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ABSTRACT

Combinatorial generalisation — the ability to understand and produce novel com-
binations of familiar elements — is a core capacity of human intelligence that
current AI systems struggle with. Recently, it has been suggested that learning
disentangled representations may help address this problem. It is claimed that
such representations should be able to capture the compositional structure of the
world which can then be combined to support combinatorial generalisation. In this
study, we systematically tested how the degree of disentanglement affects various
forms of generalisation, including two forms of combinatorial generalisation that
varied in difficulty. We trained three classes of variational autoencoders (VAEs)
on two datasets on an unsupervised task by excluding combinations of generative
factors during training. At test time we ask the models to reconstruct the missing
combinations in order to measure generalisation performance. Irrespective of the
degree of disentanglement, we found that the models supported only weak com-
binatorial generalisation. We obtained the same outcome when we directly input
perfectly disentangled representations as the latents, and when we tested a model
on a more complex task that explicitly required independent generative factors to
be controlled. While learning disentangled representations does improve inter-
pretability and sample efficiency in some downstream tasks, our results suggest
that they are not sufficient for supporting more difficult forms of generalisation.

1 INTRODUCTION

Generalisation to unseen data has been a key challenge for neural networks since the early days of
connectionism, with considerable debate about whether these models can emulate the kinds of be-
haviours that are present in humans (McClelland et al., 1986; Fodor & Pylyshyn, 1988; Smolensky,
1987; 1988; Fodor & McLaughlin, 1990). While the modern successes of Deep Learning do indeed
point to impressive gains in this regard, human level generalisation still remains elusive (Lake & Ba-
roni, 2018; Marcus, 2018). One explanation for this is that humans encode stimuli in a compositional
manner, with a small set of independent and more primitive features (e.g., separate representations
of size, position, line orientation, etc.) being used to build more complex representation (e.g., a
square of a given size and position). The meaning of the more complex representation comes from
the meaning of it’s parts. Critically, compositional representations afford the ability to recombine
primitives in novel ways: if a person has learnt to recognize squares and circles in context where all
squares are blue and all circles are red, they can nevertheless also recognise red squares, even though
they have never seen these in the training data. This ability to perform combinatorial generalisa-
tion based on compositional representations is thought to be a hallmark of human level intelligence
(Fodor & Pylyshyn, 1988) (See McClelland et al. (1986) for a diverging opinion).

Recently it has been proposed that generalisation in neural networks can be improved by extracting
disentangled representations (Higgins et al., 2017) from data using (variational) generative models
(Kingma & Welling, 2013; Rezende et al., 2014). In this view, disentangled representations capture
the compositional structure of the world (Higgins et al., 2018a; Duan et al., 2020), separating the
generative factors present in the stimuli into separate components of the internal representation
(Higgins et al., 2017; Burgess et al., 2018). It has been argued that these representations allow
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downstream models to perform better due to the structured nature of the representations (Higgins
et al., 2017; 2018b) and to share information across related tasks (Bengio et al., 2014). Here we
are interested in the question of whether networks can support combinatorial generalisation and
extrapolation by exploiting these disentangled representations.

In this study we systematically tested whether and how disentangled representations support three
forms of generalisation: two forms of combinatorial generalisation that varied in difficulty as well
as extrapolation, as detailed below. We explored this issue by assessing how well models could
render images when we varied (1) the image datasets (dSprites and 3DShape), (2) the models used
to reconstruct these images (β-VAEs and FactorVAEs with different disentanglement pressures, and
decoder models in which we dropped the encoders and directly input perfectly disentangled latents),
and (3) the tasks that varied in their combinatorial requirements (image reconstruction vs. image
transformation). Across all conditions we found that models only supported the simplest versions
of combinatorial generalisation and the degree of disentanglement had no impact on the degree of
generalisation. These findings suggest that models with entangled and disentangled representations
are both generalising on the basis of overall similarity of the trained and test images (interpolation),
and that combinatorial generalisation requires more than learning disentangled representations.

