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Abstract

Humans build viewpoint-independent cognitive maps through navigation,
enabling intuitive reasoning about object permanence and spatial relations.
We argue that multimodal large language models (MLLMs), despite exten-
sive video training, lack this fundamental spatial reasoning capability, a
critical limitation for embodied applications. To demonstrate these limi-
tations and drive research, we introduce REM (Reasoning over Embodied
Multi-Frame Trajectories), a benchmark using controllable 3D environments
for long-horizon embodied spatial reasoning. REM systematically evaluates
key aspects like object permanence/distinction, spatial relationships, and
numerical tracking across dynamic embodied viewpoints. Our evaluation
shows that the best-performing current models exhibit promising overall
performance, but become increasingly unreliable at even moderate complex-
ity levels easily handled by humans. These findings highlight challenges
MLLMs face in developing robust spatial representations from sequential
visual input. Consequently, REM provides targeted metrics and diagnostics
to foster improved spatial understanding in future models.

1 Introduction

When navigating a familiar campus, park, or neighborhood, we rarely consult external
maps or need explicit directions. Instead, we rely on sophisticated mental representations
built through experience. These three-dimensional cognitive maps (Tolman, 1948; O’Keefe
& Nadel, 1978) function as accessible spatial databases that persist independently of our
current viewpoint. Our mental maps encode precise spatial relationships (”standing near
the main gate, the statue is to the left of the library”) and allow us to plan optimal routes
through areas currently out of sight (”cutting through the science building will save time”).
This remarkable ability to maintain and interrogate comprehensive spatial representations
across changing viewpoints even enables us to answer difficult questions like ”How many
blue recycling bins are on campus?” through explicit mental enumeration, drawing on our
persistent cognitive model rather than immediate visual perception. This fundamental
spatial reasoning capability, which humans develop naturally, represents a critical challenge
for current AI systems attempting to understand embodied environments.

Multimodal Large Language Models (MLLMs) have emerged as powerful tools, demonstrat-
ing impressive capabilities on static image and video understanding tasks. Their ability to
process and reason about visual and textual information makes them promising candidates
for robotics and embodied AI applications. However, success in complex, dynamic envi-
ronments requires more than recognizing objects or actions in isolated frames; it demands
robust embodied spatial reasoning. This entails building and maintaining persistent inter-
nal models of 3D scenes—akin to human cognitive maps—that accurately encode spatial
relationships and object identities even as they move in and out of view during navigation.

∗Dataset and Code: github.com/EmilianoGarciaLopez/REM
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Object Counting: How 
many red spheres are 
there?




Answer: 3

Object Comparison: Are 
there more blue cubes, 
black cones, or equal?




Answer: equal

Temporal Ordering: Did we 
see the purple cone before, 
after, or at the same times 
as the green square?



Answer: before

Relative Positioning: Is the 
black sphere to the left or 
right of the green sphere?




Answer: left

Scene Plot Egocentric Images Q&A Pairs

Figure 1: REM at a glance. Left: top-down plot showing object distribution and camera
trajectory. Center: egocentric views from selected frames, simulating an agent’s perception
during navigation. Right: example question-answer pairs that test different aspects of spatial
reasoning: counting, comparison, temporal ordering, and left/right relative positioning.

To investigate the extent to which current MLLMs possess these capabilities, we introduce
REM (Reasoning over Embodied Multi-Frame Trajectories). REM is a novel benchmark
specifically designed to evaluate embodied spatial reasoning using multi-frame visual
sequences simulating egocentric navigation within synthetic 3D environments of controlled
complexity. Unlike benchmarks focusing solely on static images (e.g., Goyal et al., 2017;
Hudson & Manning, 2019; Liu et al., 2024a) or complex, uncontrolled video scenarios (e.g.,
Mangalam et al., 2023; Li et al., 2024a), REM allows for systematic probing of fundamental
spatial understanding across changing viewpoints. It assesses critical capacities including
object permanence (tested via numerical counting across frames), spatial relationships
(tracking left/right positioning), temporal ordering (understanding appearance sequence),
and the ability to integrate visual context with movement history for object identification.

