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Abstract

Federated optimization is a new form of distributed training on very large datasets
that leverages many devices each containing local data. While decentralized compu-
tation can lead to significant speed-ups due to parallelization, some centralization
is still required: devices must aggregate their parameter updates through syn-
chronization across the network. The potential for communication bottleneck is
significant. The two main methods to tackle this issue are (a) smarter optimization
that decreases the frequency of communication rounds and (b) using compression
techniques such as quantization and sparsification to reduce the number of bits
machines need to transmit. In this paper, we provide a novel algorithm, Federated
optimization algorithm with Acceleration and Quantization (FedAQ), with im-
proved theoretical guarantees by combining an accelerated method of federated
averaging, reducing the number of training and synchronization steps, with an
efficient quantization scheme that significantly reduces communication complexity.
We show that in a homogeneous strongly convex setting, FedAQ achieves a linear
speedup in the number of workers M with only Õ(M 1

3 ) communication rounds,
significantly smaller than what is required by other quantization-based federated op-
timization algorithms. Moreover, we empirically verify that our algorithm performs
better than current methods.

1 Introduction

Federated learning (FL) has attracted much attention from both academia and industry due to the
increasing demand for large-scale distributed machine learning systems and preserving privacy-
sensitive data on local devices such as smartphones and IoT devices. In federated learning, a number
of clients collaboratively learn the global objective function by communicating with a central server
without sharing any locally stored data in each local device. The research in Federated learning
has identified four major challenges: communication efficiency, systems heterogeneity, statistical
heterogeneity, and privacy (Li et al., 2020a). In this paper, we focus on communication efficiency
that is of primary interest in cross-device settings when there is a heavy communication burden with
many edge computing devices and limited network bandwidth. Two of the most widely used methods
to reduce the communication cost are federated averaging optimization and randomized compression
techniques.

In federated averaging (FedAvg) (McMahan et al., 2017), also called local SGD, each client locally
updates its model with multiple Stochastic gradient descent (SGD) steps, and a server aggregates
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Algorithm Convergence rate Communication rounds for Õ( 1
T
)

convergence with linear speedup
Bits communicated for

linear speedup

Reisizadeh et al. (2020) O( 1+q
K

+ T
K2 ) Not possible Not possible

Haddadpour et al. (2021) Õ( 1+q
MT

+ 1
TK

) Õ( M
1+q

) Õ( M
1+q

) · dquant

Yuan and Ma (2020) Õ( 1
MT

+ 1
TK3 ) Õ(M

1
3 ) Õ(M

1
3 ) · 2dfull

FedAQ (corollary F.8) Õ( 1+q
MT

+ 1+q
TK3 ) Õ(M

1
3 ) Õ(M

1
3 ) · 2dquant

Table 1: Summary of results on the convergence rate and communication required for linear speedup.
M is the number of devices, T is the number of total parallel iterations, and K is the number of
communication rounds, q is a quantization parameter (assumption 2.1), dquant is the number of bits
used to quantize, dfull is the number of bits required when there is no quantization (dfull ≫ dquant).
Yuan and Ma (2020) and FedAQ send two iterates per communication round as other algorithms
to achieve acceleration (See line 11 in Algorithm 1), we multiply dfull and dquant by 2 for bits
communicated for a linear speedup. The presented results of Haddadpour et al. (2021) are newly
obtained (app. E).

model updates of clients. The server updates its own model parameters by averaging client models
and then broadcasts the server parameters to all clients. This enables FL systems to achieve high
communication efficiency with infrequent synchronization while showing better performance than
distributed large mini-batch SGD (Lin et al., 2018). Due to the significant empirical success of
FedAvg, researchers have proposed an interesting theoretical question: To what extent can we
minimize the number of synchronizations in order to both guarantee convergence and achieve linear
speedup in the number of workers M 1? For the strongly-convex and homogeneous settings, Khaled
et al. (2020) was able to achieve a linear speedup in M with Õ(M) communication rounds, which
is the state-of-the-art result for FedAvg convergence analysis. However, even with this progress on
theoretical guarantees of FedAvg, it remains unclear whether further improvements on convergence
time and communication efficiency can be achieved.

