
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLM2FEATURES: LARGE LANGUAGE MODELS IN IN-
TERPRETABLE FEATURE GENERATION FOR AUTOML
WITH TABULAR DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatic Machine Learning (AutoML) is the popular supervised learning ap-
proach for tabular data. One of its key components is generating the most suitable
features given the available training dataset. To overcome the disadvantages of
existing automatic feature generation techniques, such as lack of generality and
interpretability, we propose the novel approach, LLM2Features. It uses LLMs
(Large Language Models) to generate meaningful features using automatically
collected statistics about the dataset without explicitly describing the data, making
it ideal for implementing in AutoML frameworks. In particular, we introduce the
LLM-based critic that additionally verifies the presence of syntax or logical errors.
The experimental study demonstrates the benefits of the proposed LLM2Features
approach in accuracy and training time compared to the state-of-the-art feature
generation tools.

1 INTRODUCTION

Nowadays, AutoML is widely used for training machine learning models on tabular (structured)
data (Erickson et al., 2020; Fakoor et al., 2020; Li et al., 2021) as they allow to achieve high-quality
results in several lines of code without the need to be an expert in choosing algorithms and their hy-
perparameters. One of the challenging steps in AutoML is the automated feature engineering (Mu-
muni & Mumuni, 2024) that can generate the most informative features for concrete task (Luo et al.,
2019; Silva & Silva, 2023).

Existing feature generation methods have several disadvantages, namely, the need to input additional
data from the human (Kanter & Veeramachaneni, 2015; Hollmann et al., 2024) or the impossibility
of enriching the data sufficiently well without losing the interpretability of generated features (Zhang
et al., 2023; Horn et al., 2020; Li et al., 2022). Hence, they may not be suitable for practical appli-
cations when data analysts have already designed a list of valuable and interpretable features. As a
result, the most popular AutoML frameworks (Feurer et al., 2020; LeDell & Poirier, 2020; Vakhru-
shev et al., 2021) use existing feature generation frameworks (Kanter & Veeramachaneni, 2015) or
traditional data pre-processing (Qi et al., 2023) for categorical variables, correct type conversion,
etc.

This paper studies LLM (Large Language Model)-based automated feature generation techniques
for the AutoML model that fits the generated features (Han et al., 2024). LLMs have been trained
on a much larger amount of data including feature generation code, and have a good representation
of the world they can use when generating features. The first successful application of LLM is the
CAAFE (Context-Aware Automated Feature Engineering) framework (Hollmann et al., 2024). Un-
fortunately, it requires a detailed data description, so it cannot be implemented in typical AutoML
solutions without human interaction. Moreover, the generated features sometimes lack meaningful-
ness and interpretability. Moreover, it is even possible that generted features contains mistakes of
logical errors.

In this paper, we propose to use only the provided dataset itself without the need for any additional
information. In particular, our main contribution is the novel approach, LLM2Features, which au-
tomatically extracts essential statistics from the dataset and feeds them into the prompt for feature
generation using high-quality LLM, such as GPT-4o or GPT-o1. It is experimentally shown that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLM-based feature generation for popular LightAutoML framework (Vakhrushev et al., 2021) has
much better quality metrics and human interpretability of the features when compared to tra-
ditional feature engineering frameworks. Therefore, the proposed method can be used not only for
generating interpretable features for AutopML but also for introductory exploration of data in an
unknown domain to the analyst.

2 RELATED WORKS

2.1 PROBLEM STATEMENT

Given a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ Rm is an m-dimensional in-
put vector, and yi is the corresponding target variable, the goal of feature generation is to find a
function z = f(x), where z is a new k-dimensional feature vector. The objective is to maximize
the predictive performance of a model M trained on the new feature space: maxP (M(D′)),
where D′ = {(z1, y1), (z2, y2), . . . , (zn, yn)} and P is a performance metric (e.g., accuracy, ROC-
AUC, RMSE). An additional requirement to automated feature generation is to minimize the level
of Human Involvement (H.I.). In this paper, we use three different values for this metric:

• 0 is just to load the data (pd.DataFrame (Wes McKinney, 2010)). The best suitable method
for use with AutoML

• 1 is to describe the data with free-form text (where the data comes from, what the nature of
it is) to the prompt

• 2 is to preprocess the features with code (fill in the omissions, remove anomalies, cast the
types (e.g., featuretools requirements)

2.2 AUTOMATIC FEATURE GENERATION

There exist two types of feature generation techniques, which 1) maximize the quality metrics by
arbitrary transformations of features leading to the lack of interpretability (Bosch et al., 2021), or 2)
generate logical, interpretable features by using knowledge of the world and data (Gosiewska et al.,
2021). Among the first type of techniques, it is necessary to mention AutoFeat (Horn et al., 2020)
feature generation by repeating various operations on one or a pair of features and using a built-in
selector to select only helpful features. The OpenFE (Zhang et al., 2023) follows a similar principle
but makes it faster with a specially developed boosting selector for a deeper understanding of the
feature importance to the model in a further generation. The second technique that brings new infor-
mation into the data is the featuretools library (Kanter & Veeramachaneni, 2015), which generates
new features, including multi-level features (connecting features by some operations) according to
pre-defined rules inspired by real-world scenarios. The pre-defined rules include the interaction with
dates, coordinates, age, and address. Another interesting example is the FETCH (Li et al., 2022) that
trains a single neural network to predict correct feature transformations for any tabular dataset, al-
lowing us to accumulate knowledge about the most useful feature-dependent transformations.

