
DEQGAN: Learning the Loss Function for PINNs with
Generative Adversarial Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Solutions to differential equations are of significant scientific and engineering rele-1

vance. Physics-Informed Neural Networks (PINNs) have emerged as a promising2

method for solving differential equations, but they lack a theoretical justification3

for the use of any particular loss function. This work presents Differential Equation4

GAN (DEQGAN), a novel method for solving differential equations using gener-5

ative adversarial networks to “learn the loss function” for optimizing the neural6

network. Presenting results on a suite of twelve ordinary and partial differential7

equations, including the nonlinear Burgers’, Allen-Cahn, Hamilton, and modified8

Einstein’s gravity equations, we show that DEQGAN1 can obtain multiple orders9

of magnitude lower mean squared errors than PINNs that use L2, L1, and Huber10

loss functions. We also show that DEQGAN achieves solution accuracies that are11

competitive with popular numerical methods. Finally, we present two methods to12

improve the robustness of DEQGAN to different hyperparameter settings.13

1 Introduction14

In fields such as physics, chemistry, biology, engineering, and economics, differential equations are15

used to model important and complex phenomena. While numerical methods for solving differential16

equations perform well and the theory for their stability and convergence is well established, the17

recent success of deep learning [3, 10, 17, 29, 40, 47, 52, 53] has inspired researchers to apply18

neural networks to solving differential equations, which has given rise to the growing field of19

Physics-Informed Neural Networks (PINNs) [19, 20, 35, 36, 42–44, 48, 50].20

In contrast to traditional numerical methods, PINNs: provide solutions that are closed-form [30],21

suffer less from the “curse of dimensionality” [16, 20, 43, 48], provide a more accurate interpolation22

scheme [30], and can leverage transfer learning for fast discovery of new solutions [11, 13]. Further,23

PINNs do not require an underlying grid and offer a meshless approach to solving differential24

equations. This makes it possible to use trained neural networks, which typically have small memory25

footprints, to generate solutions over arbitrary grids in a single forward pass.26

PINNs have been successfully applied to a wide range of differential equations, but lack a theoretical27

justification for the use of a particular loss function from the standpoint of predictive performance. In28

domains outside of differential equations, data following a known noise model (e.g. Gaussian) have29

clear justification for fitting models with specific loss functions (e.g. L2). In the case of deterministic30

differential equations, however, there is no noise model and we lack an equivalent justification.31

To address this gap in the theory, we propose generative adversarial networks (GANs) [14] for solving32

differential equations in a fully unsupervised manner. Recently, multiple works have shown that33

adaptively modifying the PINN loss function throughout training can lead to improved solution34

1We provide our PyTorch code at [link hidden to preserve anonymity]

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

accuracies [37, 57]. The discriminator network of our GAN-based method, however, can be thought35

of as “learning the loss function” for optimizing the generator, thereby eliminating the need for an36

explicit loss function and providing even greater flexibility than an adaptive loss. Beyond the context37

of differential equations, it has also been shown that where classical loss functions struggle to capture38

complex spatio-temporal dependencies, GANs may be an effective alternative [32, 26, 31].39

Our contributions in this work are summarized as follows:40

• We present Differential Equation GAN (DEQGAN), a novel method for solving differential41

equations in a fully unsupervised manner using generative adversarial networks.42

• We highlight the advantage of “learning the loss function” with a GAN rather than using a43

pre-specified loss function by showing that PINNs trained using L2, L1, and Huber losses have44

variable performance and fail to solve the modified Einstein’s gravity equations [7].45

• We present results on a suite of twelve ordinary differential equations (ODEs) and partial differen-46

tial equations (PDEs), including highly nonlinear problems, showing that our method produces47

solutions with multiple orders of magnitude lower mean squared errors than PINNs that use48

L2, L1, and Huber loss functions.49

• We show that DEQGAN achieves solution accuracies that are competitive with popular numerical50

methods, including the fourth-order Runge-Kutta and second-order finite difference methods.51

• We present two techniques to improve the training stability of DEQGAN that are applicable to52

other GAN-based methods and PINN approaches to solving differential equations.53

2 Related Work54

A variety of neural network methods have been developed for solving differential equations. Some of55

these are supervised and learn the dynamics of real-world systems from data [4, 9, 15, 44]. Others are56

semi-supervised, learning general solutions to a differential equation and extracting a best fit solution57

based on observational data [41]. Our work falls under the category of unsupervised neural network58

methods, which are trained in a data-free manner that depends solely on the equation residuals.59

Unsupervised neural networks have been applied to a wide range of ODEs [13, 30, 34, 36] and PDEs60

[20, 43, 48, 50], primarily use feed-forward architectures, and require the specification of a particular61

loss function computed over the equation residuals.62

Goodfellow et al. [14] introduced the idea of learning generative models with neural networks and63

an adversarial training algorithm, called generative adversarial networks (GANs). To solve issues64

of GAN training instability, Arjovsky et al. [2] introduced a formulation of GANs based on the65

Wasserstein distance, and Gulrajani et al. [18] added a gradient penalty to approximately enforce a66

Lipschitz constraint on the discriminator. Miyato et al. [39] introduced an alternative method for67

enforcing the Lipschitz constraint with a spectral normalization technique that outperforms the former68

method on some problems.69

Further work has applied GANs to differential equations with solution data used for supervision.70

Yang et al. [56] apply GANs to stochastic differential equations by using “snapshots" of ground-truth71

data for semi-supervised training. A project by students at Stanford [51] employed GANs to perform72

“turbulence enrichment" of solution data in a manner akin to that of super-resolution for images73

proposed by Ledig et al. [32]. Our work distinguishes itself from other GAN-based approaches for74

solving differential equations by being fully unsupervised, and removing the dependence on using75

supervised training data (i.e. solutions of the equation).76

3 Background77

3.1 Unsupervised Neural Networks for Differential Equations78

Early work by Dissanayake & Phan-Thien [12] proposed solving initial value problems in an unsuper-79

vised manner with neural networks. In this work, we extend their approach to handle spatial domains80

and multidimensional problems. In particular, we consider general differential equations of the form81

F

(
t,x,Ψ(t,x),

dΨ

dt
,
d2Ψ

dt2
, . . . ,∆Ψ,∆2Ψ, . . .

)
= 0 (1)

2

where Ψ(t,x) is the desired solution, dΨ/dt and d2Ψ/dt2 represent the first and second time82

derivatives, ∆Ψ and ∆2Ψ are the first and second spatial derivatives, and the system is subject to83

certain initial and boundary conditions. The learning problem can then be formulated as minimizing84

the sum of squared residuals (i.e., the squared L2 loss) of the above equation85

min
θ

∑
(t,x)∈D

F

(
t,x,Ψθ(t,x),

dΨθ

dt
,
d2Ψθ

dt2
, . . . ,∆Ψθ,∆

2Ψθ, . . .