Applying acceleration methods to FL has led to improved convergence, with Yuan and Ma (2020)
providing a faster version of FedAvg with provably stronger bounds. For the strongly-convex and
homogeneous setting, their algorithm achieves a linear speedup in M with only Õ(M 1

3 ) commu-
nication rounds. Hence, the accelerated version of federated averaging requires a much smaller
number of communication rounds than FedAvg to achieve the same accuracy. At present, this
remains the best result for strongly-convex and homogeneous local data distribution settings. In
addition to reducing the required number of communication rounds, another powerful way to build
communication-efficient FL systems is to reduce the number of bits that need to be transmitted at
each synchronization. Reisizadeh et al. (2020); Haddadpour et al. (2021) have shown that such
compression techniques, which include quantization, reduce communication costs and guarantee
convergence (See Table 1). More related works can be found in Appx. A

In this work, we provide a novel algorithm, Federated optimization algorithm with Acceleration
and Quantization (FedAQ), to solve the severe communication bottleneck problem in FL systems.
FedAQ is the first federated optimization algorithm that successfully incorporates multiple local
update schemes, acceleration, and quantization for master-worker topology. Although these three
key desiderata of Federal Learning systems have individually been shown to build communication-
efficient FL systems, it is not obvious if or how acceleration techniques can lead to faster convergence
even for quantization based methods. We answer this question by showing that FedAQ converges
for strongly-convex and homogeneous local data distribution settings without any additional strong
assumptions.

Let T be the number of total parallel iterations, K be the number of total communication rounds. We
compare our results to previous methods in Table 1, and highlight the following contributions:

1. FedAQ has a convergence rate of Õ( 1+q
MT + 1+q

TK3 ) which is better than the Õ( 1+q
MT + 1

TK )
convergence of Haddadpour et al. (2021), the state of the art in quantization based methods.

1Linear speedup in the number of workers is a desirable property in parallel computing which implies that
the task takes half as much time if the number of workers are doubled.
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Here q is a parameter that measures the effectiveness of the quantization scheme (see assump-
tion 2.1). This allows FedAQ to obtain linear speedup with only Õ(M 1

3 ) communication
rounds whereas Haddadpour et al. (2021) requires Õ( M

1+q ) rounds. The faster convergence
in number of communication rounds also implies that FedAQ can achieve better convergence
than Haddadpour et al. (2021) by using much fewer communication rounds. That is, while
the per-round communication costs are the same, FedAQ requires much less communication
overall due to the reduction in synchronization rounds.

2. When comparing FedAQ to Accelerated Federated learning, we observe that FedAQ has
similar convergence and requires the same number of communication rounds as Yuan and
Ma (2020). In each communication round of Yuan and Ma (2020), every client sends the
complete iterates to the server without any quantization. To effectively obtain a convergence
rate of Õ( 1

MT ), it needs to send each value with a precision of Õ( 1
MT ), requiring dfull =

O(log (MT )) bits. In comparison, if we use the low precision quantizer (Appx. E.3) given
by Alistarh et al. (2017), FedAQ needs to send only dquant = O(log 1

q ) bits 2 for each value.
Since q is a constant, dquant ≪ dfull. The extra 1 + q term in the convergence for FedAQ can
be offset by scaling the number of local updates by 1 + q, which is cheaper than expensive
data communication. Thus, FedAQ can obtain the same convergence as Yuan and Ma (2020)
using the same number of communication rounds but by sending much fewer bits in each
round.

Finally, we empirically verify that our algorithm exhibits better performance than baselines, FedPAQ
(Reisizadeh et al., 2020), FedCOMGATE (Haddadpour et al., 2021), FedAC (Yuan and Ma, 2020),
and FedAvg (McMahan et al., 2017) on classical vision datasets such as MNIST (LeCun, 1998) and
CIFAR-10 (Krizhevsky et al., 2009).

2 Problem setup

In this paper, we build our algorithm based on federated learning with captain-worker topology
where M local devices contain their own local data, and a server aggregates local parameter updates
without sharing any data during synchronization rounds. Since we focus on homogeneous local data
distribution settings for the convergence analysis of our algorithm, we define the distributed stochastic
optimization problem as below.

min
w∈Rd

F (w) := Ez∼D[f(w; z)]

In our convergence analysis, we assume F is strongly-convex. Each client can access F at w via
oracle∇f(w; z) because all clients have the same loss function f . Also, every local device has the
same local data distribution D. Moreover, we use the full participation of nodes for local updates and
synchronizations.