2.3 LARGE LANGUAGE MODELS

LLMs are models intended for understanding, interpreting, and generating human-like texts (Tou-
vron et al., 2023; Team et al., 2024). In this paper, we use the family of ChatGPT models developed
by OpenAI, which are trained to perform human-like conversations and assist in various tasks. It is
a relatives model of InstructGPT (Ouyang et al., 2022), designed to follow instructions in prompts
and provide detailed answers. These models typically obtain state-of-the-art in the field of LLM
models, so we decided to use them in our framework.

LLMs show significant cross-domain knowledge capabilities, i.e., they can transfer and apply knowl-
edge across different domains or subject areas and solve complex problems in various fields. Knowl-
edge can be tested by examinations (Newton & Xiromeriti, 2024). LLMs are trained on huge
amounts of data spanning multiple domains, allowing them to develop broad knowledge that can
be applied to various tasks and topics. According to different estimates, the size of a training sample
starts from 600 GB and is obtained from multiple Internet sources (including Wikipedia). Trillions
of LLM parameters (Allen-Zhu & Li, 2024) allow for structured summarization of global Internet

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

information, therefore it is of great interest to use LLM in the context of feature generation, because
the knowledge of a data analyst in the domain-specific data domain will most often be lower than
LLM.

An advanced prompting technique LLMs use to increase their ability to reason and solve problems
is the Chain of thought (CoT). It motivates LLMs to decompose complex problems into intermediate
steps by mimicking human reasoning processes. CoT helps LLMs solve complex problems (Feng
et al., 2023). It involves asking the model to “think step by step” when answering questions or
solving problems. This technique uses the model’s general knowledge to improve its performance
on tasks that require logic, computation, and decision-making. We add instructions like “Describe
your logic and reasoning” to the prompt. Further in the paper, we ask LLMs to generate useful
domain information to generate features based on it, too.

2.4 LLM ACTOR VS. LLM CRITIC

Industry practice and research (Gou et al., 2024) demonstrate that if we verify the answers of an
LLM with another LLM by assigning the conditional roles of “actor” and “critic” in advance, i.e., a
model that solves the problem and a model that catches errors in the solution of the first model, then
we can improve the quality of text generation, find mistakes in advance, and improve the quality
metrics in different kinds of tasks. Further in the paper, we propose to use LLM not only for feature
generation but also for error catching and feature correction.

2.5 INTERPRETABILITY

Interpretability of features is important in the context of machine learning tasks. It is often neces-
sary not only for the quality of the final feature pipeline but also for understanding its background
and possible values to build a stable implementation. Most existing non-LLM approaches (except
featuretools) do not provide proper interpretability of features, so they are selected based on opti-
mized oversamples to improve the final model’s prediction quality without caring about possible
degradation of the scoring over time. This is why the LLM approach is attractive, as it can describe
the reason for generating a particular feature, not only to generate the maximum number of features
useful for the quality of the model (to be shown later in the paper). In addition, LLM models can be
attempted to be interpreted (Singh et al., 2024) by delving deeper into the causes of generation

3 PROPOSED APPROACH

The proposed LLM2Features framework is shown in Fig. 1. It contains three main parts.

The first one is the prompt generation. The human inputs a table (training set) in pandas.DataFrame
(Wes McKinney, 2010) format, and the prompt is generated using our specially developed pattern
(Table 1). We use an example of feature generation and an example of LLM response for the LLM
to follow the instructions more clearly. It is an example of in-context learning where the pre-trained
model prior knowledge to generalize from limited task-specific data. (Parnami & Lee, 2022). The
following statistics are collected from the human data: column information (data types), number
of omitted values in columns, random sampling of records, distribution of values in features, and
correlation in data for numerical features. Also, we request LLMs to check their answers, write all
necessary information for generating further features in the [DOMAIN] section, and the features
themselves in the [FEATURES] section, which increases the total number of instruction followings
when generating features

Processing the results. The features generated using our prompt by an LLM, such as GPT-4o, are
tested for validity. For example, the whole feature is removed in case of syntax errors. If the feature
uses a target, it is removed. The features are typically generated by calling special libraries, such as
Python standard modules or numpy (Harris et al., 2020), pandas, and geopy. If these packages are not
installed, the code check unit will drop the generated feature. Next, the generated features from the
training and testing set are computed for each example. In case of any error, the feature is not added.
If less than three correct features are generated, the request to GPT-4o is sent again. These generation
tasks can also be effectively performed by an LLM-critic checking the generated response. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

generation
request

Prompt
generation

LLM

the trained model
AutoML
Training

User information

about dataset

Statistics from the
dataset

Validate
featrures

Compute features

less than
3 features

Processing the results

generation
request

optional

 Prediction on
the test set

The data shows New York City cab trips.

