
Efficient Part-level 3D Object Generation
via Dual Volume Packing

Jiaxiang Tang1,2 Ruijie Lu1 Tsung-Yi Lin2 Zhaoshuo Li2 Zekun Hao2
Xuan Li2 Fangyin Wei2 Gang Zeng1 Shuran Song3 Ming-Yu Liu2

1State Key Laboratory of General AI, Peking University
2Nvidia Research, 3Stanford University

Abstract

Recent progress in 3D object generation has greatly improved both the quality and
efficiency. However, most existing methods generate a single mesh with all parts
fused together, which limits the ability to edit or manipulate individual parts. A
key challenge is that different objects may have a varying number of parts. To
address this, we propose a new end-to-end framework for part-level 3D object
generation. Given a single input image, our method generates high-quality 3D
objects with an arbitrary number of complete and semantically meaningful parts.
We introduce a dual volume packing strategy that organizes all parts into two
complementary volumes, allowing for the creation of complete and interleaved
parts that assemble into the final object. Experiments show that our model achieves
better quality, diversity, and generalization than previous image-based part-level
generation methods. Our project page is at https://research.nvidia.com/
labs/dir/partpacker/.

1 Introduction

Part-level 3D generation focuses on creating objects composed of multiple distinct and semantically
meaningful parts, which is crucial for downstream editing and manipulation in applications such as
game development and robotics. Although recent methods have greatly improved the quality of 3D
object generation, they typically produce fused shapes without explicit part structures [55, 56, 59, 5,
22, 54, 57]. Generating complete and meaningful 3D parts remains a major challenge. It requires a
deeper understanding of both the global layout and local part interactions within the object, which
current methods still struggle to model effectively.

Several recent methods [4, 52, 51, 28] have explored part-level 3D generation by first segmenting
the fused mesh into incomplete parts (usually surface patches), and then applying reconstruction or
completion models to each part individually. While these pipelines have achieved promising results,
they suffer from two fundamental limitations. First, they rely heavily on external segmentation priors,
often derived from 2D models or pretrained networks. This introduces additional preprocessing
steps and poses a risk of error propagation—any mistake in the segmentation stage can negatively
impact the final generation quality. Second, these methods process each part sequentially, resulting
in inefficiencies during inference. As the number of parts increases, inference time scales linearly,
regardless of the individual complexity of each part. These limitations underscore two core challenges
in part-level 3D generation: handling an unknown and variable number of parts, and mitigating the
inefficiency of part-by-part sequential processing.

In this paper, we present a novel approach for directly generating part-level 3D objects without
relying on any 2D or 3D segmentation priors. Our framework enables end-to-end generation of
an arbitrary number of parts within a fixed time. We identify the key challenge to be the handling
of overlapping regions between contacting parts. In contrast, disjoint parts, which are naturally

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://research.nvidia.com/labs/dir/partpacker/
https://research.nvidia.com/labs/dir/partpacker/


Single-view Image Part-level 3D Shape Complete Parts

30s

Generalization Capability

Joint Articulation Editing

Figure 1: End-to-end Part-level Image-to-3D Generation. We present a method to generate 3D
shape composed of individual and complete parts from a single-view image. Our method is trained
only with 3D native information and can generate part-level meshes in about 30 seconds without
relying on 2D segmentation prior models.

separable as different connected components, can be processed in parallel rather than sequentially.
This observation motivates our part-packing strategy, which aims to pack as many disjoint parts as
possible into a shared volume to maximize space utilization, improve generation efficiency, and avoid
fusing contacting parts. By analyzing the connectivity patterns commonly found in real-world objects,
we observe that many can be effectively partitioned into two groups. We therefore formulate this
task as a bipartite contraction problem and introduce a dual volume packing strategy, which fixes the
output length and is fully compatible with existing 3D latent denoising models [56, 59].

In summary, our contributions are as follows:

1. We propose a novel end-to-end part-level 3D generation framework, which produces high-
quality 3D shapes with an arbitrary number of semantically meaningful parts from a single
input image, without relying on any segmentation prior.

2. We introduce a dual volume packing strategy that converts the part-connectivity graph into
a bipartite graph through heuristic edge contraction, enabling efficient use of 3D volumes
while preserving separation between contacting parts.

3. Experiments show that our method achieves more robust, diverse, and structurally consistent
part-level generation compared to existing approaches, while offering a simpler and more
efficient generation pipeline.

2 Related Work

2.1 3D Denoising Generative Models

3D-native denoising models for conditional 3D generation have seen substantial progress in recent
years. Early research efforts focused on uncompressed 3D representations, such as point clouds [32],
Neural Radiance Fields (NeRFs) [30, 17, 41], volumetric representations [13, 10, 33, 60, 31, 1, 2,

2



26, 50], and other formats [27, 3, 53, 47]. Despite their potential, these methods face limitations when
applied to small or sparse datasets, often resulting in poor generalization and suboptimal quality.

