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ABSTRACT

In this paper, we demonstrate how to do automated higher-order logic theorem
proving in the presence of a large knowledge base of potential premises without
learning from human proofs. We augment the exploration of premises based on a
simple tf-idf (term frequency-inverse document frequency) based lookup in a deep
reinforcement learning scenario. Our experiments show that our theorem prover
trained with this exploration mechanism but no human proofs, dubbed DeepHOL
Zero, outperforms provers that are trained only on human proofs. It approaches the
performance of a prover trained by a combination of imitation and reinforcement
learning. We perform multiple experiments to understand the importance of the
underlying assumptions that make our exploration approach work, thus explaining
our design choices.

1 INTRODUCTION

Theorem proving is a challenging benchmark for automated reasoning, and is an important milestone
on the road to demonstrating that machine learning can produce a deep understanding of abstract
concepts. In the long run, automated mathematical reasoning may become an important tool in
engineering and scientific discovery. Due to their success in many other areas, neural networks
have recently been considered as a way to guide theorem proving (Alemi et al., 2016; Loos et al.,
2017; Huang et al., 2019; Bansal et al., 2019; Paliwal et al., 2020) and demonstrate approximate
mathematical reasoning abilities in latent space (Lee et al., 2020).

While there is only a relatively small number of fundamental proof rules (or proof tactics) applicable
at any point in a proof, there is a very large number of premises (i.e., previously proven theorems
and lemmas) that could be invoked. The largest formalized libraries have over tens of thousands of
theorems that can be used as premises. Thus, the main problem of reasoning in large theories is to
identify the premises relevant in the current context and thereby reduce the branching factor of the
proof search to a manageable size. This problem will become even more pronounced over time, as
the theorem provers become more powerful, growing the number of available premises.

Previous works have relied on human proofs to either directly provide or learn (Bansal et al., 2019;
Paliwal et al., 2020) which premises are relevant to the current proof. However, any open-ended
system for mathematical reasoning needs to be able to learn which premises are relevant without
human guidance. In this work, we thus consider the problem of training a theorem prover without
access to human proofs. In particular, the contributions of this work are:

1. We demonstrate training the theorem prover without human data can succeed when using deep re-
inforcement learning. We do this with minimal additional engineering: by augmenting exploration
of premises with a portion of the premises selected by a tf-idf (Manning et al., 2008) metric.

2. We provide a first side-by-side comparison of the effect of availability of human proofs on the
final theorem proving performance. We learn to prove more theorems than the prover trained on
human proofs alone and almost as many as with the combination of both approaches.

3. We establish the underlying properties of the proof assistant and reinforcement learning setup that
makes our approach work, by running multiple ablation experiments.

We thereby solve one of the road blocks on the way to open-ended learning of mathematical reasoning
in large theories.
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2 RELATED WORK

Reinforcement learning (RL) without imitation learning has been successful for computer games
(cf. Mnih et al. (2013)) and it was demonstrated later in Silver et al. (2017) that imitation learning is not
necessary for complex games like Chess and Go. For more complex games with much larger action
spaces, learning methods still rely on human imitation due to the exploration problem (cf. Vinyals
et al. (2019)). The question of exploration is well studied in reinforcement learning (Houthooft et al.,
2016; Burda et al., 2019), but existing approaches such as ε-greedy do not work for premise selection
because of very large (practically infinite) action space.

We work in the setting of automating higher-order logic interactive theorem provers, since this is where
there is most promise for building and formalizing large theories. This is also evidenced by the fact
that all large-scale formalization efforts by mathematicians have occurred in such systems (Gonthier,
2008; Hales et al., 2017). Several works have explored RL for proof search in the context of
connection provers (Färber et al., 2017; Kaliszyk et al., 2018; Zombori et al., 2019; 2020). We are
instead interested in addressing the issue of premise selection from a large knowledge base, through
the use of deep reinforcement learning and without use of human proofs. This is the hard part of
exploration due to the large repository of premises.