)2

(2)

where Ψθ is a neural network parameterized by θ, D is the domain of the problem, and derivatives86

are computed with automatic differentiation. This allows backpropagation [22] to be used to train87

the neural network to satisfy the differential equation. We apply this formalism to both initial and88

boundary value problems, including multidimensional problems, as detailed in Appendix A.2.89

3.2 Generative Adversarial Networks90

Generative adversarial networks (GANs) [14] are generative models that use two neural networks to91

induce a generative distribution p(x) of the data by formulating the inference problem as a two-player,92

zero-sum game.93

The generative model first samples a latent random variable z ∼ N (0, 1), which is used as input into94

the generator G (e.g., a neural network). A discriminator D is trained to classify whether its input95

was sampled from the generator (i.e. “fake") or from a reference data set (i.e. “real").96

Informally, the process of training GANs proceeds by optimizing a minimax objective over the97

generator and discriminator such that the generator attempts to trick the discriminator to classify98

“fake" samples as “real". Formally, one optimizes99

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pdata(x)

[
logD(x)] + Ez∼pz(z)[1− logD(G(z))

]
(3)

where x ∼ pdata(x) denotes samples from the empirical data distribution, and pz ∼ N (0, 1) samples100

in latent space [14]. In practice, the optimization alternates between gradient ascent and descent steps101

for D and G, respectively. Further details on training and architecture are provided in Appendix A.4.102

3.3 Guaranteeing Initial & Boundary Conditions103

Lagaris et al. [30] showed that it is possible to exactly satisfy initial and boundary conditions by104

adjusting the output of the neural network. For example, consider adjusting the neural network output105

Ψθ(t,x) to satisfy the initial condition Ψθ(t,x)
∣∣
t=t0

= x0. We can apply the re-parameterization106

Ψ̃θ(t,x) = x0 + tΨθ(t,x) (4)

which exactly satisfies the initial condition. Mattheakis et al. [36] proposed an augmented re-107

parameterization108

Ψ̃θ(t,x) = Φ (Ψθ(t,x)) = x0 +
(
1− e−(t−t0)

)
Ψθ(t,x) (5)

that further improved training convergence. Intuitively, Equation 5 adjusts the output of the neural109

network Ψθ(t,x) to be exactly x0 when t = t0, and decays this constraint exponentially in t. Chen110

et al. [8] provide re-parameterizations to satisfy a range of other conditions, including Dirichlet and111

Neumann boundary conditions, which we employ in our experiments and detail in Appendix A.2.112

4 Differential Equation GAN113

In this section, we present our method, Differential Equation GAN (DEQGAN), which trains a GAN114

to solve differential equations in a fully unsupervised manner. To do this, we rearrange the differential115

equation so that the left-hand side (LHS) contains all the terms which depend on the generator (e.g.116

Ψ, dΨ/dt, ∆Ψ, etc.) and the right-hand side (RHS) contains only constants (e.g. zero).117

During training, we sample points from the domain (t,x) ∼ D and use them as input to a generator118

G(x), which produces candidate solutions Ψθ. We sample points from a noisy grid that spans D,119

3

Figure 1: Schematic representation of DEQGAN. We pass input points x to a generator G, which
produces candidate solutions Ψθ. Then we analytically adjust these solutions according to Φ and
apply automatic differentiation to construct LHS from the differential equation F . RHS and LHS
are passed to a discriminator D, which is trained to classify them as “real" and “fake," respectively.

which we found reduced interpolation error in comparison to sampling points from a fixed grid. We120

then adjust Ψθ for initial or boundary conditions to obtain the re-parameterized output Ψ̃θ, construct121

the LHS from the differential equation F using automatic differentiation122

LHS = F

(
t,x, Ψ̃θ(t,x),

dΨ̃θ

dt
,
d2Ψ̃θ

dt2
, . . . ,∆Ψ̃θ,∆

2Ψ̃θ, . . .

)
(6)

and set RHS to its appropriate value (in our examples, RHS = 0). Training proceeds in a manner123

similar to traditional GANs. We update the weights of the generator G and the discriminator D124

according to the gradients125

gG = ∇θg

1

m

m∑
i=1

log
(
1−D

(
LHS(i)

))
, (7)

126

gD = ∇θd

1

m

m∑
i=1

[
logD

(
RHS(i)

)
+ log

(
1−D

(
LHS(i)

))]
(8)

where LHS(i) is the output of G
(
x(i)
)

after adjusting for initial or boundary conditions and con-127

structing the LHS from F . Note that we perform stochastic gradient descent for G (gradient steps128

∝ −gG), and stochastic gradient ascent for D (gradient steps ∝ gD). We provide a schematic129

representation of DEQGAN in Figure 1 and detail the training steps in Algorithm 1.130

Algorithm 1 DEQGAN

Input: Differential equation F , generator G(·; θg), discriminator D(·; θd), grid x of m points with
spacing ∆x, perturbation precision τ , re-parameterization function Φ, total steps N , learning rates
ηG, ηD, Adam optimizer [27] parameters βG1, βG2, βD1, βD2

for i = 1 to N do
for j = 1 to m do

Perturb j-th point in mesh x
(j)
s = x(j) + ϵ, ϵ ∼ N (0, ∆x

τ)

Forward pass Ψθ = G(x
(j)
s)

Analytic re-parameterization Ψ̃θ = Φ(Ψθ)

Compute LHS(j) = F
(
t,x, Ψ̃θ(t,x),

dΨ̃θ

dt , d2Ψ̃θ

dt2 , . . . ,∆Ψ̃θ,∆
2Ψ̃θ, . . .

)
Set RHS(j) = 0

end for
Compute gradients gG, gD (Equation 7 & 8)
Update generator θg ← Adam(θg,−gG, ηG, βG1, βG2)
Update discriminator θd ← Adam(θd, gD, ηD, βD1, βD2)

end for
Output: G

Informally, our algorithm trains a GAN by setting the “fake” component to be the LHS (in our131

formulation, the residuals of the equation) and the “real” component to be the RHS of the equation.132

4

This results in a GAN that learns to produce solutions that make LHS indistinguishable from RHS,133

thereby approximately solving the differential equation.134

4.1 Instance Noise135

While GANs have achieved state of the art results on a wide range of generative modeling tasks, they136

are often difficult to train. As a result, much recent work on GANs has been dedicated to improving137

their sensitivity to hyperparameters and training stability [1, 2, 5, 18, 25, 28, 38, 39, 46, 49]. In our138

experiments, we found that DEQGAN could also be sensitive to hyperparameters, such as the Adam139

optimizer parameters shown in Algorithm 1.140

Sønderby et al. [49] note that the convergence of GANs relies on the existence of a unique optimal141

discriminator that separates the distribution of “fake” samples pfake produced by the generator, and142

the distribution of the “real” data pdata. In practice, however, there may be many near-optimal143

discriminators that pass very different gradients to the generator, depending on their initialization.144

Arjovsky & Bottou [1] proved that this problem will arise when there is insufficient overlap between145

the supports of pfake and pdata. In the DEQGAN training algorithm, setting RHS = 0 constrains pdata146

to the Dirac delta function δ(0), and therefore the distribution of “real” data to a zero-dimensional147

manifold. This makes it unlikely that pfake and pdata will share support in a high-dimensional space.148

The solution proposed by [1, 49] is to add “instance noise” to pfake and pdata to encourage their overlap.149

This amounts to adding noise to the LHS and the RHS, respectively, at each iteration of Algorithm150

1. Because this makes the discriminator’s job more difficult, we add Gaussian noise with standard151

deviation equal to the difference between the generator and discriminator losses, Lg and Ld, i.e.152

ε = N (0, σ2), σ = ReLU(Lg − Ld) (9)