More recent work has shifted towards latent denoising models for 3D generation [56, 57, 45, 21,
20, 16, 38, 9, 46, 22, 59]. These approaches typically employ a VAE to compress 3D data into
a compact latent space, facilitating more efficient training of the denoising generative models.
3DShape2Vecset [55] first introduced a vector-set-based latent representation for effective 3D com-
pression and generation. CLAY [56] demonstrates that combining VAE and 3D latent diffusion
transformers yields strong performance on large-scale datasets and supports diverse conditioning
modalities. TripoSG [22] pioneers the use of latent rectified flow [25, 24] and a mixture-of-experts
architecture for 3D generation. Trellis [46] designs a sparse, structured latent representation with
multi-format VAE decoders to support efficient rectified flow modeling. Hi3DGen [54] proposes
a normal-bridge mechanism to enhance surface detail reconstruction. Dora [5] introduces salient
edge sampling to improve the VAE’s reconstruction fidelity, while Hunyuan3D-2 [59, 19] explores
efficient network architectures to improve generation quality and accelerate VAE decoding. In this
work, we extend such 3D latent denoising models to support part-level generation.

2.2 Part-level 3D Generation

While existing 3D latent denoising models can generate detailed geometry, their outputs are typically
fused meshes extracted from occupancy or SDF fields, where all parts are fused together. However,
many practical applications require part-level 3D meshes to support editing and manipulation. A
core challenge in part-level 3D generation is the varying number of parts per object, whereas latent
denoising models usually rely on a fixed-length latent code, making such variability difficult to
handle.

One promising direction is to employ auto-regressive models, where next-token prediction naturally
accommodates variable-length outputs. For instance, MeshGPT [37] introduces this concept by tok-
enizing a mesh using face sorting and VQ-VAE-based compression, followed by an auto-regressive
transformer to predict the token sequence. Subsequent works [6, 43, 7, 8, 14, 40, 23, 58, 42, 44]
expand on this idea by designing various mesh tokenization strategies and conditioning mechanisms,
including point clouds and single-view images. However, these methods often face a major limi-
tation: complex meshes typically contain a large number of faces, making the generation process
computationally expensive and time-consuming.

Another line of work focuses on segmentation-then-completion frameworks that leverage 2D seg-
mentation prior models [18, 35]. PartGen [4] adopts a multi-view diffusion model combined with
2D segmentation to generate multi-view part segmentation maps, which are subsequently used for
multi-view completion and per-part 3D reconstruction. SAMPart3D [51] proposes a zero-shot 3D part
segmentation approach that transfers part-level knowledge from 2D priors to the 3D domain, enabling
multi-granularity segmentation. PartField [28] learns a feed-forward 3D feature field that encodes
part semantics and hierarchical structure, allowing for clustering-based segmentation and shape-level
correspondence. HoloPart [52] introduces a specialized 3D latent denoising model that completes
each segmented part by attending to both local geometry and global context, thereby preserving
structural consistency during reconstruction. Despite their effectiveness, these methods often rely
on 2D segmentation priors, which may introduce propagation errors when the input segmentations
are inaccurate or inconsistent. Moreover, their pipelines tend to be complex and inefficient, typically
requiring iterative processing over individual parts. To overcome these limitations, we propose an
end-to-end image-to-3D generation framework that directly produces part-level 3D meshes.

3 Methodology

Similar to previous 3D latent denoising models [56, 22, 59, 54, 46], our model takes a single-view
image as input and generates the corresponding 3D shape. In contrast, our goal is to predict separable
and complete 3D parts that can be assembled into the final shape, rather than producing a single fused
mesh. We begin by introducing our dual volume packing strategy (Section 3.1) and describing the
process for curating a part-level dataset (Section 3.2). We then detail the architecture of our part-level
3D generation model and the associated training procedures (Section 3.3).

3



Bipartite Graph Construction Dual Volume Packing

Bipartite Graph Construction Dual Volume Packing

Bipartite Graph Construction Dual Volume Packing

Figure 2: Dual Volume Packing. Given a 3D mesh with part-level annotations, we propose to convert
the part-connectivity graph into a bipartite graph, such that all parts can be packed into two volumes.
Within each volume, parts do not contact each other, thus can be separated during mesh extraction.

3.1 Dual Volume Packing

Most current 3D generation methods rely on volumetric representations, such as SDF grids, to
represent shapes. Given an input image, these methods generate a single 3D volume, from which
meshes can be extracted using iso-surfacing algorithms [29]. We observe that the key difficulty in
part-level 3D generation lies in the handling of contacts between parts. If two parts are not in contact
within the 3D space, they naturally form separate connected components in the extracted mesh and
can be easily isolated. However, when parts are in contact, they become fused in the SDF grid,
causing the loss of individual part information and making separation infeasible.

This observation motivates our concept of volume packing. Instead of assigning each part to a
separate volume, we propose packing as many disjoint parts as possible into the same volume to
maximize spatial efficiency and minimize computational cost. This problem can be formulated as a
standard graph vertex coloring task. We construct a part-connectivity graph G = V, E , where each 3D
part corresponds to a vertex in V , and each pair of contacting parts forms an edge in E . The goal is to
assign colors to vertices such that no two adjacent vertices share the same color, while minimizing
the total number of colors. Parts with the same color can then be safely packed into a shared volume.