Here are the following features: ...
It is worth not to use the trip_duration feature and

 pay separate attention to the features:...
Also, It may be interesting..

automatic
collection

data.describe():

taxi_duration: std 1, min 0, max 1..
cost: ..p75: 3, p99 4.31, max 10
data.corr():
taxi_duration - cost: 0.93
data.sample():

more than
3 features

training on generated
 training features

 original training features

 original test features

generated
 test features

target from the test set

Raw

generated text

Training set

test set

Figure 1: The proposed LLM2Features pipeline

Table 1: The prompt for our LLM-based interpretable feature generation

The dataset is loaded into the ’df’ variable in pandas.DataFrame format and is available for any manipulation.
All information is taken from the dataset using the pandas library. Information about the number of omissions and
column types (data.info()):
{df.info()} ’df.sample()’ (data sample): {df.sample()} ‘df.corr()‘ (correlation for num. features):{df.corr()}
’Useful information about the data:’ { human desc of DATA (OPTIONAL)}
’df.describe() (statistics in the features)’
{ df.describe()} This code generates additional columns based on data information, feature names, and
other useful information.
The code is posted as the best example of feature generation by LLM with extensive experience in researching data and
creating useful features The generated features are useful for solving the
{’classification’ if class else ’regression’} problem using gradient boosting algorithm LightGBM
(therefore, feature generation based on scale changes or feature combinations does not make sense).
The target variable in the data is ’{targetname}’, the quality metric is {’ROC-AUC’ if class else ’RMSE’}.
The generated features bring new logical information to the real-world data, useful for solving the problem.
Some approaches used for generation:
*. Type transformations. For example: from a numeric feature to make several categorical features
*. Creating flags. For example: putting a true flag when some conditions are fulfilled in one record,
*. Discretization. For example: divide a numerical feature into intervals and assign each interval a number
*. Complete deletion of the feature. In the case of a small number of records, it may help not to overfit
*. Changing the feature values according to the condition.
For example: replacing erroneous values with the most appropriate ones.
*. Any useful transformation based on knowledge about the real world
The information is generated in [DOMAIN]: a desc of useful information about the data and [FEATURES]:
where the Python blocks begin.
Feature generation example: {PYTHON FORMAT BLOCK}
Each block was checked for possible errors: the absence of a feature in the table and the correctness of the syntax
[LLM ANSWER] Following the proposed work format, first [DOMAIN] describing all the necessary information for
the data work is written out, followed by [FEATURES]: with the generated features in Python block format.
[DOMAIN]:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

o1-preview was taken as a critic because the authors state that it is better at reason and is capable of
deep thought compared to previous versions of the ChatGPT.

For simple mistakes (e.g., syntax errors), it is possible to use ast library1. For serious logical errors
in features (using a feature that leaks test data, using incorrect values within a feature, etc.), the
LLM-critic is used (see a prompt in Table 2)

Table 2: The prompt of our LLM-based critic

You are a LLM-critic that receives as input the output of another LLM model.
You need to fix syntax and logic errors in Python code in order to improve training quality and prediction metrics
on the {TARGET} feature when training LightGBM on the {CLASSIFICATION/REGRESSION} task.
The [INIT PROMPT] will be passed first, which is the OTHER LLM prompt that was used to generate the features.
Next, the OTHER LLM response will be transmitted after the < ACTOR LLM ANSWER > token.
Generating start after <LLM CRITIC ANSWER>.
You should write strictly in [ERROR DESCRIPTION] format all errors that were made in the features,
including in the calculation logic or with leaked test data from the target [FIX] Python code in blocks.
Example:
[INIT PROMPT]
{PROMPT FROM Table 1}
< ACTOR LLM ANSWER >
[DOMAIN] Count features 1 + 1 and remove features df[’Name’] because this will come in handy
for predicting the target.
[FEATURES]
“‘python
Feature: Adding two integer features
Usefulness: This feature is needed for predicting the target.
Input samples: ’Number 1’: [1, 0, 3], ’Number 2’: [0, 2, 1], ’Number 3’: [4, 5, -1]
df[’Sum Number 1 and 2’] = df[’Number 1’] + df[’Number 2’] + df[’Number 3’]
“‘
“‘python
Feature: Removing the ’Name’ feature
Usefulness: This feature does not affect targeting
df.drop(columns=[’Name’])
“‘
<LLM CRITIC ANSWER>
[ERROR DESCRIPTION]
The feature ’Sum Number 1 and 2’ should consist of the sums of the two
integer columns ’Number 1’ and ’Number 2’. Since ’Number 3’ is added to it, this sign contains an error
The ’Name’ sign was not deleted because the inplace=True argument is missing.
[FIX]
“‘python
Feature: Adds two integer features
Usefulness: This feature is needed for predicting the target.
Input samples: ’Number 1’: [1, 0, 3], ’Number 2’: [0, 2, 1]
df[’Sum Number 1 and 2’] = df[’Number 1’] + df[’Number 2’]
“‘
““python
Feature: Removing the ’Name’ feature
Usefulness: This feature does not affect targeting
df.drop(columns=[’Name’], inplace=True)
“‘
[INIT PROMPT]:

The final part of our pipeline is the Auto ML training. Appropriate AutoML framework, such
as LightAutoML (Vakhrushev et al., 2021), is trained on the generated features and predicts a test
sample.

1https://docs.python.org/3/library/ast.html

5

https://docs.python.org/3/library/ast.html

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 3: Datasets for experimental study

Task Dataset Target No.
Rows
(train)

No.
Rows
(test)

No.
fea-
tures

Titanic Cukierski (2012) A titanic passen-
ger’s survival flag

534 214 11

binary clas-
sification

Credit-g Hofmann (2014) A customer credit
risk flag

750 250 21

Diabetes Kaggle (2020) A flag for the pres-
ence of diabetes

576 192 9

California Housing Price Nugent (2017) Forecasting hous-
ing prices

12384 4953 9

regression NYC Taxi Duration Risdal (2017) A ride duration of
taxi trips

100000 100000 10

Mental Health ASHFAQ (2024) A mental state of
students

65 22 19

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

The proposed LLM2Features approach is implemented in two supported scenarios: 1) with a de-
scription of data, including information about domain and attributes, and 2) without data descrip-
tion, where features are generated only based on statistics from the dataset. We use two state-of-the-
art LLMs from OpenAI, namely, GPT-4, GPT-4o (Achiam et al., 2023), GPT-o1-preview(OpenAI,
2024), that can better follow rather complex prompt (Table 1).