Our evaluation using REM reveals significant shortcomings in state-of-the-art MLLMs. While
newer models show impressive capability in reasoning over simpler scenes, as shown in our
’baseline’ dataset, performance degrades rapidly with increased complexity. Furthermore,
models fundamentally struggle with object permanence and distinction, particularly under
challenging viewpoint shifts, as demonstrated in our ’Full Rotation’ experiments where
performance typically collapses. These findings underscore the specific, deep challenges
MLLMs face in developing robust spatial representations from sequential visual input,
highlighting the benchmark’s utility in driving targeted improvements for embodied AI.

2 REM: Reasoning over Embodied Multi-Frame Trajectories

Summarized in Table 1, we introduce REM, a set of three Blender-generated egocentric
datasets designed to quantitatively evaluate multimodal large language models’ abilities in
embodied visuospatial reasoning, specifically focusing on object permanence and distinc-
tion, spatial relationships, and accuracy in counting and numerical object comparisons. Each
dataset consists of trajectories composed of sequential egocentric image frames. Crucially,
the discrete camera action taken between consecutive frames (e.g., ‘move forward 1m’,
‘rotate right 15◦’) is explicitly provided alongside the image sequence as input to the model,
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simulating an agent aware of its own movements. These trajectories occur within simple syn-
thetic environments containing objects of visually distinct shapes (cuboids, spheres, cones)
and colors (brown, yellow, red, green, blue, purple, black, orange).

These environments are intentionally made to be simple, with easily distinguishable object
shapes and colors, as REM aims to diagnostically pinpoint failures and performance scaling
behavior in visuospatial reasoning and memory, not object detection or visual distinction.

REM consists of three datasets—Baseline, Single Frame, and Full Rotation. The Baseline
dataset benchmarks general capabilities across carefully varied task complexities; Single
Frame isolates single-image counting ability as a control; and Full Rotation specifically
probes object permanence/distinction and contextual reasoning under challenging view-
point changes.

2.1 Baseline dataset

We introduce our baseline dataset as the foundation of REM, designed to comprehensively
evaluate MLLM performance across four visuospatial reasoning tasks. It contains nearly
50,000 question-answer pairs distributed across over 3,000 embodied image-action trajecto-
ries. These trajectories systematically vary three key dimensions:

• Trajectory Length: Sequences contain either 2, 4, 8, 16, 32, or 64 image frames with
associated actions, to evaluate how performance scales with increasing context length
and scene views.

• Scene Congestion: Environments contain varying object densities, with either 8, 16, 24,
36, or 48 total objects to test performance under different visual complexity conditions.

• Object Duplication: Scenes range from all-unique objects to mostly duplicated objects
(as few as two distinct types), testing identical object individuation and tracking.

Trajectory lengths are distributed uniformly, while trajectory object densities and total
duplicate counts can be found in Figure 10 of the Appendix. The baseline dataset includes
four primary question categories, meant to probe different aspects of visuospatial reasoning:

• Object Counting: “How many blue objects are there?”
• Comparison: “Are there more red cones, spheres, or equal?”

• Relative Positioning: “Is the green sphere to the left or right of the blue cuboid?”1

• Temporal Ordering: “Did we see the purple cone before, after, or same time as the
orange cuboid?”

Each trajectory is automatically generated to include a variety of movement patterns, with
randomized sequences of both forward movements and rotations. We vary both the number
of consecutive forward movements before rotating (randomly left or right) and how many
consecutive 15◦ rotations occur in a single direction, ranging from single 15◦ turns to
complete 180◦ (or greater) viewpoint changes, as permitted by the remaining trajectory
length. This design ensures that for longer trajectories, models cannot rely solely on tracking
objects through small, incremental camera changes, but must maintain object representations
across significant viewpoint shifts where objects completely leave and re-enter the field of
view. An example length-4 trajectory is depicted in Figure 2.