2.1 Assumptions

Let us clarify assumptions on the unbiased quantizer Q, the global objective function F , and the
unbiased gradient estimator∇f .
Assumption 2.1. The variance of the unbiased quantizer Q is bounded by the squared of l2-norm of
its argument, i.e., E[Q(x)|x] = x, E[∥Q(x)− x∥2|x] ≤ q∥x∥2.

For example, a well-known randomized quantizer which satisfies Assumption 2.1 is low-precision
quantizer (Appx. E.3) in Alistarh et al. (2017).
Assumption 2.2. F is µ-strongly convex, i.e., F (w1) ≥ F (w2) + ⟨∇F (w2), w1 − w2⟩+ 1

2µ∥w1 −
w2∥2 for any w1, w2 ∈ Rd.
Assumption 2.3. F is L-smooth, i.e., F (w1) ≤ F (w2) + ⟨∇F (w2), w1−w2⟩+ 1

2L∥w1−w2∥2 for
any w1, w2 ∈ Rd.
Assumption 2.4. ∇f(w; ξ) is unbiased and variance bounded, i.e., Eξ[∇f(w; ξ)] = ∇F (w),
Eξ[∥∇f(w; ξ)−∇F (w)∥2] ≤ σ2 for any w ∈ Rd.

2More details on this are discussed in appendix E.3
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2.2 Notation

We use τ,K to respectively denote the number of local updates and total communication rounds,
which means the total number of iterations T at each node satisfies T = Kτ . Since we consider
a strongly-convex case, we can find the optimal point w∗ and denote the optimal function value
as F ∗ := F (w∗). The local parameter wm

k,t indicates the parameter of the m-th local model after
kth synchronization followed by t local SGD updates. There are other types of parameters such as
wag,m

k,t and wmd,m
k,t , and we obtain two types of parameters wk and wag

k in the server side after kth
synchronization. More details on these parameters will be discussed in the next section.

3 FedAQ algorithm

We propose a novel communication efficient algorithm that combines an accelerated variant of
federated averaging and an efficient quantization scheme. Our FedAQ algorithm has two main parts:
(1) multiple accelerated local updates and (2) communication with quantization. Both components
contribute to achieving better communication efficiency than other previous federated algorithms.
The entire process is summarized in Algorithm 1 (See Appx. B).

3.1 Multiple accelerated local updates

The FedAvg algorithm, proposed by McMahan et al. (2017), is widely used for federated learning
to improve communication efficiency by reducing communication rounds with multiple local SGD
updates. Yuan and Ma (2020) provide FedAC that replaces the stochastic gradient updates of FedAVG
by accelerated version of SGD by Ghadimi and Lan (2012) resulting in a linear speedup in M with
smaller communication rounds than FedAvg.

Thus, we apply the FedAC scheme to multiple updates of each local model. Since previous
quantization-based federated optimization algorithms are FedAvg variants with no acceleration,
the accelerated method enables our algorithm to gain better communication efficiency than others.

As you can see in Algorithm 1, we need two more local parameters wag,m
k,t and wmd,m

k,t for acceleration
in addition to the main local parameter wm

k,t. w
ag,m
k,t aggregates the past iterates, and the gradients

are queried at the auxiliary parameter wmd,m
k,t . While typical FL algorithms without acceleration only

have a learning rate η as their hyperparameter, the general acceleration scheme makes our algorithm
flexible due to four hyperparameters α, β, η, γ. The flexibility of hyperparameters enables the fast
convergence speed of FedAQ, but naively chosen hyperparameters also cause unstable training of
FedAQ. We discuss the exact choice of hyperparameters in Appx. B.1. Unlike FedAC, that requires
each client to communicate the exact iterates to the server with high precision, we discuss in the
following subsection how FedAQ incorporates quantization techniques to reduce communication
cost.

3.2 Communication with quantization

In cross-device federated learning, a large amount of communicated messages from a number of
devices and the limited communication bandwidth can lead to severe communication bottleneck.
Therefore, in this scenario, an efficient quantization scheme can significantly reduce the size of
communicated messages and make communication between local devices and a server faster. We
apply the same unbiased quantizer used in Haddadpour et al. (2021) that satisfies Assumption 2.1.