Premise selection itself has been an active research topic in the domain of automated theorem
proving (Alama et al., 2014; Kaliszyk and Urban, 2015; Blanchette et al., 2016; Wang et al., 2017).
Gauthier et al. (2017) uses a tf-idf based premise selection model, but does not learn a model. Urban
et al. (2008); Kaliszyk et al. (2014); Kaliszyk and Urban (2014); Piotrowski and Urban (2018)
interleave runs of an automated theorem prover and a premise selection model using non-deep RL
approaches. Deep learning has since significantly improved the state of the art for premise selection,
starting with Alemi et al. (2016), but these approaches have relied on human proofs. In our work,
we use deep RL to learn premise selection while removing this dependence on human proofs. We
also provide a clear comparison of the effect of availability of human proofs to final theorem proving
performance, which has been lacking in the literature.

We use the HOList environment (Bansal et al., 2019) for HOL Light (Harrison, 1996). Other ML
environments for proof assistants include GamePad (Huang et al., 2019) and CoqGym (Yang and
Deng, 2019) for Coq; and TacticToe (Gauthier et al., 2017) for HOL4 (Slind and Norrish, 2008).

3 BACKGROUND

Theorem proving. Proof assistants have been built to enable humans to write and then automati-
cally check proofs. In contrast to mathematical textbooks and papers, which are written mostly in
natural language, we call mathematics formalized in proof assistants to be formal mathematics. In
this work we focus on the proof assistant HOL Light (Harrison, 1996), in which a wide range of
mathematical theories have been formalized, and which has been famously used for the formalization
of the Kepler conjecture (Hales et al., 2017). HOL Light, as in many other proof assistants, relies
mostly on “backward” proof steps. In contrast to “forward” proof steps, in which we only manipulate
already proven statements, backward proofs start with a proof goal (the statement of the theorem to
be proven) and apply proof tactics until all goals are proven.

In Figure 1, we give an example of a backward proof. The goal here is to prove x+ 0 = x, for all
x ∈ N, and we apply the tactic MATCH_MP_TAC to the goal. Like many tactics, this tactic takes a

∀x ∈ N : x+ 0 = x

MATCH_MP_TAC NAT_INDUCTION
0 + 0 = 0

∀x ∈ N : ((x+ 0 = x) ⇒ (x+ 1 + 0 = x+ 1))

ARITH_TAC
PROVEN

ARITH_TAC
PROVEN

Figure 1: Formally proving ∀x ∈ N : x+ 0 = x.
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Score each available premise, then select top-k premises

Goal GNN
Goal embedding
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Premise embeddingKnowledge base

Dense

Dense
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Figure 2: Architecture for tactic and premise selection by Paliwal et al. (2020). Note that this work is
largely agnostic to the model architectures.

premise (i.e. a previously proven theorem or lemma) as a parameter. In this example, we use the
induction theorem NAT_INDUCTION as a premise. This tactic application splits the first goal into
two subgoals, corresponding to the base case and the induction step. The semantics of an application
of a proof tactic is that, if all subgoals are proven, then also the goal to which the tactic has been
applied is proven. In our case, we can prove both of the subgoals by simple arithmetic reasoning,
provided by the tactic ARITH_TAC. This tactic here does not require additional premises and returns
an empty list of subgoals (for both of the subgoals we apply it to), meaning that they are proven, and
hence the original goal is proven.

Learning proof guidance for interactive theorem proving. It is a long-standing goal in artificial
intelligence to automate the theorem proving process described above, in particular to relieve the
human experts from selecting the tactics and premises in each proof step. Historically, most works
focused on designing advanced search algorithms, leading to entire fields such as SAT and SMT
solving and first-order theorem proving. Recently, learning proof search strategies from data has
become an area of active research (Alemi et al., 2016; Gauthier et al., 2017; Huang et al., 2019).

In this work, we follow the approach by Bansal et al. (2019), which has shown the unique ability to find
relevant premises, which has been a big challenge for the classical techniques. Figure 2 illustrates the
tactic and premise selection architecture introduced by Bansal et al. (2019) and improved by Paliwal
et al. (2020). For each proof step, this architecture scores the tactics and it also produces a relevance
score for each potential premise. Then, for each tactic, the top-k premises are given as arguments
(unless the tactic does not require premise arguments). This results in a list of candidate tactic
applications, which can be used as the actions in any search approach. We adopted the same search
strategy as Bansal et al. (2019) and Paliwal et al. (2020), which is a simple breadth-first search with a
parameter of how many of the candidate tactic applications should be expanded per proof goal.

