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ABSTRACT

Automatic Machine Learning (AutoML) is the popular supervised learning ap-
proach for tabular data. One of its key components is generating the most suitable
features given the available training dataset. To overcome the disadvantages of
existing automatic feature generation techniques, such as lack of generality and
interpretability, we propose the novel approach, LLM2Features. It uses LLMs
(Large Language Models) to generate meaningful features using automatically
collected statistics about the dataset without explicitly describing the data, making
it ideal for implementing in AutoML frameworks. In particular, we introduce the
LLM-based critic that additionally verifies the presence of syntax or logical errors.
The experimental study demonstrates the benefits of the proposed LLM2Features
approach in accuracy and training time compared to the state-of-the-art feature
generation tools.

1 INTRODUCTION

Nowadays, AutoML is widely used for training machine learning models on tabular (structured)
data (Erickson et al., 2020; Fakoor et al., 2020; Li et al., 2021) as they allow to achieve high-quality
results in several lines of code without the need to be an expert in choosing algorithms and their hy-
perparameters. One of the challenging steps in AutoML is the automated feature engineering (Mu-
muni & Mumuni, 2024) that can generate the most informative features for concrete task (Luo et al.,
2019; Silva & Silva, 2023).

Existing feature generation methods have several disadvantages, namely, the need to input additional
data from the human (Kanter & Veeramachaneni, 2015; Hollmann et al., 2024) or the impossibility
of enriching the data sufficiently well without losing the interpretability of generated features (Zhang
et al., 2023; Horn et al., 2020; Li et al., 2022). Hence, they may not be suitable for practical appli-
cations when data analysts have already designed a list of valuable and interpretable features. As a
result, the most popular AutoML frameworks (Feurer et al., 2020; LeDell & Poirier, 2020; Vakhru-
shev et al., 2021) use existing feature generation frameworks (Kanter & Veeramachaneni, 2015) or
traditional data pre-processing (Qi et al., 2023) for categorical variables, correct type conversion,
etc.

This paper studies LLM (Large Language Model)-based automated feature generation techniques
for the AutoML model that fits the generated features (Han et al., 2024). LLMs have been trained
on a much larger amount of data including feature generation code, and have a good representation
of the world they can use when generating features. The first successful application of LLM is the
CAAFE (Context-Aware Automated Feature Engineering) framework (Hollmann et al., 2024). Un-
fortunately, it requires a detailed data description, so it cannot be implemented in typical AutoML
solutions without human interaction. Moreover, the generated features sometimes lack meaningful-
ness and interpretability. Moreover, it is even possible that generted features contains mistakes of
logical errors.

In this paper, we propose to use only the provided dataset itself without the need for any additional
information. In particular, our main contribution is the novel approach, LLM2Features, which au-
tomatically extracts essential statistics from the dataset and feeds them into the prompt for feature
generation using high-quality LLM, such as GPT-4o or GPT-o1. It is experimentally shown that
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LLM-based feature generation for popular LightAutoML framework (Vakhrushev et al., 2021) has
much better quality metrics and human interpretability of the features when compared to tra-
ditional feature engineering frameworks. Therefore, the proposed method can be used not only for
generating interpretable features for AutopML but also for introductory exploration of data in an
unknown domain to the analyst.

2 RELATED WORKS

2.1 PROBLEM STATEMENT

Given a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ Rm is an m-dimensional in-
put vector, and yi is the corresponding target variable, the goal of feature generation is to find a
function z = f(x), where z is a new k-dimensional feature vector. The objective is to maximize
the predictive performance of a model M trained on the new feature space: maxP (M(D′)),
where D′ = {(z1, y1), (z2, y2), . . . , (zn, yn)} and P is a performance metric (e.g., accuracy, ROC-
AUC, RMSE). An additional requirement to automated feature generation is to minimize the level
of Human Involvement (H.I.). In this paper, we use three different values for this metric:

• 0 is just to load the data (pd.DataFrame (Wes McKinney, 2010)). The best suitable method
for use with AutoML

• 1 is to describe the data with free-form text (where the data comes from, what the nature of
it is) to the prompt

• 2 is to preprocess the features with code (fill in the omissions, remove anomalies, cast the
types (e.g., featuretools requirements)

