Visibility-Aware Language Aggregation
for Open-Vocabulary Segmentation in 3D Gaussian Splatting

Sen Wang!'?®  Kunyi Li'?

Nassir Navab!+2
!Technical University of Munich

4Ludwig Maximilian University of Munich

Abstract

Recently, distilling open-vocabulary language features from
2D images into 3D Gaussians has attracted significant
attention. Although existing methods achieve impressive
language-based interactions of 3D scenes, we observe two
fundamental issues: background Gaussians contributing
negligibly to a rendered pixel get the same feature as the
dominant foreground ones, and multi-view inconsistencies
due to view-specific noise in language embeddings. We
introduce Visibility-Aware Language Aggregation (VALA),
a lightweight yet effective method that computes marginal
contributions for each ray and applies a visibility-aware
gate to retain only visible Gaussians. Moreover, we propose
a streaming weighted geometric median in cosine space
to merge noisy multi-view features. Our method yields a
robust, view-consistent language feature embedding in a
fast and memory-efficient manner. VALA improves open-
vocabulary localization and segmentation across reference
datasets, consistently surpassing existing works.

1. Introduction

Understanding 3D scenes is essential for interacting with
the environment in robotic navigation [2, 22], autonomous
driving [7, 31], and augmented reality [9, 16]. Traditional
approaches, however, are constrained to a fixed set of ob-
ject categories defined at training time [4, 26, 34], limit-
ing their applicability to open-world scenarios. Thanks to
recent advances in vision-language models [10, 29], open-
vocabulary methods [8, 23, 41] enable querying and inter-
acting with the 3D scene through natural language, and rec-
ognizing unseen object categories without retraining.
While classical 3D understanding works operate on point
clouds or meshes derived from 3D sensors, recent neural
scene representations such as NeRFs [21] and 3D Gaus-
sian Splatting (3DGS) [13] have emerged as a compelling
alternative. They not only enable high-quality rendering
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Figure 1. Thanks to its feature aggregation that is visibility-aware
and multi-view consistent, our proposed VALA is the most accu-
rate and as quick as the fastest [3] to optimize. Comparison in 3D
open-vocabulary segmentation on the LeRF-OVS dataset [27].

from novel viewpoints but also facilitate semantic reason-
ing, as appearance and geometry are encoded jointly. Thus,
open-vocabulary reasoning has recently been extended to
rendered 3D scenes [14, 27], enabling new semantic in-
teractions in 3D environments. Initially explored with
NeRFs [6, 14], the efficiency and explicit nature of 3DGS
simplified the integration of semantic features, determining
its widespread adoption [3, 12, 27, 37].

At the core of these approaches lies the challenge of em-
bedding reliable semantic and language features into the
3D representation. Current methods rely on powerful off-
the-shelf 2D foundation models, such as SAM [15] and
CLIP [29], which produce 2D feature maps that must be
lifted to 3D and aggregated across views. Proper aggrega-
tion is critical for accurate 3D segmentation.

Despite numerous recent advances [11, 12, 17, 33], cur-
rent approaches suffer from an inherent limitation: they as-
sign 2D features indiscriminately to all Gaussians along
a camera ray, disregarding scene geometry and occlu-
sion relationships. Consequently, features originating from
foreground objects (e.g., a vase) are incorrectly propa-



gated to background structures (e.g., the supporting ta-

ble or floor), leading to substantial degradation in open-

vocabulary recognition accuracy.

Furthermore, when lifted into 3D, 2D features exhibit
multi-view inconsistencies. The same object may produce
divergent feature representations across different view-
points, a phenomenon known as semantic drift [14]. Cur-
rent methods address this by promoting cross-view consis-
tency through 3D-consistent clustering and contrastive ob-
jectives derived from SAM masks [17, 19, 25, 37]. Nev-
ertheless, such strategies generally require extensive per-
scene optimization, and their heavy reliance on noisy, view-
dependent 2D cues often undermines cluster reliability.

In this paper, we address these fundamental feature
aggregation problems with VALA (Visibility-Aware Lan-
guage Aggregation), a lightweight yet effective framework
that combines a two-stage gating mechanism with a ro-
bust multi-view feature aggregation strategy. Our gating
mechanism leverages the statistical distribution of per-ray
Gaussian contributions (termed visibility) to preferentially
propagate features to Gaussians with high visibility, thereby
ensuring accurate feature assignment. To further miti-
gate multi-view inconsistencies in 2D language features,
we introduce a convex but non-smooth optimization on
the unit hypersphere, which we reformulate into a stream-
ing gradient-based procedure that achieves consistent em-
beddings without additional computational overhead. As
shown in Figure 1, VALA strategies are highly effective.

Our contributions can be summarized as follows:

* We identify fundamental issues in the feature aggregation
of current works as a bottleneck in open-vocabulary 3D
scene understanding.

* We introduce VALA, a visibility-aware feature propaga-
tion framework that employs a two-stage gating mecha-
nism to assign features based on Gaussian visibility.

* We propose a robust aggregation strategy of the 2D fea-
tures using the streaming cosine median and thus improve
the multi-view consistency.

* We obtain state-of-the-art performance in 2D and 3D on
open-vocabulary segmentation for 3DGS scenes on the
reference datasets LeRF-OVS [27] and ScanNet-v2 [5].

2. Related works

Open-Vocabulary Feature Distillation. Recent works
have embedded 2D vision-language features into 3D scene
representations to enable open-vocabulary 3D understand-
ing. Pioneering efforts on NeRFs such as LERF [14]
and OpenNeRF [6] used CLIP [29] embeddings and pixel-
aligned features, enabling open-vocabulary queries. How-
ever, due to the computational needs of NeRF [21],
they face scalability and efficiency bottlenecks. Thus,
subsequent works have embedded language features into
3DGS [30, 40, 42]. LangSplat [27] employs SAM [15] to

extract multi-level CLIP features, then compresses dimen-
sionality with an autoencoder to build a compact yet ex-
pressive 3D language field. Feature3DGS [40] uses a con-
volutional neural network (CNN) to lift feature dimensions.
Although both approaches aim to compress the supervision
signal, this dimensionality reduction inevitably results in
information loss. GOI [28] and CCL-LGS [35] employ a
single trainable feature codebook to store language embed-
dings, with an MLP predicting discrete codebook indices
for rasterized 2D feature maps, which compress semantics
spatially rather than dimensionally and retain semantic rich-
ness. However, as these approaches rely on 2D rendered
feature maps for perception, their performance in 3D scene
understanding is significantly limited.