However, this strategy alone does not fully address the issue of varying output lengths. The upper
bound of the chromatic number χ(G) depends on factors such as the graph’s maximum degree and
the presence of odd cycles. As illustrated in Figure 2, we further observe that many 3D objects have
simple part-connectivity graphs with a bipartite structure, where χ(G) = 2. This insight leads us to
adopt a dual volume packing scheme, which is especially suitable for efficient part-level 3D latent
denoising models. The output length becomes fixed, as we only need to generate two volumes, and
there are only two valid colorings for each connected bipartite graph. Although it is possible to use
more than two volumes, doing so introduces practical challenges: (1) When χ(G) ≥ 3, the graph
often has multiple valid colorings, and the permutation invariance of color assignments complicates
the learning process. (2) Using additional volumes results in lower space utilization per volume,
which reduces overall efficiency. For these reasons, we adopt the dual volume packing strategy when
curating our dataset.

Bipartite Graph Extraction. For meshes whose part-connectivity graphs are not bipartite, we apply
a sequence of edge contraction operations (i.e., merging specific pairs of parts) to transform the
graph into a bipartite one. However, identifying the optimal set of edges to contract is known to be
NP-hard [15]. We propose to use a heuristic algorithm specifically designed for the part-connectivity
structures observed in meshes. Since bipartite graphs must not contain odd-length cycles, our method
performs contractions to eliminate such cycles. To build the input graph, we conduct collision
detection and connect an edge e between each pair of collided parts. We slightly dilate each part
according to the resolution of the SDF grid to ensure that adjacent parts with tangential contact
also form edges. The penetration depth between parts is used as the edge weight w(e), with the
intuition that parts with more collision should be fused. We then apply a depth-first search (DFS)
algorithm to identify all cycles in the graph. To eliminate odd-length cycles, we greedily iterate over
each odd cycle and contract the edge with the greatest penetration depth, effectively merging two
vertices and converting the cycle into an even-length one. However, since some edges may be shared
across multiple cycles, contracting a single edge can affect other cycles, potentially introducing new
odd-length cycles. Therefore, we repeat this process over all cycles multiple times until no odd-length
cycles remain. The full algorithm is provided in the supplementary materials.

4



Dual Latents

Flow 
Model

VAE
Decoder

Noises

DINOv2
Encoder

Condition

Input Image Dual Volumes Part-level Mesh

Figure 3: Network Architecture. Our model takes a single-view image as the input condition, and
generate the dual latents at the same time with a flow model. The latents are decoded to dual volumes,
which can be divided into parts and assembled back to the whole mesh.

3.2 Part-level Data Curation

Our packing algorithm requires 3D meshes with part-level annotations. To prepare the dataset for
training, we perform part extraction, repair, and filtering to curate part-level data.

Part Extraction. As the 3D meshes are stored in GLB format, we extract their scene graphs and use
them as the primary source of part annotations. In particular, for animated meshes, the geometry
nodes typically correspond to animatable parts, serving as meaningful part annotations. However,
many meshes contain only a single geometry node, with all geometric components fused into
one. In such cases, we fall back on using connected components as a proxy for part annotations.
Nevertheless, a semantically meaningful part may consist of multiple connected components. This
issue is especially prevalent when the mesh has undergone UV unwrapping, which introduces seams
in the otherwise watertight surface to flatten the 3D geometry into 2D space, resulting in multiple
connected components and boundary loops. To address this, we apply a series of empirical post-
processing rules: (1) We identify boundary loop pairs that share identical vertices, suggesting they
originate from the same watertight surface, and merge the corresponding connected components into
a single part. (2) Very small connected components are merged into an adjacent contacted part. (3)
Pairs of connected components with a high intersection-over-union (IoU) score are merged into one
part. While these rules do not perfectly recover ground-truth part annotations, they are sufficient for
our training purposes.

Part Repair. When creating 3D models, artists may omit faces in occluded regions, resulting in
non-watertight meshes. This issue is particularly common when meshes are separated into parts,
leading to many non-watertight segments. However, VecSet-based VAEs [55] assume watertight
meshes in order to learn a balanced signed distance field (SDF). A common workaround is to dilate
the surface into a thin shell surrounding the geometry [56, 5], creating a watertight shape. While this
technique ensures watertightness, it is undesirable because it distorts the original geometry preferred
by artists and introduces unbalanced distribution of SDF values. Instead, we propose stitching certain
boundary loops exposed during part extraction. This operation reduces the number of non-watertight
parts and improves the balance of the resulting SDF grid for training.

Data Filtering. Given the two volumes of parts, ideally the amount of occupied space within each
volume are roughly the same for training stability. However, some data samples may still contain
extremely unbalanced distribution after the heuristic part extraction and repair processes. To ensure
dataset quality, we introduce a filtering step to remove the unbalanced examples. Let o1 and o2
denote the occupancy ratios of the two packed volumes. We discard samples that satisfy the following
condition:

((o1 < 0.001) ∧ (o2 < 0.001)) ∨
(
min(o1, o2)

max(o1, o2)
< 0.1

)
(1)

This criterion effectively filters out data with highly unbalanced SDF grids, which are difficult to
learn and less useful for model training.

3.3 Dual latent Generation

Our model builds upon several designs from previous VecSet-based latent denoising models [55],
notably incorporating the salient edge sampling strategy from Dora [5] and the rectified flow model

5



from Trellis [46]. As illustrated in Figure 3, the model is composed of three main modules. A
VAE encodes the packed volumes into a compact latent code, which can later be decoded into
separable mesh parts. DINOv2 [34] is used as the image encoder to extract conditional features for
cross-attention. Finally, a rectified flow model is trained to denoise the latent codes conditioned on
these image features.