1.1 PREVIOUS WORK

Recent work on learning disentangled representations in unsupervised generative models has indeed
shown some promise in improving the performance of downstream tasks (Higgins et al., 2018b; van
Steenkiste et al., 2019) but this benefit is mainly related to sample efficiency rather than general-
isation. Indeed, we are only aware of two studies that have considered the importance of learned
disentanglement for combinatorial generalisation and they have used different network architectures
and have reached opposite conclusions. Bowers et al. (2016) showed that a recurrent model of short-
term memory tested on lists of words that required some degree of combinatorial generalisation (re-
calling a sequence of words when one or more of words at test were novel) only succeeded when
it had learned highly selective (disentangled) representations ("grandmother cell" units for letters).
By contrast, Chaabouni et al. (2020) found that models with disentangled representations do not
confer significant improvements in generalisation over entangled ones in a language modeling set-
ting, with both entangled and disentangled representations supporting combinatorial generalisation
as long as the training set was rich enough. At the same time, they found that languages generated
through compositional representations were easier to learn, suggesting this as a pressure to learn
disentangled representations.

A number of recent papers have reported that VAEs can support some degree of combinatorial gen-
eralisation, but there is no clear understanding of whether and how disentangled representations
played any role in supporting this performance. Esmaeili et al. (2019) showed that a model trained
on the MNIST dataset could reconstruct images even when some particular combination of factors
were removed during training, such as a thick number 7 or a narrow 0. The authors also showed that
the model had learned disentangled representations and concluded that the disentangled representa-
tions played a role in the successful performance. However, the authors did not vary the degree of
disentanglement in their models and, accordingly, it is possible that a VAE that learned entangled
representations would do just as well. Similarly, Higgins et al. (2018c) have highlighted how VAEs
that learn disentangled representations can support some forms of combinatorial generalisation when
generating images from text. For example, their model could render a room with white walls, pink
floor and blue ceiling even though it was never shown that combination in the training set. This
is an impressive form of combinatorial generalisation but, as we show below, truly compositional
representations should be able to support several other forms of combinatorial generalisations that
were not tested in this study. Moreover, it is not clear what role disentanglement played in this suc-
cessful instance of generalisation. Finally, Zhao et al. (2018) assessed VAE performance on a range
of combinatorial generalisation tasks that varied in difficulty, and found that the model performed
well in the simplest settings but struggled in more difficult ones. But again, they did not consider
whether learning disentangled representations was relevant to generalisation performance.

Another work that has significant relation to ours is Locatello et al. (2019), who examine how hard
it is to learn disentangled representations and their relation to sampling efficiency for downstream
tasks. We are interested in a related, but different question: even if a model learns a disentangled
representation in an intermediate layer, does this enable models to achieve combinatorial generali-
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Figure 1: Testing generalisation in image reconstruction. (a) An illustration of different tests
of combinatorial generalisation for the three-dimensional case (i.e., three generative factors). The
blank cells represent combinations that the model is trained on. Coloured cells represent novel
test combinations that probe different forms of generalisation: Recombination-to-Element (red),
Recombination-to-Range (green) and Extrapolation (blue) – see main text for details. (b) Each row
shows an example of training and test stimuli for testing a form of generalisation. In the top row,
training set excludes ellipses in the bottom-right corner at less than 120◦ though they are present at
the bottom-right corner at other rotations. In the middle row, training set excludes squares in the
right side of the image though other shapes and rotations are present at this location and squares are
seen at all other combinations of rotations and translations. In the bottom row, training set excludes
all shapes on the right side of the image.

sation? So while Locatello et al. (2019) train their models on complete datasets to investigate the
degree of disentanglement and sampling efficiency, we systematically exclude generative factors
from training in order to test for combinatorial generalisation (see Methods and Results).

2 METHODS AND RESULTS

We assessed combinatorial generalisation on two different datasets. The dSprites image dataset
(Matthey et al., 2017) contains 2D images in black and white that vary along five generative
factors: shape, scale, orientation, position-x and position-y and focuses on ma-
nipulations of single objects. The 3D Shapes dataset (Burgess & Kim, 2018) contains 3D im-
ages in colour that vary along six generative factors: floor-hue, wall-hue, object-hue,
object-shape, object-scale, object-orientation. In contrast to dSprites, the images
are more realistic, which has been shown to aid reconstruction performance (Locatello et al., 2019).
To test combinatorial generalisation, we systematically excluded some combinations of these gener-
ative factors from the training data and tested reconstruction on these unseen values. Test cases can
be divided into three broad categories based on the number of combinations excluded from training.