Other methods first group 3D Gaussians or points into
semantically meaningful clusters, typically corresponding
to objects or parts, and then assign a language feature to
each cluster as a whole [11, 17, 19, 25, 28, 37]. These
methods introduce an explicit discrete grouping step as a
form of prior semantic structuring: OpenGaussian [37] per-
forms coarse-to-fine clustering based on spatial proxim-
ity followed by feature similarity. SuperGSeg [19] and
InstanceGaussian [17] both leverage neural Gaussians to
model instance-level features: SuperGSeg groups Gaus-
sians into Super-Gaussians to facilitate language assign-
ment, whereas InstanceGaussian directly assigns fused se-
mantic features to each cluster. VoteSplat [11] and Open-
Splat3D [25] mitigate the pixel-level ambiguities of the di-
rect distillation. Then, the resulting cluster graph structures
support higher-level reasoning [19, 39], which per-Gaussian
features cannot easily enable. However, all these methods
rely on feature distillation using per-cluster learnable lan-
guage embeddings. These approaches are computationally
expensive and highly sensitive to noise or outliers in the
preprocessed feature maps, since the language features are
optimized directly in Euclidean space. As a result, even mi-
nor errors in the input features can propagate through the
model, leading to inconsistent or inaccurate semantic repre-
sentations, particularly in complex or cluttered scenes

Open-Vocabulary Feature Aggregation. Beyond
cluster-based language features distillation, recent works
adopt more efficient strategies for feature aggregation. For
instance, Dr.Splat [12] and Occam’s LGS [3] bypass inter-
mediate 2D supervision and clustering by directly injecting
language features into 3D Gaussians, achieving fast, accu-
rate results in a training-free regime. While these direct fea-
ture aggregation methods deliver strong runtime efficiency
and segmentation accuracy, they indiscriminately propagate
2D features to every Gaussian intersected by each camera
ray, disregarding scene geometry and occlusion. As a re-
sult, features from foreground objects (e.g., a vase) are erro-
neously assigned to background elements (e.g., the table or
floor). Moreover, existing methods share two critical limi-
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Figure 2. Overview of VALA. The framework is shown on the left, with the orange and green blocks detailed on the right being our key
contributions: the visibility-aware feature lifting (orange, Section 4.1), and the robust multi-view aggregation (green, Section 4.2).

tations: (i) they assign equal supervision to all Gaussians
along a ray, ignoring each Gaussian’s marginal contribu-
tion to the rendered pixel, and (ii) they overlook the view-
dependent noise and inconsistency in 2D language features.
We address these issues with VALA, a robust and effi-
cient training-free framework that improves segmentation
through visibility-aware gating (for contribution-aligned su-
pervision) and robust multi-view aggregation.

3. Preliminaries

We briefly recall 3DGS [13] and how the features are as-
signed to a 3D Gaussian without iterative training.

3D Gaussian Primitives and Projection. A scene is
represented by a set of anisotropic Gaussians G = {g;} ¥,
with each Gaussian featured with g; = (w;, 2, ¢, 0:),
where p; € R? and 3; € R3*3 are the mean position and co-
variance matrix c; encodes appearance (e.g., RGB or spher-
ical harmonics coefficients), and o; € (0, 1] is a base opacity.

Images are rasterized by splatting the Gaussians from
near to far along the camera ray through pixel u, followed
by front-to-back a-blending the Gaussian contributions, as:

a;j(u) =1 —exp(0;p;(u)), (1
T(w =]._,(1-a;w), @)
C(u) = Zz a;(u) T;(u) ¢;(u), 3)

where p;(u) is the projected 2D Gaussian density in screen
space, with projected 2D mean f; and covariance X;, and

piw) = exp( — Su— @) = u- ). @
We denote the marginal contribution of g; to pixel u as

wi(u) = a;(u) T;(u). (5)

Language Features Assignment via Direct Aggrega-
tion. Recent works [3, 12] proposed to directly assign 2D
language features to 3D Gaussians via weighted feature ag-
gregation. To obtain training-free 3D language feature em-
beddings, Kim et al. [12] pool per-pixel weights w; (I, ),
defined as in Eq. (5), using segmentation masks M;(I,r):

wig = D o ML) wilr), (6)

where w;; associates Gaussian i-mask 7, and €27 is the pixel
domain of image /. The final CLIP embedding for each i is
a weighted average over the mask-level embeddings f;**P:

J
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Although this mask-based aggregation is a straightfor-

ward way to lift CLIP features into 3D, it has a mem-

ory footprint that scales quadratically with the scene com-

plexity. To overcome this limitation, we adopt Occam’s

LGS [3]’s probabilistic per-view aggregation strategy as our

baseline. [3] avoids explicit mask representations and dense

weight storage, maintaining semantic consistency across
views. So, the 3D feature f; for Gaussian ¢ becomes:

S £S
ZSES,L' w; f;
Yies, Wi
SES; Tt
where S; is the views set where Gaussian ¢ is visible, w;

is the marginal contribution of 7 at its center projection in
view s, and f7 is the 2D feature at the corresponding pixel.

£, )

fi= ®)

4. Method

We aim to distill language features into 3DGS under visibil-
ity constraints, to get semantically rich and view-consistent
3D embeddings. Unlike existing approaches that indiscrim-
inately assign identical 2D features to all Gaussians along a



camera ray, leading to noisy supervision and cross-view in-
consistencies, with VALA, we assign only visible features.