VAE Model. The VAE consists of a dual cross-attention encoder [5] and a self-attention decoder. Both
uniform point samples and salient edge point samples are fed into the encoder. We primarily stack
self-attention layers in the decoder and omit them in the encoder to accelerate the encoding process,
which is invoked repeatedly during flow model training. The encoder’s intermediate features are
compressed into a latent code. Following previous works [22, 59, 5], we train the VAE with multiple
latent code sizes to support progressive training of the flow model and to improve convergence speed.

Flow Model. The flow model consists of a stack of attention layers, following similar designs as
in [22, 59, 56]. A key difference is that we denoise a pair of latent codes simultaneously, rather than
a single one. The two latent codes are concatenated, allowing information exchange through the
attention layers. To differentiate between them, we add a learnable part embedding exclusively to the
second latent code as we find this helps to reduce duplicate parts. During inference, both latent codes
are predicted jointly and decoded into two separate volumes, each containing disjoint mesh parts.
These parts are then assembled to reconstruct the complete 3D shape.

4 Experiments

4.1 Implementation Details

Dataset. We use the Trellis500k subset [46] of the Objaverse-XL dataset [12, 11] (ODC-BY v1.0
license). After applying our part extraction process (Section 3.2), approximately 386K meshes with
more than one part remain. Further filtering results in around 254K meshes with well-balanced
SDF grids, which are used for training our model. Specifically, we pack the extracted parts into two
separate volumes and follow the data preparation pipeline established in prior work [5]: (1) Each
volume is converted into a watertight mesh [56], and are then used to extract uniform surface samples,
salient edge samples, and point-SDF pairs to train the VAE [5]. All meshes are normalized to the
[−0.95, 0.95]3 cube, and watertight conversion is performed at a resolution of 5123, with the dilation
threshold set to the voxel size. (2) Each mesh is rendered from multiple camera viewpoints to serve
as the conditional input images. Following [46], we do not align the image poses with the geometry.
Instead, the model is trained to learn pose-invariant generation by mapping diverse viewpoints to the
canonical space.

Training. Our model is trained in multiple stages. We first pretrain the base VAE and flow model
using the fused shape dataset without incorporating part-level information. The VAE is trained at
multiple latent sizes on 64 A100 GPUs over the course of approximately one week. Next, the flow
model is trained progressively with increasing latent sizes [56, 59, 5]. This progressive training phase
spans about two weeks using at most 256 A100 GPUs. In the part-level stage, we observe that the
VAE occasionally produces artifacts when reconstructing small parts. To mitigate this issue, we first
finetune the VAE using part-level shapes. For flow model finetuning, we use the largest latent size,
resulting in a total latent dimensionality of 4096 × 2 = 8192. All parameters are inherited from
the pretrained model except for the newly introduced part embedding layer. The finetuning takes
about two weeks using 256 A100 GPUs. Please refer to the supplementary materials for additional
implementation details.

4.2 Qualitative Comparisons.

Our model is a latent denoising framework for image-to-3D generation, following the design principles
of previous works [22, 46, 54, 59, 5]. We first evaluate the quality of 3D generation from single-
view images. Figure 4 presents a qualitative comparison between our results and those generated
by TripoSG [22] and Hi3DGen [54]. Our model achieves comparable or superior visual quality,
demonstrating stronger alignment with the input image and producing more aesthetically pleasing
mesh surfaces.

Unlike these baselines, which generate a fused shape in a single volume, our model can directly
generate individual parts from a single-view image in an end-to-end manner. For part-level 3D

6



Input Image OursTripoSG Hi3DGen

Figure 4: Comparison on Image-to-3D Generation. Our method generates part-level meshes with
competitive quality from single-view images compared to previous methods.

generation, we primarily compare against HoloPart [52]. TripoSG [22] is used to generate the fused
3D mesh. We find that the original segmentation methods [51, 39] suggested by HoloPart are slow
and error-prone, so we apply PartField [28] to obtain 3D segmentation masks. Following [28], we
run with different cluster counts (number of parts) for each object and select the most reasonable one
manually. As shown in Figure 5, our method produces more reasonable parts.

Furthermore, since our model is based on the rectified flow framework [25, 24], by varying the initial
noise, we can generate diverse outputs from the same input. Figure 6 showcases examples of diverse
generation results under different random seeds.

4.3 Quantitative Comparisons.

We also evaluate the generation quality of image-to-3D methods from single-view images. Following
Hunyuan3D-2.0 [59], we adopt ULIP [48, 49] and Uni3D [61] as evaluation metrics. These models
learn unified representations across text, image, and point cloud modalities, enabling cosine similarity-
based comparisons between generated 3D shapes and reference images. To perform the evaluation,
we curate a test set of 40 images sourced from diverse domains, and use each method to generate
corresponding 3D meshes. To ensure a fair comparison, we fix the number of denoising steps to 50,
extract meshes at a grid resolution of 5123, and simplify them to 50000 faces via decimation. Since
both ULIP-2 and Uni3D require colored point clouds as input, we assign a uniform white color to
all mesh outputs before computing the metrics. As shown in Table 1, our model pretrained on fused
shapes achieves competitive performance, aligning well with qualitative visual results. While the
part-level fine-tuned model yields slightly lower scores due to its structural decomposition focus, it
remains comparable to recent approaches, demonstrating a favorable trade-off between condition
following and part-aware generation.