In contrast with other quantization-based federated optimization algorithms (Reisizadeh et al., 2020;
Haddadpour et al., 2021), FedAQ requires quantizing two weight updates for each local device
during a synchronization step because two weight updates should be sent from local devices to a
server in the FedAC framework. To be specific, after each client m obtains wm

k,τ , w
ag,m
k,τ through τ

accelerated local iterations, each client quantizes the difference between wm
k,τ , w

ag,m
k,τ and the most

recent server models wk, w
ag
k . Then, a server aggregates Q(wm

k,τ − wk), Q(wag,m
k,τ − w

ag
k ) from all

clients. After dequantizing those messages, the server obtains the following new models wk+1, w
ag
k+1
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and broadcasts them back to each client.

wk+1 = wk +
1

M

M∑
m=1

Q(wm
k,τ − wk), w

ag
k+1 = wag

k +
1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k )

4 Convergence analysis

We analyze the FedAQ algorithm under assumptions mentioned in Section 2. In Appx. B.1, we define
two condition sets of hyperparameters that ensure the convergence guarantees of FedAQ. FedAQ
shows the better performance in experiments (See Strongly convex case in Section 5.1) under the
parameter condition set (1) than the parameter condition set (2), while the parameter condition set (2)
leads to better convergence rate. Thus, in this section, we provide the convergence analysis of FedAQ
under the parameter condition set (2) that leads to the better convergence rate Õ( 1+q

MT + 1+q
TK3 ). The

full proofs of lemmas, theorems, and corollaries under two parameter condition sets are elaborated in
Appx. D (condition set (1)) and Appx. F (condition set (2)).

The decentralized potential Φk,t (Yuan and Ma, 2020) is used for our convergence analysis. People
commonly use this potential for acceleration analysis (Bansal and Gupta, 2019).

Φk,t = F (w̄ag
k,t)− F

∗ +
1

6
µ∥w̄k,t − w∗∥2

w̄k,t and w̄ag
k,t is respectively the average of wm

k,t and wag, m
k,t for all m. Here, we additionally define

Φk as below.

Φk := Φk,0 = F (wag
k )− F ∗ +

1

6
µ∥wk − w∗∥2

Since wk and wag
k are parameters obtained after kth synchronization in a server side, Φk can be

considered as the potential of server models. Φk is essential to show the convergence of FedAQ
because there is the computation of the quantizer between Φk−1,τ and Φk,0. Thus, we should not
naively track Φk,t but track Φk for our analysis. Obtaining Φk ≤ ϵwould imply that F (wag

k )−F ∗ ≤ ϵ
and since F ∗ ≤ F (wag

k ), it would also imply that ∥wk − w∗∥2 = O(ϵ), thus obtaining convergence
in terms of both the objective value and the iterate.

Our goal is to show the convergence of FedAQ and derive the simplified convergence rate so that we
can get the number of communication rounds to achieve a linear speedup in M . When it comes to a
high-level proof sketch, there are three big steps: the relationship between two consecutive potential
functions(Φk,Φk+1) at a server-side (Lemma F.1), how ΦK decreases from the initial potential Φ0

as a communication round K increases (Theorem F.7), obtaining an intuitive convergence rate to
analyze a linear speedup by tuning a local learning rate η properly in Theorem F.7 (Corollary F.8). In
Lemma F.1, we get the inequality between Φk and Φk+1 by finding the upper bounds of error terms
due to multiple(τ ) local steps and the quantization step. The upper bound of the error caused by
multiple local steps is obtained with the help of the analysis in Yuan and Ma (2020) (See Proposition
F.3). How we find the upper bound of the error due to quantization and why this part is challenging is
explained in Appx. F.4. Next, we introduce the simplified form of Corollary F.8 to analyze a linear
speedup in M .

