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Abstract
In Federated Learning a global model is learned
by aggregating model updates computed at a set
of independent client nodes. To reduce communi-
cation costs, multiple gradient steps are performed
at each node prior to aggregation. A key challenge
in this setting is data heterogeneity across clients
resulting in differing local objectives which can
lead clients to overly minimize their own local
objective, diverging from the global solution. We
show that individual client models experience a
catastrophic forgetting with respect to data from
other clients and propose an efficient approach
that modifies the cross-entropy objective on a per-
client basis by re-weighting the softmax logits
prior to computing the loss. This approach shields
classes outside a client’s label set from abrupt
representation change and we empirically demon-
strate it can alleviate client forgetting and provide
consistent improvements to standard federated
learning algorithms. Our method is particularly
beneficial under the most challenging federated
learning settings where data heterogeneity is high
and client participation in each round is low.

1. Introduction
Federated Learning (FL) is a distributed machine learning
paradigm in which a shared global model is learned from
a decentralized set of data located at a number of indepen-
dent client nodes (McMahan et al., 2017; Konečnỳ et al.,
2016). Driven by communication constraints, FL algorithms
typically perform a number of local gradient update steps
before synchronizing with the global model. Under realistic
settings, client data will often have non-i.i.d. distributions
and such data heterogeneity across clients has direct impli-
cations on convergence and performance of FL algorithms
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Figure 1. Illustration of catastrophic forgetting within client
rounds. A global model with knowledge of all classes is sent
to all clients participating in a given FL round. Local training
increases the client model performance on the client’s local dis-
tribution but tends to simultaneously decrease performance with
respect other clients distributions which leads to poor aggregation
and overall model performance.

(Zhao et al., 2018). For supervised multi-class classification,
users may possess no data whatsoever from one or several
classes present in the underlying global distribution. Data in-
homogeneity across clients frequently induces client drift,
a phenomenon in which clients progress too far towards
optimizing their own local objective, leading to a solution
that has severely "drifted" from an optimal global solution
(Karimireddy et al., 2020).

In continual learning (CL), a model is trained on a number
of tasks sequentially and the learner needs to learn each
new task without forgetting knowledge obtained from the
preceding tasks, a phenomenon termed catastrophic forget-
ting. (McCloskey & Cohen, 1989). Similar to FL, data
heterogeneity in CL is challenging since different tasks
typically contain data drawn from different underlying dis-
tributions and we are able to draw a connection between
the catastrophic forgetting problem in CL and the client
drift problem in FL. Consider one round of FL in which K
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random clients are selected, initialized with a copy of the
current global model and perform a pre-determined num-
ber of local update steps optimizing the objective on their
local data. As local training proceeds, the model becomes
increasingly biased towards a given client and as discussed
in Lesort (2022); Gupta et al. (2022), this can cause client
models to rely on spurious correlations to improve their in-
distribution performance, thus creating a situation in which
local models experience catastrophic forgetting with respect
to data of the other clients. Naturally, aggregating models
that have deviated from a joint solution will lead to degraded
results with respect to the global objective. We denote this
problem as local client forgetting and direct the reader to
figure 1 which illustrates its effects within a round of fed-
erated learning. We hypothesize that reducing local client
forgetting will moderate the decrease in performance with
respect to other clients data at individual client models thus
increasing the ability of local models to generalize to the
data distributions of other clients.This increased ability to
generalize should improve the loss of individual models
over the combined data and we therefore propose to reduce
client drift by tackling local client forgetting.