2.2 AUTOMATIC FEATURE GENERATION

There exist two types of feature generation techniques, which 1) maximize the quality metrics by
arbitrary transformations of features leading to the lack of interpretability (Bosch et al., 2021), or 2)
generate logical, interpretable features by using knowledge of the world and data (Gosiewska et al.,
2021). Among the first type of techniques, it is necessary to mention AutoFeat (Horn et al., 2020)
feature generation by repeating various operations on one or a pair of features and using a built-in
selector to select only helpful features. The OpenFE (Zhang et al., 2023) follows a similar principle
but makes it faster with a specially developed boosting selector for a deeper understanding of the
feature importance to the model in a further generation. The second technique that brings new infor-
mation into the data is the featuretools library (Kanter & Veeramachaneni, 2015), which generates
new features, including multi-level features (connecting features by some operations) according to
pre-defined rules inspired by real-world scenarios. The pre-defined rules include the interaction with
dates, coordinates, age, and address. Another interesting example is the FETCH (Li et al., 2022) that
trains a single neural network to predict correct feature transformations for any tabular dataset, al-
lowing us to accumulate knowledge about the most useful feature-dependent transformations.

2.3 LARGE LANGUAGE MODELS

LLMs are models intended for understanding, interpreting, and generating human-like texts (Tou-
vron et al., 2023; Team et al., 2024). In this paper, we use the family of ChatGPT models developed
by OpenAI, which are trained to perform human-like conversations and assist in various tasks. It is
a relatives model of InstructGPT (Ouyang et al., 2022), designed to follow instructions in prompts
and provide detailed answers. These models typically obtain state-of-the-art in the field of LLM
models, so we decided to use them in our framework.

LLMs show significant cross-domain knowledge capabilities, i.e., they can transfer and apply knowl-
edge across different domains or subject areas and solve complex problems in various fields. Knowl-
edge can be tested by examinations (Newton & Xiromeriti, 2024). LLMs are trained on huge
amounts of data spanning multiple domains, allowing them to develop broad knowledge that can
be applied to various tasks and topics. According to different estimates, the size of a training sample
starts from 600 GB and is obtained from multiple Internet sources (including Wikipedia). Trillions
of LLM parameters (Allen-Zhu & Li, 2024) allow for structured summarization of global Internet
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information, therefore it is of great interest to use LLM in the context of feature generation, because
the knowledge of a data analyst in the domain-specific data domain will most often be lower than
LLM.

An advanced prompting technique LLMs use to increase their ability to reason and solve problems
is the Chain of thought (CoT). It motivates LLMs to decompose complex problems into intermediate
steps by mimicking human reasoning processes. CoT helps LLMs solve complex problems (Feng
et al., 2023). It involves asking the model to “think step by step” when answering questions or
solving problems. This technique uses the model’s general knowledge to improve its performance
on tasks that require logic, computation, and decision-making. We add instructions like “Describe
your logic and reasoning” to the prompt. Further in the paper, we ask LLMs to generate useful
domain information to generate features based on it, too.

2.4 LLM ACTOR VS. LLM CRITIC

Industry practice and research (Gou et al., 2024) demonstrate that if we verify the answers of an
LLM with another LLM by assigning the conditional roles of “actor” and “critic” in advance, i.e., a
model that solves the problem and a model that catches errors in the solution of the first model, then
we can improve the quality of text generation, find mistakes in advance, and improve the quality
metrics in different kinds of tasks. Further in the paper, we propose to use LLM not only for feature
generation but also for error catching and feature correction.

2.5 INTERPRETABILITY

Interpretability of features is important in the context of machine learning tasks. It is often neces-
sary not only for the quality of the final feature pipeline but also for understanding its background
and possible values to build a stable implementation. Most existing non-LLM approaches (except
featuretools) do not provide proper interpretability of features, so they are selected based on opti-
mized oversamples to improve the final model’s prediction quality without caring about possible
degradation of the scoring over time. This is why the LLM approach is attractive, as it can describe
the reason for generating a particular feature, not only to generate the maximum number of features
useful for the quality of the model (to be shown later in the paper). In addition, LLM models can be
attempted to be interpreted (Singh et al., 2024) by delving deeper into the causes of generation

3 PROPOSED APPROACH

The proposed LLM2Features framework is shown in Fig. 1. It contains three main parts.