• Recombination-to-Element (red squares in Figure 1): The model has never been trained on
one combination of all of the generative factors. In dSprites, an example of this case would
be excluding the combination: [shape=ellipse, scale=1, orientation< 120◦, position-x>0.5, position-

y>0.5] from the training set – i.e. the model has never seen a large ellipse at < 120◦ in the
bottom-right corner, though it has seen all other combinations.

• Recombination-to-Range (green squares in Figure 1): The model has never been trained on all
combinations of some of the factors (i.e. a subset of generative factors). For example, in the 3D
Shapes dataset, all combinations with [object-hue=1, shape=sphere] have been left out of the training
set – i.e. none of the training images contain a blue sphere. This condition is more complex than
Recombination-to-Element as an entire range of combinations [floor-hue=0. . . 1, wall-hue=0. . . 1, ob

ject-hue=1, shape=sphere, scale=0. . . 1, orientation=0. . . 1] have been left out (here bold text indicates
the range of values excluded). When the number of generative factors is larger than three,
“Recombination-to-Range” is, in fact, a set of conditions that vary in difficulty, depending upon
how many generative factors have been excluded. Another example would be excluding all com-
binations where [floor-hue=1, wall-hue=1, object-hue=1, shape=1, scale=1]. Here a smaller range of
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combinations [floor-hue=1, wall-hue=1, object-hue=1, shape=1, scale=1, orientation=0. . . 1] have been
excluded.

• Extrapolation (blue squares in Figure 1): This is the most challenging form of generalisation
where models are tested on values of generative factors that are beyond the range of values ob-
served in the training dataset. For example, in the dSprites dataset, all combinations where [posi

tion-x> 0.5] have never been seen.

Each of these conditions is interesting for different reasons. A model that learns compositional
representations should be able to combine observed values of shape (ellipses), translation
(bottom-right) and rotation (0◦ to 120◦) to generalise to all unseen combination of factors.
The simplest case is the recombination-to-element condition in which all combinations but one have
been trained, but a model that learns entangled representations might also succeed based on its
training on highly similar patterns (generalisation by interpolation). A more challenging case is
recombination-to-range condition given that more combinations have been excluded, making gen-
eralisation by similarity (interpolation) more difficult. The final condition is not a form of combi-
natorial generalisation as the model cannot combine observed values of generative factors to render
images. Indeed compositional representations may be inadequate for this form of generalisation.

2.1 IMAGE RECONSTRUCTION WITH DSPRITES DATASET

In the dSprites dataset, for testing the Recombination-to-element case, we split each range of values
of a generative factor into three bins, so that we had 3 × 3 × 3 × 3 × 3 such combinations of
bins for all five generative factors. We then remove one of these 243 combinations during training,
namely those that satisfied [shape=ellipsis, position-x >= 0.6, , position-y >= 0.6, 120◦ <= rotation

<= 240◦, scale < 0.6]. In other words ellipses in the bottom right corner with those given rotations,
which is a relatively small number of combinations that are all very similar to each other.

For the Recombination-to-range case, we tested three different variants. First, we excluded all com-
binations where [shape=square, position-x>0.5]. The model sees other shapes at those positions during
training and it sees squares on the left-hand side of the screen. Thus the models experiences both
generative factor values independently and has to recombine them to produce a novel image at test
time. In the second case, we excluded all combinations where [shape=square, scale>0.5]. In the third
case, we excluded all combinations where [shape=square, rotation> 90◦]. We observed very similar
results for all three cases and below we report the results for the first variant.

Finally, for the Extrapolation case, we excluded all combinations of generative factors where [po

sition-x > x]. We chose a set of different values for x: x ∈ 0.16, 0.25, 0.50, 0.75, where x is
normalised in the range [0, 1] (results shown in Figure 2 for x = 0.50). At test time the model
needed to reconstruct images where translation along the x-axis, x, was greater than the cutoff
value.