There are numerous approaches to tackle catastrophic for-
getting in the continual learning literature (Kirkpatrick et al.,
2017; Li & Hoiem, 2017; Chaudhry et al., 2019; Schwarz
et al., 2018; Davari et al., 2022); however, many of these are
impractical in the FL setting. Experience Replay methods
(Chaudhry et al., 2019) require access to other clients’ data,
violating data communication constraints of FL. Similarly,
many regularization methods such as elastic weight consoli-
dation (EWC) Kirkpatrick et al. (2017) require communi-
cating additional information and can additionally require
many steps to converge due to the additional conflicting
objectives (Aljundi et al., 2019). For the supervised contin-
ual learning setting, Caccia et al. (2022); Ahn et al. (2021)
proposed a modification of the standard cross entropy (CE)
objective function that truncates the softmax denominator,
removing terms corresponding to classes from old tasks. A
variant of this method inspired by the long-tailed recogni-
tion methods (Ren et al., 2020) was also recently introduced
in Jodelet et al. (2022). This simple approach mitigates
catastrophic forgetting by reducing the bias on the model
to avoid predicting old classes. Inspired by the parallels
between client drift in FL and catastrophic forgetting in CL,
we propose an adaptation of the CL method from Caccia
et al. (2022); Ahn et al. (2021); Jodelet et al. (2022) to
modify the loss function of each client based on its class
distribution using a re-weighted softmax. We empirically
demonstrate this approach can drastically reduce client level
forgetting in the heterogeneous setting.

2. Background and Methods
In federated optimization, training data is distributed and
optimization occurs over K clients with each client k ∈

1, ...,K having data Xk drawn from distribution Dk. We
define nk = |Xk| and n =

∑K
k=1 nk for n samples. The

data Xk at each node may be drawn from different distri-
butions and/or may be unbalanced with some clients pos-
sessing more samples than others. The typical objective
function for federated optimization is given by equation 1
with L(w,Xk) measuring client k’s local objective, and
w representing the global parameters. In this work L is
restricted to cross entropy (CE) loss. A commonly used
federated optimization algorithm is FedAvg introduced in
McMahan et al. (2017).

min
w∈Rd

K∑
k=1

nk

n
L(w,Xk), (1)

Re-weighted Softmax Cross Entropy Consider a neural
network f : RD → RC where C is the total number of
classes. The standard cross entropy is given by equation 2
where y(x) is the label of x and C is the set of all classes
available to the clients.

LCE(Xk,w) = −
∑

x∈Xk

log
exp(fw(x)y(x))∑
c∈C exp(fw(x)c)

(2)

= −
∑

x∈Xk

[
fw(x)y(x) − log

(∑
c∈C

exp(fw(x)c
)]

(3)

One interpretation of this classical loss function considers
the two terms as a tightness term (the first term) which
brings samples close to their representative classes and a
contrast term (the second term) which pushes them apart
from other classes (Boudiaf et al., 2020). We note similar
loss functions can be interpreted from an energy modeling
view (Liu, 2020). We now modify the standard CE using the
re-weighted softmax (WSM) to give our per-client objective
function in Equation 4 where βk is a vector containing the
proportions of each class present in the client dataset and
βc ∈ βk is the proportion of label c present in the dataset.

LWSM (Xk,w) = −
∑

x∈Xk

[
fw(x)y(x) − log

(∑
c∈C

βc exp(fw(x)c)
)]

(4)

If we define Yk as the set of labels of samples Xk belonging
to client k then in equation 4 the weighting β introduced
in the second term is a function only of Yk as opposed
to the complete set of labels, Y in the cross entropy loss
from Equation 2. In a highly imbalanced class scenario com-
monly studied in FL, many βc will be zero very close to zero,
thus removing or substantially degrading the contribution
of that class to the contrast term. Optimizing LCE through
multiple gradient steps during a client round can lead to
a drastic increase in Ex,y∼Dj ̸=k

[lCE(x,y)], where Dj are
the distributions of clients other than client k, this occurs
because the contrast term encourages classes not present at
client k to never be predicted. WSM modifies the original
local objective function to avoid excessive pressure driving
up the loss of other client data, classes not present at client
k are ignored by the local optimization forcing the client to
learn by adapting the model’s internal representation of the
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classes present in its training data, rather than abruptly shift-
ing representations of classes outside its training set (Caccia
et al., 2022). We demonstrate this leads to a reduction in
local client forgetting. We note that at test time we use the
unweighted softmax as we train a global model that must
be able to perform inference on unseen data and clients.
Local client forgetting For a multi-class classification
problem, we denote the accuracy on a client k’s local test
data Acck(w), where w are the model parameters. Local
client forgetting is defined according to Eq. 5 where wi

t

refers to the model of client i at round t after it has com-
pleted local training (prior to aggregation) and wt−1 is the
global model (after aggregation) at the end of round t− 1.