The first one is the prompt generation. The human inputs a table (training set) in pandas.DataFrame
(Wes McKinney, 2010) format, and the prompt is generated using our specially developed pattern
(Table 1). We use an example of feature generation and an example of LLM response for the LLM
to follow the instructions more clearly. It is an example of in-context learning where the pre-trained
model prior knowledge to generalize from limited task-specific data. (Parnami & Lee, 2022). The
following statistics are collected from the human data: column information (data types), number
of omitted values in columns, random sampling of records, distribution of values in features, and
correlation in data for numerical features. Also, we request LLMs to check their answers, write all
necessary information for generating further features in the [DOMAIN] section, and the features
themselves in the [FEATURES] section, which increases the total number of instruction followings
when generating features

Processing the results. The features generated using our prompt by an LLM, such as GPT-4o, are
tested for validity. For example, the whole feature is removed in case of syntax errors. If the feature
uses a target, it is removed. The features are typically generated by calling special libraries, such as
Python standard modules or numpy (Harris et al., 2020), pandas, and geopy. If these packages are not
installed, the code check unit will drop the generated feature. Next, the generated features from the
training and testing set are computed for each example. In case of any error, the feature is not added.
If less than three correct features are generated, the request to GPT-4o is sent again. These generation
tasks can also be effectively performed by an LLM-critic checking the generated response. The
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The data shows New York City cab trips.   
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It is worth not to use the trip_duration feature and 
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Also, It  may be interesting..

automatic 
collection

data.describe():

taxi_duration:  std 1, min 0, max 1..
cost: ..p75: 3, p99 4.31, max 10
data.corr():
taxi_duration - cost: 0.93
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more than 
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 original training features

 original test features

generated 
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target from the test set

Raw 

generated text

Training set
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Figure 1: The proposed LLM2Features pipeline

Table 1: The prompt for our LLM-based interpretable feature generation

The dataset is loaded into the ’df’ variable in pandas.DataFrame format and is available for any manipulation.
All information is taken from the dataset using the pandas library. Information about the number of omissions and
column types (data.info()):
{df.info()} ’df.sample()’ (data sample): {df.sample()} ‘df.corr()‘ (correlation for num. features):{df.corr()}
’Useful information about the data:’ { human desc of DATA (OPTIONAL)}
’df.describe() (statistics in the features )’
{ df.describe()} This code generates additional columns based on data information, feature names, and
other useful information.
The code is posted as the best example of feature generation by LLM with extensive experience in researching data and
creating useful features The generated features are useful for solving the
{’classification’ if class else ’regression’} problem using gradient boosting algorithm LightGBM
(therefore, feature generation based on scale changes or feature combinations does not make sense).
The target variable in the data is ’{targetname}’, the quality metric is {’ROC-AUC’ if class else ’RMSE’}.
The generated features bring new logical information to the real-world data, useful for solving the problem.
Some approaches used for generation:
*. Type transformations. For example: from a numeric feature to make several categorical features
*. Creating flags. For example: putting a true flag when some conditions are fulfilled in one record,
*. Discretization. For example: divide a numerical feature into intervals and assign each interval a number
*. Complete deletion of the feature. In the case of a small number of records, it may help not to overfit
*. Changing the feature values according to the condition.
For example: replacing erroneous values with the most appropriate ones.
*. Any useful transformation based on knowledge about the real world
The information is generated in [DOMAIN]: a desc of useful information about the data and [FEATURES]:
where the Python blocks begin.
Feature generation example: {PYTHON FORMAT BLOCK}
Each block was checked for possible errors: the absence of a feature in the table and the correctness of the syntax
[LLM ANSWER] Following the proposed work format, first [DOMAIN] describing all the necessary information for
the data work is written out, followed by [FEATURES]: with the generated features in Python block format.
[DOMAIN]:

4
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o1-preview was taken as a critic because the authors state that it is better at reason and is capable of
deep thought compared to previous versions of the ChatGPT.

For simple mistakes (e.g., syntax errors), it is possible to use ast library1. For serious logical errors
in features (using a feature that leaks test data, using incorrect values within a feature, etc.), the
LLM-critic is used (see a prompt in Table 2)