2.1.1 Mini-Baseline dataset for Human Comparison

We also sample a representative Mini-Baseline subset (18 trajectories; 154 QA pairs) from
the larger dataset for a human performance comparison. Participants were given unlimited
time, provided a physical scratchpad, and used an interactive interface that allowed them
to use arrow keys to freely navigate images in the trajectory, similar to a reasoning model

1Importantly, this question is only asked in trajectories where objects maintain their left/right
positioning throughout all appearances in the trajectory.
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15° Right 15° Right1M Forward

Figure 2: Example length-4 trajectory from the baseline dataset. Models receive the
sequence of egocentric visual frames and the corresponding discrete actions (’15° Right’, ’1m
Forward’, ’15° Right’) taken between frames. Evaluating performance on such sequences
tests the model’s ability to integrate visual perception with known movement for spatial
reasoning across changing viewpoints.

repeatedly accessing its context while producing reasoning tokens. Mini-Baseline trajectory
statistics can be found in Figure 11 of the Appendix.

2.2 Single Frame dataset

The Single Frame dataset, consisting of 350 trajectories and approximately 1,300 QA pairs,
isolates visual counting ability by eliminating frame-to-frame tracking requirements. This
control condition helps disentangle whether counting errors in sequential settings originate
from fundamental perceptual limitations, from failures in maintaining object identity across
frames, or a mixture of both. Unlike the baseline dataset, we include only object counting
questions, providing comparative baselines for our multi-frame evaluations. Dataset object
and total duplicate statistics can be found in Figure 9 of the Appendix.

2.3 Full Rotation dataset

The Full Rotation dataset, containing 100 trajectories and approximately 2,400 QA pairs,
challenges models with a trajectory consisting of a 360◦ rotation in a cluttered scene. At the
180◦ mark, the scene deliberately mirrors the initial 0◦ view: while the visual arrangement
appears identical, most objects are different, with 1-2 target objects intentionally duplicated.
Importantly, the rotating camera maintains a continuous stream of object views, testing
whether MLLMs distinguish identities through integrated contextual and movement cues
or use simpler heuristics like spatially invariant attention aggregation. An example is
illustrated in Figure 3.

2.4 Automated Question-Answer (QA) generation and verification

In REM, each trajectory is automatically generated with Blender-provided per-frame ground
truth object annotations, specifying color-shape identities and left-to-right spatial position-
ing. We then construct detailed data dictionaries recording object counts by color, shape,
and color-shape combinations, along with the specific frames where each object appears.

We automatically generate question-answer pairs using a template system for each question
type. For left/right relative positioning and temporal ordering questions, we randomly
select two color-shape entities (e.g., ”red cube,” ”blue sphere”) and consult our ground
truth annotations to determine correct answers. For counting and numerical comparison
questions, we randomly select entities (which may be specific color-shape combinations,
colors, or shapes) and reference our ground truth counts.

For evaluation, we employ a keyword-based verification approach that identifies terms
uniquely associated with correct answers. For instance, in counting questions, we extract the
first numerical value. For positioning questions, we search for a single directional indicator
(”left”/”right”) - if both are provided, the answer is considered wrong per our system
prompt. For temporal questions, we look for a single sequence markers (”before”/”after”).
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Rotation

Scene Plot Egocentric Images

Figure 3: Full Rotation dataset example scene: (left) top-down scene layout showing object
positions, with the camera at the origin, (top-right) view at 0◦, and (bottom-right) view
after 180◦ rotation. Note the red sphere is intentionally duplicated between views, while
other objects occupy identical spatial positions but are visually distinct entities. Peripheral
objects at the top and bottom of the scene layout maintain visual continuity during camera
transitions, preventing empty frames with movement ambiguity.

To ensure maximum fairness to models, we exclude any question where our verification
system cannot identify unambiguous correctness markers (note this is exceedingly rare). A
detailed diagram depicting the dataset generation and verification pipeline, as well as the
prompting format, are provided in Figures 12 and 13 of the Appendix.