Fki = Acck(wt−1)−Acck(w
i
t) (5)

.We define an average forgetting for a client k’s model ac-
cording to equation 6

Fk =
1

K − 1

∑
i̸=k

Fki (6)

3. Experiments
In this section, we present the empirical results analyzing
local client forgetting and our WSM approach. Section 4
contains additional experiments in which we ablate different
FL settings and Appendix A shows the effect of using a
different model architecture, LeNet (LeCun et al., 1998).

We utilize CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,
2009) and FEMNIST (Caldas et al., 2018) datasets in our ex-
periments, our primary setting considers 100 clients where
each client possesses their own training and validation sets
according to their own unique distribution. To facilitate this,
the entire training set is separated into equally sized non-i.i.d.
partitions using the Dirichlet distribution parameterized by
α = 0.1(Hsu et al., 2019).

We follow the experimental settings of Reddi et al. (2020).
Clients are sampled without replacement for each round but
can be selected again in subsequent rounds. The fraction
of clients sampled is 10% for CIFAR-10 and FEMNIST
datasets and 2% for CIFAR-100. Our primary evaluations
train a ResNet-18 over 4000 communication rounds for 3 lo-
cal epochs, using a mini-batch of size 64 and a learning rate
of 0.05 for CIFAR-10 and CIFAR-100. FEMNIST, which
converges faster due to its large size, is trained for 3000
rounds with all other settings the same as for the CIFAR
datasets. We use SGD as our optimizer, with weight decay
of 1× 10−4 following Yao et al. (2021); Hsu et al. (2019).
In these experiments, we observe that FedAvg often (though
not always) performs better with group normalization as
indicated by Hsieh et al. (2020) while FedAvg+WSM is
able to perform well with both group and batch normaliza-
tion, very frequently achieving the best results with batch
normalization. We therefore treat the normalization method
as a hyper-parameter and provide the best result obtained
out of both batch and group normalization for both methods

at each learning rate.

Forgetting During a Federated Round In Figure 2 we
show plots of forgetting throughout the training process
for each federated algorithm evaluated. We observe that
on average forgetting is high in FedAVG and is substan-
tially reduced especially at the end of training when WSM
is applied. The FedProx, FedNova and SCAFFOLD algo-
rithms were all developed to address the challenge of data
heterogenaity in FL and each of them demonstrate improved
forgetting scores with the application of WSM indicating
that it can indeed benefit algorithms already developed to
address the client heterogeneity problem. Overall our re-
sults show WSM has the ability to greatly limit the effects
of local client forgetting by ignoring classes outside of a
client’s distribution and focusing learning on the classes
present. We demonstrate in section 3 that this narrower
focus leads to better overall performance after aggregation.
These observations are further supported by the forgetting
heatmaps provided in Appendix E which show per client
forgetting when evaluated on the datasets of other clients
participating in a given training round. Having shown that
WSM can reduce the local client forgetting, we now study
its effect on the aggregated models.

Evaluation of WSM In this section we demonstrate how
WSM used in combination with FedAvg can improve model
performance and convergence. Table 1 shows model per-
formance across a range of learning rates for CIFAR-10,
CIFAR-100, and FEMNIST datasets. The reported values
are the average across three seeds with the standard devi-
ation following in brackets. The best preforming model
for each learning rate is shown in bold and the best overall
result for each dataset is indicated by a green (red) box for
WSM (FedAvg). Table 1 demonstrates that WSM substan-
tially improves performance for both CIFAR datasets with
a 2.2% and 1.3% improvement for CIFAR-10 and CIFAR-
100, respectively. For FEMNIST dataset the results show
the best performing models are within statistical error of
one another. We do however observe strong results using
WSM with higher learning rates under which regime we
are able to obtain faster convergence. WSM also makes the
hyper-parameters easier to tune since it performs well over
a large range of learning rates. For example, learning rates
between 0.03 and 0.1 for FedAvg+WSM have remarkably
steady performance between 85.5% and 85.7% while we
observe no such consistent performance for FedAvg.