In addition to using initial features, we compare our pipeline with several state-of-the-art feature
generation techniques, such as OpenFE (Zhang et al., 2023), AutoFeat (Horn et al., 2020) and
Featuretools (Kanter & Veeramachaneni, 2015). Moreover, we used an official LightAutoML
Pipeline2 (Vakhrushev et al., 2021), which is an example of a classic approach for AutoML frame-
works. It simply encodes categorical features, transforms some data, and boosts selectors. Finally,
we implemented the state-of-the-art LLM-based feature generator with the domain knowledge about
the dataset, CAAFE (Hollmann et al., 2024) with GPT-4 and GPT-4o. Special preprocessing was
only applied to the data if the method for feature generation did not work without accurate type
conversion, omission, and anomaly correction. Omissions were filled with median (statistics were
counted with the condition of not allowing leakage of test data), feature types were corrected by the
meaning of the feature and the needs of specific algorithms for feature generation (for example, the
basic implementation of featuretools requires type conversion using woodwork 3).

The proposed approach is implemented in two settings:

1. LLM2Features with human input: with domain information, attributes, and data
2. LLM2Features without human input: without domain information, attributes, and data

(attributes are generated only based on statistics from the dataset). It is the most suitable
for application with AutoML frameworks.

In our experiments, we examine several traditional datasets for binary classification and regression
tasks (Table 3) that are widely used in various papers (Hollmann et al., 2024; Katz et al., 2016; Kaul
et al., 2017; Li et al., 2022). We use the modern AutoML framework, LightAutoML (Vakhrushev
et al., 2021) v0.3.8.1, to train classification and regression models, which has recently won the Kag-
gle’s AutoML Grand Prix 2024. We compute traditional metrics, namely, F1-score and ROC-AUC
(Area Under the ROC Curve) for classification and RMSE (Root Mean Squared Error) and MAPE
(Mean Absolute Percentage Error) for single regression. Moreover, we estimate the performance

2https://colab.research.google.com/github/AILab-MLTools/LightAutoML/
blob/master/examples/tutorials/Tutorial_6_custom_pipeline.ipynb

3https://woodwork.alteryx.com/en/stable/

6

https://colab.research.google.com/github/AILab-MLTools/LightAutoML/blob/master/examples/tutorials/Tutorial_6_custom_pipeline.ipynb
https://colab.research.google.com/github/AILab-MLTools/LightAutoML/blob/master/examples/tutorials/Tutorial_6_custom_pipeline.ipynb
https://woodwork.alteryx.com/en/stable/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Experimental results for classification tasks
Dataset Method Total

(sec.)
Init (sec.) Fit (sec.) Predict

(sec.)
F1 ROC

AUC
H.I.

Initial features 168.83 0.042 168.726 0.062 0.773 0.869 -
LightAutoML pipeline 24.959 0.008 24.888 0.062 0.748 0.856 -
OpenFE 296.853 0.086 295.971 0.796 0.752 0.856 2
featuretools 225.63 0.06 225.334 0.235 0.762 0.868 2

Titanic autofeat 370.676 0.032 370.491 0.152 0.756 0.871 2
CAAFE (GPT-4) 170.222 0.046 169.957 0.22 0.763 0.878 1
CAAFE (GPT-4o) 566.649 0.106 566.266 0.277 0.800 0.884 1
LLM2Features with
description (GPT-4)

252.639 0.106 252.345 0.189 0.795 0.885 1

LLM2Features with
description (GPT-4o)

379.663 0.067 379.355 0.240 0.81 0.887 1

LLM2Features without
description (GPT-4o)

380.254 0.071 380.120 0.063 0.761 0.868 0

Initial features 276.138 0.114 275.789 0.235 0.844 0.794 -
LightAutoML pipeline 55.994 0.009 55.932 0.054 0.843 0.756 -
OpenFE 753.897 0.166 751.444 2.287 0.844 0.793 2
featuretools 666.235 0.103 665.664 0.468 0.844 0.800 2

Credit-g autofeat 1826.556 0.088 1826.4 0.068 0.841 0.779 2
CAAFE (GPT-4) 326.308 0.047 325.982 0.279 0.85 0.799 1
CAAFE (GPT-4o) 481.956 0.167 481.528 0.260 0.851 0.778 1
LLM2Features with
description (GPT-4)

298.599 0.058 298.218 0.323 0.852 0.795 1

LLM2Features with
description (GPT-4o)

471.436 0.255 470.43 0.75 0.847 0.801 1

LLM2Features without
description (GPT-4o)

450.747 0.098 450.346 0.303 0.84 0.797 0

Initial features 419.682 0.132 419.427 0.123 0.662 0.803 -
LightAutoML pipeline 32.218 0.011 32.157 0.05 0.559 0.796 -
OpenFE 665.415 0.097 663.615 1.703 0.652 0.797 2
featuretools 444.322 0.175 444.077 0.071 0.662 0.803 2

Diabetes autofeat 453.782 0.023 453.642 0.117 0.623 0.803 2
CAAFE (GPT-4) 289.287 0.073 289.103 0.111 0.627 0.796 1
CAAFE (GPT-4o) 442.723 0.207 442.364 0.152 0.647 0.803 1
LLM2Features with
description (GPT-4)

245.668 0.071 245.47 0.127 0.662 0.803 1

LLM2Features with
description (GPT-4o)

431.542 0.082 431.206 0.253 0.686 0.813 1

LLM2Features without
description (GPT-4o)

408.503 0.145 408.158 0.2 0.63 0.8044 0

of the following stages in a typical pipeline on a PC with an Intel Xeon processor with two virtual
CPUs and 12.5 GB RAM:

• Init (sec.), time to initialize all necessary methods.
• Fit (sec.), time to perform fit speed, which contains both running the feature generation

and training the model. As requests to the LLM do not exceed 30 sec., we add 30 sec for
LLM-based feature generation.