Property Baseline Single Frame Full Rotation

Num. Trajectories 3,119 (18) 350 100
Total QA Pairs 47,019 (154) 1,289 2,424
Trajectory Length(s) 2, 4, 8, 16, 32, 64 (4, 8, 16, 32) 1 24
Object Count 8-48 24 − 55 24
Duplicate Count 0 − 46 0 − 20 1 − 2
Purpose General Capabilities Single-frame Counting Object Distinction

Table 1: Comparative summary of the REM component datasets (Baseline, Single Frame, Full
Rotation), detailing differences in dataset size, trajectory lengths, scene complexity, and
evaluation purposes. Mini-Baseline dataset for human evaluation shown in parentheses.

3 Dataset evaluation and results

3.1 Baseline results overview

We evaluate seven multimodal models: OpenAI o3 and GPT-4o, three from the Gemini
family (2.5-Pro, 1.5-Pro, 1.5-Flash), Nova-Lite-v1, and Llama-3.2-11B. The new SOTA rea-
soning models (o3, 2.5-Pro) significantly outperform the older non-reasoning models, with
the lightweight proprietary Nova-Lite-v1 and open-source Llama-3.2-11B performing only
slightly above chance. Note Gemini-2.5-Pro is only tested on the Mini-Baseline.
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o3 performs the best on the full Baseline with an impressive overall performance of 80.0%,
but with the exception of left/right relation questions, performs noticeably worse than the
near-perfect human baseline. Notably, o3 comparatively struggles on counting and numeri-
cal comparison tasks, which require aggregating information from multiple objects across
multiple images while respecting object permanence and distinction. A more thorough
analysis of individual question performance and scaling laws follows in Section 3.2.

Question Metrics Overall Num. Comparison Left/Right Rel. Temp. Ord. Counting

Full Count 47,019 15,580 1,576 14,304 15,559
Mini Count 154 39 38 37 40
Random Chance – 33.3 50.0 33.3 –

Models Full Baseline (Accuracy %)

o3 80.0 78.3 92.3 88.4 60.9 (35.7)

GPT-4o 61.7 57.9 61.4 73.0 54.3 (24.4)
Gemini-1.5-Pro 59.6 54.3 67.7 69.0 47.4 (14.1)
Gemini-1.5-Flash 58.2 59.5 59.5 65.8 47.8 (13.8)
Nova-Lite-v1 38.7 38.1 51.3 43.4 21.9 (7.3)
Llama-3.2-11B 37.3 31.6 51.5 45.7 20.2 (7.0)

Models Mini Baseline (Accuracy %)

Human Average 97.8 96.3 99.3 98.2 97.5 (97.7)
o3 80.1 64.1 100.0 83.8 72.5 (59.1)
Gemini-2.5-Pro 79.4 74.0 78.9 94.6 70.0 (54.5)

Gemini-1.5-Pro 58.4 51.3 71.1 51.4 60.0 (36.4)
GPT-4o 57.1 56.0 57.9 59.5 55.0 (31.8)

Table 2: Top: dataset metrics. Middle: evaluation on the full Baseline. Bottom: evaluation on
the mini baseline sample. Reasoning models separated from non-reasoning models. Overall
performance shown in descending order. Counting question performance with ground
truth ≥ 2 shown in parentheses.

3.2 Baseline performance breakdown
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Figure 4: o3 QA performance across three scaling factors: (a) observed object count, (b)
observed duplicate count, and (c) trajectory length. Curves show average correctness for
Numerical Object Comparison, Temporal Ordering, and Left/Right Positioning tasks.

Figure 4 demonstrates basic scaling laws of non-numerical questions with overall object
count, total number of observed duplicates, and trajectory length. For simplicity, we limit
our analysis to o3, although similar scaling laws are observed with other models.

Object Comparison. We observe greatly decreasing performance with overall scene conges-
tion (both observed object count and duplicate count), with the most complex scenes (36

6



Published as a conference paper at COLM 2025

viewed objects) dropping below 60% overall accuracy. Similarly, a moderate decrease in
performance is also observed with increasing trajectory length beyond 4 images. In both
cases, this is likely due to decreased signal-to-noise ratio (occlusion, scene diversity) of the
two objects being compared, and a greater need to sift through the scene for the correct
objects.