WSM for Heterogenous FL methods We now demon-
strate the effectiveness of WSM over a range of FL algo-
rithms. In Table 2 we show the results of applying WSM
to SCAFFOLD, Fed Nova and FedProx. SCAFFOLD and
FedProx are optimization based methods specifically de-
signed to address the problem of data heterogeneity and
Fed Nova too is designed to improve performance on het-
erogeneous data. In these experiments we use 30 clients
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Figure 2. Average forgetting (Fk) for selected rounds of training We observe high forgetting for FedAvg (left) which is substantially
reduced by applying WSM, especially towards the end of training. FedNova (center left) and FedProx (center right) exhibit less forgetting
than FedAvg but still benefit substantially from the application on WSM. SCAFFOLD (right) seems to benefit the most from the application
of WSM. Indeed, we observe that WSM produces levels of forgetting close to zero throughout training.

Table 1. Accuracy results of FedAvg with and without WSM for
different hyper-parameters.

Method Dataset
lr CIFAR-10 CIFAR-100 FEMNIST

FEDAVG 0.5 0.326(0.098) 0.292(0.012) 0.542(0.087)
FEDAVG+WSM 0.792(0.006) 0.426(0.003) 0.837(0.002)
FEDAVG 0.3 0.791(0.013) 0.384(0.013) 0.769(0.006)
FEDAVG+WSM 0.834(0.008) 0.467(0.015) 0.844(0.010)

FEDAVG 0.1 0.724(0.027) 0.500(0.016) 0.835(0.002)

FEDAVG+WSM 0.855(0.004) 0.514(0.009) 0.848(0.006)

FEDAVG 0.07 0.826(0.007) 0.437(0.007) 0.827(0.006)
FEDAVG+WSM 0.856(0.005) 0.553(0.018) 0.826(0.019)

FEDAVG 0.05 0.827(0.004) 0.464(0.001) 0.853(0.004)

FEDAVG+WSM 0.858(0.003) 0.564(0.007) 0.842(0.005)

FEDAVG 0.03 0.836(0.005) 0.431(0.020) 0.835(0.006)

FEDAVG+WSM 0.857(0.005) 0.581(0.005) 0.834(0.003)

FEDAVG 0.01 0.815(0.003) 0.431(0.005) 0.830(0.002)
FEDAVG+WSM 0.845(0.006) 0.574(0.006) 0.800(0.019)
FEDAVG 0.007 0.817(0.007) 0.426(0.005) 0.821(0.011)
FEDAVG+WSM 0.841(0.004) 0.568(0.003) 0.800(0.007)
FEDAVG 0.005 0.802(0.010) 0.426(0.002) 0.819(0.022)
FEDAVG+WSM 0.826(0.009) 0.554(0.004) 0.773(0.013)

Table 2. Accuracy results of FedAvg , SCAFFOLD, FedNova, and
FedProx with and without WSM.

Method CIFAR-10 CIFAR-100

FEDAVG 0.800(0.033) 0.494(0.008)
FEDAVG+WSM 0.864(0.008) 0.640(0.002)

SCAFFOLD 0.794(0.033) 0.532(0.003)
SCAFFOLD+WSM 0.812(0.012) 0.572(0.028)

FEDNOVA 0.780(0.010) 0.500(0.005)
FEDNOVA+WSM 0.789(0.13) 0.575(0.002)

FEDPROX 0.776(0.028) 0.487(0.10)
FEDPROX+WSM 0.818(0.023) 0.562(0.005)

and train the models over only 2000 rounds, since some
of these algorithms have a high overhead and many hyper-
parameters to search. We keep the same local batch size
of 64 and 3 local iterations from the base case. Combining
each of the methods with WSM we confirm our hypothesis
that mitigating local client forgetting via WSM provides
improvement over the base cases for each method and in
most cases this improvement is substantial. Our results
show that even for algorithms already partially addressing
the heterogeneity problem WSM can provide benefits. We
also observe that combining WSM with FedAvg provides
the best overall results in Table 2. This suggests that algo-

