art in OSR as well as OOD detection while
simultaneously adhering to a set of constraints given by our rigorous experimental setup to
ensure that we can adequately test our research questions and hypotheses. We selected RL
methods that satisfy the following criteria:

1. We require methods that utilize no or only natural auxiliary samples as this is at
the core of our analysis.

2. Our modularization of OSR methods requires classification-based (discriminative)
RL methods since most PP methods rely on output logits or probabilities to perform
classification.

3. RL methods must be able to be trained from scratch on the ImageNet protocols
without pre-training in order to prevent information leakage from training on classes
that our protocols declare as unknown.

Following, we discuss each method and its formalization in the two-stage framework in more
detail. For a systematic overview including method characteristics, see Table

CE Our baseline (Hendrycks & Gimpel, [2017) training-based approach is the categorical
Cross-Entropy (CE) loss trained only on samples from K known classes. For an input sample
(Xn,Tn) € K and an arbitrary backbone network we obtain the deep features o, € R for
some deep feature dimension D. These features are then passed through a fully-connected
logit layer W € RE*P with C = K output logits z, = W, € RcEl The logits are then

4Note that we can express the logit for class ¢ through the angle of the feature to the class
center W as zn,c = Wen = ||@nl|||We|| cos(a), where W, is the c-th row vector of W and « is the
angle between ¢,, and W.
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turned into probabilities y,, € R through SoftMax activation:

z

eFne
Yne= - (5)
Z eznyc/
=1
Based on these, the CE loss is computed as:
Jog = —E(x,,,7)ex 108 Yn, 7, - (6)

OE We include Outlier Exposure (OE) (Hendrycks et all |2019)) as state-of-the-art RL
method from the OOD detection literature that utilize auxiliary data (Wang et al., 2025)).
OE adds a regularization term to @ that maximizes the entropy for auxiliary samples by
computing the CE loss between the uniform distribution and the SoftMax confidences of

the network:
c

Jok = Jck — Aok Ex, 7 )eA éz log Y, c (7)
c=1

OE essentially is equivalent to the Entropic Open-Set (EOS) loss Jros proposed by Dhamija
et al.| (2018)), with the only exception that OE provides a more intuitive way to weight the
impact of auxiliary samples to the training (with Aog = 0.5 for computer vision tasks),
whereas EOS does so via class weighting (set to 1). From Dhamija et al.| (2018) we know
that EOS and, by extension, OE implicitly manipulate feature magnitudes, by encouraging
the network to learn small feature magnitudes for auxiliary samples and large magnitudes
for known samples.

OS We employ the ObjectoSphere (OS) loss (Dhamija et al.l [2018) as an extension to the
EOS loss which explicitly manipulates feature magnitudes. It learns vanishing vectors for
auxiliary samples and large magnitudes for known samples by using the following regular-
ization term combined with the EOS loss:

max(0,€ — [|pn]13) if x, €K
— A
Jos = Jeos + Aos {can% if x, € A ®)

where the hyperparameter £ is the lower bound for the feature magnitude of known samples.

AddON We use an RL method for OSR and OOD methods that utilize auxiliary data,
which we term Additional Output Node (AddON). AddON uses the known data K as in
CE, and auxiliary data A to train an additional output node z, x+1, so that we have a total
of C' = K + 1 outputs, creating a default class for all auxiliary and unknown samples. It is
trained with the standard CE loss @ with label 7 = K 4 1 for auxiliary samples. While
this is a common approach in object detection models (Dhamija et al., [2020), which collect
a lot of background samples, it is only rarely applied directly to OSR problems (Dhamija
et all [2018; [Palechor et all, [2023) or as component of more complex architectures such as
PROSER or G-OpenMax (Zhou et al.l 2021} |Ge et al., 2017). Depending on the context,
AddON is known as Background Class (Dhamija et al., 20205 2018; [Palechor et al.l [2023)),
K +1 (Kong & Ramanan| 2021)), or Dummy Classifier (Zhou et al. [2021)).

ARPL Finally, we include the Adversarial Reciprocal Point Learning (ARPL) loss (Chen
et all 2021)), which currently is the state of the art for OSRE| and trained solely on the
known data K. Unlike most training-based methods, ARPL does not learn a prototype for
a class ¢, but a reciprocal point p. € R” in deep feature space, i. e., a point that represents
everything but class c. The ARPL objective maximizes the distance between the reciprocal
point and the features of samples from the respective class by computing logits z, via
distance measures between deep features ¢,, and the reciprocal points p.:

1
Zne = lln = Pellz = @npe 9)

®Note that we do not use ARPL4CS with the generator for confusing samples (CS), since it is
prohibitively expensive to train at large scale (Vaze et al., [2022]).
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which are used via SoftMax (b)) in the CE loss @ To constrain open space, the distance
between deep features and reciprocal points is bound by a learnable constant p via the
regularization term with weight Aarpr, = 0.1:

1
JarpL = JcE + ARPLE x,, 7, ) ek Max (0, BH@n —p-lI5 - P> (10)

A.1.2 POSTPROCESSING METHODS

Method Selection We selected PP methods to cover a split between representative
magnitude-aware and magnitude-unaware methods. Furthermore, we aim to cover both
trainable and non-trainable methods to include methods that can specifically adjust to dif-
ferently learned representations. Following, we discuss each method and its formalization
in the two-stage framework in more detail. For a systematic overview including method
characteristics, see Table [[D]

MSP The Maximum Softmax Probability (MSP) (Hendrycks & Gimpell [2017)) is the de-
facto default PP method for OSR and OOD detection and serves as our baseline. Class
predictions and OOD scores are computed from probabilities for known classes as

ky = arg maxyp, . and Tn = Yn k- (11)
1<e<K

MSP is not magnitude-aware since SoftMax normalizes the logits and only considers
their relative differences.

MaxLogits MaxLogits (Hendrycks et all, [2022) or MLS (Vaze et all [2022)) exploit the
magnitude of the logits z,, which contains useful information for OSR and OOD detection
that is lost during softmax. MLS is magnitude-aware since logit magnitude is linked to
feature magnitude (Wang et al., |2025|)E Class predictions and OOD scores are computed
from known logits as:

k; = argmax zp, . and Tn = Znkx - (12)
1<e<K

OpenMax OpenMax (Bendale & Boult], 2016]) uses deep features ¢,,, referred to as Acti-
vation Vectors (AVs), to statistically model probabilities for an additional output node for
the unknown class. During training, for each known class ¢, the Mean Activation Vector
(MAV) p. is computed by averaging the deep features ,, extracted from all correctly clas-
sified training samples. Then, the cosine distances of the MAV . to all the AVs ¢, . of the
same class are computed. Here, we make use of a twist implemented in the VAST package
of the original authorsﬂ instead of using the original distances to model the distribution,
we multiply the cosine distances by a factor s, which allows modeling more compact class
representations:

dp.c = k(1 — cos(pn, tie)) (13)
Then, a per-class Weibull distribution W, is fitted to the top A largest cosine distances d,, ..
For features ¢,, of a test sample, the class-wise Weibull distributions estimate a logit 2,, k1
for the unknown class, as well as modifying the logits for the top « classes, giving newly
estimated logits 2,, .. From these, the output ¢, . is computecﬂp via softmax ([5) and the
output P,, is computed as:

ky = argmax 2, . and Vo = U kor - (14)
1<c<K "

OpenMax is not magnitude-aware since the cosine distance ignores the feature magnitude.

5Please note that for computing OOD scores v;;, we purposefully ignore the unknown class
(Yn, k41 OF zn k+1) if it exists. A low probability for the unknown class y, x+1 does not indicate
a high probability for any of the known classes. On the other hand, due to Softmax requiring
probabilities sum up to 1, a large probability y,, k1 enforces low probabilities for all known classes.
Therefore, y, x+1 does not add any new information.

"https://github.com/Vastlab/vast
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PostMax Postnormalization of Maxima (PostMax) (Cruz et al., 2024) uses Extreme Value
Theory (EVT) by applying a Generalized Pareto Distribution (GPD) to maximum logits
post-normalized by the feature magnitude. Based on their findings that unknown samples
have larger feature magnitude than known samples on large-scale data, they normalize logits
by dividing them by their deep feature magnitude to further increase the separation between
known and unknown samples:

Zyn

lenll2+17

A

Zy

(15)

This makes it an explicitly magnitude-aware method. We modify the original implementa-
tion to shift the magnitudes by 1 to avoid issues with magnitudes ||¢|2 < 1 which reverse
the desired effect of normalizationﬂ This occurs consistently for features from magnitude-
manipulating RL methods, but not for others. The class-agnostic GPD ¥, , ¢ is fitted only
on the maximum normalized logits of correctly classified known training samples, which is
then used to compute a probability of the sample being known. Following |Cruz et al.| (2024),
the scores P,, are computed as:

*

ky = argmax 2, . and v \P#’J,g(én,k;) . (16)
1<e<K '

GHOST The Gaussian Hypothesis Open-Set Technique (GHOST) (Rabinowitz et al.
models each class in deep feature space as a multivariate Gaussian distribution with
the intuition that features ¢ from known and unknown samples deviate by feature magnitude
even if the angular direction overlaps, making it magnitude-aware. During training, GHOST
fits a Gaussian distribution (g, o.) for each known class ¢ based on the deep features ¢,
of correctly classified training samples. During inference, GHOST first computes a class
prediction from the logits:

k; = argmax zp ., (17)
1<e<K

as well as z-score s, for each sample x,, and corresponding Gaussian (jgx,0x=). This is
then used to compute the score v;; by dividing the original logit:

D

— " 2o Lk

Sp = 2 : |807L7d Mkn7d|7 ’Y* — "JCn . (18)
o Okx.d Sn

A.2 DERIVATION FOR FEATURE MAGNITUDE INCENTIVE

Here, we provide the derivation for the training incentive of CE with C = K (or AddON
with C' = K + 1) to learn “sufficiently large” feature magnitudes:

il > —— = Jog(5%) + log(C — 1 eyl
° (5z¢/\|’pH2 ||Wc||2COS(ac) - Inaxti’;ﬂ:{HWC’HzCOS(O‘U)} ‘ ,

For some small € > 0 and class ¢ € {1,...,C}, we want the trained network to be able to
achieve the maximum probability over all classes y. > 1 — ¢ for any sample. Note that we

8We also tried different normalization techniques, including to multiply with the norm, which
seems more reasonable for MM RL methods. However, the detrimental effects of MM RL with
PostMax for large-scale evaluations was present in any case. This modification does not harm
performance with non-MM RL methods.
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have Ye = MaXee(1,...,c} Y/

eZe Zc

>1l—€ — = -
Ye € Zc/ ez eZe + Z(;’;éc ez

= e > (1—e)(e + ) e*)

e
>1—c¢

c'#c
= e% > % + Z % + ee® —¢ Z e?e!
' #c ' #c
1—e¢
ezc > Z ./
= — ¢
c'#c
1—c¢ 5
<~ z.>log| —— | +log Ze
N N , c'#c
=8

By binding the LogSumExp log (ZC,# ezc/) above, we get a sufficient condition d,, > I
such that d,, > = y. > 1 —e. We have the upper bound of the LogSumExp function:

log g e | <log(C —1)+ max z
c#c!
c'#c

z, > +maxze + log(C — 1) = z. > 8 + log Z e”e’
cre c'F#e
From this we get:
z. > [+ max ze +log(C—1) < z.— max z > B +log(C—1)=:1

———
::620

This provides a lower bound on the difference between the maximal two logits. Using
footnote @ we have

<~ ||80||2HW6H2 COS(O‘@,W(:) - I(I}if{H%@HQHWc’HQCOS(O‘%WC/)} >1

<= [llly (IWelly cos(arg w.) = max [|We |, cos(apw, ) }) > 1

=0z /1ol

l
0,

ze/llell;

= llelly >
where 6Zc/|\tp|\2 > 0.

A.3 EMNIST BENCHMARK

We perform qualitative small-scale experiments on the EMINIST protocol
to replicate settings of high similarity between known and auxiliary classes at small
scale. This benchmark contains a wide spectrum of clearly attributable visual similarities
between known and auxiliary classes because the samples do not contain any image back-
ground. It consists of EMNIST MNIST split as knowns, the first half of EMNIST letters
(a-m) as auxiliary data, and the second half (n-z) as unknownsﬂ While most digits (known)

?Contrary to (Dhamija et al) 2018) we use EMNIST MNIST instead of the original MNIST
because the preprocessing, while similar, is not exact (Cohen et al., [2017). EMNIST MNIST and
letters contain noticeably softer and thicker digits than MNIST. In order to focus on semantic shift
and not introduce easily learnable covariate shift through softness and sharpness, we use EMNIST
MNIST.
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Figure 9: 2D feature visualizations of EMNIST experiments with different RL methods.

CIFAR+N ImageNet
Method Parameter CIFAR+10 CIFARA+50 P P Py
0S8 Aos 1073/1072/1072/1072/10~2 107%/1072/1072/1073/1072 10~% 10=% 103
£ 10/10/10/10/10 20/10/10/10/10 30 20 10
CE+OpenMax @ 3/3/3/1/3 3/2/3/3/3 5 5 2
p 1.5/1.5/2.3/2/1.7 1.7/1.5/2.3/1.5/2.3 23 23 2
A 100/100/250,/10,/100 250/100/500/100/100 750 750 100
ARPL+OpenMax ey 3/3/1/3/3 3/2/3/3/3 5 3 2
p 1.5/2.3/2/1.5/1.7 2/1.5/1.5/1.5/1.5 23 23 23
A 100/250/10/100/100 100/100,/100/100/100 750 750 10
AddON+OpenMax e 1/1/1/1/1 1/1/1/1/1 5 3 5
K 1.5/2/2.3/1.7/2 1.7/2/1.5/1.5/2.3 1.7 23 2
A 100/250,/100,/100/100 250,/500/250,/250/250 750 750 100
OE+OpenMax o 1/2/1/3/3 3/3/1/2/1 3 2 2
p 1.5/1.7/2/2/2 2.3/1.5/1.5/2/1.5 17 15 23
A 10/100/10/100/250 100/100/10/100/10 10 10 10
0S+OpenMax o 1/1/3/2/2 3/2/3/3/2 0 5 10
p 1.5/2.3/1.5/1.5/2.3 2.3/1.7/2/2.3/2 23 23 2
A 10/10/10/10/10 100/10/10/100/10 10 10 10

Table 2: Optimized hyperparameter values for each method and protocol. CIFAR+N results
are reported for each trial separately.

do not contain any visually similar letters, digits 1 and 9 contain auxiliary classes (“i”, “1”
Wee? W "

and “g”, “q” respectively) that are visually very similar or indistinguishable without context
depending on handwriting and capitalization.