We further compare inference speed in the context of part-level generation. Specifically, HoloPart [52]
requires a segmented mesh as input, which depends on both an image-to-3D model and a mesh
segmentation model [39, 51, 28]. These two preprocessing steps alone take several minutes, and the
subsequent part-wise completion time increases linearly with the number of parts. In contrast, our

7



Input Image Ours HoloPart

Figure 5: Comparison on Part-level 3D Generation. Our method directly generate complete parts,
while other methods require mesh segmentation and part completion.

Single Volume Dual Volumes

Method Hunyuan3D-2 [59] Hi3DGen [54] TripoSG [22] Ours† Ours

ULIP [48] 0.1609 0.1641 0.1726 0.1729 0.1715

ULIP-2 [49] 0.3962 0.3944 0.4048 0.4022 0.3986

Uni3D [61] 0.3872 0.3864 0.3912 0.3941 0.3906

Table 1: Comparison of image-to-3D generation. We measure the cosine similarity between
generated meshes and input images using different feature extractors. † Our model pretrained on
fused shapes to initialize our part-level model.

method takes a single-view image and directly outputs 3D parts in about 30 seconds no matter how
many parts it contains, achieving huge acceleration.

4.4 Ablation Study

We conduct ablation studies on key design choices in the part-level finetuning stage, as shown in
Figure 7. First, we evaluate the impact of part-level finetuning on the VAE (denoted as P-VAE).
The VAE is originally pretrained on fused shapes that are normalized and recentered; when directly
applied to part-level data, which may not be centered, it often introduces artifacts. After finetuning
on part-level data, the VAE becomes more robust to such spatial variations. Second, we assess the
effect of the data filtering process. Without filtering, the model tends to generate overly simplistic
segmentations (often consisting of only two parts), whereas filtering the training data leads to
improved segmentation quality and greater diversity. Lastly, we also validate the necessity of the

8



Figure 6: Diversity on Image-to-3D Generation. We can generate diverse and meaningful parts
with different random seeds.

w/o P-VAE Input Image w/ P-VAE Input Image w/o Data Cleaning w/ Data Cleaning

Figure 7: Ablation Study. We ablate different training designs and compare the generation quality.

part embedding. We find that without adding this learnable embedding to the second latent code, the
model struggles to differentiate between the dual volumes and generates overlapping or identical
parts.

4.5 Limitations and Future Work

Our method still exhibits several notable limitations: (1) Limited control over part granularity. The
part extraction process relies solely on scene graph information from the input meshes, which are
often noisy or inconsistent across the dataset. As a result, the extracted part divisions are diverse
but unpredictable, hindering both consistency and user control. Incorporating additional input such
as a segmentation mask may offer improved part-level controllability. (2) Constraints of bipartite
contraction and dual-volume packing. While these strategies serve as practical solutions for managing
complex part relationships, they are inherently limited in expressive capacity. For instance, three
mutually contacting parts cannot be represented using only two volumes, leading to suboptimal
results. A potential solution is to allow for more volumes, such as converting the connectivity graph
into a planar graph and applying the four-color theorem [36] for packing. These limitations still
constrain the model’s capacity for precise editing and joint articulation of any 3D objects.

5 Conclusion

In this paper, we presented a novel end-to-end framework for part-level 3D generation from a single
image. By leveraging 3D part connectivity and introducing a dual volume packing strategy, our
method avoids reliance on 2D segmentation priors and efficiently handles an arbitrary number of
parts. Experimental results demonstrate that our method achieves high-quality, diverse, and efficient
part-level mesh generation, outperforming existing baselines. This work offers a promising step
toward editable and structured 3D content creation for downstream applications.

9



References
[1] Ziang Cao, Fangzhou Hong, Tong Wu, Liang Pan, and Ziwei Liu. Large-vocabulary 3d diffusion

model with transformer. arXiv preprint arXiv:2309.07920, 2023.

[2] Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian, Zhuowen Tu, Lingjie Liu, and Hao Su.
Single-stage diffusion nerf: A unified approach to 3d generation and reconstruction. arXiv preprint
arXiv:2304.06714, 2023.

[3] Zhaoxi Chen, Fangzhou Hong, Haiyi Mei, Guangcong Wang, Lei Yang, and Ziwei Liu. Primdif-
fusion: Volumetric primitives diffusion for 3d human generation. arXiv preprint arXiv:2312.04559,
2023.

[4] Minghao Chen, Roman Shapovalov, Iro Laina, Tom Monnier, Jianyuan Wang, David Novotny,
and Andrea Vedaldi. Partgen: Part-level 3d generation and reconstruction with multi-view diffusion
models. arXiv preprint arXiv:2412.18608, 2024.

[5] Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu, Xiu Li, Xiaoxiao
Long, Jiashi Feng, and Ping Tan. Dora: Sampling and benchmarking for 3d shape variational
auto-encoders. arXiv preprint arXiv:2412.17808, 2024.