We tested three classes of models on all three types of generalisation: standard Variational Au-
toencoder (VAEs, Kingma & Welling (2013); Rezende et al. (2014)), β-VAE (Higgins et al., 2017;
Burgess et al., 2018) with β = 8 and β = 12, FactorVAE (Kim & Mnih, 2019) with γ = 20, γ = 50
and γ = 100. The architectures are the ones found in Higgins et al. (2017), Burgess et al. (2018)
and Kim & Mnih (2019) (Details in the Appendix). We used a batch size of 64 and a learning rate
of 5e− 4 for the Adam optimizer (Kingma & Ba, 2017). In each case, we simulated three seeds and
we report results for runs where we obtained largest disentanglement.

As shown by Locatello et al. (2019), none of the models trained end-to-end in an unsupervised man-
ner produce perfectly disentangled representations. Since we were interested in studying the effect
of disentanglement on generalisation, we compared our results with a model where we removed
the encoder and directly gave disentangled latents as inputs to the decoder. We call this model the
ground-truth decoder (GT Decoder from here on). This decoder uses the same MLP architecture as
the one used in Higgins et al. (2017). We tested deeper decoders with convolutions and batch norm
as well, but found no benefit or a decrease in performance.

We measured the level of disentanglement using the framework introduced in Eastwood & Williams
(2018). The procedure consists of using the latent representations generated for each image to
predict the true generative factors using a regression model (in our case, Lasso regression; see Ap-
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Figure 2: Image reconstruction and disentanglement for the dSprites dataset (a) Top row shows
examples of input images and the four rows below show reconstructions by four different models.
Three pairs of columns show reconstructions in training and test conditions. Left) Recombination-
to-Element condition where the models did not see [shape = ellipse, scale = 1, orientation < 120◦, po

sition-x > 0.5, position-y > 0.5], Middle) Recombination-to-Range condition where models did not
see [shape = square, position-x > 0.5], Right) Extrapolation condition where models did not see [posi

tion-x > 0.5] (b) Visualisation of disentanglement. In each panel, columns show latent variables and
rows show the generative factors. The size of the square represents the relative importance of the
latent variable for predicting the generative factor. Sparse matrices indicate higher disentanglement
(Eastwood & Williams, 2018). Each disentanglement matrix corresponds to the model on that row
in (a) in the Reconstruction-to-Range condition. The visualisation of the entire set of models and all
conditions is shown in Appendix B

pendix A). The level of disentanglement is quantified by their ‘Overall disentanglement metric’,
which we call D-score here.

Figure 2 shows examples of model reconstructions for each of the conditions which help assess the
reconstruction success qualitatively (more examples are shown in Appendix C). A more quantitative
assessment of the models can be made by examining the negative-log-likelihood of reconstructions
for different conditions, plotted in Figure 3. The amount of disentanglement achieved by the models
trained end-to-end varied over a broad range and was a function of model architecture and the hyper-
parameter (β and γ) values. In general, reconstruction accuracy was better for smaller values of β
both during training and testing. This has been observed before and is a known issue encountered
when increasing the value of β parameter (Hoffman & Johnson, 2016). We found that models were
able to perform the Recombination-to-Element generalisation but failed in the Recombination-to-
Range and Extrapolation cases. In these cases, models either showed really poor reconstruction of
the critical element or substituted one of the excluded combination with a combination that had been
observed during training (see reconstructions for test cases in Figure 2(a)). Moreover, the amount
of generalisation did not depend on the degree of disentanglement. Indeed, the GT Decoder using
perfectly disentangled representations was no better than the end-to-end models. Even though this
model achieved a lower NLL score, examining the image reconstructions showed that it failed to
reconstruct the essential combination excluded from the training data (see Appendix B).