Additionally, as shown in Figure 5, we notice a significant decrease in model performance
as targeted object counts become more similar, with 0 difference in target object quantities
resulting in only 66% accuracy. Qualitatively comparable performance drop-off with GPT-4o
and Gemini suggests models are using a kind of ”fuzzy counting” heuristic that begins to
fail with decreasing difference in target object quantities.

0 1 2 3 4 5 6 7 8 9 10 11 12
Difference in Target Object Quantities

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

Co
rre

ct

Figure 5: o3 numerical object comparison
count accuracy vs. the difference in target
object counts. Includes 95% confidence
interval. Random 33% baseline provided
in red.
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Figure 6: o3 temporal ordering question per-
formance as a function of observed duplicate
and total object counts. Different colored
lines bin respective object counts, with ran-
dom 33% baseline provided in red.

Temporal Ordering. We initially observe a strong reduction in performance with increasing
scene congestion (object count), but unlike the other question types, not with trajectory
length. Interestingly, we also see a strong positive correlation with maximum duplicate
counts, with the highest counts reaching saturation. The explicit relationship between
duplicate count and overall object count is more directly observed in Figure 6, which shows
that even in the most congested scenes, increasing duplicate count can lead to performance
saturation. This is likely due to increasing duplicate count resulting in order-preserving
questions being more likely to target the duplicates, which have an increased signal-to-noise
ratio (less attention competition) in the scene.

Left/Right Orientation. In Figure 4, we notice left/right questions scaling strongly with
scene congestion and moderately with trajectory length. An intuitive potential explanation
for the scene congestion scaling is provided by increased occlusion, object attention compe-
tition, and more non-target objects appearing between the targets. Performance degradation
with trajectory length is similarly intuitively explained by increasing scene complexity.

Counting Questions. Counting question performance is predominantly dependent on
target object ground truth count. As shown in Figure 7, o3 progressively undercounts
objects as ground truth increases. In fact, counting questions with target object class ground
truth ≥ 2 have an overall accuracy of only 35.7%.

Additionally, Figure 7 demonstrates that, independent of ground truth count, increasing
trajectory length does not seem to consistently affect undercounting. This is perhaps
counterintuitive, as longer trajectories include more diverse viewpoints of persistent objects,
which would naively result in relative overcounting.

Furthermore, we observe in Figure 8 that while the ground truth number of target objects
seen throughout the entirety of a trajectory is typically greater than the number observed
by models in any single frame, the amount predicted by o3 closely tracks the latter value.
Based on these observations alone, it is not clear whether counting is considering overall
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Figure 7: o3 average undercounting fraction
as a function of target object ground truth
count. Different lines indicate different trajec-
tory lengths.
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Figure 8: o3 counting predictions vs. max-
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gle frame. Includes both single-frame and
multi-frame trajectory ground truths, both
with 95% confidence interval.

trajectory object counts (requiring some notion of object permanence and continuity) or if
the model is simply selecting some subset (potentially the maximum object frame) of the
trajectory, and returning a value correlated with object count in that subset.

It is also notable that while absolute counting performance is increasingly poor beyond
ground truth counts 0− 1, o3 does retain a strong notion of more vs less objects in a trajectory,
explaining why object comparison results are superior to absolute counting in higher
duplicate count (and thus higher target object count) settings.

3.3 Single frame counting results

Similar to baseline counting, o3 exhibits systematic undercounting behavior in single-frame
scenarios while maintaining a strong correlation with true object counts. This pattern again
indicates that although absolute counting accuracy is limited, models retain a meaningful
notion of relative quantity (Figure 8).

By averaging the fraction of undercounting observed with ground truth ≥ 2 in Figure 8,
we see that o3 undercounts with an average prediction-to-actual ratio of 0.65 (compared
to 0.73 in multi-frame with same average ground truth), and progressively undercounts
worse with increasing ground-truth values. Notably, we never observe overcounting. This
improved undercounting ratio for multi-frame trajectories vs. single-frame trajectories
(approximately 13% higher predictions), suggests that o3 is doing some kind of limited
object count aggregation across frames.