As the generator and discriminator reach equilibrium, Equation 9 will naturally converge to zero. We153

use the ReLU function because Ld > Lg indicates that the discriminator is generally performing154

worse than the generator, suggesting that additional noise should not be used. In Section 5.2, we155

conduct an ablation study and find that this improves the ability of DEQGAN to produce accurate156

solutions across a range of hyperparameter settings.157

4.2 Residual Monitoring158

One of the attractive properties of Algorithm 1 is that the “fake” LHS vector of equation residuals159

gives a direct measure of solution quality at each training iteration. We observe that when DEQGAN160

training becomes unstable, the LHS tends to oscillate wildly, while it decreases steadily throughout161

training for successful runs. By monitoring the L1 norm of the LHS in the first 25% of training162

iterations, we are able to easily detect and terminate poor-performing runs if the variance of these163

values exceeds some threshold. We provide further details on this method in Appendix A.7 and164

experimentally demonstrate that it is able to distinguish between DEQGAN runs that end in high and165

low mean squared errors in Section 5.2.166

5 Experiments167

We conducted experiments on a suite of twelve differential equations (Table 1), including highly168

nonlinear PDEs and systems of ODEs, comparing DEQGAN to classical unsupervised PINNs that169

use (squared) L2, L1, and Huber [24] loss functions. We also report results obtained by the fourth-170

order Runge-Kutta (RK4) and second-order finite difference (FD) numerical methods for initial171

and boundary value problems, respectively. The numerical solutions were computed over meshes172

containing the same number of points that were used to train the neural network methods. Details173

for each experiment, including exact problem specifications and hyperparameters, are provided in174

Appendix A.2 and A.5.175

5.1 DEQGAN vs. Classical PINNs176

We report the mean squared error of the solution obtained by each method, computed against177

known solutions obtained either analytically or with high-quality numerical solvers [6, 54]. We178

added residual connections between neighboring layers of all models, applied spectral normalization179

5

Table 1: Summary of Experiments
Key Equation Class Order Linear

EXP ẋ(t) + x(t) = 0 ODE 1st Yes
SHO ẍ(t) + x(t) = 0 ODE 2nd Yes
NLO ẍ(t) + 2βẋ(t) + ω2x(t) + ϕx(t)2 + ϵx(t)3 = 0 ODE 2nd No

COO
{
ẋ(t) = −ty
ẏ(t) = tx

ODE 1st Yes

SIR


Ṡ(t) = −βI(t)S(t)/N
İ(t) = βI(t)S(t)/N − γI(t)

Ṙ(t) = γI(t)

ODE 1st No

HAM


ẋ(t) = px
ẏ(t) = py
ṗx(t) = −Vx

ṗy(t) = −Vy

ODE 1st No

EIN



ẋ(z) = 1
z+1 (−Ω− 2v + x+ 4y + xv + x2)

ẏ(z) = −1
z+1 (vxΓ(r)− xy + 4y − 2yv)

v̇(z) = −v
z+1 (xΓ(r) + 4− 2v)

Ω̇(z) = Ω
z+1 (−1 + 2v + x)

ṙ(z) = −rΓ(r)x
z+1

ODE 1st No

POS uxx + uyy = 2x(y − 1)(y − 2x+ xy + 2)ex−y PDE 2nd Yes
HEA ut = κuxx PDE 2nd Yes
WAV utt = c2uxx PDE 2nd Yes
BUR ut + uux − νuxx = 0 PDE 2nd No
ACA ut − ϵuxx − u+ u3 = 0 PDE 2nd No

Table 2: Experimental Results
Mean Squared Error

Key L1 L2 Huber DEQGAN Numerical

EXP 3 · 10−3 2 · 10−5 1 · 10−5 3 · 10−16 2 · 10−14 (RK4)
SHO 9 · 10−6 1 · 10−10 6 · 10−11 4 · 10−13 1 · 10−11 (RK4)
NLO 6 · 10−2 1 · 10−9 9 · 10−10 1 · 10−12 4 · 10−11 (RK4)
COO 5 · 10−1 1 · 10−7 1 · 10−7 1 · 10−8 2 · 10−9 (RK4)
SIR 7 · 10−5 3 · 10−9 1 · 10−9 1 · 10−10 5 · 10−13 (RK4)
HAM 1 · 10−1 2 · 10−7 9 · 10−8 1 · 10−10 7 · 10−14 (RK4)
EIN 6 · 10−2 2 · 10−2 1 · 10−2 3 · 10−4 4 · 10−7 (RK4)
POS 4 · 10−6 1 · 10−10 6 · 10−11 4 · 10−13 3 · 10−10 (FD)
HEA 6 · 10−3 3 · 10−5 1 · 10−5 6 · 10−10 4 · 10−7 (FD)
WAV 6 · 10−2 4 · 10−5 6 · 10−4 1 · 10−8 7 · 10−5 (FD)
BUR 4 · 10−3 2 · 10−4 1 · 10−4 4 · 10−6 1 · 10−3 (FD)
ACA 6 · 10−2 9 · 10−3 4 · 10−3 3 · 10−3 2 · 10−4 (FD)

to the discriminator, added instance noise to the pfake and preal, and used residual monitoring to180

terminate poor-performing runs in the first 25% of training iterations. Results were obtained with181

hyperparameters tuned for DEQGAN. In Appendix A.6, we tuned each classical PINN method for182

comparison, but did not observe a significant difference.183

Table 2 reports the lowest mean squared error obtained by each method across ten different model184

weight initializations. We see that DEQGAN obtains lower mean squared errors than classical185

PINNs that use L2, L1, and Huber loss functions for all twelve problems, often by several orders of186

magnitude. DEQGAN also achieves solution accuracies that are competitive with the RK4 and FD187

numerical methods.188

6

(a) Nonlinear Oscillator (NLO) (b) Hamilton System (HAM)

(c) Wave Equation (WAV) (d) Burgers’ Equation (BUR)

(e) Allen-Cahn Equation (ACA) (f) Modified Einstein’s Gravity System (EIN)

Figure 2: Mean squared errors vs. iteration for DEQGAN, L2, L1, and Huber loss for six equations.
We perform ten randomized trials and plot the median (bold) and (25, 75) percentile range (shaded).
We smooth the values using a simple moving average with window size 50.

Figure 2 plots the mean squared error vs. training iteration for six challenging equations and highlights189

multiple advantages of using DEQGAN over a pre-specified loss function (equivalent plots for the190

other six problems are provided in Appendix A.3). In particular, there is considerable variation in191

the quality of the solutions obtained by the classical PINNs. For example, while Huber performs192

better than L2 on the Allen-Cahn PDE, it is outperformed by L2 on the wave equation. Furthermore,193

Figure 2f shows that the L2, L1 and Huber losses all fail to converge to an accurate solution to the194

modified Einstein’s gravity equations. Although this system has previously been solved using PINNs,195

the networks relied on a custom loss function that incorporated equation-specific parameters [7].196

DEQGAN, however, is able to automatically learn a loss function that optimizes the generator to197

produce accurate solutions. DEQGAN solutions to four example equations are visualized in Figure198

4, which shows that the ODE solutions are indistinguishable from those obtained using a numerical199

integrator. Similar plots for the other experiments are provided in Appendix A.2.200

5.2 DEQGAN Training Stability: Ablation Study201

In our experiments, we used instance noise to adaptively improve the training convergence of202

DEQGAN and employed residual monitoring to terminate poor-performing runs early. To quantify203

7

the increased robustness offered by these techniques, we performed an ablation study comparing204

the percentage of high MSE (≥ 10−5) runs obtained by 500 randomized DEQGAN runs on the205

exponential decay equation.206

Figure 3 plots the results of these 500 DEQGAN experiments with instance noise added. For each207

experiment, we uniformly selected a random seed controlling model weight initialization as an integer208

from the range [0, 9], as well as separate learning rates for the discriminator and generator in the209

range [0.01, 0.1]. We then recorded the final mean squared error after running DEQGAN training210

for 1000 iterations. The red lines represent runs which would be terminated early by our residual211

monitoring method, while the blue lines represent those which would be run to completion. We see212

that the large majority of hyperparameter settings tested with the addition of instance noise resulted in213

low mean squared errors. Further, residual monitoring was able to detect all runs with MSE ≥ 10−5.214

Approximately half of the MSE runs in [10−8, 10−5] would be terminated, while 96% of runs with215

MSE ≤ 10−8 would be run to completion.216

Figure 3: Parallel plot showing the results of 500 DEQGAN experiments on the exponential decay
equation with instance noise. The red lines represent runs which would be terminated early by
monitoring the variance of the equation residuals in the first 25% of training iterations. The mean
squared error is plotted on a log10 scale.