Figure 3. Convergence plots of different algorithms with and with-
out WSM. We observe that WSM variants lead to substantially
better convergence for all compared methods.
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rithms based on constrained optimization, e.g. SCAFFOLD,
may over constrain the improvement possible over a given
round. Additionally, we remark that combining WSM with a
baseline method generally provides a stronger performance
from the very beginning of training since both CIFAR-10
and CIFAR-100 curves in Figure 3 showing the training
progression for methods combined with WSM all start off
with higher reported accuracy than their FedAvg only coun-
terparts and this improvement persists for the duration of
training. Work on critical learning periods, where critical
learning periods are defined as the early epochs of a training
regime, have shown they can determine the final quality
of a deep neural network for traditional ML methods (Jas-
trzębski et al., 2018; Achille et al., 2017). Yan et al. (2021)
investigate critical learning periods in the FL setting and
discover they do indeed exist consistently in FL. We can
thus hypothesize that the early training advantage we see
when applying WSM may be having a positive impact on
its consistent ability to outperform other FL algorithms.
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Figure 4. Ablation plots of data heterogeneity, local iterations and the fraction of clients selected at each round. WSM provides
performance increases under most of the conditions with the most significant advantages provided for very heterogeneous data distributions
and smaller fractions of client participation.

4. Ablations
We now further study the behavior of WSM in combination
with FedAvg under different FL settings where we ablate
one setting at a time. Except where we specify the value
of the parameter being ablated, hyper-parameters for the
ablation studies are the same as for our base case described
in section 3. We will show that WSM is particularly advan-
tageous when α is low (high heterogeneity) and when few
clients are selected to participate in each FL round.

Parameter α of the Dirichlet Distribution The Dirichlet
distribution is parameterized by α, as α → 0 client distribu-
tions become increasingly heterogeneous and as α → ∞,
each client data edges closer towards the same i.i.d. dis-
tribution. We refer the reader to section D.1 where we
illustrate how label distributions change as a function of
α. Figure 4 shows how data heterogeneity affects model
performance and highlights the increasingly significant ef-
fect WSM has as α decreases. The largest margin of im-
provement over FedAvg occurs when α = 0.01 (our most
heterogeneous setting) since as the data becomes increas-
ingly homogeneous the gap between cross entropy with and
without WSM shrinks as the distribution approaches i.i.d.
and the two methods are equivalent. While WSM continues
to offer a performance increase over the entire range of α ex-
cept for α = 100, we conclude WSM is most advantageous
when clients labels distributions are imbalanced.

Fraction of Participating Clients These experiments fo-
cus on the fraction, p of clients participating in each update
round where we vary the fraction from 1% to 60%. for each
experiment the number of participating clients is constant
for all rounds of training. We observe the largest perfor-
mance gap between FedAvg+WSM and FedAvg when the
number of participating clients is low. This feature is sig-
nificant since low client participation is a known feature of
real world FL settings (McMahan et al., 2017). We hypoth-
esize the performance gap as a function of p between the
FedAvg and FedAvg+WSM is due to the larger impact of
local client forgetting when we limit communication capa-
bility. Unless we actively take steps to control forgetting,
non-participating clients will have their data distributions
forgotten because they will be unable to contribute their
updates to the global model. As p increases, we observe
the performance gap between the two methods narrow since

more clients will have the opportunity to be selected at each
round and "remind" the model of their data distributions.

Local Iterations A local iteration is defined as one gra-
dient step at the client during a federated round. In our
reference setup 7 local iterations is equivalent to one local
epoch. After 21 local iterations we observe a sharp decrease
in accuracy for FedAvg as local iterations increase. While
FedAvg+WSM does also experience a drop in accuracy as
local iterations increase, its drop in accuracy is much less
pronounced. This result is in line with our expectations
since increasing the number of local training iterations will
cause the effects of local client forgetting become more se-
rious. The fact that WSM allows local models to train for
more iterations has important implications for the commu-
nication costs in FL and since communication is a serious
bottleneck in FL our method offers a valuable option to
speed up training in a federated setting.