The Recombination-to-Range condition shows another interesting qualitative difference between the
entangled and disentangled models. All models failed to generalise, but in different ways. Entangled
models tended to put a blob in the correct location, which allows them to minimise loss in pixel space
over a large set of test examples. In contrast, the models with higher level of disentanglement fell
back to the most similar shape (in pixel space) that they had seen at that location.
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Figure 3: Disentanglement vs reconstruction NLL. The relation between the level of disentan-
glement and the performance of the model. Performance of the training data is plotted along with
performance in the test (generalisation) data. Disentanglement does not provide any help in perfor-
mance for the end-to-end models. The ground truth decoder (GTD) is less affected, yet it is still the
case that it fails to generalize (see Figure 2 and Figure 4).

Finally, the Recombination-to-Element condition was solved by all the models, regardless of disen-
tanglement score. In fact, the entangled models tended to achieve better reconstructions as evidenced
by the disentangled models with β=12 which had a hard time reconstructing ellipses at small scales
and tended to just produce a circle instead.

The second panel in Figure 2 shows the coefficients computed by the disentanglement metric for
the Reconstruction-to-Range condition. The size of each square denotes the relative importance of
a latent (column) in predicting the corresponding generative factor (row). The higher the disentan-
glement, the sparser the matrices. An examination of these matrices revealed that different models
achieved a large range of disentanglement though none of the end-to-end models achieved perfect
disentanglement.

2.2 IMAGE RECONSTRUCTION WITH 3D SHAPES DATASET

The procedure for testing on the 3D Shapes dataset parallels the dSprites dataset above.
The 3D Shapes dataset has six generative factors: floor-hue, wall-hue, object-hue,
object-shape, object-scale, object-orientation. For the Recombination-to-Element
condition, we excluded one combination from training: [floor-hue > 0.5, wall-hue > 0.5, object-hue

> 0.5, object-shape=cylinder, object-scale=1, object-orientation=0]. For the Recombination-to-Range
condition, we excluded all combinations where [object-hue >= 0.5 (cyan), object-shape = oblong] and
trained all other combinations. This means that the models saw several combinations where
object-hue was >= 0.5 and where object-shape was oblong but never the combination to-
gether. For the Extrapolation condition, we excluded all combinations where [floor-hue >= 0.5].

We trained the same set of six end-to-end models as above as well as the GT Decoder. All end-
to-end models were trained for 65 epochs (around 500000 iterations as in the original articles),
while the GT Decoder was trained for 1000 epochs. Reconstructions for the training set are shown
in Appendix C and clearly show that the models were able to learn the task. The results for the
test conditions are shown in Figure 3 (bottom row) and some examples of typical reconstructions
are shown in Figure 4. As it was the case with the dSprites dataset, we observed that the level of
disentanglement varied across models, with VAE showing a low D-score and Factor-VAE showing
a high Dscore. We also tested the perfectly disentangled model where a decoder learns to construct
images from disentangled latents.

All models managed to reconstruct the held-out combination in the Recombination-to-element con-
dition. However, none of the models succeeded in correctly reconstructing the held-out combi-
nations in the Recombination-to-range or Extrapolation conditions. In both cases, we observed a
large reconstruction error either due to poor overall reconstruction (Extrapolation case) or because
the critical combination, [object-hue, object-shape] was replaced with a combination observed during
training. And again, we did not see any correlation between disentanglement and the extent of com-
binatorial generalisation. Even though the perfectly disentangled model had a lower NLL score (see
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Figure 4: Image reconstructions and disentanglement for the Shapes3D dataset. We use the
same layout as in Figure 2. a) Reconstruction examples for each of the three generalisation condi-
tions. For the first condition, the model has not seen magenta floors with purple cylinders, yet it is
able to reconstruct them properly. For the second condition, it has not seen magenta oblong shapes,
yet it has seen it in other colors and it has seen magenta on other shapes. Finally, the in the third
condition magenta floors have never been seen during training. b) Example Hinton diagrams of the
coefficients used to compute disentanglement. Diagram in each row corresponds to the model in the
same row in (a). Sparse matrices are better and the perfect one (up to permutation) is shown at the
bottom.

Figure 3, bottom row), like other models it failed to reconstruct the critical [object-hue, object-shape]

combination that was left out in the training data (see example images of reconstruction in Figure 4
and Appendix C).