Table 3: Ablation Study Results

% Runs with High MSE (≥ 10−5)

No Residual Monitoring With Residual Monitoring

No Instance Noise 12.4 0.4
With Instance Noise 8.0 0.0

Table 3 compares the percentage of high MSE runs with and without instance noise and residual217

monitoring. We see that adding instance noise decreased the percentage of runs with high MSE and218

that residual monitoring is highly effective at filtering out poor performing runs. When used together,219

these techniques eliminated all runs with MSE ≥ 10−5. These results agree with previous works,220

which have found that instance noise can improve the convergence of other GAN training algorithms221

[1, 49]. Further, they suggest that residual monitoring provides a useful performance metric that222

could be applied to other PINN methods for solving differential equations.223

8

(a) Damped Nonlinear Oscillator (NLO) (b) Coupled Oscillators (COO)

(c) Burgers’ Equation (BUR) (d) Allen-Cahn Equation (ACA)

Figure 4: Visualization of DEQGAN solutions to four equations. The top left figure plots the phase
space of the DEQGAN solutions (solid color lines) obtained for three initial conditions on the NLO
problem, which is solved as a second-order ODE, and known solutions computed by a numerical
integrator (dashed black lines). The figure to the right plots the DEQGAN solution to the COO
problem, which is solved as a system of two first-order ODEs. The second row shows contour plots
of the solutions obtained by DEQGAN on the BUR and ACA problems, both nonlinear PDEs.

6 Conclusion224

PINNs offer a promising approach to solving differential equations and to applying deep learning225

methods to challenging problems in science and engineering. Classical PINNs, however, lack a226

theoretical justification for the use of any particular loss function. In this work, we presented227

Differential Equation GAN (DEQGAN), a novel method that leverages GAN-based adversarial228

training to “learn” the loss function for solving differential equations with PINNs. We demonstrated229

the advantage of this approach in comparison to using classical PINNs with pre-specified loss230

functions, which showed varied performance and failed to converge to an accurate solution to the231

modified Einstein’s gravity equations. In general, we demonstrated that our method can obtain232

multiple orders of magnitude lower mean squared errors than PINNs that use L2, L1 and Huber233

loss functions, including on highly nonlinear PDEs and systems of ODEs. Further, we showed that234

DEQGAN achieves solution accuracies that are competitive with the fourth-order Runge Kutta and235

second-order finite difference numerical methods. Finally, we found that instance noise improved236

training stability and that residual monitoring provides a useful performance metric for PINNs. While237

the equation residuals are a good measure of solution quality, PINNs lack the error bounds enjoyed238

by numerical methods. Formalizing these bounds is an interesting avenue for future work and would239

enable PINNs to be more safely deployed in real-world applications. Further, while our results240

evidence the advantage of “learning the loss function” with a GAN, understanding exactly what the241

discriminator learns is an open problem. Post-hoc explainability methods, for example, might provide242

useful tools for characterizing the differences between classical losses and the loss functions learned243

by DEQGAN, which could deepen our understanding of PINN optimization more generally.244

9

References245

[1] Arjovsky, M. & Bottou, L. (2017). Towards principled methods for training generative adversarial246

networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,247

France, April 24-26, 2017, Conference Track Proceedings: OpenReview.net.248

[2] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan.249

[3] Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to250

align and translate. In 3rd International Conference on Learning Representations, ICLR 2015,251

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.252

[4] Bertalan, T., Dietrich, F., Mezić , I., & Kevrekidis, I. G. (2019). On learning hamiltonian systems253

from data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(12), 121107.254

[5] Berthelot, D., Schumm, T., & Metz, L. (2017). BEGAN: boundary equilibrium generative255

adversarial networks. CoRR, abs/1703.10717.256

[6] Brunton, S. L. & Kutz, J. N. (2019). Data-Driven Science and Engineering: Machine Learning,257

Dynamical Systems, and Control. Cambridge University Press.258

[7] Chantada, A. T., Landau, S. J., Protopapas, P., Scóccola, C. G., & Garraffo, C. (2022). Cosmo-259

logical informed neural networks to solve the background dynamics of the universe.260

[8] Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Di Giovanni, M.261

(2020). Neurodiffeq: A python package for solving differential equations with neural networks.262

Journal of Open Source Software, 5(46), 1931.263

[9] Choudhary, A., Lindner, J., Holliday, E., Miller, S., Sinha, S., & Ditto, W. (2020). Physics-264

enhanced neural networks learn order and chaos. Physical Review E, 101.265

[10] Dabney, W., Rowland, M., Bellemare, M. G., & Munos, R. (2018). Distributional reinforcement266

learning with quantile regression. In Thirty-Second AAAI Conference on Artificial Intelligence.267

[11] Desai, S., Mattheakis, M., Joy, H., Protopapas, P., & Roberts, S. (2021). One-shot transfer268

learning of physics-informed neural networks.269

[12] Dissanayake, M. & Phan-Thien, N. (1994). Neural-network-based approximations for solving270

partial differential equations. Communications in Numerical Methods in Engineering, 10(3),271

195–201.272

[13] Flamant, C., Protopapas, P., & Sondak, D. (2020). Solving differential equations using neural273

network solution bundles.274

[14] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,275

A., & Bengio, Y. (2014). Generative adversarial networks.276

[15] Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural networks.277

[16] Grohs, P., Hornung, F., Jentzen, A., & von Wurstemberger, P. (2018). A proof that artificial278

neural networks overcome the curse of dimensionality in the numerical approximation of black-279

scholes partial differential equations.280

[17] Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for robotic281

manipulation with asynchronous off-policy updates. In 2017 IEEE international conference on282

robotics and automation (ICRA) (pp. 3389–3396).: IEEE.283

[18] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved training284

of wasserstein gans.285

[19] Hagge, T., Stinis, P., Yeung, E., & Tartakovsky, A. M. (2017). Solving differential equations286

with unknown constitutive relations as recurrent neural networks.287

[20] Han, J., Jentzen, A., & E, W. (2018). Solving high-dimensional partial differential equations288

using deep learning. Proceedings of the National Academy of Sciences, 115(34), 8505–8510.289