5. Conclusion
We take a deeper look at the local client forgetting problem
and show that when a client performs local updates during
FL, it risks overly optimizing its local objective leading to
forgetting on other subsets of data. Local client forgetting
degrades the performance of the global model and we show
this phenomenon is especially severe in cases where there is
a significant distribution mismatch across clients. First mak-
ing the connection with the catastrophic forgetting problem
in the continual learning, we propose a client level modifi-
cation of the objective function which we call the weighted
softmax. We show empirically that WSM allows us to
mitigate client level forgetting by demonstrating improved
performance for the FedAvg algorithm when combined with
WSM across a range of learning rates. We also demonstrate
these improvements are not limited to FedAvg since we also
observe significant performance increases when WSM is
applied to SCAFFOLD, FedNova and FedProx. An ablation
study demonstrated WSM is particularly effective in the
regime of highly heterogeneous client datasets and/or when
a small percentage of clients are selected at each round.
Our results indicate that addressing local client forgetting in
general is an important consideration for federated learning
optimization, one that bears closer scrutiny.
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Table 3. Best accuracy results of FedAvg with and without WSM using the LeNet architecture.
CIFAR-10 CIFAR-100

FEDAVG 0.608 ± 0.010 0.198 ± 0.004
FEDAVG+WSM (OURS) 0.624 ± 0.009 0.274 ± 0.007

Table 4. Accuracy results of FedAvg with and without WSM for different settings of client learning rates using the LeNet architecture.

lr CIFAR-10 CIFAR-100

FEDAVG 0.589± 0.012 0.119± 0.002
FEDAVG+WSM (OURS) 0.07 0.624± 0.009 0.180± 0.013

FEDAVG 0.580± 0.051 0.154± 0.011
FEDAVG+WSM (OURS) 0.05 0.615± 0.004 0.217± 0.009

FEDAVG 0.605± 0.014 0.168± 0.001
FEDAVG+WSM (OURS) 0.03 0.621± 0.009 0.251± 0.007

FEDAVG 0.608± 0.010 0.168± 0.044

FEDAVG+WSM (OURS) 0.01 0.624± 0.009 0.274± 0.007

FEDAVG 0.591± 0.014 0.195± 0.004

FEDAVG+WSM (OURS) 0.007 0.620± 0.022 0.274± 0.001

FEDAVG 0.585± 0.019 0.198± 0.004

FEDAVG+WSM (OURS) 0.005 0.615± 0.003 0.270± 0.001
FEDAVG 0.545± 0.018 0.181± 0.009

FEDAVG+WSM (OURS) 0.003 0.566± 0.001 0.247± 0.004
FEDAVG 0.441± 0.019 0.115± 0.007

FEDAVG+WSM (OURS) 0.001 0.478± 0.009 0.186± 0.003

A. LeNet Performance Across Multiple Learning Rates
We investigate the performance of WSM using the LeNet architecture (LeCun et al., 1998) on CIFAR-10 and CIFAR-100.
While this model is not the considered state-of-the-art on these CIFAR datasets, it allows us to eliminate the dependence
on the normalization as a hyper-parameter to investigate relative performance for the purposes of this investigation. As
before we train for 4000 rounds with each client training for three local epochs. The data is divided between clients using a
Dirichlet distribution parameterized by α = 0.1. The reported values are the result of the average of three different seeds
with the standard deviation indicating the variation between runs. Experiments were performed across a range of learning
rates and the results of the best performing models with and without WSM are shown in Table 3. The difference between the
best performing models of FedAvg and and FedAvg+WSM is 1.02% for CIFAR-10 and an impressive 7.6% on CIFAR-100.
The complete set of results in Table 4 where WSM outperforms vanilla FedAvg for each learning rate for both datasets. As
with the ResNet-18 case, we continue to observe that WSM provides good performance over a larger range of learning rates
than FedAvg which makes it easier to tune. We also observe WSM reduces the variance in model accuracy as evidenced by
the typically lower standard deviations reported for the runs in each set.

B. Complete Result Set Across Learning Rates and Normalization Methods
Table 5 shows the complete set of results across learning rates and normalization methods. We observe FedAvg+WSM has a
strong performance with batch normalization contrary to the findings of Hsieh et al. (2020) while FedAvg preforms better
using group norm.