2.3 IMAGE COMPOSITION EXPERIMENTS

The limited combinatorial generalisation in the experiments above could be because of the limita-
tions of the task rather than the models or their internal representations. Even though the models
learned disentangled representations to some extent, or were provided perfectly disentangled repre-
sentations, it could be that the simple reconstruction task does not provide enough impetus for the
decoder to learn how to combine these disentangled representations to enable generalisation. There-
fore, in the final set of experiments we designed a variation of the standard unsupervised task that
requires combining generative factors in order to solve the task using the dSprites dataset.

This new task is illustrated in Figure 5(a). The input consists of two images and an action. The
goal of the task is to take the first (reference) image and modify it so that it matches the second
(transform) image along the dimension specified by the action. This action is coded using a one-
hot vector. This design is based on the question answering task in Santoro et al. (2017) and the
compositional one in Higgins et al. (2018c). We produced training and test sets for each condition
by sampling reference-transform pairs along with an action uniformly from the generative factors.
We ensured that this sampling respected the experiment restriction, so that the transformed image is
not outside the current set.

The standard VAE is inadequate to solve this task. Therefore, we constructed a model with the
architecture shown in Figure 5(b). This model first applies an encoder to both images, obtaining
low-dimensional latent representations of each image. It then combines these latent representations
with the action to obtain a transformed internal representation. There are several ways in which the
input representations of the two images could be combined with the action. We tried three different
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Figure 5: Image composition task. (a) An example of the composition task. In this case, the shape
of the output must match the transform and the rest of the values must match the reference. (b)
The general architecture used, based on the standard VAE. The model uses the same encoder on
both images. Then a transform takes latent representation samples and combines them to produce a
transformed representation. This is used to produce the transformed image.

Table 1: Model performance in the second set of experiments.
Experiment D-score NLL (training) NLL (testing)

1 Extrapolation 0.82 31.73 19138.82
2 Recomb to range 0.71 50.10 346.10
3 Recomb to element 0.96 36.57 13.74

methods: (i) using a standard MLP, (ii) element-wise interpolation between the two representations,
with the interpolation coefficients determined by the action, and (iii) concatenating each input rep-
resentations with the actions and linearly combining the resultant vectors. We obtained qualitatively
similar results with all three methods, but found that the method (iii) gave the best results, providing
greatest accuracy of reconstruction as well as highest levels of disentanglement. Therefore, in the
rest of the manuscript we describe the results obtained using this method. Once this transformed
internal representation has been generated, it is decoded to obtain an output image. We use the same
encoding and decoding modules as the ones used by Burgess et al. (2018). The results for this model
are shown in Table 1. The model managed to solve the task. In doing so, it also comes to rely on
representations with a high level of disentanglement (see Figure 6(b)) even though the β parameter
is set to 1. Models with higher values could not solve the task altogether, presumably because the
constraint is too strong. However, as was the case in the previous experiment, models failed to solve
the more challenging generalisation tasks.

In Figure 5 we show some examples of the model’s behaviour and its internal representations.
The model failed in similar ways as the disentangled models in the previous experiment, confus-
ing shapes when presented with unseen combinations. Even the Recombination to element case
showed some failures (like in the example shown in Figure 5(a)) though the models were, in gen-
eral, successful in this condition, as can be inferred by comparing the negative log-likelihoods for
the training and test trials for this condition in Table 1.

3 DISCUSSION

It is frequently assumed that disentangled representations are implicitly compositional (Higgins
et al., 2018a;c). This raises the question as to whether disentangled representations support com-
binatorial generalisation, a key feature of compositional representations (Fodor & Pylyshyn, 1988).
However, we found no evidence for this. Indeed representations that varied from highly entangled
to perfectly disentangled were equally successful at recombination-to-element generalisation, and
both failed on recombination-to-range and extrapolation. This was the case even when we trained a
VAE on an explicitly combinatorial task that led models to learn highly disentangled representations
that were no better at generalisation.