10

[21] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.290

CoRR, abs/1512.03385.291

[22] Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural networks292

for perception (pp. 65–93). Elsevier.293

[23] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., & Hochreiter, S.294

(2017). Gans trained by a two time-scale update rule converge to a nash equilibrium. CoRR,295

abs/1706.08500.296

[24] Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist., 35(1),297

73–101.298

[25] Karnewar, A., Wang, O., & Iyengar, R. S. (2019). MSG-GAN: multi-scale gradient GAN for299

stable image synthesis. CoRR, abs/1903.06048.300

[26] Karras, T., Laine, S., & Aila, T. (2018). A style-based generator architecture for generative301

adversarial networks. CoRR, abs/1812.04948.302

[27] Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. cite303

arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference304

for Learning Representations, San Diego, 2015.305

[28] Kodali, N., Abernethy, J. D., Hays, J., & Kira, Z. (2017). How to train your DRAGAN. CoRR,306

abs/1705.07215.307

[29] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep308

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger309

(Eds.), Advances in Neural Information Processing Systems 25 (pp. 1097–1105). Curran Associates,310

Inc.311

[30] Lagaris, I., Likas, A., & Fotiadis, D. (1998). Artificial neural networks for solving ordinary and312

partial differential equations. IEEE Transactions on Neural Networks, 9(5), 987–1000.313

[31] Larsen, A. B. L., Sønderby, S. K., & Winther, O. (2015). Autoencoding beyond pixels using a314

learned similarity metric. CoRR, abs/1512.09300.315

[32] Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A. P., Tejani, A., Totz, J., Wang, Z., & Shi,316

W. (2016). Photo-realistic single image super-resolution using a generative adversarial network.317

CoRR, abs/1609.04802.318

[33] Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica, I. (2018). Tune: A319

research platform for distributed model selection and training. CoRR, abs/1807.05118.320

[34] Mattheakis, M., Joy, H., & Protopapas, P. (2021). Unsupervised reservoir computing for solving321

ordinary differential equations.322

[35] Mattheakis, M., Protopapas, P., Sondak, D., Giovanni, M. D., & Kaxiras, E. (2019). Physical323

symmetries embedded in neural networks.324

[36] Mattheakis, M., Sondak, D., Dogra, A. S., & Protopapas, P. (2020). Hamiltonian neural325

networks for solving differential equations.326

[37] McClenny, L. & Braga-Neto, U. (2020). Self-adaptive physics-informed neural networks using327

a soft attention mechanism.328

[38] Mirza, M. & Osindero, S. (2014). Conditional generative adversarial nets.329

[39] Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for330

generative adversarial networks. CoRR, abs/1802.05957.331

[40] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller,332

M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.333

11

[41] Paticchio, A., Scarlatti, T., Mattheakis, M., Protopapas, P., & Brambilla, M. (2020). Semi-334

supervised neural networks solve an inverse problem for modeling covid-19 spread.335

[42] Piscopo, M. L., Spannowsky, M., & Waite, P. (2019). Solving differential equations with neural336

networks: Applications to the calculation of cosmological phase transitions. Phys. Rev. D, 100,337

016002.338

[43] Raissi, M. (2018). Forward-backward stochastic neural networks: Deep learning of high-339

dimensional partial differential equations. arXiv preprint arXiv:1804.07010.340

[44] Raissi, M., Perdikaris, P., & Karniadakis, G. (2019). Physics-informed neural networks: A341

deep learning framework for solving forward and inverse problems involving nonlinear partial342

differential equations. Journal of Computational Physics, 378, 686 – 707.343

[45] Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M.,344

Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss,345

D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B.,346

& Tonry, J. (1998). Observational evidence from supernovae for an accelerating universe and a347

cosmological constant. The Astronomical Journal, 116(3), 1009–1038.348

[46] Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016).349

Improved techniques for training gans. CoRR, abs/1606.03498.350

[47] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,351

Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that masters352

chess, shogi, and go through self-play. Science, 362(6419), 1140–1144.353

[48] Sirignano, J. & Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial354

differential equations. Journal of Computational Physics, 375, 1339–1364.355

[49] Sønderby, C. K., Caballero, J., Theis, L., Shi, W., & Huszár, F. (2016). Amortised MAP356

inference for image super-resolution. CoRR, abs/1610.04490.357

[50] Stevens, B. & Colonius, T. (2020). Finitenet: A fully convolutional lstm network architecture358

for time-dependent partial differential equations.359

[51] Subramanian, A., Wong, M.-L., Borker, R., & Nimmagadda, S. (2018). Turbulence enrichment360

using generative adversarial networks.361

[52] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural362

networks. CoRR, abs/1409.3215.363

[53] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &364

Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.365

[54] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,366

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman,367

K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y.,368

Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,369

E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., &370

Contributors, S. . . (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.371

Nature Methods, 17, 261–272.372

[55] Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of373

global health concern. The Lancet, 395(10223), 470–473.374

[56] Yang, L., Zhang, D., & Karniadakis, G. E. (2018). Physics-informed generative adversarial375

networks for stochastic differential equations.376

[57] Zeng, S., Zhang, Z., & Zou, Q. (2022). Adaptive deep neural networks methods for high-377

dimensional partial differential equations. Journal of Computational Physics, (pp. 111232).378

12

Checklist379

1. For all authors...380

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s381

contributions and scope? [Yes] Our claims are evidenced by the experimental results in382

Section 5.383

(b) Did you describe the limitations of your work? [Yes] We discussed limitations and384

directions for future work in Section 6.385

(c) Did you discuss any potential negative societal impacts of your work? [Yes] While our386

research is focused on the study of differential equations and does not hold particularly387

poignant ethical consequences, we discussed future research directions for ensuring388

that our method can safely be deployed in real-world applications in Section 6.389

(d) Have you read the ethics review guidelines and ensured that your paper conforms to390

them? [Yes]391

2. If you are including theoretical results...392

(a) Did you state the full set of assumptions of all theoretical results? [N/A]393

(b) Did you include complete proofs of all theoretical results? [N/A]394

3. If you ran experiments...395

(a) Did you include the code, data, and instructions needed to reproduce the main experi-396

mental results (either in the supplemental material or as a URL)? [Yes] See the footnote397

on page 1 (link is currently hidden to preserve anonymity).398

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they399

were chosen)? [Yes] See Appendix A.2 and A.4.400

(c) Did you report error bars (e.g., with respect to the random seed after running experi-401

ments multiple times)? [Yes] We conducted an ablation study that includes a sensitivity402

analysis of our method. See Appendix A.7.403

(d) Did you include the total amount of compute and the type of resources used (e.g., type404

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.4.405

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...406

(a) If your work uses existing assets, did you cite the creators? [N/A]407

(b) Did you mention the license of the assets? [N/A]408

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]409

See the footnote on page 1 (link is currently hidden to preserve anonymity).410

(d) Did you discuss whether and how consent was obtained from people whose data you’re411

using/curating? [N/A]412

(e) Did you discuss whether the data you are using/curating contains personally identifiable413

information or offensive content? [N/A]414

5. If you used crowdsourcing or conducted research with human subjects...415

(a) Did you include the full text of instructions given to participants and screenshots, if416

applicable? [N/A]417

(b) Did you describe any potential participant risks, with links to Institutional Review418

Board (IRB) approvals, if applicable? [N/A]419

(c) Did you include the estimated hourly wage paid to participants and the total amount420

spent on participant compensation? [N/A]421

13

A Appendix422

A.1 Classical Loss Functions423

A plot of the various classical loss functions is provided in Figure 5.424

Figure 5: Comparison of L2, L1, and Huber loss functions. The Huber loss is equal to L2 for e ≤ 1
and to L1 for e > 1.

