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Abstract
The performance of a model trained with noisy
labels is often improved by simply retraining the
model with its own predicted hard labels (i.e.,
1/0 labels). Yet, a detailed theoretical character-
ization of this phenomenon is lacking. In this
paper, we theoretically analyze retraining in a lin-
early separable binary classification setting with
randomly corrupted labels given to us and prove
that retraining can improve the population accu-
racy obtained by initially training with the given
(noisy) labels. To the best of our knowledge, this
is the first such theoretical result. Retraining finds
application in improving training with local label
differential privacy (DP), which involves training
with noisy labels. We empirically show that re-
training selectively on the samples for which the
predicted label matches the given label signifi-
cantly improves label DP training at no extra pri-
vacy cost; we call this consensus-based retraining.
For example, when training ResNet-18 on CIFAR-
100 with ϵ = 3 label DP, we obtain more than 6%
improvement in accuracy with consensus-based
retraining.

1 Introduction
We study the simple idea of retraining an already trained
model with its own predicted hard labels (i.e., 1/0 labels
and not the raw probabilities) when the given labels with
which the model is initially trained are noisy. This is a sim-
ple yet effective way to boost a model’s performance in the
presence of noisy labels. More formally, suppose we train a
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discriminative modelM (for a classification problem) on
a dataset of n samples and noisy label pairs {(xj , ŷj)}nj=1.
Let θ̂0 be the final learned weight/checkpoint ofM and let
ỹj =M(θ̂0,xj) be the current checkpoint’s predicted hard
label for sample xj . Now, we propose to retrainM with
the ỹj’s in one of the following two ways:

(i) Full retraining: RetrainM with {(xj , ỹj)}nj=1, i.e.,
retrainM with the predicted labels of all the samples.

(ii) Consensus-based retraining: Define Scons ∶= {j ∈
{1, . . . , n} ∣ ỹj = ŷj} to be the set of samples for
which the predicted label matches the given noisy la-
bel; we call this the consensus set. RetrainM with
{(xj , ỹj)}j∈Scons , i.e., retrainM with the predicted la-
bels of only the consensus set.

Intuitively, retraining with predicted hard labels can be bene-
ficial when the underlying classes are “well-separated”. In
such a case, the model can potentially correctly predict the
labels of many samples in the training set far away from the
decision boundary which were originally incorrectly labeled
and presented to it. As a result, the model’s accuracy (w.r.t.
the actual labels) on the training data can be significantly
higher than the accuracy of the noisy labels presented to
it. Hence, retraining with predicted labels can potentially
improve the model’s performance. This intuition is illus-
trated in Figure 1 where we consider a separable binary
classification problem with noisy labels. The exact details
are in Appendix A but importantly, Figures 1a and 1b corre-
spond to versions of this problem with “large” and “small”
separation, respectively. Please see the figure caption for de-
tailed discussion but in summary, Figure 1 shows us that the
success of retraining depends on the degree of separation
between the classes.

The motivation for consensus-based retraining is that match-
ing the predicted and given labels can potentially yield a
smaller but much more accurate subset compared to the
entire set; such a filtering effect can further improve the
model’s performance. As we show in Section 5 (see Tables
3 and 11), this intuition bears out in practice.

There are plenty of ideas revolving around training a model
with its own predictions, the two most common ones being
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Figure 1. Retraining Intuition. Samples to the right (respectively, left) of the separator (black vertical line in the middle) and colored
blue (respectively, red) have actual label +1 (respectively, −1). For both classes, the incorrectly labeled samples are marked by crosses
(×), whereas the correctly labeled samples are marked by dots (○) of the appropriate color. The amount of label noise and the number of
training samples are the same in 1a and 1b. The top and bottom plots show the joint scatter plot of the training samples with the (noisy)
labels given to us and the labels predicted by the model after training with the given labels, respectively. Notice that in 1a, the model
correctly predicts the labels of several samples that were given to it with the wrong label – especially, those that are far away from the
separator. This is not quite the case in 1b. This difference gets reflected in the performance on the test set after retraining. Specifically, in
1a, retraining increases the test accuracy to 97.67% from 89%. However, retraining yields no improvement in 1b. So the success of
retraining depends on the inter-class separation; in particular, retraining is beneficial when the classes are well-separated.

self-training (Scudder, 1965; Yarowsky, 1995; Lee et al.,
2013) and self-distillation (Furlanello et al., 2018; Mobahi
et al., 2020); we discuss these and important differences
from retraining in Section 2. However, from a theoretical
perspective, we are not aware of any work proving that
retraining a model with its predicted hard labels can be
beneficial in the presence of label noise in any setting. In
Section 4, we derive the first theoretical result (to our
knowledge) showing that full retraining with hard labels
improves model accuracy.

The primary reason for our interest in retraining is that it
turned out to be a simple yet effective way to improve train-
ing with local1 label differential privacy (DP) whose goal
is to safeguard the privacy of labels in a supervised ML
problem by injecting label noise (see Section 3 for a for-
mal definition). Label DP is used in scenarios where only
the labels are considered sensitive, e.g., advertising, recom-
mendation systems, etc. (Ghazi et al., 2021). Importantly,
retraining can be applied on top of any label DP training
algorithm at no extra privacy cost. Our main algorithmic
contribution is empirically demonstrating the efficacy of
consensus-based retraining in improving label DP training
(Section 5). Three things are worth clarifying here. First,
as a meta-idea, retraining is not particularly new; however,

1In this paper, we focus only on local label DP. So throughout the
paper, we will mostly omit the word “local” for conciseness.

its application – especially with consensus-based filtering
– as a light-weight way to improve label DP training at no
extra privacy cost is new to our knowledge. Second, we
are not advocating consensus-based retraining as a SOTA
general-purpose algorithm for learning with noisy labels.
Third, we do not view full retraining to be an algorithmic
contribution; we consider it for theoretical analysis and as a
baseline for consensus-based retraining.

Our main contributions can be summarized as follows:

(a) In Section 4, we consider a linearly separable binary
classification problem wherein the data (feature) dimension
is d, and we are given randomly flipped labels with the
label flipping probability being p < 1

2
independently for

each sample. Our main result is proving that full retraining
with the predicted hard labels improves the population ac-
curacy obtained by initially training with the given labels,
provided that p is close enough to 1

2
and the dataset size

n satisfies d
(1−2p)2 log

d
(1−2p)2 ≲ n ≲ d2

(1−2p)2 (“≲” means
bounded asymptotically, ignoring constant factor multiples);
see Remark 4.10 for details. In addition, our results show
that retraining becomes more beneficial as the amount of
label noise (i.e., p) increases or as the degree of separation
between the classes increases. To the best of our knowledge,
these are the first theoretical results quantifying the bene-
fits of retraining with predicted hard labels in the presence
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of label noise. The analysis of retraining is particularly
challenging because of the dependence of the predicted
labels on the entire training set and the non-uniform/sample-
dependent nature of label noise in the predicted labels; see
the discussion after the statement of Theorem 4.8.

(b) In Section 5, we show the promise of consensus-based
retraining (i.e., retraining on only those samples for which
the predicted label matches the given noisy label) as a simple
way to improve the performance of any label DP algorithm,
at no extra privacy cost. For e.g., when training ResNet-18
on CIFAR-100 with ϵ = 3 label DP, we obtain 6.4% im-
provement in accuracy with consensus-based retraining (see
Table 2). The corresponding improvement for a small BERT
model trained on AG News Subset (a news classification
dataset) with ϵ = 0.5 label DP is 11.7% (see Table 10).

2 Related Work
Self-training (ST). Retraining is similar in spirit to ST
(Scudder, 1965; Yarowsky, 1995; Lee et al., 2013; Sohn
et al., 2020) which is the process of progressively training
a model with its own predicted hard labels in the semi-
supervised setting. Our focus in this work is on the fully
supervised setting. This is different from ST (in the semi-
supervised setting) which typically selects samples based on
the model’s confidence and hence, we call our algorithmic
idea of interest retraining to distinguish it from ST. In fact,
we show that our consensus-based sample selection strategy
leads to better performance than confidence-based sample
selection in Appendix J. There is a vast body of work on ST
and related ideas; see Amini et al. (2022) for a survey. On
the theoretical side also, there are several papers showing
and quantifying different kinds of benefits of ST and related
ideas (Carmon et al., 2019; Raghunathan et al., 2020; Kumar
et al., 2020; Chen et al., 2020; Oymak & Gulcu, 2020; Wei
et al., 2020; Zhang et al., 2022). But none of these works
characterize the pros/cons of ST or any related algorithm
in the presence of noisy labels. In contrast, we show that
retraining can provably improve accuracy in the presence of
label noise in Section 4. Empirically, ST-based ideas have
been proposed to improve learning with noisy labels (Reed
et al., 2014; Tanaka et al., 2018; Han et al., 2019; Nguyen
et al., 2019; Li et al., 2020; Goel et al., 2022); but these
works do not have rigorous theory. In the context of theory
on label noise and model’s confidence, Zheng et al. (2020)
show that if the model’s predicted score for the observed
label is small, then the observed label is likely not equal to
the true label. Note that the results of Zheng et al. (2020)
pertain to the correctness of the observed labels, whereas
our results pertain to the correctness of the predicted labels.

Self-distillation (SD). Retraining is also similar in principle
to SD (Furlanello et al., 2018; Mobahi et al., 2020), where a
teacher model is first trained with provided hard labels and

then its predicted soft labels are used to train a student model
with the same architecture as the teacher. In contrast, we
use predicted hard labels in retraining. Also, SD is usually
employed with a temperature parameter (Hinton et al., 2015)
to force the teacher and student models to be different; we do
not have any such parameter in retraining. SD is known to
ameliorate learning in the presence of noisy labels (Li et al.,
2017) and this has been theoretically analyzed by Dong et al.
(2019); Das & Sanghavi (2023). Dong et al. (2019) propose
their own SD algorithm that uses dynamically updated soft
labels and provide some complicated conditions of when
their algorithm can learn the correct labels in the presence
of noisy labels. In contrast, we analyze retraining with fixed
hard labels. Das & Sanghavi (2023) analyze the standard
SD algorithm in the presence of noisy labels with fixed
soft labels but their analysis in the classification setting
requires some strong assumptions such as access to the
population, feature maps of all points in the same class
having the same inner product, etc. We do not require such
strong assumptions in this paper (in fact, we present sample
complexity bounds).

Label differential privacy (DP). Label DP (described in
detail in Section 3) is a relaxation of full-data DP wherein
the privacy of only the labels (and not the features) is safe-
guarded (Chaudhuri & Hsu, 2011; Beimel et al., 2013; Wang
& Xu, 2019; Ghazi et al., 2021; Malek Esmaeili et al., 2021;
Ghazi et al., 2022; Badanidiyuru Varadaraja et al., 2023).
In this work, we are not trying to propose a SOTA label
DP algorithm (with an ingenious noise-injection scheme);
instead, we advocate retraining as a simple post-processing
step that can be applied on top of any label DP algorithm
(regardless of the noise-injection scheme) to improve its
performance, at no extra privacy cost. Similar to our goal,
Tang et al. (2022) apply techniques from unsupervised and
semi-supervised learning to improve label DP training. In
particular, one of their steps involves keeping the given noisy
label of a sample only if it matches a pseudo-label generated
by unsupervised learning. This is similar in spirit to our
consensus-based retraining scheme but a crucial difference
is that we do not perform any unsupervised learning; we
show that matching the given noisy label to the model’s own
predicted label is itself pretty effective. Further, unlike our
work, Tang et al. (2022) do not have any rigorous theory.