• Predict (sec.), time to perform prediction for the complete test set, including computation
of generated features.

• Total (sec.), the total running time of AutoML that is a sum of Init, Fit, and Predict.

4.2 NUMERICAL RESULTS

The results of our experiments for classification and regression tasks are shown in Table 4 and Ta-
ble 5, respectively. Suppose the proposed LLM2Features is operated without additional information
from humans, i.e., using only statistics from the dataset. In that case, obtaining significantly bet-
ter metrics than traditional feature-generation techniques for all datasets is possible. However, using
additional domain knowledge in the CAAFE (Hollmann et al., 2024), a previous application of LLM
for feature engineering, can increase the overall accuracy. Nevertheless, the proposed approach with
additional domain information performed better than the CAAFE baseline (Hollmann et al., 2024)
on all binary classification and regression metrics datasets. It is also worth noting that the proposed
approach is faster than any non-LLM approach, despite a rough estimate of 30 seconds for LLM
generation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Experimental results for regression tasks
Dataset Method Total

(sec.)
Init (sec.) Fit (sec.) Predict

(sec.)
RMSE MAPE H.I.

Initial features 737.675 0.06 735.215 2.4 3127.033 1.172 -
LightAutoML pipeline 175.305 0.004 172.201 3.1 3156.163 1.528 -
OpenFE 1235.321 0.751 1231.416 3.153 3097.566 1.357 2
featuretools 772.226 2.018 767.898 2.311 2904.571 0.818 2

Taxi autofeat 731.505 0.25 730.321 0.934 3149.696 1.495 2
CAAFE (GPT-4) 866.167 0.035 863.274 2.859 2243.413 0.839 1
CAAFE (GPT-4o) 773.673 0.122 771.722 1.830 3138.281 1.336 1
LLM2Features with
description (GPT-4)

869.667 0.058 867.59 2.019 2174.115 0.67 1

LLM2Features with
description (GPT-4o)

1005.72 0.036 1003.548 2.137 2157.126 0.664 1

LLM2Features without
description (GPT-4o)

683.106 0.203 682.903 3.368 2571.521 0.941 0

Initial features 713.203 0.037 713.959 9.206 0.445 0.164 -
LightAutoML pipeline 238.901 0.003 235.363 3.534 0.447 0.168 -
OpenFE 1550.089 0.104 1543.483 6.502 0.443 0.164 2
featuretools 746.134 0.106 739.488 6.54 0.445 0.164 2

House autofeat 1007.544 0.021 1001.955 5.568 0.454 0.165 2
CAAFE (GPT-4) 752.779 0.038 746.457 6.284 0.451 0.165 1
CAAFE (GPT-4o) 612.440 0.065 607.093 5.282 0.447 0.164 1
LLM2Features with
description (GPT-4)

815.578 0.038 809.493 6.046 0.448 0.164 1

LLM2Features with
description (GPT-4o)

774.347 0.125 767.185 7.037 0.442 0.163 1

LLM2Features without
description (GPT-4o)

617.345 0.185 615.332 1.829 0.467 0.172 0

Table 6: Regression datasets with a minimum number of records, comparison of statistical methods,
and o1-preview (chosen by metrics over other LLM approaches)

Dataset Method Total
(sec.)

Init (sec.) Fit (sec.) Predict
(sec.)

RMSE MAPE H.I.

Initial features 380.593 0.075 380.309 0.209 1.187 7e+14 -
Mental LightAutoML pipeline 18.765 0.004 18.748 0.013 1.212 7.4e+14 -
Health featuretools 225.101 0.048 224.394 0.658 1.142 6.5e+14

autofeat 590.479 0.12 590.168 0.191 1.175 6.92e+14 2
LLM2Features without
description (GPT-o1-
preview)

448.270 0.118 447.586 0.566 0.997 5e+14 0

4.3 QUALITATIVE EXAMPLES

A qualitative example of the feature generated by our approach for the Diabetes dataset is shown in
Table 7. Here, LLM demonstrates an understanding of the correlation between weight and diabetes
risk in a way that may not be obvious to a person without a medical background. The generated
feature can be a great starting point for further deeper analysis.

Table 8 shows our LLM-based critic’s understanding of the errors associated with generating features
with known test data leakage or LLM hallucination and correct error values in the feature.

In Table 7, the features from our approach not only improve the quality of the AutoML model but
also can be easily interpreted for further manual feature engineering or creating additional features
using classical feature generation techniques.