Table 2: The prompt of our LLM-based critic

You are a LLM-critic that receives as input the output of another LLM model.
You need to fix syntax and logic errors in Python code in order to improve training quality and prediction metrics
on the {TARGET} feature when training LightGBM on the {CLASSIFICATION/REGRESSION} task.
The [INIT PROMPT] will be passed first, which is the OTHER LLM prompt that was used to generate the features.
Next, the OTHER LLM response will be transmitted after the < ACTOR LLM ANSWER > token.
Generating start after <LLM CRITIC ANSWER>.
You should write strictly in [ERROR DESCRIPTION] format all errors that were made in the features,
including in the calculation logic or with leaked test data from the target [FIX] Python code in blocks.
Example:
[INIT PROMPT]
{PROMPT FROM Table 1}
< ACTOR LLM ANSWER >
[DOMAIN] Count features 1 + 1 and remove features df[’Name’] because this will come in handy
for predicting the target.
[FEATURES]
“‘python
# Feature: Adding two integer features
# Usefulness: This feature is needed for predicting the target.
# Input samples: ’Number 1’: [1, 0, 3], ’Number 2’: [0, 2, 1], ’Number 3’: [4, 5, -1]
df[’Sum Number 1 and 2’] = df[’Number 1’] + df[’Number 2’] + df[’Number 3’]
“‘
“‘python
# Feature: Removing the ’Name’ feature
# Usefulness: This feature does not affect targeting
df.drop(columns=[’Name’])
“‘
<LLM CRITIC ANSWER>
[ERROR DESCRIPTION]
The feature ’Sum Number 1 and 2’ should consist of the sums of the two
integer columns ’Number 1’ and ’Number 2’. Since ’Number 3’ is added to it, this sign contains an error
The ’Name’ sign was not deleted because the inplace=True argument is missing.
[FIX]
“‘python
# Feature: Adds two integer features
# Usefulness: This feature is needed for predicting the target.
# Input samples: ’Number 1’: [1, 0, 3], ’Number 2’: [0, 2, 1]
df[’Sum Number 1 and 2’] = df[’Number 1’] + df[’Number 2’]
“‘
““python
# Feature: Removing the ’Name’ feature
# Usefulness: This feature does not affect targeting
df.drop(columns=[’Name’], inplace=True)
“‘
[INIT PROMPT]:

The final part of our pipeline is the Auto ML training. Appropriate AutoML framework, such
as LightAutoML (Vakhrushev et al., 2021), is trained on the generated features and predicts a test
sample.

1https://docs.python.org/3/library/ast.html
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Table 3: Datasets for experimental study

Task Dataset Target No.
Rows
(train)

No.
Rows
(test)

No.
fea-
tures

Titanic Cukierski (2012) A titanic passen-
ger’s survival flag

534 214 11

binary clas-
sification

Credit-g Hofmann (2014) A customer credit
risk flag

750 250 21

Diabetes Kaggle (2020) A flag for the pres-
ence of diabetes

576 192 9

California Housing Price Nugent (2017) Forecasting hous-
ing prices

12384 4953 9

regression NYC Taxi Duration Risdal (2017) A ride duration of
taxi trips

100000 100000 10

Mental Health ASHFAQ (2024) A mental state of
students

65 22 19

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

The proposed LLM2Features approach is implemented in two supported scenarios: 1) with a de-
scription of data, including information about domain and attributes, and 2) without data descrip-
tion, where features are generated only based on statistics from the dataset. We use two state-of-the-
art LLMs from OpenAI, namely, GPT-4, GPT-4o (Achiam et al., 2023), GPT-o1-preview(OpenAI,
2024), that can better follow rather complex prompt (Table 1).

In addition to using initial features, we compare our pipeline with several state-of-the-art feature
generation techniques, such as OpenFE (Zhang et al., 2023), AutoFeat (Horn et al., 2020) and
Featuretools (Kanter & Veeramachaneni, 2015). Moreover, we used an official LightAutoML
Pipeline2 (Vakhrushev et al., 2021), which is an example of a classic approach for AutoML frame-
works. It simply encodes categorical features, transforms some data, and boosts selectors. Finally,
we implemented the state-of-the-art LLM-based feature generator with the domain knowledge about
the dataset, CAAFE (Hollmann et al., 2024) with GPT-4 and GPT-4o. Special preprocessing was
only applied to the data if the method for feature generation did not work without accurate type
conversion, omission, and anomaly correction. Omissions were filled with median (statistics were
counted with the condition of not allowing leakage of test data), feature types were corrected by the
meaning of the feature and the needs of specific algorithms for feature generation (for example, the
basic implementation of featuretools requires type conversion using woodwork 3).

The proposed approach is implemented in two settings:

1. LLM2Features with human input: with domain information, attributes, and data
2. LLM2Features without human input: without domain information, attributes, and data

(attributes are generated only based on statistics from the dataset). It is the most suitable
for application with AutoML frameworks.