[6] Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng, Yijun Fu, Fukun Yin, Yanru Wang,
Zhibin Wang, Chi Zhang, et al. Meshxl: Neural coordinate field for generative 3d foundation
models. arXiv preprint arXiv:2405.20853, 2024.

[7] Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Xin Chen, Zhongang
Cai, Lei Yang, Gang Yu, et al. Meshanything: Artist-created mesh generation with autoregressive
transformers. arXiv preprint arXiv:2406.10163, 2024.

[8] Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang, and
Guosheng Lin. Meshanything v2: Artist-created mesh generation with adjacent mesh tokenization.
arXiv preprint arXiv:2408.02555, 2024.

[9] Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao, Fangzhou Hong, Yushi Lan, Tengfei
Wang, Haozhe Xie, Tong Wu, Shunsuke Saito, et al. 3dtopia-xl: Scaling high-quality 3d asset
generation via primitive diffusion. arXiv preprint arXiv:2409.12957, 2024.

[10] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui.
Sdfusion: Multimodal 3d shape completion, reconstruction, and generation. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4456–4465, 2023.

[11] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe
of 10m+ 3d objects. arXiv preprint arXiv:2307.05663, 2023.

[12] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of
annotated 3d objects. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
13142–13153, 2023.

[13] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Triplane latent
diffusion for textured mesh generation. arXiv preprint arXiv:2303.05371, 2023.

[14] Zekun Hao, David W Romero, Tsung-Yi Lin, and Ming-Yu Liu. Meshtron: High-fidelity,
artist-like 3d mesh generation at scale. arXiv preprint arXiv:2412.09548, 2024.

[15] Pinar Heggernes, Pim Van’T Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a bipartite
graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27(4):2143–2156, 2013.

[16] Fangzhou Hong, Jiaxiang Tang, Ziang Cao, Min Shi, Tong Wu, Zhaoxi Chen, Tengfei Wang,
Liang Pan, Dahua Lin, and Ziwei Liu. 3dtopia: Large text-to-3d generation model with hybrid
diffusion priors. arXiv preprint arXiv:2403.02234, 2024.

[17] Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv
preprint arXiv:2305.02463, 2023.

10



[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 4015–4026,
2023.

[19] Zeqiang Lai, Yunfei Zhao, Zibo Zhao, Haolin Liu, Fuyun Wang, Huiwen Shi, Xianghui Yang,
Qinxiang Lin, Jinwei Huang, Yuhong Liu, Jie Jiang, Chunchao Guo, and Xiangyu Yue. Unleashing
vecset diffusion model for fast shape generation, 2025.

[20] Yushi Lan, Fangzhou Hong, Shuai Yang, Shangchen Zhou, Xuyi Meng, Bo Dai, Xingang Pan,
and Chen Change Loy. Ln3diff: Scalable latent neural fields diffusion for speedy 3d generation.
arXiv preprint arXiv:2403.12019, 2024.

[21] Weiyu Li, Jiarui Liu, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaoxiao Long.
Craftsman: High-fidelity mesh generation with 3d native generation and interactive geometry
refiner. arXiv preprint arXiv:2405.14979, 2024.

[22] Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. Triposg: High-fidelity 3d shape synthesis using
large-scale rectified flow models. arXiv preprint arXiv:2502.06608, 2025.

[23] Stefan Lionar, Jiabin Liang, and Gim Hee Lee. Treemeshgpt: Artistic mesh generation with
autoregressive tree sequencing. arXiv preprint arXiv:2503.11629, 2025.

[24] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[25] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[26] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexiang Xu, Hao Su, et al. One-2-3-45:
Any single image to 3d mesh in 45 seconds without per-shape optimization. arXiv preprint
arXiv:2306.16928, 2023.

[27] Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
Meshdiffusion: Score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133,
2023.

[28] Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, and
Jun Gao. Partfield: Learning 3d feature fields for part segmentation and beyond. arXiv preprint
arXiv:2504.11451, 2025.

[29] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In Seminal graphics: pioneering efforts that shaped the field, pages
347–353. 1998.

[30] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision (ECCV), 2020.

[31] Norman Müller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulo, Peter Kontschieder, and
Matthias Nießner. Diffrf: Rendering-guided 3d radiance field diffusion. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4328–4338, 2023.

[32] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A
system for generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751,
2022.

[33] Evangelos Ntavelis, Aliaksandr Siarohin, Kyle Olszewski, Chaoyang Wang, Luc Van Gool, and
Sergey Tulyakov. Autodecoding latent 3d diffusion models. arXiv preprint arXiv:2307.05445,
2023.

[34] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

11



[35] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma,
Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything
in images and videos. arXiv preprint arXiv:2408.00714, 2024.

[36] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The four-colour theorem.
journal of combinatorial theory, Series B, 70(1):2–44, 1997.

[37] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti,
Vladislav Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes
with decoder-only transformers. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 19615–19625, 2024.

[38] Zhicong Tang, Shuyang Gu, Chunyu Wang, Ting Zhang, Jianmin Bao, Dong Chen, and Baining
Guo. Volumediffusion: Flexible text-to-3d generation with efficient volumetric encoder. arXiv
preprint arXiv:2312.11459, 2023.