3 Preliminaries
Notation. For two functions f(n) and g(n), we write
f(n) ≲ g(n) if there exists n0 and a constant C > 0 such
that for all n ≥ n0, f(n) ≤ Cg(n). For any positive integer
m ≥ 1, we denote the set {1, . . . ,m} by [m]. Let ei de-
note the ith canonical vector, namely, the vector of all zeros
except a one in the ith coordinate. We denote the ℓ2 norm
of a vector v by ∥v∥ℓ2 , and the operator norm of a matrix
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M by ∥M∥. The unit d-dimensional sphere (i.e., the set of
d-dimensional vectors with unit norm) is denoted by Sd−1.
For a random variable X , its sub-gaussian norm, denoted by
∥X∥ψ2 , is defined as ∥X∥ψ2 ∶= supq≥1 q

−1/2(E ∣X ∣q)
1/q

.2

In addition, for random vector X ∈ Rd, its sub-gaussian
norm is defined as ∥X∥ψ2 = supz∈Sd−1 ∥⟨X,z⟩∥ψ2 . We
denote the CDF and complementary CDF (CCDF) of a stan-
dard normal variable (i.e., distributed as N (0,1)) by Φ(.)
and Φc(.), respectively.

Definition 3.1 (Label differential privacy (DP)). A ran-
domized algorithm A taking as input a dataset and with
range R is said to be ϵ-labelDP if for any two datasets D
and D′ differing in the label of a single example and for any
S ⊆R, it holds that P(A(D) ∈ S) ≤ eϵP(A(D′) ∈ S).

Local label DP training involves injecting noise into the
labels and then training with these noisy labels. The sim-
plest way of injecting label noise to ensure label DP is
randomized response (RR) introduced by Warner (1965).
Specifically, suppose we require ϵ-labelDP for a problem
with C classes, then the distribution of the output ŷ of RR
when y is the true label is given by: P (ŷ = y) = eϵ

eϵ+C−1 , and
P (ŷ = z) = 1

eϵ+C−1 for any z ≠ y. Our label noise model
in Section 4 (Equation (4.2)) is actually RR for 2 classes.
Based on vanilla RR, more sophisticated ways to inject label
noise for better performance under label DP have been pro-
posed (Ghazi et al., 2021; Malek Esmaeili et al., 2021). Our
empirical results in Section 5 are with RR and the method
of Ghazi et al. (2021).

4 Full Retraining in the Presence of Label
Noise: Theoretical Analysis

Here we will analyze full retraining (as introduced in Sec-
tion 1) for a linear setting with noisy labels. Since full
retraining is the only kind of retraining we consider here,
we will omit the word “full” subsequently in this section.

Problem setting: We consider binary classification in a
linearly separable3 setting similar to the classical Gaussian
mixture model. We will first describe the classical Gaussian
mixture model and then describe our setting of interest,
which is endowed with a positive margin.

In the classical Gaussian mixture model, each data point
belongs to one of two classes {+1,−1} with corresponding
probabilities π+, π−, such that π+ + π− = 1. The feature
vector x ∈ Rd for a data point with label y ∈ {+1,−1} is
drawn independently from N (yµ,Σ), where µ ∈ Rd and
Σ ∈ Rd×d. In other words the mean of the feature vector
is ±µ depending on the data point’s label, and Σ is the

2Refer to Vershynin (2010) for other equivalent definitions.
3More specifically, there exists a linear separator that perfectly
classifies the data points according to their labels.

covariance matrix of the feature vector. We let γ ∶= ∥µ∥ℓ2 .

Gaussian mixture model with positive margin: Here each
data point (x, y) is generated independently by first sam-
pling the label y ∈ {+1,−1} with probabilities π+, π−, and
then generating the feature vector x ∈ Rd as:

x = y(1 + u)µ +Σ1/2z , where (4.1)

• u > 0 is drawn from a sub-gaussian distribution with
unit sub-gaussian norm (i.e., ∥u∥ψ2 = 1).

• z ∼ N (0,Id) independent of u.

• Σ ∈ Rd×d is the covariance matrix in the space orthog-
onal to µ. We have Σ1/2µ = 0 and Σ is of rank d − 1.
Also, λmin > 0 and λmax are the minimum non-zero
eigenvalue and the maximum eigenvalue of Σ.

Note that under this data model, the projection of datapoints
on the space orthogonal to µ is Gaussian. Along µ, we have
⟨x,µ⟩ = y(1 + u) ∥µ∥

2
ℓ2

, and so the randomness of data
along µ is due to u. Further, since u > 0, sign(⟨x,µ⟩) = y.
Thus, µ is a separator for the data w.r.t. the labels. In
addition, we have a margin of at least γ = ∥µ∥ℓ2 ; this is

because y⟨x,µ⟩
∥µ∥ℓ2

= (1 + u) ∥µ∥ℓ2 ≥ γ. We will mostly refer

to the margin γ as the “degree of separation”.

We are given access to a training set T = {(xi, ŷi)}i∈[n]
where for each i ∈ [n], ŷi is a noisy version of the true label
yi (which we do not observe). Specifically:

ŷi =

⎧⎪⎪
⎨
⎪⎪⎩

yi with probability 1 − p ,

−yi with probability p ,
(4.2)

for some p < 1/2, and independently for each i ∈ [n].4

4.1 Initial Training

Given the training set T = {(xi, ŷi)}i∈[n], we consider the
following linear classifier model5 (also used in Carmon et al.
(2019)):

θ̂0 =
1

n

n

∑
i=1

ŷixi . (4.3)

This classifier’s predicted label for a sample x ∈ Rd is
sign(⟨x, θ̂0⟩). Note that ⟨x, θ̂0⟩ = 1

n ∑i ŷi⟨xi,x⟩ is a

4In the context of ϵ-labelDP for a binary classification problem
with randomized response, p = 1

eϵ+1
.

5This is a simplification to the least squares’ solution (LSS) ob-
tained by excluding the empirical covariance matrix’s inverse.
The LSS can be analyzed by bounding the deviation of the em-
pirical covariance matrix from the population covariance matrix
(which shrinks as n → ∞), then adapting our current analysis
to features pre-multiplied by the population covariance matrix’s
inverse, and accounting for this deviation. This would only make
the math more tedious without adding any meaningful insights.
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weighted average of the noisy labels in the training set,
with the weights being 1

n
⟨xi,x⟩. So it is similar to kernel

methods with the inner product kernel.

Our next result bounds the probability of θ̂0 misclassifying
a fixed test point x, with respect to the randomness in the
training set T .
Theorem 4.1 (Initial training). Consider x ∉ T and let y
be its true label. We have

P(sign(⟨x, θ̂0⟩) ≠ y) ≥ α0(x) ∶=

1

2
√
2π

exp
⎛
⎜
⎝
−
5(1 +

√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠

and

P(sign(⟨x, θ̂0⟩) ≠ y) ≤ α̃0(x) ∶=

1

2
exp
⎛
⎜
⎝
−
n(1 − 2p)2⟨x,µ⟩2

8 ∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠
+ 2 exp(−

n

32
(1 − 2p)2) .

The proof of Theorem 4.1 is in Appendix B. Notice that
the learned classifier θ̂0 is more likely to be wrong on the
samples that are less aligned with (or closer to orthogonal
to) the ground truth separator, i.e., µ. We can view θ̂0 as a
noisy label provider (a.k.a. pseudo-labeler) where the degree
of label noise is non-uniform or sample-dependent unlike
the original noisy source used to learn θ̂0. Specifically,
for a sample x with true label y and predicted label ỹ =
sign(⟨x, θ̂0⟩), we have:

ỹ =

⎧⎪⎪
⎨
⎪⎪⎩

y with probability at least ≥ 1 − α̃0(x) and
−y with probability at most ≤ α̃0(x),

where α̃0(x) is as defined in Theorem 4.1. We will next
define the population error of a classifier θ̂ as

err(θ̂) ∶= E(x,y) [P(sign(⟨x, θ̂⟩) ≠ y)], (4.4)

where the probability (inside the expectation) is w.r.t. the
randomness in the training set used to learn θ̂. Similarly,
the population accuracy of θ̂ is defined as

acc(θ̂) ∶= E(x,y) [P(sign(⟨x, θ̂⟩) = y)] = 1 − err(θ̂).
(4.5)

Depending on the context, our results and discussions will
sometimes be presented in terms of error (lower is better)
and at other times in terms of accuracy (higher is better).

Our next result bounds the error of the classifier θ̂0.
Theorem 4.2 (Initial training’s population error). We
have

err(θ̂0) ≥
(1 − e−

d
16 )

4
√
2π

exp(−
160(1 +

√
n(1 − 2p))2γ4

λ2
mind

) ,

(4.6)

err(θ̂0) ≤
1

2
exp(−

n(1 − 2p)2γ4

16λ2
maxd

) + e−
d
8

+ 2 exp(−
n

32
(1 − 2p)2) . (4.7)

The proof of Theorem 4.2 is in Appendix C.
Remark 4.3 (Tightness of error bounds). When n ≲
λ2
maxd

2

(1−2p)2γ4 , γ ≲ (λ2
maxd)

1/4 and λmax

λmin
≲ 1, then the lower

and upper bounds for err(θ̂0) in Theorem 4.2 match (up to
constant factors).

Based on Theorem 4.2, we have the following corollary.

Corollary 4.4 (Initial training’s sample complexity). For
any δ > 2e−d/8 + 4 exp (− n

32
(1 − 2p)2), having number of

samples n ≥ 8λ2
max

log 1/δ
(1−2p)2

d
γ4 ensures acc(θ̂0) > 1 − δ. In

particular, when the label flipping probability satisfies p >
2e−d/8 + 4 exp (− n

32
(1 − 2p)2), then n ≥ 8λ2

max
log 1/p
(1−2p)2

d
γ4

ensures acc(θ̂0) > 1 − p, i.e., our learned classifier θ̂0 has
better accuracy than the source providing noisy labels (used
to learn θ̂0).

Remark 4.5 (Effect of degree of separation). As the pa-
rameter quantifying the degree of separation γ decreases,
the error bound in Theorem 4.2 increases and the sample
complexity required to outperform the noisy label source in
Corollary 4.4 increases. This is consistent with our intuition
that a classification task should become harder as the degree
of separation reduces; we saw this in Figure 1.

We conclude this subsection by deriving an information-
theoretic lower bound on the sample complexity of any
classifier to argue that θ̂0 attains the optimal sample com-
plexity with respect to d and p.

Theorem 4.6 (Information-theoretic lower bound on sam-
ple complexity). With a slight generalization of notation,
let acc(θ̂;µ) denote the accuracy of the classifier θ̂ as per
Equation (4.5), when the ground truth separator is µ. We
also consider the case of Σ = P⊥µ, viz., the projection ma-
trix onto the space orthogonal to µ. For any classifier
θ̂ learned from T ∶= {(xj , ŷj)}j∈[n], in order to achieve

infµ∈Sd−1 acc(θ̂;µ) ≥ 1−δ, the condition n = Ω ( (1−δ)(1−2p)2 d)

is necessary in our problem setting.

It is worth mentioning that there is a similar lower bound
in Gentile & Helmbold (1998) for a different classification
setting. In contrast, Theorem 4.6 is tailored to our setting
and moreover, the proof technique is also different and in-
teresting in its own right. Specifically, for the proof of Theo-
rem 4.6, we follow a standard technique in proving minimax
lower bounds which is to reduce the problem of interest to
an appropriate multi-way hypothesis testing problem; this is
accompanied by the application of the conditional version
of Fano’s inequality and some ideas from high-dimensional
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geometry. This proof is in Appendix D. There are also a
few other noteworthy lower bounds (Cai & Wei, 2021; Im &
Grigas, 2023; Zhu et al., 2024) in more general settings than
ours; naturally, their bounds are weaker than Theorem 4.6.
We discuss these bounds in Appendix E.
Remark 4.7 (Minimax optimality of sample complexity).
Note that the dependence of the sample complexity on d
and p in Corollary 4.4 matches that of the lower bound
in Theorem 4.6. Thus, our sample complexity bound in
Corollary 4.4 is optimal with respect to d and p.

4.2 Retraining

We first label the training set using θ̂0. Denote by ỹi =
sign(⟨xi, θ̂0⟩) the predicted label for sample xi. We then
retrain using these predicted labels. Our learned classifier
here is similar to the one in Section 4.1, except that the
observed labels are replaced by the predicted labels. Specif-
ically, our retraining classifier model is the following:

θ̂1 =
1

n
∑
i

ỹixi . (4.8)

θ̂1’s predicted label for a sample x ∈ Rd is sign(⟨x, θ̂1⟩).
Our next result bounds the probability of θ̂1 misclassifying
a fixed test point x, with respect to the randomness in the
training set T (similar to Theorem 4.1).