In our experiments, we examine several traditional datasets for binary classification and regression
tasks (Table 3) that are widely used in various papers (Hollmann et al., 2024; Katz et al., 2016; Kaul
et al., 2017; Li et al., 2022). We use the modern AutoML framework, LightAutoML (Vakhrushev
et al., 2021) v0.3.8.1, to train classification and regression models, which has recently won the Kag-
gle’s AutoML Grand Prix 2024. We compute traditional metrics, namely, F1-score and ROC-AUC
(Area Under the ROC Curve) for classification and RMSE (Root Mean Squared Error) and MAPE
(Mean Absolute Percentage Error) for single regression. Moreover, we estimate the performance

2https://colab.research.google.com/github/AILab-MLTools/LightAutoML/
blob/master/examples/tutorials/Tutorial_6_custom_pipeline.ipynb

3https://woodwork.alteryx.com/en/stable/
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Table 4: Experimental results for classification tasks
Dataset Method Total

(sec.)
Init (sec.) Fit (sec.) Predict

(sec.)
F1 ROC

AUC
H.I.

Initial features 168.83 0.042 168.726 0.062 0.773 0.869 -
LightAutoML pipeline 24.959 0.008 24.888 0.062 0.748 0.856 -
OpenFE 296.853 0.086 295.971 0.796 0.752 0.856 2
featuretools 225.63 0.06 225.334 0.235 0.762 0.868 2

Titanic autofeat 370.676 0.032 370.491 0.152 0.756 0.871 2
CAAFE (GPT-4) 170.222 0.046 169.957 0.22 0.763 0.878 1
CAAFE (GPT-4o) 566.649 0.106 566.266 0.277 0.800 0.884 1
LLM2Features with
description (GPT-4)

252.639 0.106 252.345 0.189 0.795 0.885 1

LLM2Features with
description (GPT-4o)

379.663 0.067 379.355 0.240 0.81 0.887 1

LLM2Features without
description (GPT-4o)

380.254 0.071 380.120 0.063 0.761 0.868 0

Initial features 276.138 0.114 275.789 0.235 0.844 0.794 -
LightAutoML pipeline 55.994 0.009 55.932 0.054 0.843 0.756 -
OpenFE 753.897 0.166 751.444 2.287 0.844 0.793 2
featuretools 666.235 0.103 665.664 0.468 0.844 0.800 2

Credit-g autofeat 1826.556 0.088 1826.4 0.068 0.841 0.779 2
CAAFE (GPT-4) 326.308 0.047 325.982 0.279 0.85 0.799 1
CAAFE (GPT-4o) 481.956 0.167 481.528 0.260 0.851 0.778 1
LLM2Features with
description (GPT-4)

298.599 0.058 298.218 0.323 0.852 0.795 1

LLM2Features with
description (GPT-4o)

471.436 0.255 470.43 0.75 0.847 0.801 1

LLM2Features without
description (GPT-4o)

450.747 0.098 450.346 0.303 0.84 0.797 0

Initial features 419.682 0.132 419.427 0.123 0.662 0.803 -
LightAutoML pipeline 32.218 0.011 32.157 0.05 0.559 0.796 -
OpenFE 665.415 0.097 663.615 1.703 0.652 0.797 2
featuretools 444.322 0.175 444.077 0.071 0.662 0.803 2

Diabetes autofeat 453.782 0.023 453.642 0.117 0.623 0.803 2
CAAFE (GPT-4) 289.287 0.073 289.103 0.111 0.627 0.796 1
CAAFE (GPT-4o) 442.723 0.207 442.364 0.152 0.647 0.803 1
LLM2Features with
description (GPT-4)

245.668 0.071 245.47 0.127 0.662 0.803 1

LLM2Features with
description (GPT-4o)

431.542 0.082 431.206 0.253 0.686 0.813 1

LLM2Features without
description (GPT-4o)

408.503 0.145 408.158 0.2 0.63 0.8044 0

of the following stages in a typical pipeline on a PC with an Intel Xeon processor with two virtual
CPUs and 12.5 GB RAM:

• Init (sec.), time to initialize all necessary methods.
• Fit (sec.), time to perform fit speed, which contains both running the feature generation

and training the model. As requests to the LLM do not exceed 30 sec., we add 30 sec for
LLM-based feature generation.

• Predict (sec.), time to perform prediction for the complete test set, including computation
of generated features.

• Total (sec.), the total running time of AutoML that is a sum of Init, Fit, and Predict.

4.2 NUMERICAL RESULTS

The results of our experiments for classification and regression tasks are shown in Table 4 and Ta-
ble 5, respectively. Suppose the proposed LLM2Features is operated without additional information
from humans, i.e., using only statistics from the dataset. In that case, obtaining significantly bet-
ter metrics than traditional feature-generation techniques for all datasets is possible. However, using
additional domain knowledge in the CAAFE (Hollmann et al., 2024), a previous application of LLM
for feature engineering, can increase the overall accuracy. Nevertheless, the proposed approach with
additional domain information performed better than the CAAFE baseline (Hollmann et al., 2024)
on all binary classification and regression metrics datasets. It is also worth noting that the proposed
approach is faster than any non-LLM approach, despite a rough estimate of 30 seconds for LLM
generation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Experimental results for regression tasks
Dataset Method Total

(sec.)
Init (sec.) Fit (sec.) Predict

(sec.)
RMSE MAPE H.I.