C. WSM for Personalization
We note that in the setting of personalization we can use the WSM directly at inference time, utilizing the client’s training
data proportion. To illustrate this scenario we consider a WSM trained model with the setting of Sec. 4.2 (high heterogeneity)
and demonstrate we can improve the performance by 9.5% at no additional cost under the personalization setting using this
strategy.
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Figure 5. CIFAR-10 - Distributions of ten randomly selected clients with data partitioned according to a Dirichlet distribution parameterized
by α = 0.1.
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Figure 6. Percentages of each class label for ten randomly selected clients with α = 0.01, 0.5, 100 from left to right

D. Validation
Throughout training the global model is periodically evaluated on the aggregation of the client validation sets to gauge
overall training progress, the test set on the other hand is only used at the end of the training process. For lower values of α,
as client distributions become more skewed, there can be significant changes in accuracy between training runs (Hsu et al.,
2019). Since we focus our analysis on the highly heterogeneous case in which the Dirichlet distributions at each client are
parameterized by α = 0.1, we observe higher variance in our results, particularly for smaller datasets such as CIFAR-10 and
CIFAR-100. To mitigate these effects on the validation statistics, we follow the lead of Reddi et al. (2020) and report our
final accuracy as the average of the test accuracies taken over the last 100 rounds of training.

D.1. Illustrating different Dirichlet parameters

Figure 5 shows what a label distribution created using a Dirichlet distribution parameterized by α = 0.1 would look like for
ten randomly selected clients.

Figure 6 offers a practical illustration of how client partitions change as a function of α. Clients with α = 0.01 have only a
small percentage of the classes while at α = 100 clients have all 10 classes in proportions that are much more equal than we
observe with the other two parameterizations.

E. Additional Forgetting studies
The heatmaps provided in this section provide additional support for the effects of forgetting during a round of federated
learning. The bottom row of Figures 7, 8, 9 and 10 are for rounds 1, 1200, 3600 and 4000, respectively. For each heat map
the y-axis indicates the model of client i and the x-axis indicates the local data of client k. The left column shows Fik as
defined in equation 6. Positive values of forgetting (green) indicate high forgetting, for FedAvg on the bottom row, we
observe a lot of green in the off-diagonal terms of the accuracy heatmaps indicating that forgetting is very high when using
standard cross entropy. The post local update heatmap for standard cross entropy shows a strong trend of better accuracies
along the diagonal indicating model i does much better on dataset k when i = k, its own dataset.

When using WSM, we observe no preference for better accuracy along the diagonal as is the case with FedAvg. Lower
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Figure 7. Local client forgetting after round 1 with and without WSM. The heatmap is structured as described above where the y-axis
indicates the model of client i and the x-axis indicates the local data of client k. We note that after the first round of training the model has
not converged significantly so the advantage conferred by WSM is not yet as apparent as it will be in future rounds, the point we wish to
illustrate here is that the effect of local client forgetting is apparent from the beginning of training

accuracies are concentrated along columns indicating a particularly difficult dataset for all local models or along the row,
indicating a model that does badly on all datasets including its own. These observations are supported by the forgetting
heatmap for WSM which is predominantly yellow indicating very low forgetting values.
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Figure 8. Local client forgetting after round 1200 with and without WSM. The heatmap is structured as described above where the y-axis
indicates the model of client i and the x-axis indicates the local data of client k.
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Figure 9. We show local client forgetting for round 3600 with and without WSM. The heatmap is structured as described above where the
y-axis indicates the model of client i and the x-axis indicates the local data of client k. Again at round 3600, much later in training than
round 1200 shown in figure 8 we observe FedAvg+WSM (top row) significantly reduces forgetting across clients.
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Table 5. Accuracy results of FedAvg with and without WSM for different hyper-parameters. We observe that FedAvg+WSM with batch
normalization consistently improves performance over FedAvg, as well as having the highest overall accuracy by a large margin. WSM
also makes the learning rate easier to tune since we observe a large hyper-parameter range

Method Hyper-params Dataset
lr norm CIFAR-10 CIFAR-100 FEMNIST

FEDAVG

0.5
group 0.326± 0.098 0.292± 0.012 0.542± 0.087

FEDAVG+WSM (OURS) 0.452± 0.173 0.234± 0.191 0.418± 0.177
FEDAVG batch 0.742± 0.004 0.386± 0.003 0.812± 0.020