The tactic and premise selection architecture is trained on successful proofs. For imitation learning,
tuples of goal, tactic, and used premises are extracted from human proofs formalized in HOL
Light. The focus of this work, however, is to not learn from human proofs, and instead learn in a
reinforcement learning setup from the proofs that earlier versions of the policy have found.

4 LEARNING WITHOUT IMITATION

In this section, we explain the setup for learning to prove in the absence of human proofs, and the
considerations that informed our final design.

Much of mathematics that has been formalized by humans is in pursuit of formalizing certain
theorems such as the four color theorem (Gonthier, 2008) and the Kepler conjecture (Hales et al.,
2017). Since formalization is a challenging and tedious process requiring experts, a very small
fraction of mathematics is formalized after decades of human effort. This work paves the way for a
critical piece of a system wherein its knowledge base of formally proven theorems grows continuously.
We separate two key aspects of such a system. First, proposing potentially true statements, also
known in the literature as conjecturing. Second, given a new statement, proving it without existing
proofs to learn from. We would like to tackle the latter question in this work directly.

The key information the human proofs provide is the overall direction of the proof via selection of the
relevant premises at each proof step. In case human proofs are available, one can first train a machine
learning model to imitate them (Section 3), as has been done in several previous works (Section 2).
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(a) RL loop (b) Change to the theorem prover to add exploration of premises.

Figure 3: The figure on the left gives a high-level overview of the components in the reinforcement
learning (RL) loop. The figure on the right shows how the model being trained is used for premise
selection. We propose a modification to the premise selection process to aid exploration in the RL
loop.

Reinforcement learning loop. In the absence of human proofs, we need a mechanism to incre-
mentally improve a proof guidance model, which motivates the reinforcement learning setup we use.
Figure 3a shows the components of the reinforcement learning loop from Bansal et al. (2019), which
we build upon. A proof guidance model is trained with continuously expanding training data. In
order to generate the continuously expanding training data, several theorem provers run in lockstep
with training the policy and premise selection network. The provers try to prove the statements in the
training set using the model for proof guidance as it is training. If it manages to prove a statement,
the proof is used to generate additional training data. Intuitively, we would like to reward the choices
of tactics and premises that were “useful” at each step in the proof. A subtle but crucial aspect is
that the proofs are pruned before generating the training data. In this step, premises that are not
necessary for the proof are removed. This interplay between over-approximation and pruning is a
major contributing factor to the efficiency of our exploration method and is studied in Subsection 4.2.

Figure 3b shows how the list of premises are picked, including our proposed change to aid exploration
of the premises. Given a goal, the currently learnt model is used to pick the top-k1 highest scored
premises from the knowledge base of premises available: {P1, P2, . . . , Pk1}. Simultaneously, we
propose generating another list of premises {Q1, Q2, . . . Qk2} to explore, picked according to a
metric discussed shortly (Section 4.1). The final set of premises is obtained by interleaving the two
premise lists. k1 and k2 are hyperparameters which can be varied to control exploitation of the learnt
model (higher k1) vs exploration (higher k2). The REFERENCE setup is one without our modification
(i.e., k2 = 0). On the other hand, the EXPLORE setup includes additional premises as proposed here.

There are three aspects to this that we wish to highlight, and that have informed the design: the
strategy to generate the list of premises to explore, the effect of using irrelevant premises in an action
(over-approximation of premise lists), and pruning. We discuss each of these in detail, designing
experiments to inform different choices.

4.1 INFORMATION RETRIEVAL FOR PREMISE SELECTION

One of the key failure modes of our reinforcement learning setup trained without human proofs is not
being able to prove new theorems. With no new training data, the learning process would stall. Thus,
it is crucial that we continuously expand the horizon of theorems that we are able to prove. Since we
generate new training data only when we manage to prove a theorem, we wish to pick premises most
likely relevant to prove the current goal.
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Table 1: Retrieval performance on human proof logs

Term Freq. av rel max rank recall@16 recall@32 recall@64 recall@128
boolean 0.24 0.15 0.19 0.25 0.31

logarithm 0.35 0.1 0.13 0.17 0.21
natural 0.46 0.06 0.08 0.09 0.11

In information retrieval literature, notions such as tf-idf (Manning et al., 2008) have been used to
retrieve relevant documents corresponding to a query. We view premise selection as a retrieval
problem, thinking of the current goal we are trying to prove as the query, and the knowledge base of
previously proven theorems (premises) as the documents from which we would like to retrieve.