Our pipeline is shown in Figure 2. Built on a direct
feature assignment method, VALA has two complemen-
tary components to improve the assignment of 2D vision-
language features to the 3D scene. First, we introduce a
visibility-aware attribution mechanism to selectively assign
language features to Gaussians based on their relevance in
the rendered scene (Section 4.1). Second, we propose a ro-
bust cross-view consolidation strategy aggregating per-view
features while suppressing inconsistent observations, yield-
ing coherent 3D semantic embeddings (Section 4.2).

4.1. Visibility-Aware Feature Lifting

Recent works explored lifting 2D language embeddings
into 3D space via differentiable rendering pipelines [3, 12].
However, existing approaches assign the same 2D language
feature to all Gaussians intersected by a given pixel ray, re-
gardless of each Gaussian’s actual contribution to the ren-
dered pixel. As illustrated in Figure 3, when an object O2
is occluded by another object O, the 2D language embed-
ding at that pixel primarily represents the semantics of O .
Nevertheless, a Gaussian gy belonging to O, may still be
incorrectly associated with the language feature f5 of O;.

This erroneous assignment occurs in both alpha-
blending-based language assignment methods [19, 27] and,
more prominently, in direct feature assignment methods [3,
12, 37]. As shown in Figure 3 (b—c), even though the trans-
mittance (Eq. (2)) decreases monotonically along the ray
from near to far—resulting in a very small transmittance
for go—its alpha value (Eq. (1)) can remain relatively large
in the far region. This, yields a non-negligible composit-
ing weight (Eq. (9)) for g2, which, according to Eq. (7) or
Eq. (8), contributes substantially to the final aggregated fea-
ture of go. Such unintended contributions introduce ambi-
guity into the 3D representation.

Recent works have introduced changes that indirectly af-
fect this assignment. Dr.Splat [12] selects the top-k Gaus-
sians along each ray, but this reduces computational costs
rather than ensuring the correct semantic allocation. VoteS-
plat [11] recognizes that distant Gaussians may suffer from
occlusion, but discards the compositing weights altogether
and instead averages the features of all intersected Gaus-
sians to generate 3D votes for the clustering step. While
they may tangentially bring improvements, they leave un-
solved the assignment problem described above and con-
tinue to propagate wrong features to background regions.

To overcome this limitation, we introduce a visibility-
aware gating mechanism, which selectively supervises only
the Gaussians along each ray that contribute to the pixel.
By leveraging per-ray visibility weights, our method filters
out occluded or low-contribution Gaussians before aggre-
gating the features, ensuring that only geometrically and
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Figure 3. Visibility-aware gating for semantic assignment (Sec-
tion 4.1). Simplified representation of a scene with two objects (a)
01, O3 and a camera ray r with Gaussians g1, g2. We compute the
opacity (b) and compute the transmittance front-to-back (c). Then
we calculate the contribution weights for each ray, thresholding
with 7 (d). Instead of propagating the features to all Gaussians as
prior works do, our gating only propagates to the visible ones (e).

photometrically relevant points receive semantic supervi-

sion. First, we clarify how we compute the per-ray weights.
Ray Notation and Marginal Contributions. Let r de-

note the camera ray through pixel u. For brevity, we write

T;(r) = T;(u),
w;i(r) = a;(r) T;(r).

a;i(r) = a;(u),

€))

where «;(r) encodes coverage (i.e., how much g; overlaps
the pixel), T;(r) transmittance (i.e., how much light reaches
g; after occlusion by nearer Gaussians), and w; (r) measures
how strongly g; influences the rendered sample along . We
name this as the Visibility of a Gaussian from a specific
view. Instead of assigning this feature to all Gaussians on
the ray r, we use a two-stage visibility-aware gate (VAG).
We aggregate the weights into a per-view visibility score

o = >, wilr). (10)

Stage A: Mass Coverage on the Thresholded Set. We
sort {w;(r)}; decreasingly, with the indices as (1), .. ., (k).
We then retain the shortest prefix that accounts for a target
fraction Tyiew € [0.5, 0.75] of the total visibility mass:

k
kl .« = min {k : ijl Wi > Tyiew Stsot}' (11)
To suppress numerical noise, we apply a small absolute
floor T,ps and define the candidate set as

géxass = {(1)7 cr (k;lass)} N {7’ Dw; > Tabs}- (12)



Stage B: Quantile-Constrained Truncation. Let 7; =
Quantile; _, ({w;};), we define K7 = [{i : w; > 7. }| and
instead of imposing a separate hard limit, we determine the
selection cap directly via the g-quantile as

ass? K§)7
glfeep - {(1)7 ceey (klteep)}'

Why Mass then Quantile? A fixed quantile alone
tightly controls cardinality but ignores how visibility mass
is distributed, and under heavy tails may discard essential
contributors. Conversely, mass coverage secures a target
fraction of visible content but can be liberal when scores are
flat. Our two-stage rule reconciles both: Stage A guaran-
tees coverage on the relevant (floored) set, while B imposes
a quantile-derived cardinality constraint K that stabilizes
scale across views. Practically, if K > k7 ., we keep the
mass-coverage set unchanged; otherwise we truncate it to
the top-K7 by w;. The gate is thus coverage-faithful, scale-
adaptive, and compute-bounded.

* o *
kkeep = mln(km

13)

4.2. Robust Multi-View Aggregation

SAM+CLIP preprocessing pipelines [27] yield crisp mask
boundaries and per-pixel open-vocabulary embeddings, but
their semantics are often viewpoint-dependent: changes
in viewpoint and occlusion induce noticeable drift across
views. To enforce multi-view consistency, several 3DGS-
based methods first form 3D-consistent clusters, typically
supervised with contrastive signals derived from SAM
masks, and then assign a language embedding to each clus-
ter [17, 19, 25, 37]. While this decoupled clustering can im-
prove multi-view cross-view semantic consistency, it makes
the pipelines’ training multi-stage and thus prolongs the
training time. More critically, because clustering is still
driven by noisy, view-dependent 2D cues, it does not cor-
rect the root cause, namely, upstream semantic drift, which
can bias the clusters and ultimately degrade the accuracy of
the final language assignments.