Theorem 4.8 (Retraining). Suppose that n
d
> 4λmax

γ2(1−2p) ,

nd > γ4

λ2
max

, and d ≥ 7. Consider x ∉ T and let y be its true
label. We have

P(sign(⟨x, θ̂1⟩) ≠ y) ≤ α1(x), where

α1(x) ∶= 2 exp
⎛
⎜
⎝
−

n(1 − 2q′)2⟨x,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠

+ 4 exp(−
n

32
(1 − 2p)2)

+
n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16) ed/n ,

with q′ = exp (−n(1−2p)γ
2

40λmax
) and p′ = (1 + 3γ4

8λ2
maxnd

)p.

The proof of Theorem 4.8 is in Appendix F.

Technical challenges: The proof of Theorem 4.8 is espe-
cially challenging due to the following reasons:

(i) The source of the predicted labels {ỹi}ni=1 used by θ̂1,
viz., θ̂0, is a non-uniform noisy label provider, as we dis-
cussed after Theorem 4.1.

(ii) More importantly, θ̂0 depends on all the samples in the
training set and hence each predicted label ỹi is dependent

on the entire training set. This dependence of the predicted
labels on all the data points makes the analysis highly chal-
lenging because standard techniques under independence
are not applicable here.6

The high-level proof idea for Theorem 4.8 is that for each
sample xℓ = yℓ(1 + uℓ)µ +Σ

1/2zℓ in the training set, we
carefully curate a dummy label ỹ′ℓ that does not depend
on {zk}k≠ℓ but depends on all {uk}k∈[n]; see (F.3) in Ap-
pendix F. We show that with high probability, the labels
predicted by θ̂0 on the training set {ỹℓ}ℓ∈[n] match the cor-
responding dummy labels {ỹ′ℓ}ℓ∈[n]. We analyze the mis-
classification error of θ̂1 under this high probability “good”
event with the dummy labels {ỹ′ℓ}ℓ∈[n], which are more con-
ducive to analysis (because they do not depend on {zk}k≠ℓ),
and also bound the probability of the “bad” event (i.e., ∃
at least one ℓ such that ỹℓ ≠ ỹ′ℓ). We provide an outline of
these steps in detail at the beginning of Appendix F.

We will now provide an upper bound on the error (defined
in (4.4)) of θ̂1.

Theorem 4.9 (Retraining’s population error). Suppose
the conditions of Theorem 4.8 hold. Then, we have

err(θ̂1) ≤ 2 exp(−
n(1 − 2q′)2γ4

64(γ4 + 2λ2
maxd)

)

+ 2e−d/8 + 4 exp(−
n

32
(1 − 2p)2)

+
n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16) ed/n, (4.9)

with q′ = exp (−n(1−2p)γ
2

40λmax
) and p′ = (1 + 3γ4

8λ2
maxnd

)p.

The proof of Theorem 4.9 is in Appendix G. As expected,
(4.9) is decreasing in γ, because the classification task be-
comes easier as the degree of separation increases.

Retraining vs. Initial training. We will now compare
the error bounds of the initial training model θ̂0 (4.6) from
Theorem 4.2 with that of the retraining model θ̂1 (4.9) from
Theorem 4.9. Note that the dominant term in the upper
bound on err(θ̂1) is the last term in (4.9) which has (1−2p′)
inside the exponent, and p′ approaches p as n and d grow.
In contrast, the lower bound on err(θ̂0) in (4.6) has (1 −
2p)2 inside the exponent. This is the main observation that
indicates retraining can improve model accuracy, and this
improvement becomes increasingly significant as p→ 1

2
. We

will now formalize this observation by providing sufficient
conditions under which err(θ̂1) < err(θ̂0) or equivalently,
acc(θ̂1) > acc(θ̂0).
Remark 4.10 (When does retraining improve accuracy?).
We consider an asymptotic regime where n, d →∞. Also,

6The analysis of θ̂0 (Theorem 4.1) is relatively simpler because
the given noisy labels {ŷi}ni=1 are independent across samples.
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suppose that λmax

λmin
≲ 1. By comparing (4.6) with (4.9), we

obtain the following sufficient conditions. There exists an
absolute constant c0 such that if p ∈ ( 1

2
− c0,

1
2
) and

λ2
mind

γ4(1 − 2p)2
log(

λ2
mind

γ4(1 − 2p)2
) ≲ n ≲

λ2
mind

2

γ4(1 − 2p)2
,

then the accuracy of retraining is greater than the accuracy
of initial training.

Some comments regarding Remark 4.10 are in order.

Range of n in Remark 4.10. We believe that the lower
bound on n is tight w.r.t. d and p, ignoring log factors.
We claim this because Ω ( d

(1−2p)2 ) samples are necessary

for acc(θ̂0) > 1 − p as per Theorem 4.6, and we can only
expect the retraining classifier θ̂1 to be better than the initial
training classifier θ̂0 if the accuracy of θ̂0’s predicted labels
(which is used to train θ̂1) is more than the accuracy of the
given labels = 1 − p. In contrast, the upper bound on n may
be an artifact of our analysis. Having said that, the range
of d2

(1−2p)2 ≲ n is not very interesting because it is far more
than the number of learnable parameters = d.

Effect of degree of separation γ. As γ increases, the
minimum value of n in Remark 4.10 for which we obtain
an improvement with retraining reduces. This is consistent
with the high-level insight of Fig. 1, viz., retraining is more
beneficial when the separation between the classes is large.

5 Improving Label DP Training with
Retraining (RT)

Motivated by our theoretical results in Section 4 which
show that retraining (abbreviated as RT henceforth) can
improve accuracy in the presence of label noise, we pro-
pose to apply our proposals in Section 1, viz., full RT and
more importantly, consensus-based RT to improve local
label DP training because it involves training with noisy
labels. Note that this can be done on top of any label DP
mechanism and that too at no additional privacy cost
(both the predicted labels and originally provided noisy la-
bels are private). Here we empirically evaluate full and
consensus-based RT on four classification datasets (avail-
able on TensorFlow) trained with label DP. These include
three vision datasets, namely CIFAR-10, CIFAR-100, and
DomainNet (Peng et al., 2019), and one language dataset,
namely AG News Subset (Zhang et al., 2015). Unless oth-
erwise mentioned, all our empirical results here are with
the standard cross-entropy loss. All the results are averaged
over three runs. We only provide important experimental
details here; the other details can be found in Appendix H.

CIFAR-10/100. We train a ResNet-18 model (from scratch)
on CIFAR-10 and CIFAR-100 with label DP. Label DP
training is done with the prior-based method of Ghazi et al.

(2021) – specifically, Algorithm 3 with two stages. Our
training set consists of 45k examples and we assume access
to a validation set with clean labels consisting of 5k exam-
ples which we use for deciding when to stop training, setting
hyper-parameters, etc.7 For CIFAR-10 and CIFAR-100 with
three different values of ϵ (DP parameter; see Def. 3.1), we
list the test accuracies of the baseline (i.e., the method of
Ghazi et al. (2021)), full RT and consensus-based RT in
Tables 1 and 2, respectively. Notice that consensus-based
RT is the clear winner. Also, for the three values of ϵ in
Table 1 (CIFAR-10), the size of the consensus set (used in
consensus-based RT) is ∼ 31%, 55% and 76%, respectively,
of the entire training set. The corresponding numbers for
Table 2 (CIFAR-100) are ∼ 11%, 34% and 56%, respec-
tively. So for small ϵ (high label noise), consensus-based
RT comprehensively outperforms full RT and the baseline
with a small fraction of the training set. Further, in Table 3,
we list the accuracies of the predicted labels and the given
labels over the entire (training) dataset and the accuracy of
the predicted labels (which are the same as the given labels)
over the consensus set for CIFAR-10 and CIFAR-100. To
summarize, the accuracy of predicted labels over the consen-
sus set is significantly more than the accuracy of predicted
and given labels over the entire dataset. This gives us an
idea of why consensus-based RT is much better than full RT
and baseline, even though the consensus set is smaller than
full dataset.

Table 1. CIFAR-10. Test set accuracies (mean ± standard devia-
tion). Consensus-based RT is better than full RT which is better
than the baseline (initial training).

ϵ Baseline Full RT Consensus-based RT
1 57.78 ± 1.13 60.07 ± 0.63 63.84 ± 0.56
2 79.06 ± 0.59 81.34 ± 0.40 83.31 ± 0.28
3 85.18 ± 0.50 86.67 ± 0.28 87.67 ± 0.28

Table 2. CIFAR-100. Test set accuracies (mean ± standard devia-
tion). Overall, consensus-based RT is significantly better than full
RT which is somewhat better than the baseline (initial training).

ϵ Baseline Full RT Consensus-based RT
3 23.53 ± 1.01 24.42 ± 1.22 29.98 ± 1.11
4 44.53 ± 0.81 46.99 ± 0.66 51.30 ± 0.98
5 55.75 ± 0.36 56.98 ± 0.43 59.47 ± 0.26

One may wonder how an increase in the number of model
parameters affects results because of potential overfitting
to label noise. So next, we train ResNet-34 (which has
7In practice, we do not need access to the validation set. Instead, it
can be stored by a secure agent which returns us a private version
of the validation accuracy and this will not be too far off from the
true validation accuracy when the validation set is large enough.
We also show some results without a validation set in Appendix K.
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Table 3. CIFAR-10 (top) and CIFAR-100 (bottom). Accuracies of predicted labels and given labels over the entire (training) dataset
and accuracies of predicted labels over the consensus set. Note that the accuracy over the consensus set≫ accuracy of over the entire
dataset (with both predicted and given labels). This gives us an idea of why consensus-based RT is much better than full RT and baseline,
even though the consensus set is smaller than the full dataset (∼ 31%, 55% and 76% of the full dataset for ϵ = 1,2 and 3 in the case of
CIFAR-10, and ∼ 11%, 34% and 56% of the full dataset for ϵ = 3,4 and 5 in the case of CIFAR-100).

CIFAR-10

ϵ Acc. of predicted labels on full dataset Acc. of given labels on full dataset Acc. of predicted labels on consensus set
1 59.30 ± 0.74 32.61 ± 0.74 76.17 ± 0.15
2 81.62 ± 0.18 57.11 ± 0.05 92.65 ± 0.22
3 89.28 ± 0.35 76.73 ± 0.12 95.94 ± 0.23

CIFAR-100

ϵ Acc. of predicted labels on full dataset Acc. of given labels on full dataset Acc. of predicted labels on consensus set
3 24.90 ± 0.92 22.35 ± 0.41 76.09 ± 0.85
4 50.85 ± 0.82 46.32 ± 0.34 91.59 ± 1.24
5 66.51 ± 0.02 68.09 ± 0.33 94.83 ± 0.15

Table 4. CIFAR-100 w/ ResNet-34. Test set accuracies (mean
± standard deviation). Just like Table 2 (ResNet-18), consensus-
based RT is the clear winner here. But the performance in case
of ResNet-34 is worse than ResNet-18 due to more overfitting to
noise because of more parameters; this is expected.

ϵ Baseline Full RT Consensus-based RT
4 37.53 ± 1.58 39.33 ± 1.37 43.87 ± 1.62
5 51.13 ± 0.69 52.33 ± 0.38 55.43 ± 0.42

nearly six times the number of parameters of ResNet-18) on
CIFAR-100; the setup is exactly the same as our previous
ResNet-18 experiments. Additionally, one may wonder if
retraining is useful when a label noise-robust technique is
used during initial training, i.e., on top of the method of
Ghazi et al. (2021). To that end, we train ResNet-34 on
CIFAR-100 with (i) the popular noise-correcting technique
of forward correction (Patrini et al., 2017) applied to the
first stage of Ghazi et al. (2021) (it is not clear how to apply
it to the second stage), and (ii) the noise-robust symmet-
ric cross-entropy (CE) loss function of Wang et al. (2019)
with α = 0.8, β = 0.2 used instead of the standard CE loss
function. We show the results for ResNet-34 without any
noise-robust method, forward correction used initially, and
with the symmetric CE loss function in Tables 4, 5, and 6,
respectively, for ϵ = {4,5}; please see the detailed discus-
sion in the captions. In summary, consensus-based RT is
pretty effective even with overfitting by ResNet-34. Also,
more importantly, consensus-based RT is beneficial even
after noise-robust initial training.