Given a goal G, we use pre-engineered similarity scoring s(G,P ) to rank a potential premise P
for its usefulness in the next action (tactic application) with the target of proving the goal. In our
setup, we restrict our attention to functions of the form s(G,P ) = 〈r(G)/‖r(G)‖, r(P )/‖r(P )‖〉,
where r is some simple vector representation of the expression and 〈·, ·〉 the dot product. This is also
sometimes referred to as the cosine simarity. We consider r of the form r(P )i = tf(P, i)idf(i), where
the i-component corresponds to the tokens occurring in the formulas, idf is the “inverse document
frequency” function which is precomputed by idf(i) = log(N/ni), where N is the total number of
theorems and ni is the number of theorem containing the i-th token. For the term frequency function
tf(P, i), we have tested three possible choices: boolean weighting: 1 if fi(P ) > 0 and 0 otherwise,
logarithm weighting: 1 + log(fi(P )) and natural: tf(P, i) = fi(P ), where fi(P ) is the number of
occurrences of the i-th token in expression P . The number of tokens in our experiments was 885.

Running a full reinforcement learning loop uses over 25 years of CPU resources (Appendix B.2).
Since it is prohibitive to run a lot of experiments with the full system, it suggests that we should
first evaluate the quality of similarity metrics in an offline manner. That is, we measure how well
those metrics perform on existing proof traces and we only apply the similarity scores that performed
best in a separate evaluation. To do so, we have adopted the metrics from Alemi et al. (2016). We
have measured the average relative maximum rank and the top-k recall numbers for a small set of
relevant k values (for k = 8, 16, 32 and 64) on a random selection of proofs comprising of 20% of
the training set of the “complex” corpus of HOList. The relative maximum rank of a true positive
document (premise) is the absolute maximum rank of the true documents divided by the size of all
possible premises (from which we make the selection), the average is then taken over all retrieval
tasks. The results are summarized in Table 1. Note that low average maximum relative rank and high
recall values indicate better premise selection performance of the similarity measure.

To summarize, we pick the boolean term-frequency weighting scheme. In addition, we speculate it
could be helpful to add more variation of premises picked for exploration for a given goal, as over the
course of a loop same goals are attempted multiple times. To add this variation, we add a dropout
probability hyperparameter p to components of the representation: r(G)i is zeroed with probability p
when computing the representation for G. p is set to 0.1 unless specified otherwise.

4.2 OVER-APPROXIMATION OF PREMISES

Our exploration is based on the assumption that adding a few irrelevant premises does not influence
the outcome of tactic applications significantly. This allows us to accelerate the search by trying to
over-approximate the set of premises used in tactic applications. We study the behavior of the most
frequently occurring tactics that take premises as an argument: MESON and REWRITE.

MESON is based on a first-order logic solver. We study how many extra premises we can add before
MESON starts to fail to prove a goal. To do so, we first sample at random proof steps from the
human proofs (which are always successful). For each proof step we add as tactic arguments random
irrelevant premises from the knowledge base of premises available at that proof step. We report the
ratio of successful proof attempts after adding a set of tactic parameters with varying cardinality. For
REWRITE operations, we study the number of extra premises we can add and expect not to change
the outcome of the rewrite operation. For both experiments, we sampled random proofs and one
random proof step with the desired type of tactic (MESON or REWRITE), until we sampled 250 steps
successfully. Then for each l ∈ {1, 2, 4, 8, 16, 32}, we sampled five different random parameter lists
with length l. In our experiment, we append those parameters to our parameter list and execute the
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Table 2: Tactic success rates with extra random parameters, 1 second timeout.

Number of extra premises 1 2 4 8 16 32
MESON success rate 0.995 0.986 0.97 0.873 0.53 0.06

REWRITE unchanged rate 0.99 0.979 0.954 0.93 0.858 0.731

same tactic with the extended parameter list. Table 2 shows the ratio of application with the outcome
being identical with that of the tactic application without the extra parameters. We can see that even
adding 32 extra random parameters does not change the outcome of the rewrite tactics over 70% of
the time. However, MESON tends to time out with more than 32 extra premises.