Our findings might seem to contradict previous reports showing success in combinatorial general-
isation tasks. In Eslami et al. (2018), some success was reported when rendering novel 3D shapes

8



Published as a conference paper at ICLR 2021

Figure 6: Image composition generalisation results (a) Each column shows an example trial which
consists of a reference image, an action, a transform image and the transformed (output) image. We
show examples of both training and test trials. Each of the training trials results in the correct
(expected) transformed image, while each of the test trials shows a failure. (b) Visualisation of the
degree of disentanglement for three conditions by the model. The sparse representation reflects the
high level of disentanglement achieved by these models in this task.

with colours that had been previously seen on other shapes. And in Higgins et al. (2018c) it was
reported that using a disentangled representation allowed the model to recombine observed shapes
and colours in novel ways. However, it is not clear what sorts of combinatorial generalisation was
tested. For example, consider the SCAN model (Higgins et al., 2018c) that could render a room with
[white suitcase, blue walls, magenta floor], even though it was never shown this combination during
training (see Figure 4 in Higgins et al. (2018c)). But, unlike our training set, it is not clear what
exactly was excluded while training this model, and they may have been testing generalisation in a
condition similar to our Recombination-to-element condition. Our finding that generalisation was
limited to the Recombination-to-element condition suggests that models are simply generalising
on the basis of overall similarity (interpolation) rather than exploiting disentangled representations
in order to support a more powerful form of compositional generalisation described by Fodor &
Pylyshyn (1988).

This raises the question as to why disentangled representations are not more effective in supporting
combinatorial generalisation. One possibility is that disentangled representations are necessary but
not sufficient to support the principle of compositionality. On this view, a model must also include a
mechanism for binding these representations in a way that maintains their independence. This point
has previously been made in the context of connectionist representations by Hummel in Hummel
(2000). Another possibility is that a model may be able to perform combinatorial generalisation
without needing disentangled or indeed compositional representations if the training environment is
rich enough (Chaabouni et al., 2020; Hill et al., 2020; Lampinen & McClelland, 2020).

An important goal for future research is to develop networks that support the more difficult forms of
combinatorial generalisation and extrapolation. In fact there is already an active range of research
in this direction that include networks with specialized modules (Santoro et al., 2017), mechanisms
(Mitchell & Bowers, 2020; Hummel & Biederman, 1992), structured representations (Higgins et al.,
2018c; Watters et al., 2019), or learning objectives (Vankov & Bowers, 2020) that may show greater
success. It will be interesting to see how these and other approaches fare in the more difficult
generalisation settings we have identified here, and the role of disentanglement in any solutions.
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A MODELS AND TRAINING

For our experiments on the standard unsupervised task we used two different VAE architectures.
The first one is the same found in Higgins et al. (2017) and uses a 2-layer MLP as an encoder with
1200 units and ReLU non-linearity. The decoder is a 3-layer with the same number of units and the
Tanh non-linearity. The second architecture is the one found in Burgess et al. (2018) and consists
of a 3-layer CNN with 32×4×2×1 convolutions and max pooling, followed by a 2-layer MLP with
256 units in each layer. The decoder is defined to be the transpose of this architecture. ReLU
non-linearity where applied after each layer of the CNN and the MLP for both the encoder and the
decoder. Both models used a Gaussian stochastic layer with 10 units as in the original papers.

We also tested two variants of this last architecture, one found in Mathieu et al. (2019) which changes
the shape of the convolution and another with batch normalisation. Neither variant exhibited any
improvements to disentanglement or reconstruction on the full dSprite data and so were not included
in the rest of the experiments.

For the image composition task we used same as in Burgess et al. (2018) that we described above.
The latent transformation layer was parameterized as:

htransformed =Wrcat[zr; action] +Wtcat[zt; action]

where zr and zt are the samples from the stochastic layer for reference and transform image, cat
is the concatenation operation performed along the column dimension. The output is another 10-
dimensional vector with the transformed latent code.

Alternatively we also tried a 3 layer MLP with 100 hidden units, but saw no benefit in performance
and decreased disentanglement when trainined on the full dataset.