DomainNet (https://www.tensorflow.org/
datasets/catalog/domainnet). This is an image
classification dataset much larger than CIFAR where the
images belong to one of 345 classes. Here we do linear
probing (i.e., fitting a softmax layer) on top of a ResNet-50
pretrained on ImageNet. We reserve 10% of the entire
training set for validation and use the rest for training with
label DP. Just like the CIFAR experiments, we assume

Table 5. CIFAR-100 w/ ResNet-34: noise-robust forward correc-
tion (Patrini et al., 2017) used initially (in the baseline). Test set
accuracies (mean ± standard deviation). We see that retraining
(especially, consensus-based RT) yields improvement even after
noise-robust initial training, although the amount of improvement
is less compared to Table 4 (no noise-correction).

ϵ Baseline Full RT Consensus-based RT
4 41.80 ± 0.90 42.63 ± 0.58 46.53 ± 0.76
5 53.83 ± 0.83 54.43 ± 0.48 56.60 ± 0.43

Table 6. CIFAR-100 w/ ResNet-34: noise-robust symmetric CE
loss (Wang et al., 2019) used instead of standard CE loss. Test
set accuracies (mean ± standard deviation). We see that retraining
(especially, consensus-based RT) yields improvement even with a
noise-robust loss function.

ϵ Baseline Full RT Consensus-based RT
4 37.07 ± 2.03 38.17 ± 2.03 43.20 ± 1.77
5 53.10 ± 0.54 53.40 ± 0.33 56.13 ± 0.25

that the validation set comes with clean labels. In Table 7,
we show results for ϵ = {3,4} when label DP training
is done with the method of Ghazi et al. (2021) with two
stages (same as the CIFAR experiments). Observe that
consensus-based RT is the clear winner. Further, in
Tables 8 and 9, we show the corresponding results when
the noise-robust techniques of forward and backward
correction (Patrini et al., 2017) are applied to the first stage
of Ghazi et al. (2021) in initial training (it is not clear how to
apply forward and backward correction to the second stage).
As expected, forward & backward correction lead to better
initial model performance (compared to no correction). The
main thing to note however is that consensus-based RT
yields significant gains even after noise-robust initial
training, consistent with our earlier results.8

8It is worth noting that for ϵ = 3, consensus-based RT leads to
similar accuracy with and without noise correction.

8

https://www.tensorflow.org/datasets/catalog/domainnet
https://www.tensorflow.org/datasets/catalog/domainnet


Retraining with Predicted Hard Labels Provably Increases Model Accuracy

Table 7. DomainNet. Test set accuracies (mean ± standard devia-
tion). Consensus-based RT leads to very significant improvement.

ϵ Baseline Full RT Consensus-based RT
3 23.60 ± 0.92 29.23 ± 1.03 36.30 ± 0.75
4 48.25 ± 0.05 52.10 ± 0.10 57.40 ± 0.20

Table 8. DomainNet: noise-robust forward correction used ini-
tially. Test set accuracies (mean ± standard deviation). Consensus-
based RT yields significant improvement even after noise-robust
initial training.

ϵ Baseline Full RT Consensus-based RT
3 31.23 ± 0.56 33.30 ± 0.65 36.07 ± 0.78
4 58.50 ± 0.08 58.63 ± 0.12 61.80 ± 0.08

Table 9. DomainNet: noise-robust backward correction used
initially. Test set accuracies (mean ± standard deviation). Once
again, consensus-based RT yields significant improvement even
after noise-robust initial training.

ϵ Baseline Full RT Consensus-based RT
3 30.17 ± 0.61 31.47 ± 0.74 35.03 ± 0.78
4 56.63 ± 0.37 56.80 ± 0.37 60.47 ± 0.46

Finally, we show results on a language dataset.

AG News Subset (https://www.tensorflow.org/
datasets/catalog/ag_news_subset). This is a
news article classification dataset consisting of 4 categories –
world, sports, business or sci/tech. Just like the previous ex-
periments, we keep 10% of the full training set for validation
which we assume comes with clean labels, and use the rest
for training with label DP. We use the small BERT model
available in TensorFlow and the BERT English uncased
preprocessor; links to both of these are in Appendix H. We
pool the output of the BERT encoder, add a dropout layer
with probability = 0.2, followed by a softmax layer. We
fine-tune the full model. Here label DP training is done
with randomized response. We list the test accuracies of the
baseline (i.e., randomized response), full RT and consensus-
based RT in Table 10 for three different values of ϵ. Once
again, consensus-based RT is the clear winner. For the
three values of ϵ in Table 10, the size of the consensus set
is ∼ 28%, 32% and 38%, respectively, of the entire training
set. So here, consensus-based RT appreciably outperforms
full RT and baseline with less than two-fifths of the entire
training set. In Table 11 (Appendix I), we list the accuracies
of the predicted & given labels over the full dataset and the
consensus set; the observations are similar to Table 3 giving
us an idea of why consensus-based RT performs the best.

So in summary, consensus-based retraining is a straightfor-
ward post-processing step that can be applied on top of a

Table 10. AG News Subset. Test set accuracies (mean ± standard
deviation). Consensus-based RT is better than full RT which is
better than the baseline.

ϵ Baseline Full RT Consensus-based RT
0.3 54.54 ± 0.97 60.03 ± 2.90 65.91 ± 1.93
0.5 69.21 ± 0.31 75.63 ± 1.08 80.95 ± 1.47
0.8 79.10 ± 1.43 82.19 ± 1.54 84.26 ± 1.03

base method to significantly improve its performance in the
presence of noisy labels.

Additional empirical results in the Appendix. In Ap-
pendix J, we show that consensus-based RT outperforms
retraining on samples for which the model is the most con-
fident; this is similar to self-training’s method of sample
selection in the semi-supervised setting. In Appendix K, we
show that RT is beneficial even without a validation set. Fi-
nally, going beyond label DP, we show that consensus-based
RT is beneficial in the presence of human annotation errors
which can be thought of as “real” label noise in Appendix L.

6 Conclusion
In this work, we provided the first theoretical result showing
retraining with predicted hard labels can provably increase
model accuracy in the presence of label noise. We also
showed the efficacy of consensus-based retraining (i.e., re-
training on only those samples for which the predicted label
matches the given label) in improving local label DP train-
ing. We will conclude by discussing some limitations of
our work which pave the way for future directions of work.
Our theoretical results in this work focused on full retrain-
ing. Because consensus-based retraining worked very well
empirically, we would like to analyze it theoretically in the
future. Also, our theoretical results are under the uniform
label noise model. In the future, we would like to analyze
retraining under non-uniform label noise models. We also
hope to test our ideas on larger-scale models and datasets.
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A Problem Setting of Figure 1

The setting is exactly the same as the problem setting in Section 4 with d = 50, µ = γe1, Σ = I − e1eT1 , and p = 0.4. In the
direction of µ, we have ⟨x,µ⟩ = y(1 + u) ∥µ∥2ℓ2 = y(1 + u)γ

2. We consider balanced classes (i.e., π+ = π− = 1
2

) and choose
u ∼ Unif[0,4], the uniform distribution over the interval [0,4]. In Figure 1a, γ2 = 0.5 (large separation) and in Figure 1b,
γ2 = 0.3 (small separation). The number of training samples in each case is 300 and the retraining is done on the same
training set on which the model is initially trained. The learned classifiers from initial training and retraining are the same as
in Section 4 (i.e., Equations (4.3) and (4.8), respectively). Finally, the test accuracy of both initial training and retraining in
Figure 1b is 68%.

B Proof of Theorem 4.1
We first prove the lower bound α0(x) and then the upper bound α̃0(x).

B.1 Lower Bound α0(x)

Let ξi = yiŷi. So ξi = 1 with probability 1− p and ξi = −1 with probability p. Under our data model, for each sample we can
write xi = yi(1 + ui)µ +Σ

1/2zi with zi ∼ N (0,Id). Hence,

nθ̂0 = ∑
i∈[n]

ŷixi = ( ∑
i∈[n]

ξi(1 + ui))µ + ∑
i∈[n]

ŷiΣ
1/2zi .

We also note that

P(sign(⟨x, θ̂0⟩) ≠ y) = P(y⟨x, θ̂0⟩ ≤ 0) = P
⎛

⎝
( ∑
i∈[n]

ξi(1 + ui))⟨yx,µ⟩ + ⟨x, ∑
i∈[n]

yŷiΣ
1/2zi⟩ ≤ 0

⎞

⎠

Define z̃ ∶= ∑i∈[n] yŷiΣ
1/2zi. Conditioning on {ŷi}i∈[n] we have z̃ ∼ N (0, nΣ), and so ⟨x, z̃⟩ ∼ N (0, n ∥Σ1/2x∥

2

ℓ2
).

We write

P
⎛

⎝
( ∑
i∈[n]

ξi(1 + ui))⟨yx,µ⟩ + ⟨x, z̃⟩ ≤ 0 ∣ {ξi, yi, ui}i∈[n]
⎞

⎠
= Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

ℓ2

⎞

⎠
,

where Φ(t) = 1√
2π ∫

t
−∞ e−s

2/2ds denotes the cdf of standard normal distribution.

Combining the previous two equations, we arrive at

P(sign(⟨x, θ̂0⟩) ≠ y) = E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

ℓ2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(B.1)

≥ E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
∣∑i∈[n] ξi(1 + ui)∣ ∣⟨x,µ⟩∣

√
n ∥Σ1/2x∥

ℓ2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≥ Φ
⎛

⎝
−

E[∣∑i∈[n] ξi(1 + ui)∣] ∣⟨x,µ⟩∣
√
n ∥Σ1/2x∥

ℓ2

⎞

⎠

where the expectation is with respect to {ξi, ui}i∈[n] and the last step follows by Jensen’s inequality and the fact that Φ(t) is
a convex function for t ≤ 0.
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We next note that by Cauchy–Schwarz inequality,

E [∣∑
i

ξi(1 + ui)∣] ≤
√

E[(∑
i

ξi(1 + ui))2]

=

√

∑
i,j

E[ξiξj(1 + ui)(1 + uj)]

=

√

∑
i

E[(1 + ui)2] +∑
i≠j

E[ξi]E[ξj]E[1 + ui]E[1 + uj]

=
√
5n + 4n(n − 1)(1 − 2p)2 ≤

√
5n +

√
5n(1 − 2p) ,

where we used that ξi, ξj are independent for i ≠ j, and independent from ui’s. In addition, E[ξi] = E[yiŷi] = P(yi =
ŷi) − P(yi ≠ ŷi) = 1 − 2p. Also E[ui] ≤ 1 and E[u2

i ] ≤ 2, since ui has unit sub-gaussian norm. Hence, we get

P(sign(⟨x, θ̂0⟩) ≠ y) ≥ Φ
⎛

⎝
−

√
5(1 +

√
n(1 − 2p)) ∣⟨x,µ⟩∣

∥Σ1/2x∥
ℓ2

⎞

⎠
. (B.2)

We next use a classical lower bound on Φ. Let Φc(t) = 1−Φ(t) = Φ(−t). Using Equation (7.1.13) of Abramowitz & Stegun
(1968), we have for any t > 0:

Φc
(t) >

√
2

π

⎛

⎝

e−
t2

2

t +
√
t2 + 4

⎞

⎠
.