Finally, in Table 9 (Appendix A), we can see a clear division of the LLM response into zones, the
first one is where task formulation takes place and the second one generates syntactically correct
features that can be immediately used to run the generation task. Curiously, the LLM presented in
Table 9 does not generate a description based on Python-generated features but first invents a feature,
describes it, and only encodes it into Python code. This is due to the nature of the model’s design,
which essentially consists of sequential token generation. Based on the features obtained, further
analysis can be completed. For example, examine the “Name” feature in more detail for possible
other insights or examine the “Cabin” feature that may affect survival rates.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Example of features generated by our approach with automatic LLM-based interpretations

Dataset Sample feature Interpretation by LLM

Titanic df[’Title’] =
df[’Name’].str.extract(’
([A-Za-z]+)’̇, expand=False)

Titles can provide information on social status and
gender. How could an analyst create it in the
real world: by extracting the title (e.g., Mr., Mrs.,
Miss) from the attribute “name”.

Diabetes df[’BMICategory’] =
pd.cut(df[’BMI’], bins=[0,
18.5, 24.9, 29.9, 50], la-
bels=[’Underweight’,
’Normal’, ’Overweight’,
’Obese’]) # Input samples:
’BMI’: [21.8, 25.3, 30.5]

BMICategory: Categorize BMI into Under-
weight, Normal, Overweight, and Obese. Useful-
ness: BMI categories provide insight into the pa-
tient’s weight status, which is crucial for diabetes
risk.

Credit G df[’HighRisk’] =
df[’HighRisk’].apply(
lambda x: 1 if x > 3
else 0) # Input samples:
’HighRisk’: [2.0, 3.0, 4.0]

Useful for class prediction as high installment
commitments might indicate financial strain

Mental Health ddf[’sleep deprived’] =
df[’average sleep’].isin([’<5
hrs’, ’5-6 hrs’])

Sleep deprivation can affect mental health and
academic performance, impacting survival.

Housing Price df[’AgeCategory’] =
pd.cut(df[’HouseAge’],
bins=[0, 10, 30, 50, 100],
labels=[’New’, ’Medium’,
’Old’, ’Very Old’])

Categorizing house age into newer and older can
help capture nonlinear effects on house value, as
newer homes might have higher values due to less
wear and more modern amenities.

Taxi df[’is rush hour’] =
df[’pickup hour’].isin([7,
8, 9, 16, 17, 18])

Flags trips during peak traffic times, which can
affect trip duration.

5 CONCLUSION

This paper proposes a novel LLM-based automatic feature generation approach for AutoML with
tabular data (Fig. 1). We experimentally proved that the proposed approach lead to better perfor-
mance (Tables 4, 5) when compared to conventional state-of-the-art feature generators. It is impor-
tant to emphasize that we improved metrics not for outdated ML models but using the contemporary
LightAutoML framework (Vakhrushev et al., 2021). Moreover, our method generates interpretable
features for regression and classification tasks based only on feature names and data statistics with-
out an additional description (Table 7). We are the first to present this extremely important property
for LLM-based auto feature generation. As a result, our LLM2Features pipeline can be integrated
into an arbitrary AutoML pipeline for complete no-code ML. Also, the described approach can be
used for preliminary data analysis. The LLM generates valuable features for AutoML and allows
humans to explore unknown data in greater detail. The source code of our experiments will be made
publicly available4.

In future, it is necessary to extend our LLM2Features approach, e.g., use more examples of feature
generation in the prompt. It is also important to highlight that our current approach sends all requests
to the LLM on a one-time request. Hence, it is possible to increase the accuracy by sending requests
to adjust features with their importance for the obtained AutoML model. Finally, applying our

4https://anonymous.4open.science/r/LLM2Features-1B28

9

https://anonymous.4open.science/r/LLM2Features-1B28

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 8: Example of our LLM-based critic that fixes the issues with features generated by a LLM

Feature Problem [ERROR DESCRIPTION] [FIX]

df[’dropoff datetime’]
= pd.to datetime(
df[’dropoff datetime’]
)

This feature is from
the Taxi (Risdal,
2017), where we
need to predict the
length of a trip. The
dropoff datetime
feature is not avail-
able to us, it was
mentioned in the
data description

The dropoff datetime feature
defines the end time of the
trip, therefore feature can not
be included in the test data
for the forecast. The feature
should be deleted

df.drop(columns =
[’dropoff datetime’],
inplace=True)

df[’sleep deprived’] =
df[’average sleep’].isin(
[’> 5 hrs’, ’5-6
hrs’]))

There is a typo-
graphical error. The
values in the ’av-
erage sleep’ feature
are only <5 (ASH-
FAQ, 2024)

In the definition of a feature,
a typing error has been com-
mitted

df[‘sleep deprived’]
=
df[‘average sleep’].isin(
[‘<5 hrs’, ‘5-6
hrs’]))

df[’duration group’]
=
pd.cut(df[’duration’],
bins=[0, 5, 10, 20,
30, 40, 50], la-
bels=[’very short’,
’short’, ’medium’,
’long’, ’very long’,
’extra long’])

Not appropriate du-
ration for the de-
scribed loan groups
(Hofmann, 2014).

The bins for the feature do
not fit well with the specified
groups

df[’duration group’]
=
pd.cut(df[’duration’],
bins=[0, 12, 24, 36,
48, 60, 120], la-
bels=[’very short’,
’short’, ’medium’,
’long’, ’very long’,
’extra long’])

models with the publicly-available LLMs, which may need to simplify instructions in our prompt
(Table 1).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction, 2024. URL https://arxiv.org/abs/2309.14316.

ABDULLAH ASHFAQ. Student mental health survey, 2024. URL https://www.kaggle.
com/datasets/abdullahashfaqvirk/student-mental-health-survey.