To visualize how magnitude collapse and known class classification interacts, we repeat the
EMNIST experiments with a 2D bottleneck deep feature layer, following
. These can illustrate how different RL methods structure the feature space and
how this affects PP methods, however, the low dimensionality limits not only the repre-
sentational capacity but also changes the geometry of the feature space and the behavior,
so extrapolation to high dimensional feature spaces is limited. Experiments are otherwise
identical to those in Section [l

A.4 HYPERPARAMETER OPTIMIZATION

For most methods, we rely on the hyperparameters as provided by the according papers.
Few methods however do not provide any, namely: A\ and £ for ObjectoSphere and A, k, and
a for OpenMax, where we perform hyperparameter optimization on the validation set using
grid search, based on the maximum AUOSCR. For OpenMax the parameter optimization
is performed for each upstream RL method separately to ensure optimal settings, since the
feature representations differ significantly. The considered hyperparameter ranges are as
follows:

e OS: e {1074,1073,1072}, ¢ € {10, 20, 30}
« OpenMax: a € {1,2,3,5,10}, x € {1.5,1.7,2,2.3}, A € {10, 50, 100, 250, 500, 750, 1000}

The best hyperparameter values for each method and protocol are summarized in Table [2]
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A.5 PERFORMANCE METRICS

CCRQ@FPR CCRQ@FPR computes the CCR at a specific FPRs ( €
{1074,1072,1072,107%,10°} and provides insights into the classification performance
at various tolerances for errors caused by missed rejections. It is therefore highly relevant
for practical applications where a fixed threshold 6 is required, which is typically selected
based on a certain FPR. It is computed as:

CCR(0;) if 6. exists

1
0 otherwise (19)

CCRQFPR = {

where 6 = FPR™!(C) is the threshold that yields FPR = ¢. CCRQ@FPR for ¢ = 10°
resembles closed-set accuracy.

AUOSCR The OSCR curve (Dhamija et al.||2018) simultaneously evaluates classification
of known samples via CCR as well as the rejection of unknown samples via FPR over all
possible thresholds. It is computed by varying the threshold 6 from the smallest to the largest
possible score value, and plotting the CCR over the FPR, i. e., computing CCR@QFPR at
all thresholds. The Area Under the OSCR curve (AUOSCR) is computed by integrating
the OSCR curve from ¢ =0 to { = 1. Since the OSCR curve is a monotonically increasing
function, the AUOSCR is maximized at and bounded by the closed-set accuracy.

OOSA The Operational Open-set Accuracy (OOSA) (Cruz et al) [2024) evaluates the
open-set performance at a fixed operational threshold 6*, determined on the validation
set, and provides insights into the performance of a method in a real-world setting. It is
defined as a trade-off between the CCR and the Unknown Rejection Rate (URR), URR(6) =
1 —FPR(0):

OOSA = accrCCR(6%) + (1 — accr)URR(6%) (20)
where 6* is the operational threshold that maximizes this equation on the validation set.
We follow |Cruz et al.| (2024)) and set agcr = % to equally weight known and
unknown test samples.

AUROC In order to evaluate the OOD detection capabilities independently of the ID
classification task, we use the Area Under the Receiver Operating Characteristics (AUROC)
curve (Hendrycks & Gimpel, |2017; [Hendrycks et al.l[2019; |Chen et al., |2021; [Hendrycks et al.|
2022; [Vaze et al., 2022 [Yang et al [2024; Wang et al., 2025). AUROC concerns how well
known and unknown classes can be distinguished by computing FPR , as well as the True
Positive Rate (TPR):

‘{(Xn,Tn) ELAY: > 9}’
Nk

TPR(0) = (21)
The ROC is computed by varying 6, and the area under that curve is determined.

A.6 ADDITIONAL FIGURES AND TABLES

The main paper contained only a subset of evaluation metrics and visualizatrions. Here we
provide remaining figures and tables containing the exact results.
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Table 3: Small-scale evaluation.
RL and PP methods on the small-scale protocols.

This table includes a performance overview of all
Metrics include CCRQ( for ( €

1072,107%,1079,10%, 102, AUOSCR, AUROC, and OOSA. All scores are reported in per-
cent and CCR@100 is the closed-set accuracy. Performance metrics are reported as mean
+ standard deviation over 5 randomized trials. The best performing combination for each
protocol and metric w.r.t mean score is highlighted in bold. The best performing PP method
for each RL method and metric w.r.t mean score is highlighted in italic.