Initial features 737.675 0.06 735.215 2.4 3127.033 1.172 -
LightAutoML pipeline 175.305 0.004 172.201 3.1 3156.163 1.528 -
OpenFE 1235.321 0.751 1231.416 3.153 3097.566 1.357 2
featuretools 772.226 2.018 767.898 2.311 2904.571 0.818 2

Taxi autofeat 731.505 0.25 730.321 0.934 3149.696 1.495 2
CAAFE (GPT-4) 866.167 0.035 863.274 2.859 2243.413 0.839 1
CAAFE (GPT-4o) 773.673 0.122 771.722 1.830 3138.281 1.336 1
LLM2Features with
description (GPT-4)

869.667 0.058 867.59 2.019 2174.115 0.67 1

LLM2Features with
description (GPT-4o)

1005.72 0.036 1003.548 2.137 2157.126 0.664 1

LLM2Features without
description (GPT-4o)

683.106 0.203 682.903 3.368 2571.521 0.941 0

Initial features 713.203 0.037 713.959 9.206 0.445 0.164 -
LightAutoML pipeline 238.901 0.003 235.363 3.534 0.447 0.168 -
OpenFE 1550.089 0.104 1543.483 6.502 0.443 0.164 2
featuretools 746.134 0.106 739.488 6.54 0.445 0.164 2

House autofeat 1007.544 0.021 1001.955 5.568 0.454 0.165 2
CAAFE (GPT-4) 752.779 0.038 746.457 6.284 0.451 0.165 1
CAAFE (GPT-4o) 612.440 0.065 607.093 5.282 0.447 0.164 1
LLM2Features with
description (GPT-4)

815.578 0.038 809.493 6.046 0.448 0.164 1

LLM2Features with
description (GPT-4o)

774.347 0.125 767.185 7.037 0.442 0.163 1

LLM2Features without
description (GPT-4o)

617.345 0.185 615.332 1.829 0.467 0.172 0

Table 6: Regression datasets with a minimum number of records, comparison of statistical methods,
and o1-preview (chosen by metrics over other LLM approaches)

Dataset Method Total
(sec.)

Init (sec.) Fit (sec.) Predict
(sec.)

RMSE MAPE H.I.

Initial features 380.593 0.075 380.309 0.209 1.187 7e+14 -
Mental LightAutoML pipeline 18.765 0.004 18.748 0.013 1.212 7.4e+14 -
Health featuretools 225.101 0.048 224.394 0.658 1.142 6.5e+14

autofeat 590.479 0.12 590.168 0.191 1.175 6.92e+14 2
LLM2Features without
description (GPT-o1-
preview)

448.270 0.118 447.586 0.566 0.997 5e+14 0

4.3 QUALITATIVE EXAMPLES

A qualitative example of the feature generated by our approach for the Diabetes dataset is shown in
Table 7. Here, LLM demonstrates an understanding of the correlation between weight and diabetes
risk in a way that may not be obvious to a person without a medical background. The generated
feature can be a great starting point for further deeper analysis.

Table 8 shows our LLM-based critic’s understanding of the errors associated with generating features
with known test data leakage or LLM hallucination and correct error values in the feature.

In Table 7, the features from our approach not only improve the quality of the AutoML model but
also can be easily interpreted for further manual feature engineering or creating additional features
using classical feature generation techniques.

Finally, in Table 9 (Appendix A), we can see a clear division of the LLM response into zones, the
first one is where task formulation takes place and the second one generates syntactically correct
features that can be immediately used to run the generation task. Curiously, the LLM presented in
Table 9 does not generate a description based on Python-generated features but first invents a feature,
describes it, and only encodes it into Python code. This is due to the nature of the model’s design,
which essentially consists of sequential token generation. Based on the features obtained, further
analysis can be completed. For example, examine the “Name” feature in more detail for possible
other insights or examine the “Cabin” feature that may affect survival rates.
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Table 7: Example of features generated by our approach with automatic LLM-based interpretations

Dataset Sample feature Interpretation by LLM

Titanic df[’Title’] =
df[’Name’].str.extract(’
([A-Za-z]+)’̇, expand=False)

Titles can provide information on social status and
gender. How could an analyst create it in the
real world: by extracting the title (e.g., Mr., Mrs.,
Miss) from the attribute “name”.