Since t +
√
t2 + 4 < 2(t + 1) for t > 0 , we get:

Φc
(t) >

1
√
2π

⎛

⎝

e−
t2

2

t + 1

⎞

⎠
>

1

2
√
2π

exp(−t2), (B.3)

where we used that t + 1 ≤ t2 + 2 ≤ 2et
2/2. Combining (B.3) and (B.2) we get

P(sign(⟨x, θ̂0⟩) ≠ y) ≥
1

2
√
2π

exp
⎛
⎜
⎝
−
5(1 +

√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠
,

which completes the derivation of α0(x).

B.2 Upper Bound α̃0(x)

We continue from (B.1), which reads

P(sign(⟨x, θ̂0⟩) ≠ y) = E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

ℓ2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (B.4)

where the expectation is with respect to the randomness in training data, namely ui and ξi for i ∈ [n], while the test point
(x, y) is fixed.

Note that under our data model, ⟨yx,µ⟩ = (1 + u) ∥µ∥2ℓ2 = (1 + u)γ
2 > 0 since u is a non-negative random variable. We

next define the following event:

E0 ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∑
i∈[n]

ξi(1 + ui) ≥ n(1 − 2p)/2

⎫⎪⎪
⎬
⎪⎪⎭

. (B.5)

Recall that E[ξi] = 1 − 2p and by the Hoeffding-type inequality for sub-gaussian random variables,

P(∣∑
i

ξi(1 + ui) − n(1 − 2p)(1 + E[ui])∣ ≥ t) ≤ 2 exp(−
t2

8n
) ,
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(Note that ∥ξi(1 + ui)∥ψ2 ≤ 1 + ∥ui∥ψ2 = 2.) By choosing t = n(1 − 2p)/2, and using the fact that ui > 0 for all i we get

P(∑
i

ξi(1 + ui) < n(1 − 2p)/2) ≤ 2 exp(−
n

32
(1 − 2p)2) .

Hence, P(Ec0) ≤ 2 exp (−
n
32
(1 − 2p)2).

We then have

E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

ℓ2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

ℓ2

⎞

⎠
(1E0 + 1Ec

0
)

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
n(1 − 2p)⟨yx,µ⟩

2
√
n ∥Σ1/2x∥

ℓ2

⎞

⎠
1E0

⎤
⎥
⎥
⎥
⎥
⎦

+ P(Ec0)

= Φ
⎛

⎝
−
n(1 − 2p)⟨yx,µ⟩

2
√
n ∥Σ1/2x∥

ℓ2

⎞

⎠
P(E0) + P(Ec0)

≤ Φ
⎛

⎝
−
n(1 − 2p)⟨yx,µ⟩

2
√
n ∥Σ1/2x∥

ℓ2

⎞

⎠
+ P(Ec0) ,

where in the first inequality we used the observation that ⟨yx,µ⟩ ≥ 0 as explained above, the definition of E0 and that Φ(−z)
is a decreasing function in z.

We next recall the tail bound of normal distribution in Equation (7.1.13) of Abramowitz & Stegun (1968):

Φc(t) ≤

√
2

π

e−t
2/2

t +
√

t2 + 8
π

≤
1

2
e−t

2/2 ,

for all t ≥ 0, where Φc(t) = 1 −Φ(t) = Φ(−t) is the complementary CDF of normal variables. Using this bound and the
bound we derived on P(Ec0) we get

E
⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝
−
(∑i∈[n] ξi(1 + ui))⟨yx,µ⟩

√
n ∥Σ1/2x∥

ℓ2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
1

2
exp
⎛
⎜
⎝
−
n(1 − 2p)2⟨yx,µ⟩2

8 ∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠
+ 2 exp(−

n

32
(1 − 2p)2) .

By invoking (B.4), we obtain the desired bound α̃0(x).

C Proof of Theorem 4.2

We will first derive the lower bound on err(θ̂0). Using Theorem 4.1 (and because the training set T has measure zero), we
have

err(θ̂0) ≥ E[α0(x)]

=
1

2
√
2π

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
5(1 +

√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≥
1

2
√
2π

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
5(1 +

√
n(1 − 2p))2⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠
∣
⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

≤ v2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

P
⎛
⎜
⎝

⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

≤ v2
⎞
⎟
⎠

≥
1

2
√
2π

exp (−5(1 +
√
n(1 − 2p))2v2)P

⎛
⎜
⎝

⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

≤ v2
⎞
⎟
⎠
, (C.1)
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for any value of v > 0. We next lower bound the probability on the right-hand side. We have

P
⎛

⎝

∣⟨x,µ⟩∣

∥Σ1/2x∥
ℓ2

≤ v
⎞

⎠
= P(

∣y(1 + u)γ2∣

∥Σz∥ℓ2
≤ v)

≥ P
⎛

⎝

(1 + u)γ2

λmin ∥P
⊥
µz∥ℓ2

≤ v
⎞

⎠

= P
⎛

⎝

(1 + u)γ2

∥P⊥µz∥ℓ2

≤ vλmin

⎞

⎠
, (C.2)

where the first step holds since under our data model we have ⟨x,µ⟩ = y(1+u) ∥µ∥2ℓ2 and Σ1/2x = y(1+u)Σ1/2µ+Σz =Σz,
given that Σ1/2µ = 0. Here P⊥µ is the projection onto the orthogonal space of µ.

Continuing from (C.2) we write

P
⎛

⎝

(1 + u)γ2

∥P⊥µz∥ℓ2

≤ vλmin

⎞

⎠
≥ P ((1 + u)γ2

≤ vλmin

√
d/2, ∥P⊥µz∥ℓ2

≥
√
d/2)

= P ((1 + u)γ2
≤ vλmin

√
d/2)P (∥P⊥µz∥ℓ2 ≥

√
d/2) , (C.3)

given that z and u are independent. Next note that P⊥µz is distributed as a Gaussian vector in a (d − 1)-dimensional space,

and therefore ∥P⊥µz∥
2

ℓ2
follows the chi-squared distribution with (d − 1) degrees of freedom. Using the tail bound of the

chi-squared distribution (see Theorem 4 of Ghosh (2021)), we get:

P (∥P⊥µz∥
2

ℓ2
< d/2) ≤ e−d/16 Ô⇒ P (∥P⊥µz∥ℓ2 ≥

√
d/2) ≥ 1 − e−d/16. (C.4)

We next lower bound the other term on the right-hand side of (C.3). By Markov’s inequality for any non-negative random
variable X , we have P(X ≤ 2E[X]) ≥ 1/2. Also E[(1+u)γ2] ≤ 2γ2, since E[u] ≤ 1 and therefore, by choosing v = 4

√
2γ2

λmin

√
d

,
we get

P ((1 + u)γ2
≤ vλmin

√
d/2) ≥ 1/2 . (C.5)

Combining (C.4), (C.5), (C.3) and (C.2) with (C.1) and plugging in our choice of v = 4
√
2γ2

λmin

√
d

, we arrive at

err(θ̂0) ≥
1

4
√
2π

exp(−160(1 +
√
n(1 − 2p))2

γ4

λ2
mind

)(1 − e−d/16) .

Let us now derive the upper bound on err(θ̂0). Using Theorem 4.1 (and because the training set T has measure zero), we
have

err(θ̂0) ≤ E[α̃0(x)]

=
1

2
E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−
n(1 − 2p)2⟨x,µ⟩2

8 ∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 2 exp(−
n

32
(1 − 2p)2) . (C.6)

Under our data model, x = y(1+ u)µ+Σ1/2z. Consider the probabilistic event E2 ∶= {z ∶ ∥z∥
2
ℓ2
≤ 2d}. For every η > 0, we

have

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

η⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

η⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠
(1E2 + 1Ec

2
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp(−
ηγ4

2λmaxd
) + P(Ec2) ,
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where the inequality holds because ⟨x,µ⟩ = y(1 + u)γ2 due to which ∣⟨x,µ⟩∣ ≥ γ2 (given that u is a non-negative random
variable) and because

∥Σ1/2x∥
2

ℓ2
= ∥Σz∥

2
ℓ2
≤ λ2

max ∥z∥
2
ℓ2
≤ 2λ2

maxd,

when event E2 happens. Further, ∥z∥2ℓ2 ∼ χ
2
d and so using tail bounds for χ2

d (see Theorem 3 of Ghosh (2021)), we have
P(Ec2) ≤ e

−d/8. Putting things together, we obtain

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

η⟨x,µ⟩2

∥Σ1/2x∥
2

ℓ2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp(−
ηγ4

2λ2
maxd

) + e−d/8 .

Setting η = n(1 − 2p)2/8 and using this in (C.6), we get

err(θ̂0) ≤
1

2
exp(−

n(1 − 2p)2γ4

16λ2
maxd

) + e−d/8 + 2 exp(−
n

32
(1 − 2p)2) .

D Proof of Theorem 4.6
Proof. Since we are interested with dependence of sample size with respect to d and p, we assume γ ∶= ∥µ∥ℓ2 = 1 and
Σ = I −µµT the projection onto the orthogonal space of µ. Also note that without loss of generality, we can assume that
our estimator θ̂ has unit norm, because its norm does not affect the sign of ⟨x, θ̂⟩. This way, µ and θ̂ both belong to Sd−1.

We first follow a standard argument to “reduce” the classification problem to a multi-way hypothesis testing problem. Let
ρ ∈ (0,1) be an arbitrary but fixed value which we can choose. We define a ρ-packing of Sd−1 as a setM = {µ1, . . . ,µM} ⊂
Sd−1 such that ⟨µl,µk⟩ ≤ ρ for l ≠ k. Also define the ρ-packing number of Sd−1 as

M(ρ,Sd−1) ∶= sup{M ∈ N ∶ there exists a ρ-packingM of Sd−1 with size M} . (D.1)

For convenience, we define the misclassification error of a classifier θ̂ ∈ Sd−1 when the ground truth separator is µ as
err(θ̂;µ) = 1 − acc(θ̂;µ). As per our condition,

δ ≥ sup
µ∈Sd−1

err(θ̂;µ) ≥ sup
µ∈M

err(θ̂;µ) . (D.2)

In order to further lower bound the right hand side, we let I be a random variable uniformly distributed on the hypothesis set
{1,2, . . . ,M} and consider the case of µ = µI . We also define Î as the index of the element inM with maximum inner
product with θ̂ (it does not matter how we break ties). Under our data model we have ⟨x,µI⟩ = y(1 + u) ∥µI∥

2
ℓ2
= y(1 + u)

and since u is a non-negative random variable, y = sign(⟨x,µI⟩). We then have

sup
µ∈M

err(θ̂;µ) ≥ max
i∈[M]

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i)

≥
1

M

M

∑
i=1

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i)

≥ Φ
⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠

1

M

M

∑
i=1

P(Î ≠ i∣I = i) (D.3)

= Φ
⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠
P(Î ≠ I) , (D.4)

with Φ denoting the CDF of a standard normal variable. Equation (D.3) above follows from the lemma below.

Lemma D.1. For any i ∈ [M], we have

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i) ≥ Φ
⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠
P(Î ≠ i∣I = i) .
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Combining (D.2) and (D.4), we obtain that

δ0 ∶=
δ

Φ( − 2
√

1+ρ
1−ρ)

≥ P(Î ≠ I) . (D.5)

Next recall the set T ∶= {(xj , ŷj)}j∈[n], and let X = [xT1 , . . . ,x
T
n ]
T ∈ Rn×d and ŷ = [ŷ1, . . . , ŷn]

T . By an application of
Fano’s inequality, with conditioning on X (see e.g., Section 2.3 of Scarlett & Cevher (2019)) we have

I(I; Î ∣X) ≥ (1 − δ0) log(M(ρ,S
d−1
)) − log 2 , (D.6)

where I(I; Î ∣X) represents the conditional mutual information between I and Î . Using the fact that I → ŷ → Î forms a
Markov chain conditioned on X, and by an application of the data processing inequality we have:

I(I; Î ∣X) ≤ I(I; ŷ∣X) (D.7)

We will now upper bound I(I; ŷ∣X). Let wj ∶= 1
2
(sign(⟨xj ,µI⟩) + 1) be the 0-1 version of the actual label of xj , viz.,

sign(⟨xj ,µI⟩). As per our setting, we have ŷj = 2(wj ⊕ zj)− 1 where zj ∼ Bernoulli(p) and ⊕ denotes modulo-2 addition.
Since the noise variables zj are independent and ŷj depends on (I,X) only through wj =

1
2
(sign(⟨xj ,µI⟩) + 1), by using

the tensorization property of the mutual information (see e.g., Lemma 2, part (iii) of Scarlett & Cevher (2019)), we have

I(I;y∣X) ≤
n

∑
j=1
I(wj ; ŷj) ≤ n(log 2 −H2(p)) , (D.8)

where the second inequality follows since ŷj is generated by passing wj through a binary symmetric channel, which has
capacity log 2 −H2(p) with H2(p) ∶= −p log p − (1 − p) log(1 − p) denoting the binary entropy function.