Nigel Bosch et al. AutoML feature engineering for student modeling yields high accuracy, but
limited interpretability. Journal of Educational Data Mining, 13(2):55–79, 2021.

Will Cukierski. Titanic - machine learning from disaster, 2012. URL https://kaggle.com/
competitions/titanic.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate AutoML for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Rasool Fakoor, Jonas W Mueller, Nick Erickson, Pratik Chaudhari, and Alexander J Smola. Fast,
accurate, and simple models for tabular data via augmented distillation. Advances in Neural
Information Processing Systems (NeurIPS), 33:8671–8681, 2020.

10

https://arxiv.org/abs/2309.14316
https://www.kaggle.com/datasets/abdullahashfaqvirk/student-mental-health-survey
https://www.kaggle.com/datasets/abdullahashfaqvirk/student-mental-health-survey
https://kaggle.com/competitions/titanic
https://kaggle.com/competitions/titanic

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: A theoretical perspective. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 70757–70798. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
Sklearn 2.0: Hands-free AutoML via meta-learning. arXiv:2007.04074 [cs.LG], 2020.

Alicja Gosiewska, Anna Kozak, and Przemysław Biecek. Simpler is better: Lifting interpretability-
performance trade-off via automated feature engineering. Decision Support Systems, 150:113556,
2021.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Sx038qxjek.

Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can au-
tomatically engineer features for few-shot tabular learning. arXiv preprint arXiv:2404.09491,
2024.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Ar-
ray programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

Dr. Hans Hofmann. Credit-g, 2014. URL https://www.openml.org/search?type=
data&sort=runs&id=31.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data sci-
ence: Introducing CAAFE for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36, 2024.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated fea-
ture engineering and selection. Machine Learning and Knowledge Discovery in Databases, pp.
111–120, 2020. doi: 10.1007/978-3-030-43823-4 10.

Kaggle. Diabetes dataset, 2020. URL https://www.kaggle.com/datasets/mathchi/
diabetes-data-set.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE International Conference on Data Science and Advanced Ana-
lytics, DSAA 2015, Paris, France, October 19-21, 2015, pp. 1–10. IEEE, 2015.

Gilad Katz, Eui Chul Shin, and Dawn Song. Explorekit: Automatic feature generation and selection.
2016 IEEE 16th International Conference on Data Mining (ICDM), Dec 2016. doi: 10.1109/
icdm.2016.0123.

Ambika Kaul, Saket Maheshwary, and Vikram Pudi. Autolearn — automated feature generation
and selection. 2017 IEEE International Conference on Data Mining (ICDM), Nov 2017. doi:
10.1109/icdm.2017.31.

Erin LeDell and Sebastien Poirier. H2O AutoML: Scalable automatic machine learning. 7th
ICML Workshop on Automated Machine Learning (AutoML), July 2020. URL https://www.
automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf.

Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang, Sai Wu, Gang Chen, and Junbo Zhao. Learning
a data-driven policy network for pre-training automated feature engineering. In The Eleventh
International Conference on Learning Representations, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://doi.org/10.1038/s41586-020-2649-2
https://www.openml.org/search?type=data&sort=runs&id=31
https://www.openml.org/search?type=data&sort=runs&id=31
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, Kai Zeng, and Ce Zhang. AutoML: From
methodology to application. In Proceedings of the 30th ACM International Conference on Infor-
mation & Knowledge Management, pp. 4853–4856, 2021.

Yuanfei Luo, Mengshuo Wang, Hao Zhou, Quanming Yao, Wei-Wei Tu, Yuqiang Chen, Wenyuan
Dai, and Qiang Yang. Autocross: Automatic feature crossing for tabular data in real-world ap-
plications. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1936–1945, 2019.

Alhassan Mumuni and Fuseini Mumuni. Automated data processing and feature engineering for
deep learning and big data applications: a survey. Journal of Information and Intelligence, 2024.

Philip Newton and Maira Xiromeriti. Chatgpt performance on multiple choice question examina-
tions in higher education. a pragmatic scoping review. Assessment & Evaluation in Higher Ed-
ucation, 49(6):781–798, 2024. doi: 10.1080/02602938.2023.2299059. URL https://doi.
org/10.1080/02602938.2023.2299059.

Cam Nugent. California housing prices, 2017. URL https://www.kaggle.com/
datasets/camnugent/california-housing-prices.

OpenAI. Chatgpt-o1, 2024. URL https://openai.com/index/
introducing-openai-o1-preview/.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Archit Parnami and Minwoo Lee. Learning from few examples: A summary of approaches to few-
shot learning, 2022. URL https://arxiv.org/abs/2203.04291.

Danrui Qi, Jinglin Peng, Yongjun He, and Jiannan Wang. Auto-FP: An experimental study of
automated feature preprocessing for tabular data. arXiv preprint arXiv:2310.02540, 2023.

Meg Risdal. New york city taxi trip duration, 2017. URL https://kaggle.com/
competitions/nyc-taxi-trip-duration.

Sammuel Ramos Silva and Rodrigo Silva. FeatGeNN: Improving model performance for tabular
data with correlation-based feature extraction. In Proceedings of Brazilian Conference on Intelli-
gent Systems, pp. 259–273. Springer, 2023.

Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking
interpretability in the era of large language models, 2024. URL https://arxiv.org/abs/
2402.01761.