4.3 PRUNING

As discussed in Section 4.2, if a tactic application succeeds, not all premises provided might have
been used. In fact, we are using this fact to accelerate our exploration. However, we do not wish to
learn from these irrelevant premises. Thus, for generating training data, for each proof step in our
proof we greedily try to remove the premises: given a proof step with premises {Pi}ni=1, we rerun
the proof step without Pn. If the result of the proof step remains unchanged, we drop Pn. Then,
we continue with trying to drop Pn−1, and so on. We use the dropped premises as hard negatives,
such that premises which are ranked highly by the model but are not useful are demoted. Demoting
pruned premises allows other premises that had a high score but did not make it into the top-k to get
a chance in the future. Pruning also ensures that any extra premises added for exploration that are in
fact unnecessary are not learnt upon.

5 EVALUATION

Environment and benchmark. We evaluate our approach in the HOList environment (Bansal
et al., 2019) based on the HOL Light proof assistant. We chose to use HOList because of the
breadth of topics of mathematics in the dataset. Additionally, HOList is already integrated into a
reinforcement learning setup, which our approach relies on. We conduct our experiments on the
“complex” corpus of the HOList benchmark derived from theorems in HOL Light’s mathematical
library from various areas of mathematics such as topology, multivariate calculus, real and complex
analysis, geometric algebra, and measure theory. It includes well-known theorems such as Abel’s
theorem for power series, the fundamental theorem of calculus, and that the roots of the characteristic
polynomial of a complex matrix are its eigenvalues. Table 3 gives some addtional examples.

The task is to attempt to prove a theorem in the benchmark, with theorems and definitions appearing
before it in the benchmark available as premises. The evaluation criterion is the fraction of theorems
proven with this constraint. The benchmark comes with theorems divided into training, validation,
and test sets. Table 4 gives the statistics of theorems in the “complex” corpus of the benchmark.
Definitions (totaling 637) and “core” corpus of theorems (totaling 2320), containing basic mathematics
which the “complex” corpus builds upon, are available as premises, but are not attempted to be proven.

Table 3: Examples of theorems in the benchmark (com-
pressed for brevity)

Alternative characterization of orthogonal matrices.
∀A.orth(A) ⇐⇒ (∀i. |Ai| = 1 ∧ ∀i! = j.Ai ⊥ Aj)
Property about absolute neighborhood retract (ANR).
∀S ⊆ Rn.ANR(frontier(S)) =⇒ ANR(closure(S))

Table 4: Benchmark statistics

Split # of Theorems
Training 10214

Validation 3225
Testing 3184
Total 16623

Training and evaluation. During training, we generate data for training by trying to prove state-
ments in the training set of 10,214 theorems. We train for 8 million steps. Details of our hardware
setup and hyperparameters are in the Appendix. For evaluation of all our experiments trained in the
reinforcement learning setup, we focus on the number of statements proven in the held-out validation
set of 3,225 theorems. We run a continuous evaluation on samples of the validation set as well as a
final evaluation on the full validation set. These metrics are:
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Figure 4: Results of our main experiment. We report the percentage of validation theorems proven on
the HOList benchmark. The numbers in bold are the state-of-the-art in their respective categories
(including results from this work). The main takeaway is that the best RL loop trained without human
proof data outperforms the model trained purely on human data, and approaches the performance of
the best RL loop trained with human data.

• Continuous validation performance (represented by dots in the plots) runs every 80,000 training
steps on a random sample of validation theorems, and reports the fraction of proven theorems
from that sample. Since not all validation theorems are attempted and the sample changes each
evaluation, the metric is slightly noisy, but it allows us to monitor overfitting during training.

• Final validation performance (reported in the tables and plots) is the fraction of all validation
theorems proven by the final checkpoint at 8 million steps. This metric also allows for comparison
with models trained purely by imitation learning.
• Cumulative validation performance – reported in the tables and plots – is the fraction of all

validation theorems proven by any continuous-validation run up until that point in the loop. The
table reports the cumulative performance of the whole loop (i.e., after 8 million steps).

Hardware and hyperparameters. One of hyperparameters introduced is the number of additional
premises picked by the model (k1) vs for additional exploration (k2). Since it is computationally
expensive to run a single RL loop, we do not fine-tune these. Rather than picking a fixed value in a
experiment, we make attempts over the course of a single experiment with different values to add
more diversity. In partcicular, k2 is picked uniformily at random in the range [0, 8] independently by
each prover. k1 is then picked as k (total number of premises) minus k2. For evaluation, to keep our
numbers comparable we use the same prover timeout and maximum number of nodes explored as
in Paliwal et al. (2020). A full discussion about the hardware, hyperparameters and computational
resources used can be found in the appendix.