Diabetes df[’BMICategory’] =
pd.cut(df[’BMI’], bins=[0,
18.5, 24.9, 29.9, 50], la-
bels=[’Underweight’,
’Normal’, ’Overweight’,
’Obese’]) # Input samples:
’BMI’: [21.8, 25.3, 30.5]

BMICategory: Categorize BMI into Under-
weight, Normal, Overweight, and Obese. Useful-
ness: BMI categories provide insight into the pa-
tient’s weight status, which is crucial for diabetes
risk.

Credit G df[’HighRisk’] =
df[’HighRisk’].apply(
lambda x: 1 if x > 3
else 0) # Input samples:
’HighRisk’: [2.0, 3.0, 4.0]

Useful for class prediction as high installment
commitments might indicate financial strain

Mental Health ddf[’sleep deprived’] =
df[’average sleep’].isin([’<5
hrs’, ’5-6 hrs’])

Sleep deprivation can affect mental health and
academic performance, impacting survival.

Housing Price df[’AgeCategory’] =
pd.cut(df[’HouseAge’],
bins=[0, 10, 30, 50, 100],
labels=[’New’, ’Medium’,
’Old’, ’Very Old’])

Categorizing house age into newer and older can
help capture nonlinear effects on house value, as
newer homes might have higher values due to less
wear and more modern amenities.

Taxi df[’is rush hour’] =
df[’pickup hour’].isin([7,
8, 9, 16, 17, 18])

Flags trips during peak traffic times, which can
affect trip duration.

5 CONCLUSION

This paper proposes a novel LLM-based automatic feature generation approach for AutoML with
tabular data (Fig. 1). We experimentally proved that the proposed approach lead to better perfor-
mance (Tables 4, 5) when compared to conventional state-of-the-art feature generators. It is impor-
tant to emphasize that we improved metrics not for outdated ML models but using the contemporary
LightAutoML framework (Vakhrushev et al., 2021). Moreover, our method generates interpretable
features for regression and classification tasks based only on feature names and data statistics with-
out an additional description (Table 7). We are the first to present this extremely important property
for LLM-based auto feature generation. As a result, our LLM2Features pipeline can be integrated
into an arbitrary AutoML pipeline for complete no-code ML. Also, the described approach can be
used for preliminary data analysis. The LLM generates valuable features for AutoML and allows
humans to explore unknown data in greater detail. The source code of our experiments will be made
publicly available4.

In future, it is necessary to extend our LLM2Features approach, e.g., use more examples of feature
generation in the prompt. It is also important to highlight that our current approach sends all requests
to the LLM on a one-time request. Hence, it is possible to increase the accuracy by sending requests
to adjust features with their importance for the obtained AutoML model. Finally, applying our

4https://anonymous.4open.science/r/LLM2Features-1B28
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Table 8: Example of our LLM-based critic that fixes the issues with features generated by a LLM

Feature Problem [ERROR DESCRIPTION] [FIX]

df[’dropoff datetime’]
= pd.to datetime(
df[’dropoff datetime’]
)

This feature is from
the Taxi (Risdal,
2017), where we
need to predict the
length of a trip. The
dropoff datetime
feature is not avail-
able to us, it was
mentioned in the
data description

The dropoff datetime feature
defines the end time of the
trip, therefore feature can not
be included in the test data
for the forecast. The feature
should be deleted

df.drop(columns =
[’dropoff datetime’],
inplace=True)

df[’sleep deprived’] =
df[’average sleep’].isin(
[’> 5 hrs’, ’5-6
hrs’]))

There is a typo-
graphical error. The
values in the ’av-
erage sleep’ feature
are only <5 (ASH-
FAQ, 2024)

In the definition of a feature,
a typing error has been com-
mitted

df[‘sleep deprived’]
=
df[‘average sleep’].isin(
[‘<5 hrs’, ‘5-6
hrs’]))

df[’duration group’]
=
pd.cut(df[’duration’],
bins=[0, 5, 10, 20,
30, 40, 50], la-
bels=[’very short’,
’short’, ’medium’,
’long’, ’very long’,
’extra long’])

Not appropriate du-
ration for the de-
scribed loan groups
(Hofmann, 2014).