3.4 Full Rotation results

Table 3 shows that the best-performing model, OpenAI o3, consistently undercounts in both
single and double duplicated object scenarios, with a slightly less severe bias when only
a single object is duplicated. This result is intuitive: the single-duplicated case features
more distinct visual context after the 180◦ rotation, making the duplicated object scene
easier to identify as different than the initial view. However, the dramatic undercounting
when the ground truth is two (86% and 90% failure rates for single and double duplication,
respectively) reveals a critical failure in integrating the complete trajectory. o3 fails to use
the explicit motion cues and clear object differences to understand that visually similar
configurations at 0° and 180° represent distinct sets of objects. Similar failure rates are seen
for all other tested models, including GPT-4o and the Gemini-1.5 family.
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Ground Truth Single Duplicated Object Two Duplicated Objects

Undercount Correct Overcount Undercount Correct Overcount

0 0.00 1.00 0.00 0.00 0.95 0.05
1 0.09 0.91 0.01 0.06 0.93 0.01
2 0.86 0.14 0.00 0.90 0.10 0.00

Table 3: Impact of intentional object duplication on counting accuracy in the Full Rotation
dataset with OpenAI o3. Counting questions target objects with ground truth counts of
either 0, 1, or 2.

4 Related work

Introducing MLLMs. Multimodal Large Language Models (MLLMs) typically combine
pretrained vision encoders (Radford et al., 2021), (Dosovitskiy et al., 2021) with large
language models (LLMs) (Brown et al., 2020), (Chowdhery et al., 2022), (OpenAI et al., 2024),
(Touvron et al., 2023), (Vaswani et al., 2023). This integration enables them to process and
reason about both visual and textual information, demonstrating strong capabilities in tasks
such as visual question answering, image captioning, and generating descriptions grounded
in visual input (Yin et al., 2024). The potential of these models extends to applications
requiring interaction with a physical world, including robotics and embodied AI, where
understanding dynamic scenes and spatial contexts is essential (Driess et al., 2023), (Brohan
et al., 2023), (Wang et al., 2023), (Liu et al., 2025).

MLLM Benchmarks for Static Images. A substantial body of work focuses on evaluating
MLLMs using single static images. Benchmarks utilizing synthetic scenes like CLEVR
(Johnson et al., 2017) assess compositional reasoning and spatial relationships in controlled
settings, while those grounded in real-world images, such as VQA v2 (Goyal et al., 2017),
GQA (Hudson & Manning, 2019), and NLVR2 (Suhr et al., 2019), evaluate understanding
and reasoning based on a single naturalistic visual input. Furthermore, comprehensive
evaluation suites including MME (Fu et al., 2024a) and MMBench (Liu et al., 2024a) provide
broader assessments across diverse perception and cognition tasks within a single-image
context. While invaluable for measuring progress in interpreting complex visual scenes,
these static evaluations highlight the need for distinct methodologies capable of address-
ing the challenges posed by temporal dynamics, viewpoint changes, and the continuous
perception-action loop characteristic of embodied agents.

MLLM Benchmarks for Video and Embodied Spatial Reasoning. To evaluate performance
on dynamic inputs, numerous video-based benchmarks have been proposed, targeting
various aspects of understanding. Early benchmarks often focused on temporal event com-
prehension, action recognition, or causal reasoning within videos (Jang et al., 2017; Lei et al.,
2019; Yi et al., 2020; Girdhar & Ramanan, 2020), with diagnostic datasets further probing
specific temporal concepts (Li et al., 2024b; Liu et al., 2024b). Subsequently, comprehensive
benchmarks emerged to assess broader video understanding across diverse content and
tasks (Li et al., 2021; Fu et al., 2024b; Li et al., 2024a; Ning et al., 2023; Fang et al., 2024).
More recently, reflecting the push towards embodied AI, evaluations have increasingly
incorporated embodied perspectives, revealing challenges in areas like long-form egocentric
understanding (Mangalam et al., 2023), embodied question answering (Majumdar et al.,
2024), and spatial reasoning (including explicit counting) using realistic trajectories from
3D scans (Yang et al., 2024). While these benchmarks effectively identify performance gaps
on complex tasks, REM complements them by utilizing a controlled synthetic environment
specifically designed to enable detailed analysis of how fundamental factors influence
core spatial reasoning performance. By precisely manipulating trajectory length, scene
clutter, and object duplication, REM allows for a systematic study of their impact on object
permanence (critically tested via counting across views), spatial relationship tracking under
viewpoint shifts, and numerical consistency during simulated movement. This focused ap-
proach provides targeted diagnostics on where models might fail, offering insights beyond
overall performance metrics on complex scenarios.
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5 Discussion