Main experiment. In the main experiment we are interested in understanding the ability of the
EXPLORE approach proposed in Section 4, in particular, its ability to learn to prove without human
proof data available. This experiment is referred to as ZERO EXPLORE. As we see in the plot on the
right in Figure 4, the loop continuously expands the horizon of the theorems it is able to prove.

To put the performance in context, we categorize the results on this benchmark into three categories.
First, pure human imitation, wherein the model is trained only on human proof data and no theorem
prover is used during training. Second, human RL, wherein the the model is trained on human proof
data as well data generated by running the prover in a reinforcement learning (RL) loop. Finally, zero
RL, wherein no human data is available, and all data is generated by running a prover in an RL loop.
The results are summarized in the table in Figure 4.

Paliwal et al. (2020) based on graph neural networks (GNN) is the state-of-the-art on pure human
imitation on this benchmark, and we use the network architecture in our experiments as well.
Compared to pure human imitation, the ZERO EXPLORE RL loop using no human proofs is able to
prove more theorems on a single checkpoint: 49.95% (pure imitation) vs 56.3% (zero RL).

Next, we compare to the best human RL loop (HUMAN EXPLORE), one with everything identical as
in ZERO EXPLORE, except we let the model learn from additional human proof data. We see that the
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Figure 5: Ablation experiments.

ZERO EXPLORE loop comes very close to the performance of the corresponding human RL loop:
59.9% vs 56.3% on a single checkpoint, and 69.1% vs 64.1% cumulatively. ZERO EXPLORE is able
to reach over 90% of the human RL loop’s performance. This is an important indicator as HUMAN
loops indicate a ceiling unrelated to availability of proof data: such as the proof search algorithm, or
model architecture.

Finally, we compare against the RL setup from Bansal et al. (2019), and run it without human proof
data (ZERO REFERENCE). We run into the failure mode of not being able to prove new statements
and thus stalling, discussed in Section 4.1.

6 ABLATION STUDIES

Bootstrapping. In Section 5, we observe that the ZERO REFERENCE loop stalls very quickly.
Here, we try to understand to what extent is the failure a bootstrapping issue. We attempt to prove
all statements in the training set using the best hand-engineered metric in Section 4.1 for premise
selection and random tactic selection. This proves around 20% percent of the statements. We start a
zero RL loop as in ZERO REFERENCE, but providing these additional proofs to train upon, calling it
ZERO SEEDED. We see in Figure 5a that it does not stall like the reference loop. At the same time, it
does not reach the same level of performance as the ZERO EXPLORE, which explores throughout.

Premise selection ablation. Through this ablation, we wish to understand the capability of the
hand-engineered metrics in Section 4.1 to prove theorems. To keep the focus on premise selection, we
still learn the tactic selection, and use similar amounts of resources trying to prove statements as in
one RL loop. Technically, we do this by setting k1 (number of premises chosen by the learnt network)
to 0, and rest of the setup as in the ZERO EXPLORE loop. In Figure 5, under premise-selection
ablation we see the results: it manages to prove 43% of the statements cumulatively, compared with
64% when learning with a combination of exploration and exploitation in the RL loop.

Dropout. In Section 4.1 we suggest a 10% token dropout probability when deciding premises to
explore to introduce more diversity of premises in the loop overall at the cost of picking slightly less
relevant premises at a specific point. We evaluate this experimentally (dropout ablation in Figure 5),
but do not see a major difference: we can observe a very slight gain requiring further verification.
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Human loop ablation. We run a human loop where we do not add premises for exploration (human
ablation, Figure 5). We do not see a significant difference in the performance. It is not surprising, as
the human loop has proofs for all statements and is thus not reliant on premise exploration to find
relevant premises, unlike the zero RL loops.