A.2 Description of Experiments425

A.2.1 Exponential Decay (EXP)426

Consider a model for population decay x(t) given by the exponential differential equation427

ẋ(t) + x(t) = 0, (10)

with x(0) = 1 and t ∈ [0, 10]. The ground truth solution x(t) = e−t can be obtained analytically,428

which we use to calculate the mean squared error of the predicted solution.429

To set up the problem for DEQGAN, we define LHS = ẋ+ x and RHS = 0. Figure 6 presents the430

results from training DEQGAN on this equation.431

Figure 6: Visualization of DEQGAN training for the exponential decay problem. The left-most figure
plots the mean squared error vs. iteration. To the right, we plot the value of the generator (G) and
discriminator (D) losses at each iteration. Right of this we plot the prediction of the generator x̂ and
the true analytic solution x as functions of time t. The right-most figure plots the absolute value of
the residual of the predicted solution F̂ .

A.2.2 Simple Harmonic Oscillator (SHO)432

Consider the motion of an oscillating body x(t), which can be modeled by the simple harmonic433

oscillator differential equation434

ẍ(t) + x(t) = 0, (11)

with x(0) = 0, ẋ(0) = 1, and t ∈ [0, 2π]. This differential equation can be solved analytically and435

has an exact solution x(t) = sin t.436

Here we set LHS = ẍ+ x and RHS = 0. Figure 7 plots the results of training DEQGAN on this437

problem.438

14

Figure 7: Visualization of DEQGAN training for the simple harmonic oscillator problem.

A.2.3 Damped Nonlinear Oscillator (NLO)439

Further increasing the complexity of the differential equations being considered, consider a less440

idealized oscillating body subject to additional forces, whose motion x(t) we can described by the441

nonlinear oscillator differential equation442

ẍ(t) + 2βẋ(t) + ω2x(t) + ϕx(t)2 + ϵx(t)3 = 0, (12)

with β = 0.1, ω = 1, ϕ = 1, ϵ = 0.1, x(0) = 0, ẋ(0) = 0.5, and t ∈ [0, 4π]. This equation does not443

admit an analytical solution. Instead, we use the high-quality solver provided by SciPy’s solve_ivp444

[54].445

We set LHS = ẍ+2βẋ+ ω2x+ ϕx2 + ϵx3 = 0 and RHS = 0. Figure 8 plots the results obtained446

from training DEQGAN on this equation.447

Figure 8: Visualization of DEQGAN training for the nonlinear oscillator problem.

A.2.4 Coupled Oscillators (COO)448

Consider the system of ordinary differential equations given by449

{
ẋ(t) = −ty
ẏ(t) = tx

(13)

with x(0) = 1, y(0) = 0, and t ∈ [0, 2π]. This equation has an exact analytical solution given by450


x = cos

(
t2

2

)
y = sin

(
t2

2

) (14)

Here we set451

LHS =

[
dx

dt
+ ty,

dy

dt
− xy

]T
(15)

and RHS = [0, 0]
T . Figure 9 plots the result of training DEQGAN on this problem.452

15

solve_ivp

Figure 9: Visualization of DEQGAN training for the coupled oscillators system of equations. In
the third figure, we plot the predictions of the generator x̂, ŷ and the true analytic solutions x, y as
functions of time t. The right-most figure plots the absolute value of the residuals of the predicted
solution F̂j for each equation j.

A.2.5 SIR Epidemiological Model (SIR)453

Given the ongoing pandemic of novel coronavirus (COVID-19) [55], we consider an epidemiological454

model of infectious disease spread given by a system of ordinary differential equations. Specifically,455

consider the Susceptible S(t), Infected I(t), Recovered R(t) model for the spread of an infectious456

disease over time t. The model is defined by a system of three ordinary differential equations457


Ṡ(t) = −β IS

N

İ(t) = β
IS

N
− γI

Ṙ(t) = γI

(16)

where β = 3, γ = 1 are given constants related to the infectiousness of the disease, N = S+I+R is458

the (constant) total population, S(0) = 0.99, I(0) = 0.01, R(0) = 0, and t ∈ [0, 10]. As this system459

has no analytical solution, we use SciPy’s solve_ivp solver [54] to obtain ground truth solutions.460

We set LHS to be the vector461

LHS =

[
dS

dt
+ β

IS

N
,
dI

dt
− β

IS

N
+ γI,

dR

dt
− γI

]T
(17)

and RHS = [0, 0, 0]
T . We present the results of training DEQGAN to solve this system of differential462

equations in Figure 10.463

Figure 10: Visualization of DEQGAN training for the SIR system of equations.

A.2.6 Hamiltonian System (HAM)464

Consider a particle moving through a potential V , the trajectory of which is described by the system465

of ordinary differential equations466

16

solve_ivp


ẋ(t) = px
ẏ(t) = py
ṗx(t) = −Vx

ṗy(t) = −Vy

(18)

with x(0) = 0, y(0) = 0.3, px(0) = 1, py(0) = 0, and t ∈ [0, 1]. Vx and Vy are the x and y467

derivatives of the potential V , which we construct by summing ten random bivariate Gaussians468

V = − A

2πσ2

10∑
i=1

exp

(
− 1

2σ2
||x(t)− µi||22

)
(19)

where x(t) = [x(t), y(t)]
T
, A = 0.1, σ = 0.1, and each µi is sampled from [0, 1]× [0, 1] uniformly469

at random. As before, we use SciPy to obtain ground-truth solutions.470

We set LHS to be the vector471

LHS =

[
dx

dt
− px,

dy

dt
− py,

dpx
dt

+ Vx,
dpy
dt

+ Vy

]T
(20)

and RHS = [0, 0, 0, 0]
T . We present the results of training DEQGAN to solve this system of472

differential equations in Figure 11.473

Figure 11: Visualization of DEQGAN training for the Hamiltonian system of equations. For ease of
visualization, we plot the predictions and residuals for each equation separately.

A.2.7 Modified Einstein’s Gravity System (EIN)474

The most challenging system of ODEs we consider comes from Einstein’s theory of general relativity.475

Following observations from type Ia supernovae in 1998 [45], several cosmological models have been476

proposed to explain the accelerated expansion of the universe. Some of these rely on the existence477

of unobserved forms such as dark energy and dark matter, while others directly modify Einstein’s478

theory.479

Hu-Sawicky f(R) gravity is one model that falls under this category. Chantada et al. [7] show how480

the following system of five ODEs can be derived from the modified field equations implied by this481

model.482

17



ẋ(z) =
1

z + 1
(−Ω− 2v + x+ 4y + xv + x2)

ẏ(z) =
−1
z + 1

(vxΓ(r)− xy + 4y − 2yv)

v̇(z) =
−v
z + 1

(xΓ(r) + 4− 2v)

Ω̇(z) =
Ω

z + 1
(−1 + 2v + x)

ṙ(z) =
−rΓ(r)x
z + 1

(21)

where483

Γ(r) =
(r + b)

[
(r + b)2 − 2b

]
4br

. (22)

The initial conditions are given by484 

x0 = 0

y0 =
Ωm,0(1 + z0)

3 + 2(1− Ωm,0)

2 [Ωm,0(1 + z0)3 + (1− Ωm,0)]

v0 =
Ωm,0(1 + z0)

3 + 4(1− Ωm,0)

2 [Ωm,0(1 + z0)3 + (1− Ωm,0)]

Ω0 =
Ωm,0(1 + z0)

3

Ωm,0(1 + z0)3 + (1− Ωm,0)

r0 =
Ωm,0(1 + z0)

3 + 4(1− Ωm,0)

(1− Ωm,0)

(23)

where z0 = 10,Ωm,0 = 0.15, b = 5 and we solve the system for z ∈ [0, z0]. While the physical485

interpretation of the various parameters is beyond the scope of this paper, we note that Equations 21486

and 22 exhibit a high degree of non-linearity. Ground truth solutions are again obtained using SciPy,487

and the results obtained by DEQGAN are shown in Figure 12.488

Figure 12: Visualization of DEQGAN training for the modified Einstein’s gravity system of equations.
For ease of visualization, we plot the predictions and residuals for each equation separately.