We introduced REM, a benchmark leveraging controlled synthetic environments to probe
MLLM embodied spatial reasoning across sequential egocentric viewpoints. Our analysis
suggests a core limitation: MLLMs struggle to build and maintain a stable internal world
model that integrates visual perception with explicit discrete egomotion to track distinct
object instances over time and viewpoint changes. This fundamental deficit manifests in
the models’ handling of object identity and quantity across dynamic scenes:

The poor world modeling results in deficient spatiotemporal context integration, meaning
models fail to correctly update their internal scene representation using the explicitly
provided actions alongside unfolding visual context (Section 3.4). This is best shown in
the ‘Full Rotation‘ experiment (Table 3), where models cannot leverage known motion and
visual change to disambiguate visually similar scenes. They incorrectly merge distinct object
instances seen before and after the 180◦ turn, demonstrating a failure to ground perception
in movement and visual context to form a viewpoint-invariant understanding.

This difficulty in individuating objects using spatiotemporal context possibly contributes
to the observed poor numerical grounding (Sections 3.2, 3.3). When distinct instances are
erroneously merged due to context integration or object representation failures, systematic
undercounting can naturally follow, extending observed under-counting biases in single-
frame perception to multi-frame trajectories.

The impact of this core limitation additionally varies across other specific tasks. ‘Counting‘
directly probes permanence (degrading with ground truth count, Figure 7). ‘Numerical
Comparison‘ reflects noisy object quantity representations (failing on small differences,
Figure 5). ‘Left/Right‘ reasoning shows decaying relational tracking with distance and
clutter (Figure 4). ‘Temporal Ordering‘ highlights sensitivity to distinct instance tracking
versus overall scene complexity (improving with duplicates, degrading with congestion,
Figure 6). Unlike static or uncontrolled video benchmarks, REM’s systematic variation isolates
these specific failures in dynamic spatial reasoning. For example, REM shows that by simply
increasing scene congestion from the Baseline dataset average to 36 viewed objects, and
only including counting questions with ground truth > 1, overall SOTA model performance
drops from an impressive 80% to under 60%.

This inability to form integrated world models (cognitive maps) is a primary bottleneck
for deploying MLLMs in embodied AI. Future work must prioritize architectures and
training paradigms that explicitly foster robust object permanence and the integration of
spatiotemporal context, using targeted benchmarks like REM to measure progress towards
spatially grounded intelligence.
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A Dataset Statistics

Figure 9: Key Statistics for the Single Frame dataset. Left to right: Objects seen per
frame (mean 17.3, range 7-30); Duplicates seen (mean 5.01, range 0-20); Ground truth
counts for counting questions (≥ 2, log scale), showing a long-tailed distribution relevant to
undercounting analysis (see Figures 7 and 8). Note the log scale on the rightmost plot.

Figure 10: Key Statistics for the Baseline dataset. Left to right: Objects seen per trajectory;
Duplicates seen per trajectory; Ground truth counts for number questions (≥ 2, log scale).
Note the long-tailed distribution for counts, also relevant to undercounting analysis (see
Figures 7 and 8). Note the log scale on the rightmost plot.
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Figure 11: Key Statistics for the Mini Baseline dataset. Left to right: Objects seen per
trajectory; Duplicates seen per trajectory; Ground truth counts for number questions. Note
that the eight zero duplicate trajectories contain only left/right questions.

13



Published as a conference paper at COLM 2025

B Dataset generation and evaluation Details

common_utils.read_

annotations

color_count (red: 4, blue: 
3, ...)

shape_count (sphere: 7, 
cuboid: 2, ...)

color_shape_count 
(red_sphere: 2, ...)

color_shape_frames 
(red_sphere: 0,3,5, ...)