Dataset RL

PP

CCR@0.01

CCR@0.1

CCRaQ1

CCRQ@10

CCR@100

AUOSCR

AUROC

OOSA

CIFAR+10 CE

MSP
OpenMax
MaxLogits
PostMax
GHOST

43.0 £ 13.2
43.8 £ 12.6
46.5 £ 9.2
33.6 £ 15.3
32+37

40.5 + 13.3
44.1 £ 123
46.5 £ 9.2
33.6 £ 15.3
2.6 £3.5

63.8 £5.1
67.8 £ 3.0
72.5 £ 2.7
64.6 = 4.3
28.1 +£10.2

84.5 + 24
86.1 £ 1.9
89.8 & 1.7
85.3 £ 1.6
87.7+1.3

97.0 £ 0.7
97.0 £ 0.7
97.0 £ 0.7
97.0 £ 0.7
97.0 £ 0.7

92.2 + 1.1
92.9 £ 0.9
9.4+ 0.9
92.8 + 0.7
93.0 + 0.7

93.7 £ 0.8
94.5 £ 0.5
96.6 = 0.5
94.7 £ 0.3
95.1 £ 0.3

87.8 £ 1.1
88.4 + 1.0
90.5 + 1.0
88.3 £ 1.0
90.0 £ 1.1

ARPL

MSP
OpenMax
MaxLogits
PostMax
GHOST

41.0 £ 11.8
44.4 + 9.4
48.8+ 124
36.3 + 15.0
3.6 + 4.3

128 £ 9.6
44.6 £ 9.2
48.8 + 12.4
36.3 + 15.0
3.6 +£4.3

65.3 £ 1.7
68.2 £ 1.5
73.2+ 2.9
64.3 £ 2.4
233 £7.1

84.6 £ 2.1
86.4 £ 1.6
90.2 £ 1.2
85.5 £ 1.4
88.1 £ 1.4

97.1 + 0.7
97.1 £ 0.7
97.1 £ 0.7
97.1+ 0.7
97.1 £ 0.7

924 + 1.1
93.0 + 0.9
94.5 % 0.8
93.0 £ 0.8
93.0 + 0.8

93.9 + 0.8
94.7 £ 0.5
96.8 £ 0.4
94.9 + 0.4
95.2 £ 0.4

879 £ 1.1
88.6 £ 0.9
90.7+ 1.0
88.7 £ 0.7
90.2 £ 1.0

AddON

MSP
OpenMax
MaxLogits
PostMax
GHOST

58.0 £ 18.2
61.8 £ 12.9
63.1 & 22.8
57.9 £ 19.8
34.8 £ 31.4

58.1 = 18.2
61.8 +£12.9
63.1 & 22.8
57.9 +19.8
34.8 £ 31.4

80.7 + 7.6
80.8 + 4.0
84.2 + 4.4
81.3 + 7.8
811+ 7.7

92.6 + 2.5
92.0 + 1.6
94.2 + 0.9
93.5 + 1.9
941 + 1.3

97.3 £ 0.7
97.4 + 0.7
97.3 £ 0.7
97.3 £ 0.7
97.3 £ 0.7

95.5 £ 0.9
954 + 0.7

96.2 + 0.4

95.8 + 0.6
96.0 + 0.5

97.9 + 1.4
97.3 £ 0.9
98.6 = 0.6
98.3 = 1.0
98.4 + 0.8

922+ 25
91.9 £ 1.2
93.7+ 0.7
93.0 £ 1.8

OE

MSP
OpenMax
MaxLogits
PostMax
GHOST

57.4 £17.4
58.2 £ 18.2
58.8 £ 19.5
52.3 £ 19.6
36.0 = 32.5

57.4 £ 17.3
58.2 £ 18.2
58.8 £ 19.5
52.3 £ 19.6
36.0 = 32.5

81.4 £ 6.1
81.5 £ 5.7
82.4+ 5.8
81.3 £ 6.2
81.7 £ 6.4

929 £ 1.8
93.2 £ 1.8
93.8+ 1.5
932 £ 1.5
93.8 & 1.5

97.1 £ 0.8
97.2 £ 0.7
97.1 £ 0.8
97.1 £ 0.8
97.1 £ 0.8

95.6 + 0.6
95.7+ 0.6
95.6 + 0.6
95.6 + 0.6
95.6 & 0.6

98.0 £ 1.0
98.0 0.9
98.2 + 0.9
98.1 £ 0.9
98.1 £ 1.0

oS

MSP
OpenMax
MaxLogits
PostMax
GHOST

65.5 + 14.8
65.0 + 17.7
65.2 + 19.4
44.0 £ 182
42.0 + 33.9

65.5 + 14.8
65.0 + 17.7
65.2 + 19.4
44.0 + 182
42,0 + 33.9

82.1 £ 6.5
81.9 £ 6.9
82.9+ 6.6
72.1 £10.2
78.8 £ 10.0

932 £2.0
93.3 £2.0
95.6 = 1.8
92.6 £ 1.8
93.5 £ 1.8

95.8 £ 0.8
95.8 £ 0.9
95.9+ 0.7