FEDAVG+WSM (OURS) 0.792± 0.006 0.426± 0.003 0.837± 0.002
FEDAVG

0.3
group 0.791± 0.013 0.384± 0.013 0.769± 0.006

FEDAVG+WSM (OURS) 0.744± 0.007 0.388± 0.027 0.761± 0.118
FEDAVG batch 0.742± 0.004 0.412± 0.014 0.815± 0.008

FEDAVG+WSM (OURS) 0.834± 0.008 0.467± 0.015 0.844± 0.010

FEDAVG

0.1
group 0.724± 0.027 0.500± 0.016 0.835± 0.002

FEDAVG+WSM (OURS) 0.794± 0.022 0.446± 0.004 0.827± 0.012

FEDAVG batch 0.820± 0.006 0.442± 0.016 0.806± 0.031

FEDAVG+WSM (OURS) 0.855± 0.004 0.514± 0.009 0.848± 0.006
FEDAVG

0.07
group 0.826± 0.007 0.437± 0.007 0.827± 0.006

FEDAVG+WSM (OURS) 0.805± 0.007 0.484± 0.041 0.823± 0.006
FEDAVG batch 0.787± 0.006 0.513± 0.006 0.789± 0.003

FEDAVG+WSM (OURS) 0.856± 0.005 0.553± 0.018 0.826± 0.019

FEDAVG

0.05
group 0.827± 0.004 0.464± 0.001 0.853± 0.004

FEDAVG+WSM (OURS) 0.791± 0.019 0.454± 0.015 0.841± 0.002

FEDAVG batch 0.790± 0.012 0.531± 0.007 0.833± 0.024

FEDAVG+WSM (OURS) 0.858± 0.003 0.564± 0.007 0.842± 0.005

FEDAVG

0.03
group 0.836± 0.005 0.431± 0.020 0.835± 0.006

FEDAVG+WSM (OURS) 0.774± 0.035 0.472± 0.007 0.830± 0.006
FEDAVG batch 0.779± 0.028 0.561± 0.010 0.756± 0.015

FEDAVG+WSM (OURS) 0.857± 0.005 0.581± 0.005 0.834± 0.003
FEDAVG

0.01
group 0.815± 0.003 0.431± 0.005 0.830± 0.002

FEDAVG+WSM (OURS) 0.785± 0.011 0.471± 0.010 0.800± 0.018
FEDAVG batch 0.787± 0.003 0.566± 0.009 0.744± 0.011

FEDAVG+WSM (OURS) 0.845± 0.006 0.574± 0.006 0.800± 0.019
FEDAVG

0.007
group 0.817± 0.007 0.426± 0.005 0.821± 0.011

FEDAVG+WSM (OURS) 0.773± 0.014 0.476± 0.010 0.794± 0.006

FEDAVG batch 0.797± 0.008 0.568± 0.003 0.734± 0.018
FEDAVG+WSM (OURS) 0.841± 0.004 0.568± 0.003 0.800± 0.007

FEDAVG

0.005
group 0.802± 0.010 0.426± 0.002 0.819± 0.022

FEDAVG+WSM (OURS) 0.768± 0.019 0.474± 0.006 0.781± 0.017
FEDAVG batch 0.783± 0.009 0.553± 0.005 0.743± 0.053

FEDAVG+WSM (OURS) 0.826± 0.009 0.554± 0.004 0.773± 0.013
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Figure 10. Local client forgetting for round 4000, the last round of training with and without WSM. The heatmap is structured as described
above where the y-axis indicates the model of client i and the x-axis indicates the local data of client k. Here we observe that in the
last round of training local client forgetting still occurs for FedAvg. FedAvg+WSM on the other hand has relatively neutral levels of
forgetting (close to 0) with the exception of client 55’s model which appears to have had a bad round of training in which it forgot quite a
bit of relevant information. In this case we point out that forgetting here has occurred equally across all client datasets including it’s own
indicating the training failure here is not due to local client forgetting.
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