[39] George Tang, William Zhao, Logan Ford, David Benhaim, and Paul Zhang. Segment any
mesh: Zero-shot mesh part segmentation via lifting segment anything 2 to 3d. arXiv preprint
arXiv:2408.13679, 2024.

[40] Jiaxiang Tang, Zhaoshuo Li, Zekun Hao, Xian Liu, Gang Zeng, Ming-Yu Liu, and Qinsheng
Zhang. Edgerunner: Auto-regressive auto-encoder for artistic mesh generation. arXiv preprint
arXiv:2409.18114, 2024.

[41] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis, Jingjing
Shen, Dong Chen, Fang Wen, Qifeng Chen, et al. Rodin: A generative model for sculpting
3d digital avatars using diffusion. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4563–4573, 2023.

[42] Hanxiao Wang, Biao Zhang, Weize Quan, Dong-Ming Yan, and Peter Wonka. iflame: Inter-
leaving full and linear attention for efficient mesh generation. arXiv preprint arXiv:2503.16653,
2025.

[43] Haohan Weng, Yikai Wang, Tong Zhang, CL Chen, and Jun Zhu. Pivotmesh: Generic 3d mesh
generation via pivot vertices guidance. arXiv preprint arXiv:2405.16890, 2024.

[44] Haohan Weng, Zibo Zhao, Biwen Lei, Xianghui Yang, Jian Liu, Zeqiang Lai, Zhuo Chen,
Yuhong Liu, Jie Jiang, Chunchao Guo, et al. Scaling mesh generation via compressive tokenization.
arXiv preprint arXiv:2411.07025, 2024.

[45] Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao
Yao. Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. arXiv preprint
arXiv:2405.14832, 2024.

[46] Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. arXiv
preprint arXiv:2412.01506, 2024.

[47] Xiang Xu, Joseph Lambourne, Pradeep Jayaraman, Zhengqing Wang, Karl Willis, and Yasutaka
Furukawa. Brepgen: A b-rep generative diffusion model with structured latent geometry. ACM
Transactions on Graphics (TOG), 43(4):1–14, 2024.

[48] Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
images, and point clouds for 3d understanding. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1179–1189, 2023.

[49] Le Xue, Ning Yu, Shu Zhang, Artemis Panagopoulou, Junnan Li, Roberto Martín-Martín, Jiajun
Wu, Caiming Xiong, Ran Xu, Juan Carlos Niebles, et al. Ulip-2: Towards scalable multimodal
pre-training for 3d understanding. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 27091–27101, 2024.

[50] Xingguang Yan, Han-Hung Lee, Ziyu Wan, and Angel X Chang. An object is worth 64x64
pixels: Generating 3d object via image diffusion. arXiv preprint arXiv:2408.03178, 2024.

12



[51] Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y Lam,
Yan-Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects. arXiv preprint
arXiv:2411.07184, 2024.

[52] Yunhan Yang, Yuan-Chen Guo, Yukun Huang, Zi-Xin Zou, Zhipeng Yu, Yangguang Li, Yan-
Pei Cao, and Xihui Liu. Holopart: Generative 3d part amodal segmentation. arXiv preprint
arXiv:2504.07943, 2025.

[53] Lior Yariv, Omri Puny, Natalia Neverova, Oran Gafni, and Yaron Lipman. Mosaic-sdf for 3d
generative models. arXiv preprint arXiv:2312.09222, 2023.

[54] Chongjie Ye, Yushuang Wu, Ziteng Lu, Jiahao Chang, Xiaoyang Guo, Jiaqing Zhou, Hao Zhao,
and Xiaoguang Han. Hi3dgen: High-fidelity 3d geometry generation from images via normal
bridging. arXiv preprint arXiv:2503.22236, 3, 2025.

[55] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. arXiv preprint arXiv:2301.11445,
2023.

[56] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang,
Lan Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality
3d assets. arXiv preprint arXiv:2406.13897, 2024.

[57] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin Fu, Tao Chen, Gang
Yu, and Shenghua Gao. Michelangelo: Conditional 3d shape generation based on shape-image-text
aligned latent representation. arXiv preprint arXiv:2306.17115, 2023.

[58] Ruowen Zhao, Junliang Ye, Zhengyi Wang, Guangce Liu, Yiwen Chen, Yikai Wang, and Jun
Zhu. Deepmesh: Auto-regressive artist-mesh creation with reinforcement learning. arXiv preprint
arXiv:2503.15265, 2025.

[59] Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025.

[60] Xin-Yang Zheng, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang Liu, and Heung-Yeung
Shum. Locally attentional sdf diffusion for controllable 3d shape generation. arXiv preprint
arXiv:2305.04461, 42(4):1–13, 2023.

[61] Junsheng Zhou, Jinsheng Wang, Baorui Ma, Yu-Shen Liu, Tiejun Huang, and Xinlong Wang.
Uni3d: Exploring unified 3d representation at scale. In International Conference on Learning
Representations (ICLR), 2024.