954+ 0.9
95.7 £ 0.8

98.0 £ 1.1
98.1 £ 1.1
98.3 £ 1.0
97.5 £ 1.0
98.1 +£ 1.2

92.7% 1.8
925 £ 1.1
92.6 + 2.0

CIFAR+50 CE

MSP
OpenMax
MaxLogits
PostMax
GHOST

229 + 0.0
247+ 7.2
204 £ 6.3
114+14
0.3 £0.2

31.9 £ 3.7
35.4 £ 5.3
38.0+ 6.5
242+ 6.8
1.4+£09

542 £ 3.9
58.4 £+ 3.4
61.1 % 2.8
51.8 £5.1
11.6 £ 4.2

794 + 1.6
81.8 + 1.3
84.8+ 1.0
79.5 + 1.2
80.8 + 0.7

90.4 + 0.7
91.2 + 0.6
92.5 + 0.4
90.7 + 0.4
90.0 + 0.3

91.6 + 0.6
92.7 £ 0.5
94.5+ 0.4
92.3 + 0.4
91.8 + 0.4

84.4 £ 0.7
85.5 + 0.8
86.0 £ 0.7
84.0 £ 0.9
85.5 4+ 0.6

ARPL

MSP
OpenMax
MaxLogits
PostMax
GHOST

30.0 = 0.0
23.3 £ 8.3
23.5 £ 12.8
10.3 £ 5.0
0.1+0.2

38.83+ 3.9
36.1 £ 8.2
36.6 = 6.6
23.1£72
1.2 +£09

55.3 + 5.3
58.5 + 5.0
62.1 + 4.7
51.8 + 4.0
12.0 £ 5.6

80.3 £ 1.6
821 £1.3
85.0+ 1.0
80.1 £ 1.3
81.3 £ 1.4

97.2 % 0.6
97.1 £ 0.5
972+ 0.6
97.2% 0.6
97.2+ 0.6

90.6 = 0.9
91.3 £ 0.8
92.7+ 0.6
90.9 & 0.6
90.2 + 0.6

91.8 £ 0.6
92.8 £ 0.5
947+ 0.4
925 + 0.4
92.0 £ 0.5

85.0 £ 0.9
852+ 1.2
86.4+ 0.8
84.9 £ 0.7
86.0 + 0.6

AddON

MSP
OpenMax
MaxLogits
PostMax
GHOST

18.9 + 12.6
40.4 + 6.7
38.9 + 6.6
41.9 + 176
5.5+ 5.3

65.4 £ 4.4
60.8 £ 6.4
60.2 + 6.9
60.5 + 4.2
36.1 + 14.8

83.8+ 2.9
79.3 £2.9
79.8 £ 2.3
81.8 £ 3.0
80.8 £ 2.7

93.8 £0.9
91.6 £ 1.2
93.0 £ 0.5
93.9+ 0.7
93.5 £ 0.6

97.7+ 0.7
97.4 £ 0.7
97.7 £ 0.7
97.7+ 0.7
971.7 £ 0.7

96.9 + 0.4
95.2 + 0.7
95.9 + 0.4
96.2 + 0.4
96.0 £ 0.5

98.4 + 0.5
96.9 = 0.4
97.8 £ 0.4
98.1 +£ 0.5
97.9 £ 0.4

93.6 £ 1.0
91.8 £ 1.0
92.3 £ 0.6
93.1 £ 0.8
92.8 £ 0.5

OE

MSP
OpenMax
MaxLogits
PostMax
GHOST

50.1 + 14.4
49.6 + 13.1
50.4 + 14.3
46.8 + 174
77 +52

66.7 + 7.6
67.8 + 6.7
67.1 £ 7.7
67.0 + 6.8
46.8 + 21.1

83.5 + 34
83.5 £ 3.5
83.7+ 3.7
83.2 £3.5
83.4 £+ 3.6

94.0 + 1.1
94.1 + 1.0
94.2+ 1.0
94.0 + 1.1
941 + 1.0

97.6 £ 0.4

97.7+ 0.5 96.4 + 0.3

97.6 £ 0.4
97.6 + 0.4
97.6 £ 0.4

96.2 + 0.3

96.2 £ 0.3
96.2 £ 0.3
96.2 + 0.3

98.2 + 0.6
98.2 +£ 0.5
98.3 £ 0.6
98.2 £ 0.6
98.2 + 0.6

93.4+ 1.0
93.6 + 0.9
93.6 £ 1.0
93.4 4+ 0.9
93.6 £ 0.9

oS

MSP
OpenMax
MaxLogits
PostMax
GHOST

51.2 £ 11.8
48.0 £ 11.8
51.6 + 11.9
35.9 £ 19.7
82£99

702 £ 8.2
70.1 £ 8.8
70.4 + 8.4
53.5 + 8.1
56.8 + 28.2

85.1 £ 2.5
85.1 £ 2.6
85.5 £ 2.6
782 £ 4.2
85.5 £ 3.0

94.0 + 1.1
94.0 & 1.1
94.1+ 1.0
92.7 + 1.4
941+ 1.1

97.4 +
97.4 +
97.4 +
97.4 +
97.4 +

0.
0.