The bins for the feature do
not fit well with the specified
groups

df[’duration group’]
=
pd.cut(df[’duration’],
bins=[0, 12, 24, 36,
48, 60, 120], la-
bels=[’very short’,
’short’, ’medium’,
’long’, ’very long’,
’extra long’])

models with the publicly-available LLMs, which may need to simplify instructions in our prompt
(Table 1).
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A ADDITIONAL QUALITATIVE RESULTS

Table 9: ChatGPT-4o Answer to the Titanic dataset prompt (without data description), subsample of
generated features

[DOMAIN]:
We are analyzing the Titanic dataset to predict passenger survival (’Survived’) using a gradient boosting algorithm,
with ROC-AUC as the evaluation metric. The dataset contains various features such as socioeconomic status (Pclass),
personal information (Name, Sex, Age), family
relations (SibSp, Parch), ticket details, fare, cabin assignment, and port of embarkation (Embarked). Our objective
is to generate new features that introduce meaningful real-world insights to enhance model performance.
We will focus on transformations that capture social status, family connections, passenger demographics,
and other relevant information.
[FEATURES]:
‘ ‘ ‘python
# Feature: Extracting Title from passenger’s name
# Usefulness: Titles can indicate social status and marital status, which may correlate with survival rates.
# Input samples:
# ’Name’: [’Braund, Mr. Owen Harris’, ’Heikkinen, Miss. Laina’, ’Allen, Master. William Henry’]
df[’Title’] = df[’Name’].str.extract(’ ([A-Za-z]+)’̇, expand=False)
# Feature: Simplifying titles into common categories
# Usefulness: Grouping rare titles reduces noise and captures essential social distinctions.
# Input samples:
# ’Title’: [’Mr’, ’Miss’, ’Master’, ’Dr’, ’Lady’]
title mapping = {’Mr’: ’Mr’, ’Miss’: ’Miss’, ’Mrs’: ’Mrs’,
’Master’: ’Master’, ’Dr’: ’Officer’, ’Rev’: ’Officer’, ’Col’: ’Officer’,
’Major’: ’Officer’, ’Mlle’: ’Miss’, ’Countess’: ’Royalty’, ’Ms’: ’Mrs’,
’Lady’: ’Royalty’, ’Jonkheer’: ’Royalty’, ’Don’: ’Royalty’, ’Dona’: ’Royalty’,
’Mme’: ’Mrs’, ’Capt’: ’Officer’, ’Sir’: ’Royalty’ }
df[’Title’] = df[’Title’].map(title mapping)
# Feature: Creating FamilySize from SibSp and Parch
# Usefulness: Family size may affect survival chances; larger families might have different survival rates.
# Input samples:
# ’SibSp’: [1, 0, 3], ’Parch’: [0, 2, 1]
df[’FamilySize’] = df[’SibSp’] + df[’Parch’] + 1
# Feature: Creating IsAlone flag based on FamilySize
# Usefulness: Passengers traveling alone may have different survival probabilities compared to those with family.
# Input samples:
# ’FamilySize’: [1, 4, 2]
df[’IsAlone’] = 0
df.loc[df[’FamilySize’] == 1, ’IsAlone’] = 1
# Feature: Discretizing Age into age groups
# Usefulness: Age groups can capture nonlinear relationships between age and survival.
# Input samples:
# ’Age’: [22, 38, 4]
df[’AgeGroup’] = pd.cut(df[’Age’], bins=[0, 12, 18, 35, 60, 80], labels=[1, 2, 3, 4, 5])
# Feature: Extracting Deck information from Cabin
# Usefulness: Deck level may influence survival due to proximity to lifeboats.
# Input samples:
# ’Cabin’: [’C85’, NaN, ’E46’]
df[’Deck’] = df[’Cabin’].str[0]
df[’Deck’].fillna(’U’, inplace=True)
# Mapping Deck to numerical values
# Usefulness: Converts deck letters to numerical codes for modeling.
# Input samples:
# ’Deck’: [’C’, ’U’, ’E’]
deck mapping = ’A’:1, ’B’:2, ’C’:3, ’D’:4, ’E’:5, ’F’:6, ’G’:7, ’T’:8, ’U’:0
df[’Deck’] = df[’Deck’].map(deck mapping)
# Dropping uninformative or redundant features
# Explanation: ’Ticket’ and ’Cabin’ are dropped due to high missing values and redundancy after extracting ’Deck’.
df.drop(columns=[’Ticket’, ’Cabin’], inplace=True)
# Feature: Binning Fare into discrete categories
# Usefulness: Fare can have nonlinear effects; binning captures these patterns.
# Input samples:
# ’Fare’: [7.25, 71.2833, 8.05]
df[’FareBand’] = pd.qcut(df[’Fare’], 4, labels=[1, 2, 3, 4])
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