To address this multi-view inconsistency at source, we
adopt geometric median [1, 20, 36] to robustly aggregate
multi-view features by minimizing the cosine distances in
feature space; unlike aggregation by weighted mean, it
dampens view-dependent outliers and semantic drift.

Weighted Euclidean Geometric Median. Using the
visibility weights defined in Eq. (9), the (weighted) geo-
metric median for g; is

z; = argmin, pa ZS w;(r) ||z — £7]|- (14)

Cosine-loss Median on the Unit Sphere. f(/,u) are
fo-normalized embeddings and thus angular consistency is
most relevant. Therefore, we constrain z; to the unit sphere
S9! and minimize a weighted cosine loss:

Z; = argml'nl‘sz:l ZS wl(r> (1 — ff—rz), (15)

Algorithm 1 Streaming cosine-loss median on S~ (Sec-
tion 4.2).

Require: Stream {(f;, w!)}7_, with f; € R4,
and w! > 0

1: Initialize z; o < fi,
2. fort=1,...,Tdo
3: d, « f, — (ftTZiﬂg) Zit
w;

Wi,t + wzt-
5 Z; t4+1 < NOI‘HI(ZZ‘#I + M df)
6: Wits1 < Wi + wf
7
8

ftH2 = 1’
Wi,O ~—0

> tangent direction

®

Ne < > streaming step size

: end for
: return z; < Z; T, W, « WLT

where w;(r) denotes the visibility weight of Gaussian g;
from view s, since r represents the view s. The Rieman-
nian (projected) gradient of /(f,z) = 1 — f 'z on S ! is
Vl = —[f — (£7z)z], the projection of f onto the tan-
gent space at z. Compared to the Euclidean formulation in
Eq. (14), this objective directly optimizes angular consen-
sus, circumventing the scale sensitivity of Euclidean dis-
tances in high dimensions, where norm variations dominate
over angular differences, and empirically leads to more sta-
ble 3D semantics (Table 3).

Constant-Memory Streaming Update. While effec-
tive, solving Eq. (15) with the classical Weiszfeld algorithm
requires repeated full-batch updates over all Gaussian fea-
tures, which scales linearly with the number of views and
becomes computationally prohibitive. To address this, we
adopt a constant-memory streaming scheme inspired by on-
line optimization [15]. Specifically, as detailed in Algo-
rithm 1, we maintain only the current estimate (z; ;, W ;),
where W ; is the cumulative visibility weight, and incorpo-
rate each new observation (f;, w!) via

Ziy41 = Norm(z;, + mw! [f — (£ 2i0) zie]), (16)
U W= Wi+t (D)
e = Wi,t —|—wf. s it+1 = Wit i

where Norm(x) = x/||x||2 ensures z;; € S~ ! at every
step. The direction f; — (f,” z;.)Z;+ corresponds to the
tangent component that increases cosine similarity, while
the adaptive step size 7, ensures each sample contributes
proportionally to its visibility. Under standard stochastic
approximation assumptions (bounded variance and dimin-
ishing step sizes), z;, converges to a stationary point of

Eq. (15) atrate O(1/y/W; ¢).
5. Experiments

5.1. Experimental setup

Datasets.



Mean Figurines Ramen Teatime Waldo_Kitchen

Method mloU mAcc mloU mAcc mloU mAcc mloU mAcc mloU mAcc
LERF [14] 37.4 73.6 38.6 75.0 28.2 62.0 45.0 84.8 379 72.7

= LEGaussian [30] 24.6 67.4 234 57.1 20.2 69.0 32.3 79.7 22.3 63.6
-% GOI [28] 42.0 59.2 23.9 44.6 33.7 56.3 55.8 67.8 54.5 68.2
% GAGS [24] 54.1 81.7 53.6 78.6 46.8 69.0 60.3 88.1 55.8 90.9
7 LangSplat [27] 514 84.3 44.7 80.4 51.2 73.2 65.1 88.1 44.5 95.5
a LangSplatV2 [18] 59.9 84.1 56.4 82.1 51.8 74.7 72.2 93.2 59.1 86.4
Occam’s LGS [3] 61.3 82.5 58.6 80.4 51.0 74.7 70.2 93.2 65.3 81.8
VALA [ours] 61.7 86.4 59.9 82.1 51.5 75.6 70.2 91.5 65.1 86.4
LangSplat [27] 10.35 13.64 7.27 10.71  10.05 9.86 14.38 20.34 9.71 9.09
LEGaussians [30] 16.21 2382 17.99 2321 1579 2676 1927 27.12 11.78 18.18

= OpenGaussian [37] 3836 5143 3929 5536 31.01 4225 6044 7627 2270 31.82
-% SuperGSeg [19] 3594 52.02 43.68 60.71 18.07 2394 5531 7797 26.71 45.45
% Dr.Splat [12] 4329 6430 5442 8036 2433 3521 5735 7797 37.05 63.64
= InstanceGaussian [17] 43.87 61.09 54.87 7321 2503 38.03 54.13 6949 4147 63.64
a CAGS [33] 50.79 69.62 60.85 82.14 3629 4648 6840 8644 37.62 63.64
VoteSplat [11] 50.10 67.38 @ 68.62 8571 3924 6197 6671 88.14 2584 33.68
Occam’s LGS [3] 4722 7484 5290 7857 3201 5492 61.02 9322 4295 7272
VALA [ours] 58.02 82.85 6038 8929 4541 6761 7061 88.14 5571 86.36

Table 1. Comparison on LERF-OVS (mloU / mAcc.). In 3D, results are taken from [11, 12, 19, 33, 37] and otherwise evaluated by us.