0.
0.
0.

&

s

RS S

96.2 + 0.4
96.2 % 0.4
96.2 + 0.
95.6 + 0.6
96.2 % 0.4

98.3 £ 0.5
98.3 + 0.5
98.3 + 0.5
97.5 £ 0.6
98.3 + 0.6

93.9 + 0.8
93.8 4+ 0.8
93.9 +0.8
92.5 + 0.7
94.0 + 0.8
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Table 4: Large-scale evaluation. This table repeats the performance overview of Table [3|on
large-scale protocols. — indicates that at no threshold 6. for corresponding FPR ¢ could
be achieved.

Dataset RL PP CCR@0.01 CCR@0.1 CCR@1 CCR@10 CCR@100 AUOSCR AUROC OOSA
Py CE MSP 7.8 227 534 718 774 75.6 95.3  83.7
OpenMax 132 34.4 650  76.6 77.0 76.5 98.7 862
MaxLogits 6.1 31.3 641  76.6 774 76.8 985  86.3
PostMax  14.0 33.0 65.9  75.9 774 76.7 98.0  86.6
GHOST  18.8 4.9 14 710 774 7.1 99.1 815
ARPL MSP 10.6 27.2 548 725 78.2 76.4 95.6  83.6
OpenMax 8.0 44.6 66.1  77.0 77.3 76.8 98.8  86.1
MaxLogits ~ 27.8 35.1 663 774 78.2 777 98.7 868
PostMax  20.6 415 656  76.8 78.2 775 98.1 865
GHOST 211 48.9 128 119 78.2 77.9 99.2 877
AddON MSP 11.6 32.2 622 774 78.4 775 97.9  79.0
OpenMax 162 415 655 778 78.3 7.7 98.7 874
MaxLogits ~ 17.1 39.4 726 78.1 78.4 78.1 99.3  88.7
PostMax 145 35.9 673 770 78.4 777 984  86.9
GHOST  19.7 51.8 4.8  78.1 78.4 78.2  99.5 89.0
OE MSP 5.6 27.9 62.7 776 78.1 774 982 843
OpenMax 5.6 28.2 624 774 78.0 77.3 98.2  83.7
MaxLogits ~ 16.1 367 731 T 78.1 7.8 99.0 843
PostMax 8.8 27.2 63.3 771 78.1 77.4 98.2 842
GHOST 1211 48.0 14 T8 78.1 7.8 99.1  86.4
08 MSP 18.0 34.2 649 778 78.3 7.7 986 834
OpenMax ~ 22.5 33.4 64.6 776 78.0 77.4 98.6 843
MaxLogits ~ 16.4 46.0 739 78.0 78.8 78.0 99.3 864
PostMax  21.4 41.4 707 78.0 78.3 77.9 99.1  87.3
GHOST 19.5 54.5  75.9  78.0 78.3 78.0 99.4 839
Py CE MSP 218 505 74.0 64.9 80.1 764
OpenMax 2.5 3.6 245 515 73.7 66.3 834 771
MaxLogits 7.6 8.4 250 589 7.0 68.5 87.8 788
PostMax 6.0 74 50.5  59.9 7.0 63.8 882 794
GHOST 8.1 0.5 303 61.8 74.0 69.1 88.9  80.0
ARPL MSP — — 244 499 75.4 66.1 80.7 763
OpenMax 2.6 41 295 52.2 73.8 66.7 83.6 772
MaxLogits 3.1 3.7 269 585 75.4 69.2 87.5 788
PostMax 5.7 13.6 8.5  59.8 75.4 69.8 88.3 802
GHOST 45 133 345  60.1 75.4 7.1 88.9 80.5
AddON MSP — — 258  55.8 76.9 68.5 845 652
OpenMax 3.5 5.9 336 59.1 76.4 70.5 87.2 788
MaxLogits 2.3 43 330 625 76.9 715 89.2  79.7
PostMax 8.3 1.0 345 634 76.9 71.8 89.4  79.2
GHOST  10.1 106 40.1  64.4 76.9 72.2  90.8 790
OE MSP — 5.0 209 548 74.3 66.9 845 716
OpenMax 3.3 215 55.1 4.5 67.1 84.6 722
MaxLogits 2.5 2.7 231 55.7 74.3 66.9 85.1  71.0
PostMax 2.3 8.3 245 578 74.3 67.9 85.9 13.8
GHOST 4.7 108 21.8  57.9 74.3 67.6 85.9 715
08 MSP 3.1 4.4 251 565 74.9 67.8 85.1 712
OpenMax 4.2 4.7 257 57.1 7.9 67.9 85.3 711
MaxLogits 6.3 6.5 261 58.1 7.9 68.0 85.9 712
PostMax 5.8 9.3 279  58.6 74.9 68.4 85.8  75.9
GHOST 7.5 10.0 323 585 7.9 68.1 86.0 702
Py CE MSP — — 214  64.9 85.7 78.1 86.4 782
OpenMax ~ — - 209 646 85.3 77.9 86.4  78.0
MaxLogits 1.2 3.2 146 626 85.7 77.9 87.7 781
PostMax 0.1 1.9 177 66.3 85.7 78.9 88.7  79.1
GHOST 0.4 2.3 201 65.9 85.7 78.8 88.6  78.7
ARPL MSP 6.8 215 645 86.5 78.4 86.0  78.0
OpenMax ~ — 6.8 217 64.4 86.3 78.3 86.0  78.0
MaxLogits 0.5 25 158 620 86.5 78.4 87.6 779
PostMax 14 4.8 174 65.4 86.5 79.8 88.6  79.0
GHOST 2.3 3.4 195 650 86.5 79.2 88.5 786
AddON MSP — 3.7 245  65.6 85.6 77.8 86.5  70.7
OpenMax 225  65.6 85.6 785 87.0 771
MaxLogits 1.0 3.2 191 66.0 85.6 78.7 885 775
PostMax 2.1 4.2 235  69.1 85.6 79.7  89.5 719.4
GHOST 05 1.7 254 688 85.6 79.6 89.4 785
OE MSP — — 218 66.9 84.6 7.7 875 726
OpenMax ~ — — 217 66.7 84.7 77.8 875 728
MaxLogits 1.1 2.7 177 65.0 84.6 771 872 727
PostMax . 15 127 6L5 84.6 77.0 86.8  75.5
GHOST 0.1 2.6 22.6  67.3 84.6 7.8 87.8 738
0S MSP — — 26.6 674 84.9 78.1 878 752
OpenMax 261 67.2 84.8 78.0 87.8  75.4
MaxLogits 0.8 2.7 201 66.9 84.9 77.6 87.6 74T
PostMax — 14 114 606 84.9 76.9 86.3 714
GHOST 1.1 4.8 252 685 84.9 78.8 88.4 749
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Figure 10: Feature magnitude distributions of known, auxiliary, and unknown classes on