Gemini Team et al. Gemini: A family of highly capable multimodal models, 2024. URL https:
//arxiv.org/abs/2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Anton Vakhrushev, Alexander Ryzhkov, Maxim Savchenko, Dmitry Simakov, Rinchin Damdinov,
and Alexander Tuzhilin. LightAutoML: AutoML solution for a large financial services ecosystem.
arXiv preprint arXiv:2109.01528, 2021.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and
Jarrod Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56 – 61, 2010.
doi: 10.25080/Majora-92bf1922-00a.

Tianping Zhang, Zheyu Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao, and
Jian Li. OpenFE: Automated feature generation with expert-level performance. arXiv.org, Jun
2023. doi: 10.48550/arXiv.2211.12507.

12

https://doi.org/10.1080/02602938.2023.2299059
https://doi.org/10.1080/02602938.2023.2299059
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.04291
https://kaggle.com/competitions/nyc-taxi-trip-duration
https://kaggle.com/competitions/nyc-taxi-trip-duration
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2302.13971

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL QUALITATIVE RESULTS

Table 9: ChatGPT-4o Answer to the Titanic dataset prompt (without data description), subsample of
generated features

[DOMAIN]:
We are analyzing the Titanic dataset to predict passenger survival (’Survived’) using a gradient boosting algorithm,
with ROC-AUC as the evaluation metric. The dataset contains various features such as socioeconomic status (Pclass),
personal information (Name, Sex, Age), family
relations (SibSp, Parch), ticket details, fare, cabin assignment, and port of embarkation (Embarked). Our objective
is to generate new features that introduce meaningful real-world insights to enhance model performance.
We will focus on transformations that capture social status, family connections, passenger demographics,
and other relevant information.
[FEATURES]:
‘ ‘ ‘python
Feature: Extracting Title from passenger’s name
Usefulness: Titles can indicate social status and marital status, which may correlate with survival rates.
Input samples:
’Name’: [’Braund, Mr. Owen Harris’, ’Heikkinen, Miss. Laina’, ’Allen, Master. William Henry’]
df[’Title’] = df[’Name’].str.extract(’ ([A-Za-z]+)’̇, expand=False)
Feature: Simplifying titles into common categories
Usefulness: Grouping rare titles reduces noise and captures essential social distinctions.
Input samples:
’Title’: [’Mr’, ’Miss’, ’Master’, ’Dr’, ’Lady’]
title mapping = {’Mr’: ’Mr’, ’Miss’: ’Miss’, ’Mrs’: ’Mrs’,
’Master’: ’Master’, ’Dr’: ’Officer’, ’Rev’: ’Officer’, ’Col’: ’Officer’,
’Major’: ’Officer’, ’Mlle’: ’Miss’, ’Countess’: ’Royalty’, ’Ms’: ’Mrs’,
’Lady’: ’Royalty’, ’Jonkheer’: ’Royalty’, ’Don’: ’Royalty’, ’Dona’: ’Royalty’,
’Mme’: ’Mrs’, ’Capt’: ’Officer’, ’Sir’: ’Royalty’ }
df[’Title’] = df[’Title’].map(title mapping)
Feature: Creating FamilySize from SibSp and Parch
Usefulness: Family size may affect survival chances; larger families might have different survival rates.
Input samples:
’SibSp’: [1, 0, 3], ’Parch’: [0, 2, 1]
df[’FamilySize’] = df[’SibSp’] + df[’Parch’] + 1
Feature: Creating IsAlone flag based on FamilySize
Usefulness: Passengers traveling alone may have different survival probabilities compared to those with family.
Input samples:
’FamilySize’: [1, 4, 2]
df[’IsAlone’] = 0
df.loc[df[’FamilySize’] == 1, ’IsAlone’] = 1
Feature: Discretizing Age into age groups
Usefulness: Age groups can capture nonlinear relationships between age and survival.
Input samples:
’Age’: [22, 38, 4]
df[’AgeGroup’] = pd.cut(df[’Age’], bins=[0, 12, 18, 35, 60, 80], labels=[1, 2, 3, 4, 5])
Feature: Extracting Deck information from Cabin
Usefulness: Deck level may influence survival due to proximity to lifeboats.
Input samples:
’Cabin’: [’C85’, NaN, ’E46’]
df[’Deck’] = df[’Cabin’].str[0]
df[’Deck’].fillna(’U’, inplace=True)
Mapping Deck to numerical values
Usefulness: Converts deck letters to numerical codes for modeling.
Input samples:
’Deck’: [’C’, ’U’, ’E’]
deck mapping = ’A’:1, ’B’:2, ’C’:3, ’D’:4, ’E’:5, ’F’:6, ’G’:7, ’T’:8, ’U’:0
df[’Deck’] = df[’Deck’].map(deck mapping)
Dropping uninformative or redundant features
Explanation: ’Ticket’ and ’Cabin’ are dropped due to high missing values and redundancy after extracting ’Deck’.
df.drop(columns=[’Ticket’, ’Cabin’], inplace=True)
Feature: Binning Fare into discrete categories
Usefulness: Fare can have nonlinear effects; binning captures these patterns.
Input samples:
’Fare’: [7.25, 71.2833, 8.05]
df[’FareBand’] = pd.qcut(df[’Fare’], 4, labels=[1, 2, 3, 4])

13

	Introduction
	Related Works
	Problem Statement
	Automatic Feature Generation
	Large Language Models
	LLM actor vs. LLM critic
	Interpretability

	Proposed Approach
	Experiments
	Experimental settings
	Numerical results
	Qualitative examples

	Conclusion
	Additional qualitative results