We evaluate on the two reference datasets for this task:
LERF-OVS [27] and ScanNet-v2 [5]. LERF-OVS is de-
rived from the LERF dataset of Kerr et al. [14], where
we evaluate open-vocabulary object selection in both 2D
and 3D. For the 2D evaluation, we follow the protocol of
LERF [14]. For the 3D evaluation, we follow OpenGaus-
sian [37]. On ScanNet, we evaluate 3D semantic segmen-
tation. All results in each table follow the same protocol.
Exhaustive details can be found in the Appendix.

Implementation Details. We generate SAM [15] masks
at subpart, part, and whole object granularities. We use
OpenCLIP ViT-B/16 [29] and the gsplat rasterizer [38].
We apply direct feature aggregation in the 512-dimensional
space following [3], combined with our proposed training-
free method. The entire process requires only 10 seconds to
one minute per scene (depending on scene scale), thanks to
our effective cross-view feature aggregation and streaming
updates at constant memory. For all experiments, we used
an NVIDIA RTX 4090 GPU.

5.2. Analysis on LeRF-OVS dataset

Table | compares ours with state-of-the-art works on LERF-
OVS in 2D and 3D. In 2D, per-view segmentation quality
projected from 3D is checked, while in 3D, we directly as-
sess multi-view consistent semantic reconstruction.
Quantitatives In 2D. Our method achieves the high-
est scores on both mloU and mAcc, slightly surpass-
ing the mloU of Occam’s LGS [3] and outperforming
LangSplatV2 [18]. This improvement is consistent across

diverse scenes, particularly in Figurines and Ramen, sug-
gesting that our visibility-aware attribution reduces per-ray
semantic noise without sacrificing fine-grained per-view ac-
curacy. While GAGS [24] and LangSplat [27] also deliver
competitive 2D scores, their performance drops with com-
plex occlusions (e.g., Ramen for GAGS), indicating that
their 2D-driven assignments do not fully mitigate cross-
view inconsistencies.

Quantitatives In 3D. The advantage of our method be-
comes more pronounced in 3D, with ours exceeding all
baselines by a notable margin. The second best, CAGS [33],
is a substantial 7.2 absolute mloU points behind. The
scene-level analysis reveals that our approach leads in Ra-
men, Teatime, and Waldo_Kitchen, and ranks second in Fig-
urines, behind VoteSplat [11] due to its specialized multi-
view voting. The gains are especially significant in large,
cluttered environments (Teatime, Waldo_Kitchen), where
our contribution-aware aggregation better preserves seman-
tics through severe occlusions.

The strong 3D consistency of our method contrasts with
approaches like LangSplat and LEGaussian [30], whose
high 2D accuracy does not translate to 3D performance,
likely due to their lack of explicit handling of per-ray con-
tribution and occlusion. Similarly, the post-hoc cluster-
ing methods OpenGaussian [37] and SuperGSeg [19] show
moderate 3D improvements but remain sensitive to the up-
stream semantic drift, limiting their robustness. Our perfor-
mance relative to Occam’s LGS (baseline) is noteworthy:
while both adopt streaming updates, our visibility-guided
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Figure 4. Qualitative 3D objects selections on LeRF-OVS [27]. We mark as failed those with low or zero IoU with the ground truth (red).

feature attribution yields much higher mIoU and mAcc in
3D, highlighting the effectiveness of improving the seman-
tic assignment at the feature aggregation stage rather than
solely relying on memory-efficient training.

Qualitatives in 3D. We show visual 3D results in Fig-
ure 4. Existing approaches, such as InstanceGaussian [17],
frequently fail by retrieving incorrect objects across multi-
ple scenes. This can be attributed to their reliance on ap-
pearance—semantic joint representations, which struggle to
distinguish small objects with visually similar appearances.
Clustering-based methods struggle with multiple nearby in-
stances. For example, querying for “knife”, OpenGaus-
sian [37] and InstanceGaussian [17] detect only one out of
five knives, whereas Dr.Splat [12] and Occam’s LGS [3]
identify all knives but produce indistinct boundaries. In
contrast, ours successfully localizes all knives with accu-
rate and sharp delineations. Our approach also demon-
strates robustness on challenging small-object queries, such
as “Kamaboko” and “egg” in the Ramen scene. These tar-
gets lie within a heavily cluttered context (a bowl of ramen),
making them particularly difficult to isolate. Competing
methods [12, 17, 37] fail to recognize these objects, while
Occam’s LGS correctly retrieves them but with blurred con-
tours. By comparison, ours produces precise boundaries
and accurately captures fine object structures. Similar im-

19 classes 15 classes 10 classes
Method mloU mAcc mloU mAcc mloU mAcc
LangSplat [14] 245 859 345 1321 648 21.89
OpenGaussian [37] 27.73 42.01 29.67 46.15 39.93 57.34
Dr. Splat [12] 29.31 47.68 33.25 54.33 44.19 65.19
Occam’s LGS [3] 31.93 4893 34.25 53.71 45.16 64.39
VALA [ours] 32.11 50.05 35.10 54.77 46.21 65.61

Table 2. Open-vocabulary 3D semantic segmentation task on the
ScanNet-v2 dataset [5] across different amounts of classes.

provements are observed in the “Spatula” query, further
illustrating that our visibility-aware gating not only miti-
gates occlusion effects but also enables the recovery of fine-
grained details in complex scenes.

5.3. 3D Semantic Segmentation on ScanNet

Quantitatives. As reported in Table 2, our method achieves
the best performance across all evaluation settings, includ-
ing the most challenging 19-class scenario. Compared to
Occam’s LGS [3], our contribution-aware aggregation is ad-
vantageous, demonstrating its ability to handle fine-grained
class distributions. While Dr.Splat [12] attains competi-
tive accuracy in reduced-category settings, it lags notably
in mloU, indicating weaker spatial consistency. These re-
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Figure 5. Qualitative results of 3D semantic segmentation with 19 classes on the ScanNet-v2 dataset [5].

sults confirm that our method achieves robust and precise
3D segmentation across varying label granularities.