all protocols and for all RL methods, complete version of Figure[d] OE and OS experience
feature magnitude collapse on P; and EMNIST, pulling their feature magnitudes towards
zero. For EMNIST, we show distributions for known classes 1 and 9 (black and grey) that
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are highly similar to auxiliary classes, and other known classes (blue) separately.
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Table 5: EMNIST ranges of class-wise CCR, at the operational threshold, CCR.(6*), for
classes 1, 9, and rest (all other known classes) per RL method.

Model Class 1 Class 9 Knowns Except 1 and 9
min max min max min max
CIFAR+10 CIFAR+50 ImageNet P, ImageNet P, ImageNet P3
ce | 93.0| {o0.4[0o1.2 92.5 90.7 90.0| {756[765 768 76.7 e T {781[77.9 77.9 1789
P
G areL {90.6[91.3 92.7 91.0 902 {76.4[76.8 {66.1[66.7 LA EREEY {78.4[78.3 78.4
S addon 5 BEEE] 705 | 715 718 72.2 [RRAKY RECIRER
< oe fEE {66.9]67.1 66.9 67.9 67.6 {77.7|77.8 i/l
os B {67.8]67.9 68.0 68.4 681 {78.1|78.0 77.6
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(d) Accuracy

Figure 11: Theas heatmaps show the absolute values for evaluations of @ AUOSCR, @
OO0OSA, AUROC, and @ Accuracy. Each heatmap is normalized independently and
centered around CE+MSP, where blue shows an increase and red a decrease. Baseline RL
and PP methods are surrounded by a black border. Results for CIFAR+N are averaged

over 5 trials.
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Figure 12: This figure shows the interaction effects of RL and PP components as correla-
tion between RL performance contribution ARY and PP contribution AFF in terms of
AUOSCR, [(b)] OOSA, [(c)] AUROC, and [(d)] Accuracy. Results for CIFAR+N are averaged

over 5 trials.
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Figure 13: Linear regressions of class-wise CCR at the operational threshold, CCR.(6*),
against class-wise average feature magnitude for known classes. Regression is performed
for each RL method independently and over all postprocessors. For CIFAR+N results are
reported for the first trial only.
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