Training on the unsupervised tasks ran for 100 epochs for dSprites and 65 epochs for Shapes3D,
even though models converged before the end. The learning rate was fixed at 1e − 4 and the batch
size at 64. β values used were 1, 4, 8, 12, 16 on the full dSprite dataset. β = 4 and β = 16 where
not included in the rest of the experiments since the former offered very little disentanglement and
the latter very large reconstruction error. For the FactorVAE we used γ = 20, 50, 100 throughout.
In the composition task the models where trained for 100 epochs with β = 1. Using β higher than
1 interfered with the model’s ability to solve the task so they where not used.

For the ground-truth decoders (GT Decoder) we used the same MLP decoder of Higgins et al.
(2017) mentioned above. Using deeper decoders with convolutions with/without batch norm after
each layer was also tested, but did not provide significan benefits and also decreased the performance
on some of the conditions.

All the models where implemented in PyTorch (Paszke et al., 2019) and the experiments where
performed using the Ignite and Sacred frameworks (V. Fomin & Tejani, 2020; Klaus Greff et al.,
2017).

To measure disentanglement we used the framework proposed by Eastwood & Williams (2018) with
a slight modification. The approach consists of predicting each generative factor value, given the
latent representations of the training images using a non-linear model. In our case we used the
LassoCV regression found in the Sklearn library (Pedregosa et al., 2011) with an α coefficient of
0.01 and 5 cross-validation partitions. Deviating from the original proposal, we do not normalize
the inputs to the regression model since we found that this tends to give a lot of weight to dead units
(when measured by their KL divergence). This is likely due to the model “killing” these units during
training after they start with a high KL value, which might not completely erase the information they
carry about a given generative factor.

Working code for running these experiments and analyses can be downloaded at https://github.
com/mmrl/disent-and-gen.
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B EXTRA PLOTS FOR DSPRITES DATASET

Figure 7: Disentanglement scores for dSprites. The disentanglement analysis results for the
dSprites dataset. The scores for each of the metrics evaluated by the DCI framework: disentan-
glement (left), overall disentanglement (middle) and completeness (right) for each of the conditions.

Figure 8: Hinton diagrams for dSprites dataset. The matrices of coefficients computed by the
framework plotted as Hinton diagrams. These are used to obtain the quantitative scores in the panel
above. They offer a qualitative view of how the model is disentangling. On the left is how perfect
disentanglement looks in this framework.
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Figure 9: Reconstructions for the dSprites dataset. For each condition and model, these are some
reconstruction examples for both training and testing. There is general success and failure in the
Recombination to Element (top) and Extrapolation (bottom) conditions, respectively. For this last
condition, the models seem to reproduce the closest instance they have seen, which tranlated to
the middle of the image. For the Recombination to range (middle), the models tend to resort to
generating a blob at the right location, minimising their pixel-level error.

C EXTRA PLOTS FOR THE 3D SHAPES DATASET
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Figure 10: Disentanglement analysis for Shapes3D. The disentanglement analysis results for the
3D Shapes dataset. The scores for each of the metrics evaluated by the DCI framework (Eastwood &
Williams, 2018): disentanglement (left), overall disentanglement (middle) and completeness (right)
for each of the conditions.

Figure 11: Hinton diagrams for 3DShapes dataset. The matrices of coefficients computed by
the framework plotted as Hinton Diagrams. As discussed in the main text, these matrices offer
a qualitative view of how the model is disentangling. In general, sparse matrices indicate higher
disentanglement. It is clear from these diagrams that the degree of disentanglement varies over a
broad range for the tested models.
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Figure 12: Reconstructions for the Shapes3D dataset. For each condition and model, these are
some reconstruction examples for both training (left) and testing (right). In each case, the input
image is shown in the left-most column and each subsequent column shows reconstruction by a
different model. The test images always show a combination that was left out during training. All
training images are successfully reproduced. However, reconstruction for test images only succeeds
consistently for the Recombination-to-Element condition (top). All reconstructions fail in the Ex-
trapolation condition (bottom) while most of them fail for the Recombination-to-Range condition
(middle). There are occasional instances in Recombination-to-Range condition that seem to cor-
rectly reconstruct the input image. This seems to happen when the novel combination for color and
shape is closest to the ones the model has experienced during training. For example, models are
better when the oblong shape is paired with cyan (which is close to green, which it has seen) and
worse on magenta.
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