A.2.8 Poisson Equation (POS)489

Consider the Poisson partial differential equation (PDE) given by490

∂2u

∂x2
+

∂2u

∂y2
= 2x(y − 1)(y − 2x+ xy + 2)ex−y (24)

18

where (x, y) ∈ [0, 1]× [0, 1]. The equation is subject to Dirichlet boundary conditions on the edges491

of the unit square492

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=1

= 0

u(x, y)

∣∣∣∣
y=0

= 0

u(x, y)

∣∣∣∣
y=1

= 0.

(25)

The analytical solution is493

u(x, y) = x(1− x)y(1− y)ex−y. (26)

We use the two-dimensional Dirichlet boundary adjustment formulae provided in Chen et al. [8]. To494

set up the problem for DEQGAN we let495

LHS =
∂2u

∂x2
+

∂2u

∂y2
− 2x(y − 1)(y − 2x+ xy + 2)ex−y (27)

and RHS = 0. We present the results of training DEQGAN on this problem in Figure 13.496

Figure 13: Visualization of DEQGAN training for the Poisson equation. In the third figure, we plot
the prediction of the generator û as a function of position (x, y). The right-most figure plots the
absolute value of the residual F̂ , as a function of (x, y).

A.2.9 Heat Equation (HEA)497

We consider the time-dependent heat (diffusion) equation given by498

∂u

∂t
= κ

∂2u

∂x2
(28)

where κ = 1 and (x, t) ∈ [0, 1]× [0, 0.2]. The equation is subject to an initial condition and Dirichlet499

boundary conditions given by500

u(x, y)

∣∣∣∣
t=0

= sin(πx)

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=1

= 0

(29)

and has an analytical solution501

u(x, y) = e−κπ2t sin(πx). (30)

The results obtained by DEQGAN on this problem are shown in Figure 14.502

19

Figure 14: Visualization of DEQGAN training for the heat equation. In the third figure, we plot the
prediction of the generator û as a function of position (x, t). The right-most figure plots the absolute
value of the residual F̂ , as a function of (x, t).

A.2.10 Wave Equation (WAV)503

Consider the time-dependent wave equation given by504

∂2u

∂t2
= c2

∂2u

∂x2
(31)

where c = 1 and (x, t) ∈ [0, 1] × [0, 1]. This formulation is very similar to the heat equation505

but involves a second order derivative with respect to time. We subject the equation to the same506

initial condition and boundary conditions as 29 but require an added Neumann condition due to the507

equation’s second time derivative.508

u(x, y)

∣∣∣∣
t=0

= sin(πx)

ut(x, y)

∣∣∣∣
t=0

= 0

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=1

= 0

(32)

This yields the analytical solution509

u(x, y) = cos(cπt) sin(πx). (33)

The results of training DEQGAN on this problem are shown in Figure 14.510

Figure 15: Visualization of DEQGAN training for the wave equation.

A.2.11 Bugers’ Equation (BUR)511

Moving to non-linear PDEs, we consider the viscous Burgers’ equation given by512

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(34)

20

where ν = 0.001 and (x, t) ∈ [−5, 5]× [0, 2.5]. To specify the equation, we use the following initial513

condition and Dirichlet boundary conditions:514

u(x, y)

∣∣∣∣
t=0

=
1

cosh(x)

u(x, y)

∣∣∣∣
x=−5

= 0

u(x, y)

∣∣∣∣
x=5

= 0

(35)

As this equation has no analytical solution, we use the fast Fourier transform (FFT) method [6] to515

obtain ground truth solutions. The results obtained by DEQGAN are summarized by Figure 16. As516

time progresses, we see the formation of a “shock wave” that becomes increasingly steep but remains517

smooth due to the regularizing diffusive term νuxx.518

Figure 16: Visualization of DEQGAN training for Bugers’ equation. The plots in the second row
show “snapshots” of the 1D wave at different points along the time domain.

A.2.12 Allen-Cahn Equation (ACA)519

Finally, we consider the Allen-Cahn PDE, a well-known reaction-diffusion equation given by520

∂u

∂t
− ϵ

∂2u

∂x2
− u+ u3 = 0 (36)

where ϵ = 0.001 and (x, t) ∈ [0, 2π] × [0, 5]. We subject the equation to an initial condition and521

Dirichlet boundary conditions given by522

u(x, y)

∣∣∣∣
t=0

=
1

4
sin(x)

u(x, y)

∣∣∣∣
x=0

= 0

u(x, y)

∣∣∣∣
x=2π

= 0

(37)

The results are shown in Figure 17. We see that as time progresses, the sinusoidal initial condition523

transforms into a square wave, becoming very steep at the turning points of the solution.524

21

Figure 17: Visualization of DEQGAN training for the Allen-Cahn equation. The plots in the second
row show “snapshots” of the 1D wave at different points along the time domain.

22

A.3 Method Comparison for Other Experiments525

Figure 18 visualizes the training results achieved by DEQGAN and the alternative unsupervised526

neural networks that use L2, L1 and Huber loss functions for the remaining six problems.527

(a) Exponential Decay (EXP) (b) Simple Harmonic Oscillator (SHO)

(c) Coupled Oscillators (COO) (d) SIR Disease Model (SIR)

(e) Poisson Equation (POS) (f) Heat Equation (HEA)

Figure 18: Mean squared errors vs. iteration for DEQGAN, L2, L1, and Huber loss for various
equations. We perform ten randomized trials and plot the median (bold) and (25, 75) percentile range
(shaded). We smooth the values using a simple moving average with window size 50.

A.4 DEQGAN Training and Architecture528

A.4.1 Two Time-Scale Update Rule529

Heusel et al. [23] proposed the two time-scale update rule (TTUR) for training GANs, a method in530

which the discriminator and generator are trained with separate learning rates. They showed that their531

method led to improved performance and proved that, in some cases, TTUR ensures convergence to532

a stable local Nash equilibrium. One intuition for TTUR comes from the potentially different loss533

surfaces of the discriminator and generator. Allowing learning rates to be tuned to a particular loss534

surface can enable more efficient gradient-based optimization. We make use of TTUR throughout535

this paper as an instrumental lever when tuning GANs to reach desired performance.536

23

A.4.2 Spectral Normalization537

Proposed by Miyato et al. [39], Spectrally Normalized GAN (SN-GAN) is a method for control-538

ling exploding discriminator gradients when optimizing Equation 3 that leverages a novel weight539

normalization technique. The key idea is to control the Lipschitz constant of the discriminator by540

constraining the spectral norm of each layer in the discriminator. Specifically, the authors propose541

dividing the weight matrices Wi of each layer i by their spectral norm σ(Wi)542

WSN,i =
Wi

σ(Wi)
, (38)

where543

σ(Wi) = max
∥hi∥2≤1

∥Wihi∥2 (39)

and hi denotes the input to layer i. The authors prove that this normalization technique bounds the544