Qualitatives. Qualitative comparisons are presented in
Figure 5. In the large and complex second room, our
method accurately predicts the wall behind the bed (bed in
orange), a structure often misclassified by others. In the
smaller but more occluded third scene, our method also
demonstrates superior 3D segmentation, better capturing
challenging objects such as the central table. This ability
to recover occluded and fine-scale geometry is particularly
beneficial for downstream applications such as 3D object lo-
calization. Overall, the qualitative results support the quan-
titative improvements, highlighting both the robustness and
effectiveness of our proposed framework.

5.4. Ablation Study

We conduct an ablation study on LeRF-OVS [27], averag-
ing the metrics over all scenes. Table 3 disentangles the con-
tributions of our main components, namely visibility-aware
gating and cosine-based geometric median. Starting from
the baseline Occam’s LGS [3], replacing the naive weighted
mean with our cosine median (b) already improves perfor-

Ref. Stage A Stage B Median mloU mAcc
O.LGS [3] 4722  74.86
(b) cosine  49.03  80.08
(c) v cosine  57.24  81.25
(d) v cosine  55.21  80.37
VALA v v cosine  58.02 82.85
®) v v 5229  76.17
(2) v v L1 56.03 8242

Table 3. Ablation on LeRF-OVS. First row is Occam’s LGS [3],
i.e., our baseline. Stages from Section 4.1, Median from 4.2. All
rows share the same data, rasterizer, and hyperparameters.

mance, highlighting the advantage of robust aggregation in
the embedding space. Incorporating visibility-aware gat-
ing further boosts results (c-d), where mass-coverage plus
threshold gating (c) yields the strongest individual gain,
while quantile pruning (d) provides complementary bene-
fits. We also observe that our gating alone (f) is less ef-
fective compared to gating along with our robust median
(VALA), showing that the precise aggregation is critical to
fully exploit visibility cues. Lastly, we compare cosine and
L1 (g) as median, with the former delivering superior re-
sults. Our full model (VALA) achieves the best overall per-
formance, validating that both visibility-aware gating and
cosine-based median aggregation are important for an ac-
curate and view-consistent 2D-3D language lifting.

We refer to the Supplementary Material for additional
details and results.

6. Conclusion

We introduced VALA, an efficient and effective method to
address two fundamental problems in the feature aggrega-
tion of open-vocabulary recognition in 3DGS, namely (i)
the propagation of 2D features to all Gaussians along a
camera ray, and (ii) the multi-view inconsistency of seman-
tic features. VALA tackles (i) with a visibility-aware dis-
tillation of language features based on a two-stage gating
mechanism, and (ii) with a cosine variant of the geomet-
ric median, updating the features via streaming to keep the
memory footprint low. These innovations ensure more ap-
propriate features are assigned to the 3D Gaussians, ulti-
mately leading to superior performance in open-vocabulary
segmentation. Remarkably, the proposed VALA achieves
state-of-the-art performance on 2D and 3D tasks on the ref-
erence datasets LeRF-OVS and ScanNet-v2.
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Visibility-Aware Language Aggregation
for Open-Vocabulary Segmentation in 3D Gaussian Splatting

Supplementary Material

In this supplementary material, we provide additional
details omitted from the main manuscript. Sec. A describes
the implementation details and the 3D tasks under evalu-
ation. Sec. B outlines the experimental setup and the 3D
semantic segmentation evaluation protocol on 3D Gaussian
Splatting. Sec. C further presents a robustness study, where
we stress-test our method under corrupted SAM masks to
assess performance degradation in noisy segmentation sce-
narios. while Sec. D presents qualitative results, annotation
analyses, and city-scale evaluations. Finally, Sec. E dis-
cusses limitations and future directions.

A. Implementation Details

Our method operates in two stages. In the pre-training
stage, we apply the ViT-H variant of SAM [15] to seg-
ment each image. Multi-level language feature maps are
then extracted with OpenCLIP ViT-B/16 [29], from which
we derive per-patch language embeddings. In parallel, we
optimize the 3D Gaussian Splatting parameters [13] using
the standard training pipeline with the gsplat rasterizer [38],
running 30k iterations. Unlike the original rasterizer, gsplat
natively supports rendering high-dimensional Gaussian at-
tributes, which enables evaluation on 2D open-vocabulary
tasks.

In the subsequent forward-rendering stage, we adopt
the feature aggregation strategy of Occam’s LGS [3]. For
each Gaussian within the view frustum, we compute its
center-projected pixel location and extract the correspond-
ing 2D language feature f. Simultaneously, we record its
marginal contribution w; (r) as defined in Eq. (9), and retain
the most visible Gaussians following the gating strategy in
Sec. 4.1. The selected Gaussians are then robustly aligned
with multi-view features through our streaming aggregation
in cosine space, described in Sec. 4.2.

This entire process completes within 10 seconds to one
minute per scene (depending on scene scale) without mem-
ory overflow. All experiments are conducted on an NVIDIA
RTX 4090 GPU.

B. Evaluation Protocols

We only compare results following the same evaluation pro-
tocol and re-evaluate those prior works that followed other
protocols.

Datasets We evaluate our method on two datasets:
LERF-OVS [27] and ScanNet [5]. LERF-OVS consists
of four scenes (teatime, waldo_kitchen, figurines, ramen),

each annotated with pixel-wise semantic masks and paired
with short text queries. On this dataset, we assess open-
vocabulary object selection in both 2D and 3D. To further
evaluate 3D semantic segmentation, we adopt a Gaussian-
based evaluation protocol on ScanNet, a large-scale RGB-D
dataset for indoor scene understanding. Each ScanNet se-
quence is reconstructed into a textured 3D mesh with glob-
ally aligned camera poses and semantic annotations. We
select eight representative scenes covering diverse indoor
environments, including living rooms, bathrooms, kitchens,
bedrooms, and meeting rooms.