We next use the lemma below to further upper bound the right-hand side of (D.8).

Lemma D.2. For a discrete probability distribution, consider the entropy function given by

H(p1, . . . , pk) =
k

∑
i=1

pk log(1/pk) .

We have the following bound:

H(p1, . . . , pk) ≥ log k − k
k

∑
i=1
(pi − 1/k)

2 .

Using Lemma D.2 with k = 2 we obtain log 2 −H2(p) ≤ 4(p − 1/2)
2 = (1 − 2p)2, which along with (D.8), (D.7) and (D.6)

gives

n(1 − 2p)2 + log 2

1 − δ0
≥ log(M(ρ,Sd−1)) . (D.9)

In our next lemma, we lower bound M(ρ,Sd−1).

Lemma D.3. Recall the definition of ρ-packing number of Sd−1 given by (D.1). We have the following bound:

M(ρ,Sd−1) ≥ exp (
dρ2

2
) .

Using Lemma D.3 along with (D.9), we obtain the following lower bound on the sample complexity:

n ≥
ρ2

2
(1 − δ0)d − log 2

(1 − 2p)2
, with δ0 =

δ

Φ( − 2
√

1+ρ
1−ρ)

.

Note that ρ ∈ (0,1) can be set arbitrarily. Since our claim is on the order of n, the specific value of ρ can be chosen based on
δ to ensure ρ2

2
(1 − δ0) is of the order of (1 − δ). This finishes the proof of Theorem 4.6.
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We will now prove Lemmas D.1, D.2 and D.3.

Proof of Lemma D.1. Let us consider the event Î ≠ i, given that I = i. We note that if Î ≠ I , then ⟨θ̂,µI⟩ ≤
√

1+ρ
2

or

equivalently, the angle between θ̂ and µI is ≥ b ∶= cos−1 (
√

1+ρ
2
). Otherwise, by definition of Î we have ⟨θ̂,µÎ⟩ ≥ ⟨θ̂,µI⟩ >

√
1+ρ
2

, and therefore the angle between µÎ and µI is < 2b. Noting that cos(2b) = 2 cos2(b) − 1 = ρ, we would then have
⟨µÎ ,µI⟩ > ρ, which is a contradiction sinceM forms a ρ-packing. We proceed by writing

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i) ≥ P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i, Î ≠ i)P(Î ≠ i∣I = i) .

As discussed above, on the event that I = i, Î ≠ i, we have θ ∶= ⟨θ̂,µi⟩ ≤
√

1+ρ
2

. Consider the decomposition x =

⟨x,µi⟩µi +P
⊥
µi
x. We then have

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i, Î ≠ i) = P (sign(⟨x,µi⟩) (⟨x,µi⟩θ +P
⊥
µi
x,P⊥µi

θ̂⟩) ≤ 0∣I = i, Î ≠ i) .

Note that x is a test data point, independent of the training data T and so it is independent of θ̂. In addition, under our data
model, ⟨x,µi⟩ is independent of P⊥µi

x. Hence, sign(⟨x,µi⟩)⟨P
⊥
µi
x,P⊥µi

θ̂⟩ ∼ N (0, ∥P⊥µi
θ̂∥

2

ℓ2
). Given that ∥θ̂∥

ℓ2
= 1 we

also have ∥P⊥µi
θ̂∥

2

ℓ2
= 1 − ⟨θ̂,µi⟩

2 = 1 − θ2. In short, we can write

sign(⟨x,µi⟩)⟨P
⊥
µi
x,P⊥µi

θ̂⟩ =
√
1 − θ2Z, Z ∼ N (0,1) .

Using this characterization, we proceed by writing

P (sign(⟨x,µI⟩) ≠ sign(⟨x, θ̂⟩)∣I = i, Î ≠ i) = P (sign(⟨x,µi⟩)⟨x,µi⟩θ +
√
1 − θ2Z ≤ 0)

= P(Z ≤ −
∣⟨x,µi⟩∣θ√

1 − θ2
)

= 1 − E
⎡
⎢
⎢
⎢
⎢
⎣

Φ(
θ

√
1 − θ2

∣⟨x,µi⟩∣)

⎤
⎥
⎥
⎥
⎥
⎦

(a)
≥ 1 − E

⎡
⎢
⎢
⎢
⎢
⎣

Φ
⎛

⎝

√
1 + ρ

1 − ρ
∣⟨x,µi⟩∣

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(b)
≥ 1 −Φ

⎛

⎝

√
1 + ρ

1 − ρ
E[∣⟨x,µi⟩∣]

⎞

⎠

(c)
≥ 1 −Φ

⎛

⎝
2

√
1 + ρ

1 − ρ

⎞

⎠
= Φ
⎛

⎝
− 2

√
1 + ρ

1 − ρ

⎞

⎠
,

where (a) follows from the fact that θ ≤
√

1+ρ
2

; (b) holds due to Jensen’s inequality and concavity of Φ(⋅) on the positive

values, and (c) holds because under our data model E[∣⟨x,µi⟩∣] = E[y(1 + u) ∥µi∥
2
ℓ2
] = E[1 + u] ≤ 2 since ∥u∥ψ2 = 1. This

completes the proof of claim.
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Proof of Lemma D.2. Define qi = pi − 1/k. Note that qi can be negative, and we have ∑ki=1 qi = 0. We write

H(p1, . . . , pk) = −
k

∑
i=1

pi log pi

= −
k

∑
i=1
(1/k + qi) log(1/k + qi)

= −
k

∑
i=1
(1/k + qi)[log(1/k) + log(1 + kqi)]

≥ log k −
k

∑
i=1
(1/k + qi)kqi (D.10)

= log k − k
k

∑
i=1

q2i

= log k − k
k

∑
i=1
(pi − 1/k)

2 .

Note that in Equation (D.10) we used the fact that 1 + kqi ≥ 0 and logx ≤ x − 1 for all x ≥ 0.

This completes the proof of the lemma.

Proof of Lemma D.3. Define a ρ-cover of Sd−1 as a set of V ∶= {v1, . . . ,vN} such that for any θ ∈ Sd−1, there exists some
vi such that ⟨θ,vi⟩ ≥ ρ. The ρ-covering number of Sd−1 is

N(ρ,Sd−1) ∶= inf{N ∈ N ∶ there exists a ρ-cover V of Sd−1 with size N} .

By a simple argument we have M(ρ,Sd−1) ≥ N(ρ,Sd−1). Concretely, we construct a ρ-packing greedily by adding an
element at each step which has inner product at most ρ with all the previously selected elements, until it is no longer possible.
This means that any point on Sd−1 has inner product larger than ρ by some of the elements in the constructed set (otherwise
it contradicts its maximality). Hence, we have a set that is both a ρ-cover and a ρ-packing of Sd−1, and by definition it
results in M(ρ,Sd−1) ≥ N(ρ,Sd−1).

We next lower bound N(ρ,Sd−1) via a volumetric argument. Let V ∶= {v1, . . . ,vN} be a ρ-cover of Sd−1. For each element
vi ∈ V we consider the cone around it with apex angle cos−1(ρ). Its intersection with Sd−1 defines a spherical cap which we
denote by C(vi, ρ). Since V forms a ρ-cover of Sd−1, we have

Vol(Sd−1) ≤ Vol(∪Ni=1C(vi, ρ)) ≤
N

∑
i=1

Vol(C(vi, ρ)) .

We next use Lemma 2.2 from Ball et al. (1997) by which we have C(vi,ρ)
Vol(Sd−1) ≤ e

−dρ2/2. Using this above, we get

1 ≤ Ne−dρ
2/2

for any ρ-cover V . Thus, we have N(ρ,Sd−1) ≥ exp(dρ
2

2
), which completes the proof of the lemma.

E Comparison with Other Lower Bounds for Learning with Noisy Labels
Cai & Wei (2021); Im & Grigas (2023); Zhu et al. (2024) derive some noteworthy lower bounds in much more general
settings than ours; naturally, their bounds are weaker than our bound in Theorem 4.6. In the work of Cai & Wei (2021), our
setting corresponds to np = 0, nq = n. As per Theorem 3.2 of Cai & Wei (2021), the lower bound on the error is effectively9

n−O(
1+α
d ). So when α≪ d, this lower bound yields a much worse sample complexity than our result in Theorem 4.6. In Im

& Grigas (2023), the lower bound on the error (Theorem 2) does not reduce with n, so even if there are infinite samples,
we cannot get zero error in the worst case. As for Zhu et al. (2024), their lower bound on the error (Theorem 1) also has a
non-diminishing term depending on ϵ. In the special case of ϵ = 0 (or ϵ being small enough), there is an n−1/2 dependence
but no dependence on the dimension or a related quantity. However, the upper bound in Theorem 2 therein does have a
dependence on a VC dimension-like quantity as expected, so their lower bound is probably loose w.r.t. dimension.

9This is because β ≤ 1 as per Definition 2 and αβ ≤ d as per the paragraph after Remark 3 (of Cai & Wei (2021)).
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F Proof of Theorem 4.8

Similar to the proof of Theorem 4.1, we want to upper bound P(y⟨x, θ̂1⟩ < 0).10 Plugging in θ̂1 from (4.8) we have

y⟨x, θ̂1⟩ =
y

n
⟨x,∑

i

ỹixi⟩ =
y

n
⟨x,∑

i

sign(⟨xi, θ̂0⟩)xi⟩

A major complication is that θ̂0 depends on all the data points in the training set. Expanding θ̂0, we get

θ̂0 =
1

n
∑
i

ŷixi =
1

n
∑
i

ξiyixi =
1

n
((∑

i

ξi(1 + ui))µ +Σ
1/2
∑
i

ξiyizi) . (F.1)

Thus,

ỹℓ = sign(⟨xℓ, θ̂0⟩) = sign(⟨xℓ, (∑
i

ξi(1 + ui))µ +Σ
1/2
∑
i

ξiyizi⟩) . (F.2)

Here is the outline of our proof:

• For every ℓ ∈ [n] we define the dummy label

ỹ′ℓ = sign(⟨xℓ, (∑
i

ξi(1 + ui))µ +Σ
1/2ξℓyℓzℓ⟩) . (F.3)

Note that ỹ′ℓ depends only on zℓ, whereas ỹℓ depends on all {zi}i∈[n].

• We define the event E ∶= {∀ℓ ∶ ỹ′ℓ = sign(⟨xℓ, θ̂0⟩)}.

• We have

P(y⟨x, θ̂1⟩ < 0) = P(y⟨x, θ̂1⟩ < 0;E) + P(y⟨x, θ̂1⟩ < 0;E
c
)

≤ P(y⟨x, θ̂1⟩ < 0;E) + P(Ec) . (F.4)

• We bound each of the term on the right-hand side separately. Note that under the event E , we have

y⟨x, θ̂1⟩ =
y

n
⟨x,∑

ℓ

ỹ′ℓxℓ⟩.

We will control the probability of the RHS above being negative using concentration results on the sum of i.i.d.
subgaussian random variables (with appropriate conditioning first).

Next we get into details of this proof outline. We start by bounding P(Ec).

Lemma F.1. Fix ℓ ∈ [n]. Suppose that nd ≥ γ4

λ2
max

. Define p′ ∶= (1 + 3γ4

8λ2
maxnd

)p. We then have

P (ỹ′ℓ ≠ sign(⟨xℓ, θ̂0⟩)) = P (ỹ′ℓ⟨xℓ, θ̂0⟩ < 0) ≤
1

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16) ed/n .