Start at x=-3, y=0, facing 
east

Size 1: No moves (single 
image)

Each trajectory size maps to 
unique turn budget: 8→45°, 
16→90°, 32→180°, 64→360°

Include trajectory 
positions, scene 
generation flags in 
scene_config.json

Trajectory Parameters

Desired length, object 
count, duplicate count

Automatic QA Generation

Sample fields from 
data_dict (or annotations 
for left/right positioning), 
generate question and GT 
answer

MLLM Queried with 
images, movement 
annotations, and 
questions

Left, right, straight move 
definitions output to 
trajectory_moves.txt

Per-image information 
output to images/
annotations.csv

images/data_dict.csv number_questions.csv

comparison_questions.csv

left_right_positioning.csv all_questions_answered.csv Correctness

order_questions.csv

image_0000.png …

Sample number of unique 
objects from (shapes × 
colors)

Sequential random grid 
placement with 
trajectory,  object 
collision avoidance

Inject duplicates

Final scene_config.json 
with object positions, 
colors, positions, unique 
ID’s

Randomly partition turn budget 
into 2-5 blocks, each containing ≥ 
1 turn

Assign alternating left/right 
directions to blocks

Insert consecutive straight moves 
in between blocks as evenly as 
possible until trajectory length is 
reached

Iterate through computed 
trajectory positions.If (x, y) near 
grid boundary → inject ≤12 
unidirectional turns (U-turn), 
potentially end trajectory if at 
move threshold

Size 2: One random move 
(straight or ±15° turn)

Size 4: unidirectional 
random walk

Size 8,16,32,64: 
Complex algorithm

Trajectory Size?

Trajectory Generation Algorithm

Scene Generation

Populate

Blender Renderer 
(run_simulation.py)

Data Dictionary Builder

Complex Algorithm for 
8,16,32,64

Numerical

First Integer match

Question Type?

Keyword-based

Check for correct 
keywords AND no 
incorrect/conflicting 
keywords

Automatic Verification

Load scene objects and 
initial camera position

Read next move from 
trajectory_moves.txt

Move camera, capture 
image, record visible object 
IDs from left to right with % 
coverage

Figure 12: Generation and evaluation pipeline for REM. Starting from trajectory param-
eters (length, object count, duplicate rate), we synthesize a collision-free scene (sample
shapes/colors and inject duplicates) and a discrete egomotion plan, then render the ego-
centric sequence in Blender while logging per-frame object IDs and pixel coverage. The
annotations feed a data dictionary that aggregates counts and frame indices, from which
we automatically instantiate QA templates (counting, comparison, left/right positioning,
temporal ordering). Models are queried with the images, actions, and questions, and a
rule-based verifier (numeric/keyword checks) scores answers for correctness.

You are an agent walking through an environment in Blender. You will receive a series of 
images, each taken after taking an action in the environment (either moving straight or 
turning 15 degrees left/right). You will also receive a question that you must answer correctly 
after seeing all images. You will see objects with a shape and a color. The possible shapes 
include cuboid, cone, sphere. The possible colors include red, green, blue, yellow, purple, 
brown, black, orange. Please answer the question based on the set of images. Answer as 
concisely as possible, usually only a single word. If you're asked about a true/false question, 
answer with 'yes' or 'no' only. If it's a question where you're asked to compare the number of 
objects, respond only with whichever object there are more of, or equal, if there are the same 
number of objects If you're asked to count objects, answer only with the number (as a 
number, not in english) of objects you see. If you're asked whether you saw something 
before, after, or at the same time as another object, answer only with 'before', 'after', or 'same 
time' only. If the first time you see an object is in an image before another object, it comes 
before (and the other comes after). If two objects appear in the same frame together for their 
first viewing, its same time

System Prompt

Figure 13: System prompt and message format. Each model query contains two messages:
the fixed system prompt (above), then a single user message whose content is, in order:
the question text, the movement annotations, and all trajectory images, each resized to
960 × 640.
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