Lipschitz constant of the discriminator above by 1, thus strictly enforcing the 1-Lipshcitz constraint545

on the discriminator. In our experiments, adopting the SN-GAN formulation led to even better546

performance than WGAN-GP [2, 18].547

A.4.3 Residual Connections548

He et al. [21] showed that the addition of residual connections improves deep neural network549

training. We employ residual connections in our networks, as they allow gradients to flow more easily550

through the models and thereby reduce numerical instability. Residual connections augment a typical551

activation with the identity operation.552

y = F(x,Wi) + x (40)

where F is the activation function, x is the input to the unit, Wi are the weights and y is the output553

of the unit. This acts as a “skip connection", allowing inputs and gradients to forego the nonlinear554

component.555

A.5 DEQGAN Hyperparameters556

We used Ray Tune [33] to tune DEQGAN hyperparameters for each differential equation. Tables 4557

and 5 summarize these hyperparameter values for the ODE and PDE problems, respectively. The558

experiments and hyperparameter tuning conducted for this research totaled 13,272 hours of compute559

performed on Intel Cascade Lake CPU cores belonging to an internal cluster.560

Table 4: Hyperparameter Settings for DEQGAN (ODEs)

HYPERPARAMETER EXP SHO NLO COO SIR HAM EIN

NUM. ITERATIONS 1200 12000 12000 70000 20000 12500 50000
NUM. GRID POINTS 100 400 400 800 800 400 1000
G UNITS/LAYER 40 40 40 40 50 40 40
G NUM. LAYERS 2 3 4 5 4 5 4
D UNITS/LAYER 20 50 20 40 50 50 30
D NUM. LAYERS 4 3 2 2 4 2 2
ACTIVATIONS tanh tanh tanh tanh tanh tanh tanh
G LEARNING RATE 0.094 0.005 0.010 0.004 0.006 0.017 0.011
D LEARNING RATE 0.012 0.0004 0.021 0.082 0.012 0.019 0.006
G β1 (ADAM) 0.491 0.363 0.225 0.603 0.278 0.252 0.202
G β2 (ADAM) 0.319 0.752 0.331 0.614 0.777 0.931 0.975
D β1 (ADAM) 0.542 0.584 0.362 0.412 0.018 0.105 0.154
D β2 (ADAM) 0.264 0.453 0.551 0.110 0.908 0.869 0.797
EXPONENTIAL LR DECAY (γ) 0.978 0.980 0.999 0.992 0.9996 0.985 0.996
DECAY STEP SIZE 3 19 15 16 11 13 17

24

Table 5: Hyperparameter Settings for DEQGAN (PDEs)

HYPERPARAMETER POS HEA WAV BUR ACA

NUM. ITERATIONS 3000 2000 5000 3000 10000
NUM. GRID POINTS 32× 32 32× 32 32× 32 64× 64 64× 64
G UNITS/LAYER 50 40 50 50 50
G NUM. LAYERS 4 4 4 3 2
D UNITS/LAYER 30 30 50 20 30
D NUM. LAYERS 2 2 2 5 2
ACTIVATIONS tanh tanh tanh tanh tanh
G LEARNING RATE 0.019 0.010 0.012 0.012 0.020
D LEARNING RATE 0.021 0.001 0.088 0.005 0.013
G β1 (ADAM) 0.139 0.230 0.295 0.185 0.436
G β2 (ADAM) 0.369 0.657 0.358 0.594 0.910
D β1 (ADAM) 0.745 0.120 0.575 0.093 0.484
D β2 (ADAM) 0.759 0.251 0.133 0.184 0.297
EXPONENTIAL LR DECAY (γ) 0.957 0.950 0.953 0.954 0.983
DECAY STEP SIZE 3 10 18 20 15

A.6 Non-GAN Hyperparameter Tuning561

Table 6 presents the minimum mean squared errors obtained after tuning hyperparameters for the562

alternative unsupervised neural network methods that use L1, L2 and Huber loss functions.563

Table 6: Experimental Results With Non-GAN Hyperparameter Tuning
Mean Squared Error

Key L1 L2 Huber DEQGAN Traditional

EXP 1 · 10−4 4 · 10−8 2 · 10−8 3 · 10−16 2 · 10−14 (RK4)
SHO 1 · 10−5 1 · 10−9 5 · 10−10 4 · 10−13 1 · 10−11 (RK4)
NLO 1 · 10−4 3 · 10−10 1 · 10−10 1 · 10−12 4 · 10−11 (RK4)
COO 5 · 10−1 2 · 10−7 3 · 10−7 1 · 10−8 2 · 10−9 (RK4)
SIR 9 · 10−6 1 · 10−10 1 · 10−10 1 · 10−10 5 · 10−13 (RK4)
HAM 4 · 10−5 1 · 10−8 6 · 10−9 1 · 10−10 7 · 10−14 (RK4)
EIN 5 · 10−2 2 · 10−2 1 · 10−2 4 · 10−4 4 · 10−7 (RK4)
POS 9 · 10−6 1 · 10−10 1 · 10−10 4 · 10−13 3 · 10−10 (FD)
HEA 1 · 10−4 4 · 10−8 2 · 10−8 6 · 10−10 4 · 10−7 (FD)
WAV 4 · 10−4 6 · 10−7 2 · 10−7 1 · 10−8 7 · 10−5 (FD)
BUR 1 · 10−3 1 · 10−4 9 · 10−5 4 · 10−6 1 · 10−3 (FD)
ACA 5 · 10−2 1 · 10−2 3 · 10−3 5 · 10−3 2 · 10−4 (FD)

25

A.7 Residual Monitoring564

Figure 19 shows several examples of how we detect bad training runs by monitoring the variance of565

the L1 norm of the LHS (vector of equation residuals) in the first 25% of training iterations. Because566

the LHS may oscillate initially even for successful runs, we use a patience window in the first 15%567

of iterations. In all three equations below, we terminate runs if the variance of the residual L1 norm568

over 20 iterations exceeds 0.01.569

Figure 19: Equation residuals in the first 25% of training runs that ended with high (red) and low
(blue) mean squared error for the exponential decay (EXP), non-linear oscillator (NLO) and coupled
oscillators (COO) problems. The black crosses show the point at which the high MSE runs were
terminated early.

26

	Introduction
	Related Work
	Background
	Unsupervised Neural Networks for Differential Equations
	Generative Adversarial Networks
	Guaranteeing Initial & Boundary Conditions

	Differential Equation GAN
	Instance Noise
	Residual Monitoring

	Experiments
	DEQGAN vs. Classical PINNs
	DEQGAN Training Stability: Ablation Study

	Conclusion
	Appendix
	Classical Loss Functions
	Description of Experiments
	Exponential Decay (EXP)
	Simple Harmonic Oscillator (SHO)
	Damped Nonlinear Oscillator (NLO)
	Coupled Oscillators (COO)
	SIR Epidemiological Model (SIR)
	Hamiltonian System (HAM)
	Modified Einstein's Gravity System (EIN)
	Poisson Equation (POS)
	Heat Equation (HEA)
	Wave Equation (WAV)
	Bugers' Equation (BUR)
	Allen-Cahn Equation (ACA)

	Method Comparison for Other Experiments
	DEQGAN Training and Architecture
	Two Time-Scale Update Rule
	Spectral Normalization
	Residual Connections

	DEQGAN Hyperparameters
	Non-GAN Hyperparameter Tuning
	Residual Monitoring