Using Lemma F.1 along with union bounding over ℓ ∈ [n] (note that the events are dependent), we get

P(Ec) ≤
n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16) ed/n, (F.5)

where p′ = (1 + 3γ4

8λ2
maxnd

)p.

10Note that P(sign(⟨x, θ̂1⟩) ≠ y) = P(y⟨x, θ̂1⟩ < 0).
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Next we note that under the event E , we have:

y⟨x, θ̂1⟩ =
y

n
⟨x,∑

ℓ

ỹ′ℓxℓ⟩ =
1

n
∑
ℓ∈[n]

ysign(⟨xℓ, (∑
i

ξi(1 + ui))µ +Σ
1/2ξℓyℓzℓ⟩) ⟨x,xℓ⟩. (F.6)

We define the shorthand β ∶= ∑i ξi(1 + ui) and condition on β. Then (F.6) will be sum of i.i.d. subgaussian variables

Tℓ ∶= ysign (⟨xℓ, βµ +Σ
1/2ξℓyℓzℓ⟩) ⟨x,xℓ⟩ , ℓ ∈ [n] . (F.7)

We continue by first characterizing its expectation.

Lemma F.2. Suppose that βγ2

2λmaxd
> 1 and d ≥ 7. Then for ℓ ∈ [n], we have

E [Tℓ∣β] ≥ (1 − 2q)⟨yx,µ⟩ > 0 ,

where q ∶= exp (− βγ2

20λmax
).

Recall that xℓ = yℓ(1 + uℓ)µ +Σ1/2zℓ and therefore

∥Tℓ − E[Tℓ∣β]∥ψ2 ≤ 2∥Tℓ∥ψ2 = 2∥⟨x,xℓ⟩∥ψ2

= 2∥⟨x, yℓ(1 + uℓ)µ +Σ
1/2zℓ⟩∥ψ2

≤ 4∣⟨x,µ⟩∣ + 2 ∥Σ1/2x∥
ℓ2
,

where we used the assumption ∥uℓ∥ψ2 = 1 and the fact that ∥z∥ψ2 = 1.

Next by using Hoeffding-type inequality for sum of sub-gaussian random variables (see e.g., Proposition 5.1 of Vershynin
(2010)) we have for every t ≥ 0,

P(∣∑
ℓ

Tℓ −∑
ℓ

E[Tℓ∣β]∣ ≥ t∣β) ≤ 2 exp
⎛
⎜
⎝
−

t2

64n(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠
.

Therefore,

P(∑
ℓ

Tℓ < 0 ∣β) ≤ P(∣∑
ℓ

Tℓ −∑
ℓ

E[Tℓ∣β]∣ ≥∑
ℓ

E[Tℓ∣β] ∣ β)

≤ 2 exp
⎛
⎜
⎝
−

n(E[Tℓ∣β])2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠

≤ 2 exp
⎛
⎜
⎝
−

n(1 − 2q)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠
, (F.8)

where the last step follows from Lemma F.2. Recall that q = exp (− βγ2

20λmax
).

Our next step is to take expectation of the above with respect to β = ∑i ξi(1+ui). Before proceeding we define the following
event:

E0 ∶= {β ≥ n(1 − 2p)/2} . (F.9)

Note that by Hoeffding-type inequality for sub-gaussian random variables and given that E[ξi] = 1 − 2p, we have

P(∣∑
i

ξi(1 + ui) − n(1 − 2p)(1 + E[ui])∣ ≥ t) ≤ 2 exp(−
t2

8n
) .

By choosing t = n(1 − 2p)/2, and using the fact that ui > 0 for all i, we get

P(∑
i

ξi(1 + ui) < n(1 − 2p)/2) ≤ 2 exp(−
n

32
(1 − 2p)2) .
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Hence,

P(Ec0) ≤ 2 exp(−
n

32
(1 − 2p)2) .

We now continue by taking expectation of (F.8) with respect to β.

P(∑
ℓ

Tℓ < 0) ≤ 2E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

n(1 − 2q)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 2E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

n(1 − 2q)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠
(1E0 + 1Ec

0
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ 2E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

n(1 − 2q)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠

1E0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 2P(Ec0) . (F.10)

On the event E0 we have
βγ2

2λmaxd
≥
n(1 − 2p)γ2

4λmaxd
> 1,

by our requirement in the theorem statement. Therefore,

q = exp(−
βγ2

20λmax
) ≤ exp(−

n(1 − 2p)γ2

40λmax
) ∶= q′ .

Since 1 − 2q ≥ 1 − 2q′ > 0 this implies that

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

n(1 − 2q)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠

1E0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp
⎛
⎜
⎝
−

n(1 − 2q′)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠

1E0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ exp
⎛
⎜
⎝
−

n(1 − 2q′)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠
.

Using the above bound along with the bound on P(Ec0) into (F.10), we arrive at

P(∑
ℓ

Tℓ < 0) ≤ 2 exp
⎛
⎜
⎝
−

n(1 − 2q′)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠
+ 4 exp(−

n

32
(1 − 2p)2) . (F.11)

Invoking (F.6) and the definition of Tℓ given by (F.7) we obtain

P(y⟨x, θ̂1⟩ < 0;E) ≤ 2 exp
⎛
⎜
⎝
−

n(1 − 2q′)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠
+ 4 exp(−

n

32
(1 − 2p)2) . (F.12)

Finally we combine (F.12), (F.5) and (F.4) to get

P(y⟨x, θ̂1⟩ < 0) ≤ 2 exp
⎛
⎜
⎝
−

n(1 − 2q′)2⟨yx,µ⟩2

64(⟨x,µ⟩2 + ∥Σ1/2x∥
2

ℓ2
)

⎞
⎟
⎠

+ 4 exp(−
n

32
(1 − 2p)2) +

n

2
(exp(−

γ4

8λ2
max

(1 − 2p′)
n

d
) + e−d/16) ed/n. (F.13)

This finishes the proof of Theorem 4.8.

We will now prove the intermediate lemmas F.1 and F.2.
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F.1 Proof of Lemma F.1

First note that P (ỹ′ℓ ≠ sign(⟨xℓ, θ̂0⟩)) = P (ỹ′ℓ⟨xℓ, θ̂0⟩ < 0).

Define ξ̃i ∶= ξi(1 + ui). Then using (F.1), we have

ỹ′ℓ⟨xℓ, θ̂0⟩ =
ỹ′ℓ
n
⟨xℓ, (∑

i

ξ̃i)µ +Σ
1/2ξℓyℓzℓ +Σ

1/2
∑
i≠ℓ

ξiyizi⟩.

We have ∑i≠ℓ ξiyizi ∼ N (0, (n − 1)Id) and so ⟨ỹ′ℓxℓ,Σ
1/2
∑i≠ℓ ξiyizi⟩ is a zero mean Gaussian with variance (n −

1) ∥Σ1/2xℓ∥
2

ℓ2
. Let Fℓ be the σ-algebra generated by (zℓ, yℓ,{ξi, ui}i∈[n]). Note that zi, for i ≠ ℓ, is independent of Fℓ and

ỹ′ℓ is Fℓ-measurable. Hence,
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. (F.14)

Here, (a) follows by the choice of ỹ′ℓ; (b) holds by using Equation (7.1.13) of Abramowitz & Stegun (1968):

Φc(t) ≤

√
2

π

e−t
2/2

t +
√

t2 + 8
π

≤
1

2
e−t

2/2 ,

for all t ≥ 0. In addition (c) holds since (a + b)2 ≥ a2

2
− b2. Also, (d) holds because under our data model we have

Σ1/2xℓ =Σzℓ and so ∥Σ1/2xℓ∥ℓ2
≤ λmax ∥zℓ∥ℓ2 . Further, ∣⟨xℓ,µ⟩∣ = ∣y(1 + uℓ) ∥µ∥

2
ℓ2
∣ ≥ γ2 because uℓ ≥ 0. Putting these

bounds together, we have

⟨xℓ,µ⟩

∥Σ1/2xℓ∥ℓ2

≥
γ2

λmax ∥zℓ∥ℓ2
.

We proceed by taking expectation of the right-hand side of (F.14) with respect to ξ̃1, . . . , ξ̃n. Define the shorthand
λ ∶= γ4

4nλ2
max∥zℓ∥2ℓ2

. Fix an arbitrary λ0 > 0 for now (we will determine its value later) and define truncated parameter
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λ̄ =min(λ,λ0). We have

E [e−λ(∑i ξ̃i)2] ≤ E [e−λ̄(∑i ξ̃i)2] (F.15)

= E [e−λ̄∑i(1+ui)2e−λ̄∑i≠j ξiξj(1+ui)(1+uj)]

≤ e−λ̄n∏
i≠j

E[e−λ̄ξi(1+ui)]E[e−λ̄ξj(1+uj)]

= e−λ̄n(E[e−λ̄ξ(1+u)])n(n−1)

= e−λ̄n(E[(1 − p)e−λ̄(1+u) + peλ̄(1+u)])n(n−1)

≤ e−λ̄n ((1 − p)e−λ̄ + peλ̄ E[eλ̄u])
n(n−1)

≤ e−λ̄n ((1 − p)e−λ̄ + peλ̄eλ̄
2/2
)
n(n−1)

= e−λ̄n
2

(1 − p + pe2λ̄+λ̄
2/2
)
n(n−1)

. (F.16)

Here, the first and the second inequality follows from ui ≥ 0. The third inequality holds since u has unit sub-gaussian norm
and so it moment-generating function is bounded as E[eλu] ≤ eλ

2/2.

We next further upper bound the right-hand side of F.16 to get a simpler expression. In doing that we use the following
lemma (proved in Appendix F.1.1).

Lemma F.3. For t ≤ 1
2

, we have et − 1 ≤ t + t2.

By choosing λ0 ≤ 0.2 we have 2λ0 + λ
2
0/2 ≤ 1/2 and so 2λ̄ + λ̄2/2 ≤ 1/2. Using the above lemma, we have

e2λ̄+λ̄
2/2
− 1 ≤ 2λ̄ + λ̄2

/2 + (2λ̄ + λ̄2
/2)

2

= 2λ̄ + λ̄2
/2 + 4λ̄2

+ λ̄4
/4 + 2λ̄3

≤ 2λ̄ + λ̄ (λ0/2 + 4λ0 + λ
3
0/4 + 2λ

2
0)

≤ (2 + 6λ0)λ̄ ,

where we used λ0 ≤ 0.2 in the last step. Next using the inequality 1 + x ≤ ex for x ≥ 0, we get

(e2λ̄+λ̄
2/2
− 1)p + 1 ≤ (2 + 6λ0)pλ̄ + 1 ≤ e

(2+6λ0)λ̄p .

By using this bound in (F.16) we obtain

E [e−λ(∑i ξ̃i)2] ≤ e−λ̄n
2

e(2+6λ0)λ̄pn2

= e−(1−2p
′)λ̄n2

, (F.17)

with p′ ∶= (1 + 3λ0)p.

Using the above in (F.14) and then taking expectation with respect to zℓ we get
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, (F.18)

by applying the Cauchy–Schwarz inequality.

Using the moment generating function of χ2
d distribution, we have

E
⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

∥zℓ∥
2
ℓ2

n

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= (1 −
2

n
)

−d/2
≤ e2d/n , (F.19)
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for n ≥ 4. Here, we use the inequality (1 − x)−1 ≤ e2x for x ∈ [0,1/2].

We continue by bounding the first term on the right-hand side of (F.18). Define the event E1 as follows:

E1 ∶= {∥zℓ∥ℓ2 ≤
√
2d} . (F.20)

We then have

E [exp (−2(1 − 2p′)λ̄n2)] = E [exp (−2(1 − 2p′)λ̄n2) (1E1 + 1Ec
1
)]

≤ E [exp (−2(1 − 2p′)λ̄n2)1E1] + E[1Ec
1
]

(a)
= E [exp(−

γ4

4λ2
maxd

(1 − 2p′)n)1E1] + P(Ec1)

≤ exp(−
γ4

4λ2
max

(1 − 2p′)
n

d
) + P(Ec1) (F.21)

Note that in step (a), we used the fact that on the event E1, we have λ ≥ γ4/(8λ2
maxnd) and we choose λ0 = γ

4/(8λ2
maxnd).