2D and 3D Evaluation on the LERF-OVS Dataset.
For the 2D evaluation, we follow the protocol of LERF [14]:
512-dimensional feature maps are rendered, and a relevancy
map with respect to the CLIP-embedded text query is com-
puted. The relevancy map is then thresholded at 0.5 to ob-
tain the predicted binary mask. For the 3D evaluation, we
adopt the protocol of OpenGaussian [37], where the rele-
vancy score between each 3D Gaussian’s language embed-
ding and the text query embedding is computed and thresh-
olded at 0.6. The alpha values of the selected Gaussians
are subsequently projected onto the image plane to gener-
ate the predicted mask. In both cases, the predicted masks
are compared against the GT annotations of the LERF-OVS
dataset.

3D Semantic Segmentation on the ScanNet-v2
Dataset. Previous protocols [37] freeze the input point
cloud during evaluation, which reduces rendering fidelity.
Inspired by Dr.Splat [12], we instead propagate ground-
truth (GT) labels from the annotated point cloud to the
Gaussians, thereby obtaining pseudo-GT labels at each
Gaussian’s 3D mean. Following OpenGaussian [37], we
evaluate on subsets of 19, 15, and 10 of the 40 most com-
mon classes. For each class, we encode the text label us-
ing CLIP [29] to obtain a 512-dimensional embedding, and
compute its cosine similarity with the registered language
features of each Gaussian. Each Gaussian is then assigned
to the class with the highest similarity score. Performance is
measured in terms of mloU and mAcc against the pseudo-
GT Gaussian point cloud.

Pseudo-Gaussian Labeling. Previous works on 3D seman-
tic segmentation typically freeze the input point cloud (de-
rived from ground-truth annotations) during 3D Gaussian
Splatting training to cope with the absence of GT labels as
the point clouds evolve. However, this strategy degrades the
2D rendering quality of 3DGS. Inspired by Kim et al. [12],
we instead first train 3D Gaussian Splatting without restric-



tions and subsequently propagate labels from the ground-
truth point cloud to the optimized Gaussians, explicitly ac-
counting for their scales and rotations.

Given optimized Gaussians © = {6;}Y, with center
Wi, scale s; = (Siz, Siy, Siz), rotation R; (hence ¥; =
R; diag(s?) R;), and opacity «;, and a labeled point cloud
{(pks spk)}gzl, we assign a semantic label to each Gaus-
sian by respecting the true 3DGS geometry and the com-
positing kernel. In contrast to prior protocols, which (i)
maximize the sum of Mahalanobis distances over class
points to assign a single label, and (ii) require dense all-
pairs computations, our approach assigns semantic labels by
respecting the true 3DGS geometry and properties. Specif-
ically, we evaluate the density contribution of a point p to
Gaussian ;:

wi(p) = exp(—% d3(p)) , (18)

where d?(p) denotes the squared Mahalanobis distance.

Since boundary Gaussians may be partially transparent
or occupy negligible volume, we further modulate the votes
with a per-Gaussian significance term:

wi(p) « viwi(p). (19)

This ensures consistency with the volume-aware IoU met-
ric, which weights Gaussians by both opacity and ellipsoid
volume.

Finally, instead of constructing an N x @ all-pairs dis-
tance matrix, we build a per-Gaussian candidate set K; via
spatial culling with an adaptive radius

Vi = QG SixSiySiz,

radius; = T - max(s;),

with a top-k fallback to handle sparse neighborhoods. We
then compute d?(-) only for pr € K;, processing Gaus-
sians in GPU-friendly chunks. This reduces the complex-
ity from O(NQ) to O(}_, | K;|) and the memory footprint
from O(N Q) to O(| K|), while retaining only geometrically
plausible candidates under each anisotropic ellipsoid. The
generated Gaussian point clouds with pseudo GT labels are
illustrated in Figure 5 and Figure 7 (the second column from
left to right).

C. Robustness Evaluation with Perturbed
Masks

To evaluate robustness against segmentation noise, we per-
form an experiment on the teatime scene of LERF-OVS by
simulating errors in SAM masks.

Stress-Testing Robustness with Corrupted Masks. To
stress-test robustness against imperfect proposals, we cor-
rupt each SAM mask by a per-mask morphological pertur-
bation applied at the original image resolution. Let m; €
{0,1}7xW denote the binary mask of instance k, and let

B, ={(z,y) €Z®: 2 +y* <r}
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Figure 6. Robustness under mask boundary corruptions.

mloU/mAcc (%) are shown on the left y-axis; Disp (lower is bet-
ter) on the right y-axis. We vary the erosion/dilation radius r (pix-
els). VALA degrades more slowly than Occam’s and its ablation
without gating (VALA w/o G), while achieving lower Disp across
severities.

be a disk-shaped structuring element of radius r pixels,
where r € 5,10, 15,20, 25, 30, to simulate different per-
turbation levels.

For every mask we draw an independent sign variable
or € {—1,+1} with equal probability P(o, = +1) =
P(o1, = —1) = 0.5. The corrupted mask 7y, is then

my © B,., ifop = —1 (erosion),
my =

mg ® B, ifop=+1 (dilation),
where © and & denote morphological erosion and dilation,
respectively.

To prevent degenerate outcomes on small objects, we en-
force a non-vanishing guard: if erosion yields an empty or
tiny region (area below a minimum threshold 7,;,, pixels),
we fallback to dilation and set mj; < my @ B,. After
corruption, we recompute tight bounding boxes from my
and propagate them to downstream steps (e.g., cropping and
224 x 224 resizing for CLIP feature extraction).

This perturbation stochastically shifts boundaries out-
ward/inward by approximately r pixels while preserv-
ing instance identity, thereby simulating over- and under-
segmentation errors commonly observed in practice.