13



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately describe the main
contributions: a part-level 3D generation framework with dual volume packing and improved
efficiency.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4.5 outlines the main limitations, including granularity control and the
simplification imposed by bipartite packing.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [NA]

Justification: The paper does not include theoretical results with formal theorems or proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4.1 provides full details about training stages, dataset filtering, latent
sizes, hardware used, and data normalization.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The dataset is publicly available. The code will be released later.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 describes the training details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or confidence intervals due to the high computa-
tional cost of repeated experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4.1 specifies the compute resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on foundational research in 3D object generation without
immediate societal impacts, either positive or negative.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release model or data with high misuse risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section 4.1 states the license of the used datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subject research is conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used as a core method component in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A More Implementation Details

A.1 Bipartite Contraction

We detail the greedy odd-cycle contraction algorithm used in the dual volume packing process in
Algorithm 1. The algorithm first performs a depth-first search to identify all cycles (both even and
odd) in the graph. It then iteratively processes each odd cycle by contracting the edge with the largest
weight, repeating this step until no odd cycles remain. In Figure 8, we present the distribution of the
number of parts in our processed dataset. We observe that approximately 60% of the data samples
contain fewer than 10 parts. Only 5% of the samples have more than 200 parts. Since enumerating
all simple cycles in a graph is not a polynomial-time operation and can be time-consuming for graphs
with dense edge structures, we restrict the use of this algorithm to graphs with fewer than 100 edges
to ensure processing efficiency. For more complex graphs, we directly apply two-coloring and leave
the conflicting edges where both vertices have the same color as contracted edges.

Algorithm 1: Greedy Odd Cycle Contraction

Data: Graph G = {V, E}, where V = {vi}Ni=1, E = {ei}Mi=1.
Result: Array O to hold the edges to contract.

/* Find all cycles C = {Ci}, where each cycle Ci = {ej} */
C = DFS (G);

/* Loop and contract until there are no odd cycles. */
while C contains odd cycles:

for C in C:
if C is an odd cycle:

/* Find the edge e with the largest weight in C. */
e = argmaxe′∈C w(e′);
/* Mark this edge for contraction. */
O.append(e);
/* Remove this edge from all cycles if exists. */
for C ′ in C:

C ′.remove(e);
return O;

≥ 

Figure 8: Statistics on the number of part in the processed dataset.

A.2 Surface Sampling

Through dual volume packing, we split the raw mesh into two sub-meshes. For each sub-mesh, we
compute the unsigned distance field (UDF) on a 5123 grid. To determine the empty region (positive
distance), we apply a flood-filling algorithm starting from a corner voxel (e.g., the voxel at index
[0, 0, 0]), which is guaranteed to be outside the mesh since all meshes are normalized to the range
[−0.95, 0.95]3. We then define the complement as the occupied region (negative distance), yielding a

21



Input Image OursTripoSG Hi3DGen

Figure 9: More Comparisons on Image-to-3D Generation.

signed distance field. Using Marching Cubes [29], we extract a watertight surface from the resulting
signed distance field.

Following Dora [5], we sample 32768 uniformly distributed surface points and 16384 salient edge
points as input to the VAE. The dihedral angle threshold for salient edge detection is set to less than
165◦. If no salient edges are present in the mesh, we randomly subsample from the uniform surface
points to serve as salient edge samples. To supervise the signed distance function (SDF) output, we
further generate and store three types of point-SDF pairs: (1) Uniformly sampled points in the volume
[−1, 1]3; (2) Near-surface point samples; (3) Near-salient-edge point samples.

During VAE training, we randomly select 16384 uniform samples, 8192 near-surface samples, and
8192 near-salient-edge samples in each iteration.

B More Results

B.1 Qualitative Comparisons

We provide more qualitative comparisons in Figure 9. Our method outperforms prior approaches
in most cases, particularly in preserving fine-grained geometric details and producing complete

22



Wrong Internal Structure Unstable Segmentation

Figure 10: Limitations and Failure Cases. We showcase some failure cases of our model.

parts. Compared with baseline methods, our generated shapes exhibit better surface smoothness, part
separation, and overall fidelity.

B.2 Failure Cases

In Figure 10, we show some typical failure cases of our model. The first type involves incorrect
internal structures. For shapes that contain intricate internal components, the underlying part connec-
tivity graph becomes highly entangled. In such cases, our greedy odd cycle contraction algorithm
may fail to partition the mesh into two meaningful groups, resulting in incomplete or incorrect
reconstructions. For example, in some drawer-like objects, the inner compartment is not properly
connected to the outer casing, leading to broken or missing internal parts. The second type of failure
relates to unstable segmentation. Due to inconsistencies in part annotations within the training dataset
and the absence of explicit part granularity control, our model can produce varying segmentation
results when given different random seeds. While some samples yield satisfactory and semantically
aligned part divisions, others may result in undesirable fusions or erroneous splits. For instance, the
wheels of a car may sometimes be merged with the car body, violating the expected part separation.
This instability highlights the need for more reliable part annotations and stronger priors to enforce
consistent structural decomposition.

23


	Introduction
	Related Work
	3D Denoising Generative Models
	Part-level 3D Generation

	Methodology
	Dual Volume Packing
	Part-level Data Curation
	Dual latent Generation

	Experiments
	Implementation Details
	Qualitative Comparisons.
	Quantitative Comparisons.
	Ablation Study
	Limitations and Future Work

	Conclusion
	More Implementation Details
	Bipartite Contraction
	Surface Sampling

	More Results
	Qualitative Comparisons
	Failure Cases