This way, we have λ̄ =min(λ,λ0) = γ
4/(8λ2

maxnd). Also note that by our assumption in the statement of the lemma, we
have λ0 ≤ 0.2 which is the condition assumed in deriving (F.17).

We next bound P(Ec1). Since zℓ ∼ N (0,Id), ∥zℓ∥
2
ℓ2

has χ2 distribution with d-degrees of freedom. Using the tail bound of
χ2 distribution (see Theorem 3 of Ghosh (2021)) we have P(∥zℓ∥

2
ℓ2
≥ 2d) ≤ e−d/8 and so

P(Ec1) ≤ P(∥zℓ∥
2
ℓ2
≥ 2d) ≤ e−d/8.

Using the above in (F.21) we obtain

E [exp (−2(1 − 2p′)λ̄n2)] ≤ exp(−
γ4

4λ2
max

(1 − 2p′)
n

d
) + e−d/8. (F.22)

By combining (F.22) and (F.19) with (F.18) we arrive at

P (ỹ′ℓ⟨xℓ, θ̂0⟩ < 0) ≤
1

2
(exp(−
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ed/n
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2
(exp(−

γ4
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d
) + e−d/16) ed/n ,

which completes the proof of lemma.

F.1.1 PROOF OF LEMMA F.3

Using the Taylor series expansion of et, we have:

et − 1 = t +
t2

2
+
∞
∑
j=3

tj

j!
(F.23)

≤ t +
t2

2
+
t2

2

∞
∑
j=3

1

j!
(F.24)

= t +
t2

2
+
t2

2
(e −

5

2
) (F.25)

(F.24) follows by using the fact that for j ≥ 3 and t ≤ 1
2

, tj ≤ t3 ≤ t2

2
. (F.25) follows by using the fact that e1 − 1 =

1 + 1
2
+∑

∞
j=3

1
j!

after plugging in t = 1 in Equation (F.23).

Next, using the fact that e < 3 in (F.25), we get:

et − 1 < t +
3t2

4
< t + t2. (F.26)

This completes the proof.
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F.2 Proof of Lemma F.2

Under our data model we have xℓ = yℓ(1 + uℓ)µ +Σ
1/2zℓ. Substituting for xℓ in the expression of Tℓ, we get

Tℓ = sign (⟨yℓ(1 + uℓ)µ +Σ
1/2zℓ, βµ + ξℓyℓΣ

1/2zℓ⟩) ⟨yx, yℓ(1 + uℓ)µ +Σ
1/2zℓ⟩

= sign(yℓ(1 + uℓ)βγ
2
+ ξℓyℓ ∥Σ

1/2zℓ∥
2

ℓ2
) ⟨yx, yℓ(1 + uℓ)µ +Σ

1/2zℓ⟩ ,

using the fact that Σ1/2µ = 0. Taking expectation we get

E[Tℓ∣β] = E [sign(yℓ(1 + uℓ)βγ
2
+ ξℓyℓ ∥Σ

1/2zℓ∥
2

ℓ2
) ⟨yx, yℓ(1 + uℓ)µ⟩ ∣β]

since the other term will be an odd function of zℓ. Letting

q0 ∶= P((1 + uℓ)βγ
2
+ ξℓ ∥Σ

1/2zℓ∥
2

ℓ2
< 0) ,

we get
E[Tℓ∣β] = (1 − 2q0)⟨yx, (1 + uℓ)µ⟩ ≥ (1 − 2q0)⟨yx,µ⟩ , (F.27)

because uℓ > 0 and ⟨yx,µ⟩ > 0, given the positive margin in our data model, and if q0 ≤ 1
2

. So what remains is to show that
q0 ≤ q ≤ 1/2.

We write

q0 ≤ P ((1 + uℓ)βγ
2
− λmax ∥zℓ∥

2
ℓ2
< 0)

≤ P(
βγ2
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2
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< exp(−
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) ,

if βγ2

2dλmax
> 1, where the last step follows from the observation that ∥zℓ∥

2
ℓ2
∼ χ2

d and using the tail bound of χ2
d (Theorem 3

of Ghosh (2021)). So when βγ2

2dλmax
> 1 and d ≥ 7,

q0 ≤ q ∶= exp(−
βγ2

20λmax
) ≤ e−d/10 <

1

2
.

Plugging this into (F.27) completes the proof.

G Proof of Theorem 4.9

Using Theorem 4.8 (and because the training set T has measure zero), we have err(θ̂1) ≤ E[α1(x)]. Based on our data
model, x = y(1 + u)µ +Σ1/2z. Consider the probabilistic event E2 ∶= {z ∶ ∥z∥

2
ℓ2
≤ 2d}. For every η > 0, we have
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where the inequality holds because ⟨x,µ⟩ = y(1 + u)γ2 and so ⟨x,µ⟩2 ≥ γ4 (since u is a non-negative random variable). In
addition,
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under the event E2. Further, ∥z∥2ℓ2 ∼ χ2
d and so using tail bounds for χ2

d (see Theorem 3 of Ghosh (2021)), we have
P(Ec2) ≤ e

−d/8. Putting things together, we obtain
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The claim of theorem follows by setting η = n
64
(1 − 2q′)2.
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H Remaining Experimental Details
Here we provide the remaining details about the experiments in Section 5. Our experiments were done using TensorFlow
and JAX. In all the cases, we retrain starting from random initialization rather than the previous checkpoint we converged to
before RT; the former worked better than the latter. We list training details for each individual dataset next.

CIFAR-10. Optimizer is SGD with momentum = 0.9, batch size = 32, number of epochs in each stage of train-
ing (i.e., both stages of baseline, full RT and consensus-based RT) = 30. We use the cosine one-cycle learning rate schedule
with initial learning rate = 0.1 for each stage of training. The number of epochs and initial learning rate were chosen based
on the performance of the baseline method and not based on the performance of full or consensus-based RT. Standard
augmentations such as random cropping, flipping and brightness/contrast change were used.

CIFAR-100. Details are the same as CIFAR-10 except that here the number of epochs in each stage of training
= 40 and initial learning rate = 0.005.

DomainNet. Details are the same as CIFAR-10 except that here the number of epochs in each stage of training
= 15, initial learning rates for the first stage of the baseline in Tables 7, 8, and 9 are 1e − 3, 5e − 2, and 5e − 4, respec-
tively, whereas the initial learning rate for the second stage of the baseline as well as full RT and consensus-based RT is 1e−3.

AG News Subset. Small BERT model link: https://www.kaggle.com/models/tensorflow/bert/
frameworks/tensorFlow2/variations/bert-en-uncased-l-4-h-512-a-8/versions/2?
tfhub-redirect=true, BERT English uncased preprocessor link: https://www.kaggle.com/models/
tensorflow/bert/frameworks/tensorFlow2/variations/en-uncased-preprocess/versions/
3?tfhub-redirect=true. Optimizer is Adam with fixed learning rate = 1e − 5, batch size = 32, number of epochs in
each training stage = 5.

I Accuracy over the Entire Dataset and over the Consensus Set in the Case of AG News Subset
Here we list the accuracies of the predicted labels and the given labels over the entire dataset and the accuracy of the
predicted labels (= given labels) over the consensus set for AG News Subset. Just like in Table 3, the accuracy of the
predicted labels over the consensus set is significantly more than the accuracy of the predicted and given labels over the
entire dataset. This explains why consensus-based RT performs the best, even though the consensus set is much smaller than
the full dataset (∼ 28%, 32% and 38% of the entire training set for the three values of ϵ).

Table 11. AG News Subset. Accuracies of predicted labels and given labels over the entire dataset and accuracies of predicted labels (=
given labels) over the consensus set. Conclusions are the same as in Table 3.

ϵ Acc. of predicted labels on full dataset Acc. of given labels on full dataset Acc. of predicted labels on consensus set
0.3 53.20 ± 2.82 32.52 ± 2.05 61.81 ± 2.66
0.5 66.78 ± 1.31 35.5 ± 0.14 76.48 ± 0.93
0.8 79.98 ± 0.80 42.53 ± 0.13 89.59 ± 0.43

J Consensus-Based Retraining Does Better than Confidence-Based Retraining
Here we compare full and consensus-based RT against another strategy for retraining which we call confidence-based
retraining (RT). Specifically, we propose to retrain with the predicted labels of the samples with the top 50% margin (i.e.,
highest predicted probability - second highest predicted probability); margin is a measure of the model’s confidence. This
idea is similar to self-training’s method of sample selection in the semi-supervised setting (Amini et al., 2022). In Tables 12
and 13, we show results for CIFAR-10 and CIFAR-100 (in the same setting as Section 5 and Appendix H) with the smallest
value of ϵ from Tables 1 and 2, respectively. Notice that consensus-based RT is clearly better than confidence-based RT.
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Table 12. CIFAR-10. Test set accuracies (mean ± standard deviation). Consensus-based RT performs the best.

ϵ Baseline Full RT Consensus-based RT Confidence-based RT
1 57.78 ± 1.13 60.07 ± 0.63 63.84 ± 0.56 62.09 ± 0.55

Table 13. CIFAR-100. Test set accuracies (mean ± standard deviation). Again, consensus-based RT performs the best.

ϵ Baseline Full RT Consensus-based RT Confidence-based RT
3 23.53 ± 1.01 24.42 ± 1.22 29.98 ± 1.11 24.99 ± 1.25

K Retraining is Beneficial Even Without a Validation Set
In all our previous experiments, we assumed access to a small clean validation set. Here we show the results of training
ResNet-34 on CIFAR-100 when we do not have access to a validation set and train for 100 epochs, and also compare them
against the corresponding results with a validation set where we trained for 40 epochs (Table 4 in Section 5). The point of
these experiments is to show that retraining can offer gains even without a validation set, in which case we train for too
many epochs and expect overfitting. Please see the results and discussion in Table 14.

Table 14. CIFAR-100 w/ ResNet-34 without (top) and with (bottom) a validation set. Test set accuracies (mean ± standard deviation).
Note that retraining (in particular, consensus-based RT) leads to improvement even without a validation set. However, the performance
and amount of improvement obtained with retraining are worse in the absence of a validation set due to a higher degree of overfitting.
This is not surprising.

Without Val. Set

ϵ Baseline Full RT Consensus-based RT
4 26.03 ± 1.75 28.33 ± 1.76 30.47 ± 1.31
5 42.50 ± 1.14 44.43 ± 1.27 46.27 ± 1.72

With Val. Set
(Same as Table 4)

ϵ Baseline Full RT Consensus-based RT
4 37.53 ± 1.58 39.33 ± 1.37 43.87 ± 1.62
5 51.13 ± 0.69 52.33 ± 0.38 55.43 ± 0.42

L Beyond Label DP: Evaluating Retraining in the Presence of Human Annotation Errors
Even though our empirical focus in this paper has been label DP training, retraining (RT) can be employed for general
problems with label noise. Here we evaluate RT in a setting with “real” label noise due to human annotation. Specifically,
we focus on training a ResNet-18 model (without label DP to be clear) on the CIFAR-100N dataset introduced by Wei
et al. (2022) and available on the TensorFlow website. CIFAR-100N is just CIFAR-100 labeled by humans; thus, it has
real human annotation errors. The experimental setup and details are the same as CIFAR-100 (as stated in Section 5 and
Appendix H); the only difference is that here we use initial learning rate = 0.01.

In Table 15, we list the test accuracies of the baseline which is just standard training with the given labels, full RT and
consensus-based RT, respectively. Even here with human annotation errors, consensus-based RT is beneficial.

Table 15. CIFAR-100N. Test set accuracies (mean ± standard deviation). So even with real human annotation errors, consensus-based RT
improves performance.

Baseline Full RT Consensus-based RT
55.47 ± 0.18 56.88 ± 0.35 57.68 ± 0.35
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