Evaluation Protocal. To assess the robustness of the
proposed streaming median in the cosine space, we com-
pare three variants: the baseline Occam’s LGS [3], our full
model incorporating both visibility-aware gating and robust
multi-view aggregation (VALA), and an ablation variant
with only the robust multi-view aggregation module (VALA
w/o G). In addition to the standard mIloU and mAcc metrics
for evaluating the final 3D object selection task, we further
introduce the dispersion score, which specifically quantifies
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Figure 7. More qualitative results of 3D semantic segmentation on the ScanNet-v2 dataset [5],

the robustness of assigned language features under multi-
view variations. Given a Gaussian g; with observed unit
features ff € S9!, the per-Gaussian dispersion is com-
puted as

n

Disp; = |1' > (1-imen), o)

i (i,8)ES;

At the scene level, we report the average:

. 1 .
Dlspscene = Z Dlspia (21)

5=

This metric captures the average misalignment between ob-
served features and the aggregated Gaussian feature, where
lower values indicate higher consistency.

Results Analysis. The results are presented in Figure 6.
As the corruption radius increases from r = 5 to 30 px, all
methods show a monotonic decline in mloU/mAcc and a
corresponding rise in Disp, confirming that boundary noise
simultaneously degrades semantic accuracy and cross-view
consistency. Importantly, the deterioration is substantially
slower for our methods than for Occam’s LGS, as reflected
by the smaller slope of Disp. In terms of accuracy, VALA
achieves the strongest results: at » = 5, it surpasses Oc-
cam’s by +12.8 mloU and +17.0 mAcc, with substantial
gains still observed at 7 = 10. Meanwhile, the Disp val-
ues reveal a complementary trend—although VALA’s Disp
is marginally higher than Occam’s at r = 5, it drops below
Occam’s from » = 10 onwards. This demonstrates that the
combination of visibility-aware gating and robust aggrega-
tion not only improves accuracy but also enhances multi-
view consistency in the practically relevant regime of mild
mask noise.

When boundary damage becomes severe, however, the
picture changes. VALA (w/o G) overtakes the full VALA
model in accuracy (e.g., at r = 30, achieving 9.95/15.25 vs.
6.75/1.69 in mloU/mAcc) and consistently yields the low-
est Disp across all radii. This suggests that the fixed gat-
ing threshold becomes overly conservative under extreme
corruption, discarding too many observations and leaving
insufficient evidence for many Gaussians. In contrast, the
cosine-median aggregator alone remains robust, preserv-
ing both accuracy and consistency in this challenging set-
ting. Overall, these results highlight a clear regime split:
visibility-aware gating combined with a cosine median pro-
vides the strongest accuracy and consistency under realistic
(mild—moderate) noise, whereas under extreme boundary
corruption, robust aggregation is the key factor as overly
strict gating thresholds reduce coverage and hurt perfor-
mance.

D. Additional Results

In this section, we present additional results on the ScanNet
dataset and, more importantly, demonstrate that our algo-
rithm can be applied to real-world outdoor datasets, achiev-
ing superior open-vocabulary semantic segmentation in au-
tonomous driving scenarios.

More Qualitative Results on the ScanNet Dataset.
We provide additional qualitative results on three bedroom
scenes with varying levels of complexity and clutter. Across
all scenes, competing methods struggle to correctly recog-
nize the bed (highlighted in orange): the occluded portions
near the wall are consistently misclassified as adjacent cat-
egories such as wall or floor. This issue persists in the third
scene, where the bed is fragmented into multiple categories.
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Figure 8. Qualitative results on the Waymo Open Dataset [32]. The colored regions indicate the activation maps corresponding to the

given text prompts.

In contrast, our method preserves the bed as a coherent in-
stance, owing to the proposed gating module that explicitly
handles low-visibility Gaussians.

Experiments on the Waymo Open Dataset. To further
validate our algorithm’s generalization capability in real-
world outdoor environments, we conduct experiments on
the Waymo Open Dataset [32]. This dataset is a large-
scale, high-quality autonomous driving benchmark that pro-
vides synchronized LiDAR and multi-camera data collected
across diverse urban and suburban geographies, along with
comprehensive 2D/3D annotations and tracking identifiers.
For evaluation, we select a sequence captured in a residen-
tial neighborhood, which contains rich semantic elements
such as vehicles, vegetation, street infrastructure, and build-
ings. We focus on five of the most common outdoor cate-
gories—tree, trash bin, car, streetlight, and house—as well
as one tail category, stair. The qualitative results in Fig-
ure 8 demonstrate that our method achieves precise open-
vocabulary 3D semantic segmentation on outdoor data.
Both small-scale objects (e.g., trash bins and streetlights)
and large-scale objects (e.g., trees, cars, and houses) are
not only correctly retrieved but also segmented with sharp
boundaries, reflecting the accurate registration of language
features on the 3D Gaussian Splatting representation. No-
tably, our method remains robust under occlusion—for ex-
ample, correctly delineating trees behind metallic structures
or houses partially obscured by vegetation—owing to the
proposed visibility-aware gating module.

These findings emphasize the robustness and versatil-

ity of our method when transferred from indoor (ScanNet)
to challenging outdoor driving scenarios, underscoring its
strong potential for real-world autonomous driving applica-
tions. A supplementary video is included to further demon-
strate the effectiveness and the multi-view consistency of
our method.

E. Limitations

While our approach demonstrates strong performance
across multiple tasks, including 2D and 3D object selec-
tion as well as 3D semantic segmentation, and exhibits no-
table generalization to cross-domain settings such as out-
door datasets, certain limitations remain. To assess ro-
bustness against noisy SAM masks, we conducted stress
tests with multi-scale morphological perturbations. The re-
sults show that our visibility-aware gating achieves superior
mloU and mAcc under moderate noise, while the proposed
cosine median maintains low dispersion even under severe
corruption, indicating the effectiveness of our robust fea-
ture aggregator. However, our current framework relies on
a fixed threshold to prune Gaussians, which may become
over-conservative under extreme noise, leading to degraded
multi-view consistency. Moreover, our method is designed
for static scenes and does not extend naturally to dynamic
environments. Future work will therefore focus on devel-
oping adaptive, scene-aware thresholds and extending our
framework to handle dynamic scenes.
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