7 CONCLUSION

In this work, we demonstrate that it is possible to learn a premise selection model for theorem proving
in the absence of human proofs. We show that, on our benchmark, we exceed the performance of a
network trained purely on human proofs, and approach the performance of the system that combines
reinforcement learning with imitation learning.
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A HYPERPARAMETERS

A.1 POLICY NETWORK TRAINING PARAMETERS

• batch size: 16 goals, 256 premises
• number of workers: 8
• optimizer: Adam
• Adam epsilon: 1e-3
• initial learning rate: 1e-4
• learning rate decay: exponential, 0.98/100000 steps
• embedding size: 128
• non-linearity: ReLU
• hidden layer dropout: 0.5
• GNN hops: 16
• layers per hop: 2
• initializer range: 0.02
• pre-combiner embedding size: 4096
• number of combiner layers: 3
• ratio of human training data: 0.7 (for human loops), 0.0 (for zero loops)
• ratio of historical training data: 0.2 (for human loops), 0.5 (for zero loops)
• ratio of fresh training data: 0.1 (for human loops), 0.5 (for zero loops)

A.2 PROVER HYPERPARAMETERS

Some parameters are picked independently by each prover. These are picked uniformly at random
from a given interval, are indicated below as [n1, n2]. The intervals are inclusive of both end points.

Training provers:

• total number of provers: 2000 (see continuous validation note)
• training round interval (each time a model checkpoint is written out): 4000 training steps
• prover tree search strategy: BFS
• timeout: 300 seconds
• maximum number of actions considered (per goal): [10, 30]
• maximum successful actions (per goal): [10, 18]
• maximum number of premises (k): [2, 32].
• number of premise samples per tactic: 4
• tactic timeout: 500 milliseconds
• maximum goals explored: 1000000 (practically, no limit)

Parameters that vary from experiment-to-experiment:

Loop name Seed proofs Premise selection
Human Generated Learnt model Exploration

Human reference Yes - Yes No (k2 = 0)
Human explore Yes Exploration Yes Yes (k′2 ∈ [0, 8], p = 0.1)

Zero reference No Reference Yes No (k2 = 0)
Zero explore No Exploration Yes Yes (k′2 ∈ [0, 8], p = 0.1)
Zero seeded No Exploration Yes No (k2 = 0)
Zero hand-engineered only No Exploration No Yes (k2 = k, p = 0.1)
Zero explore 0% dropout No Exploration Yes Yes (k′2 ∈ [0, 8], p = 0.0)
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k1 (number of premises to be picked by the network) and k2 (number of premises to be added for
exploration) are decided as follows. In the table above, for experiments where k2 is defined k2 is
picked as shown. For experiments where k′2 is defined, k2 is derived it as max(dk/2e, k′2). k1 is
picked as k − k2.

p is the token dropout probability, defined in Section 4.1.

For technical reasons, for the training to start some non-empty training data is needed. For human
RL loops, since human proof data is available, the generated seed data is not strictly necessary.
For zero RL loops, some data needs to be provided. We generate this data by trying to prove all
theorems in the training set on a randomly initialized model (i.e. the 0-th checkpoint of a model).
The hyperparameters used for the provers to generate the seed data is as follows:

• prover tree search strategy: BFS

• timeout: 1000 seconds

• maximum number of actions considered (per goal): 20

• maximum successful actions (per goal): 5

• maximum number of premises: k = k1 = 24, k2 = 0 (reference), k = k2 = 16, k1 =
0, p = 0.0 (exploration).

• number of premise samples per tactic: 1

• tactic timeout: 5000 milliseconds

• maximum goals explored: 1000000 (practically, no limit)

Validation provers: To keep this work comparable to prior results on HOList benchmark, we have
verified that the timeout and maximum explored nodes are the same as in Paliwal et al. (2020). We
have also verified that the results in Bansal et al. (2019) are within half a percent of the reported
results with these timeout and maximum explored nodes.

• prover tree search strategy: BFS

• timeout: 1000 seconds

• maximum number of actions considered (per goal): 20

• maximum successful actions (per goal): 14

• maximum number of premises: 20

• number of premise samples per tactic: 4

• tactic timeout: 500 milliseconds

• maximum goals explored: 1000000 (practically, no limit)

Following only apply to continuous validation, not final validation which is run at final checkpoint,
and on the full set.

• continuous validation interval: 20 rounds (80,000 training steps)

• probability to prove a validation theorem: 0.1 (Explanation: the 2000 provers running in the
RL loop for training, each independently decides to re-purpose itself with this probability to
help with continuous evaluation. With this probability, this leads to over 2000 proof attempts
per validation interval on average.)

B COMPUTATIONAL RESOURCE ANALYSIS

B.1 HARDWARE SETUP

We used eight NVIDIA Tesla V100 GPUs for distributed training, an additional GPU was used purely
for evaluation, and we maintained a separate parameter server on a CPU machine. The provers
generating training data and running validation run distributed, using 2000 CPUs.
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B.2 ABSOLUTE RESOURCE USAGE ESTIMATE

Here we estimate the resource usage of a reinforcement learning loop. Since the improvement of
the premise guidance is heavily reliant on generation of data, we run up to 2000 theorem provers
distributing the statements each prover is attempting to prove. Computing predictions takes a few
milliseconds but actions in the proof assistant can take up to half a second. We use 8 GPUs for
training the policy network and the experience collection uses CPUs only. Combined with proof
search, to have a reasonable chance of proving a statement, we run the theorem prover with a timeout
of 5 minutes for a statement in the training set. Training over 5 days, a single reinforcement learning
loop takes over 25 years of CPU resources and 960 hours of GPU resources.

B.3 RELATIVE RESOURCE USAGE ESTIMATES

For pure human imitation, there is no reinforcement learning, and thus is the least computationally
intensive. The models in Paliwal et al. (2020) were trained for 1 million training steps. The best
model took 26 hours to train with 8 GPUs, or around 200 GPU hours.

The resource usage for reinforcement learning loops is estimated above (Appendix B.2). The resource
usage comparison of explore versus reference loops is analyzed next, being the main change proposed
in the work. The main difference is an additional ranking based on tf-idf. The time to rank based on
tf-idf is very small compared to the ranking with the graph neural network. Nevertheless, note that
the overall timeout for proving is fixed (5 minutes), and includes time to generate the actions as well
as performing the actions in the environment.

One way to compare training of these different models is to consider how long each model takes to
reach a certain performance. For instance, we could try to reach performance of the best Paliwal
et al. (2020) model, that of around 50% validation performance. This is a rough estimate, but the best
Human RL loop (human explore) reaches this performance after utilizing 68 hours of GPU resources
and 2 years of CPU resources. On the other hand, the best Zero RL loop (zero explore) utilizes
roughly 1.35 times the resources – 92 hours of GPU resources and 2.6 years of CPU resources.

Alternatively, one could compare the performance after utilizing the same amount of training steps.
For instance, say, after roughly 1 million steps which corresponds to roughly 120 hours of GPU
resources and 3.4 years of CPU resources. At this stage, the human explore is able to prove roughly
58% of the statements, whereas the zero explore is able to prove 55% of the statements. Note that
these numbers are for continuous validation at 1 million steps, so are bit approximate. At the same
point the cumulative validation performance is 63.5% and 57.2% for human explore and zero explore
respectively.

C HOL LANGUAGE FOR EXPRESSIONS

The following is not necessary to understand this paper, but given for the sake of completeness. The
data in the HOList benchmark extracted on HOL Light and given in the form of ‘S-expressions’. This
may be thought of as a serialized version of the abstract syntax tree of terms in HOL Light, given in
prefix notation. All terms have a well-defined type, which is also contained in the S-expressions.

For instance, a boolean variable, would be given as (v bool x). Here v denotes that the term
is a variable, bool denotes the type, and x denotes the name. A variable named f denoting a
function from boolean to boolean is represented as (v (fun (bool) (bool)) f). (a (v
(fun (bool) (bool)) f) (v bool x) denotes f(x), application of the function variable
f to the variable x.

As a longer example, the second example in Table 3 about absolute neighbourhood retracts
is represented as (a (c (fun (fun (fun (cart (real) N) (bool)) (bool)) (bool)) !) (l (v (fun (cart (real)

N) (bool)) s) (a (a (c (fun (bool) (fun (bool) (bool))) ==>) (a (c (fun (fun (cart (real) N) (bool)) (bool))

ANR) (a (c (fun (fun (cart (real) N) (bool)) (fun (cart (real) N) (bool))) frontier) (v (fun (cart (real) N)

(bool)) s)))) (a (c (fun (fun (cart (real) N) (bool)) (bool)) ANR) (a (c (fun (fun (cart (real) N) (bool))

(fun (cart (real) N) (bool))) closure) (v (fun (cart (real) N) (bool)) s))))))

For a more detailed, yet gentle, introduction on HOL Light, we refer the reader to its tutorial (Harrison,
2011).
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