Corollary 4.1. (Simplified form of Corollary F.8) Note that T = Kτ . For η = min( 1
L , Θ̃( τ

µT 2 )),
FedAQ yields

E[ΦK ] ≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0 + Õ(

(1 + q)σ2

µMT︸ ︷︷ ︸
I

+
(1 + q)L2τ3σ2

µ3T 4︸ ︷︷ ︸
II

+
qL3τ2σ2

µ4MT 3︸ ︷︷ ︸
III

)

Remark 4.2. The above convergence rate is worse than the convergence rate of FedAC-II according to
Theorem C.13 in Yuan and Ma (2020) because there are additive terms related to the quantization noise
q in our case. Let’s figure out the dominant terms with Õ notation from the above convergence rate.
Here, we replace τ with T

K . At first, we can ignore the first term because it decreases exponentially.

The second term I would be Õ( 1+q
MT ). Then, the third term II becomes Õ( (1+q)τ3

T 4 ) = Õ( 1+q
TK3 ).

Finally, the last term III turns into Õ( qτ2

MT 3 ) = Õ( q
MTK2 ). Thus, the overall convergence rate of
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FedAQ under the condition set (2) would be Õ( 1+q
MT + 1+q

TK3 ). Similarly, we obtain the simplified
convergence rate of FedAQ under the condition set (1) from three terms (13), (14), (15) of Corollary
D.8. In this case, the convergence rate of FedAQ is Õ( 1+q

MT + 1
TK2 ), and the required number of

communication rounds to achieve a linear speedup in M is Õ(( M
1+q )

1
2 ).

5 Experiments

In this section, we provide experimental results of FedAQ in homogeneous local data distribution
settings. We compare FedAQ with other quantization-based federated optimization algorithms,
FedPAQ (Reisizadeh et al., 2020) and FedCOMGATE (Haddadpour et al., 2021). FedAvg (McMahan
et al., 2017) and FedAC (Yuan and Ma, 2020), federated optimization algorithms without quantiza-
tion, are also our baselines. We empirically validate the performance of 5 algorithms on classical
classification tasks on MNIST(LeCun, 1998) and CIFAR-10(Krizhevsky et al., 2009) datasets in
the distributed learning environment. We consider three objective functions i) A strongly convex
objective of l2-regularized logistic regression model on the MNIST dataset, ii) A non convex objective
of training a multilayer perceptron on the MNIST data, and iii) A non convex objective of training
a convolution neural network (CNN) on the CIFAR-10 dataset. The details of the implementation
environment, datasets, training models, hyperparameter choices, quantization bits, and new time
metric are elaborated in Appx. C.1.

5.1 Experimental results

In our experiments on both MNIST and CIFAR-10, we verify how the global training loss and
test accuracy of five algorithms change with respect to communication rounds, the number of bits
communicated between one client and the server during the uplink, and human time. We consider both
computation time and communication time to estimate human time defined by the new time metric
(See Appx. C.1). All MNIST experimental plots and CIFAR-10 plots can be found in Appx. C.3.
Also, we provide quantitative results for plots in Appx. C.3.4.

Strongly convex case. In this experiment, we compare FedAQ under the condition set (1) and set
(2) with FedAvg, FedPAQ, FedCOMGATE, and FedAC-I. We denote each FedAQ as FedAQ-I and
FedAQ-II. As we observe the theoretical benefits of FedAQ over other methods in Section 4, FedAQ-I
outperforms all other quantization-based federated optimization algorithms and FedAC-I in all plots
(See Figure 1). However, although FedAQ-II shows the fast convergence speed, the training process
is unstable. Thus, we only use FedAQ-I for further non-convex experiments. FedAC and FedAQ in
non-convex experiments indicate FedAC-I and FedAQ-I.

Non-convex case. Figure 2, 3 clearly demonstrates that FedAQ with 4 bits quantization outperforms
other algorithms in all plots. In terms of communication rounds, accelerated algorithms, FedAQ and
FedAC, converge faster than other algorithms. We also observe that quantization does not lead to
slower convergence, which means we can apply an efficient quantization scheme to make communi-
cation efficient FL systems without sacrificing convergence speed. The plots related to communicated
bits are helpful to interpret how algorithms work well in situations with heavy communication. FedAQ
with 8 bits quantization shows comparable performance relative to FedPAQ and FedCOMGATE
with the help of acceleration, even though FedAQ sends more updates during every synchronization.
When we use 4 bits quantization for FedAQ to make the number of communicated bits the same for
all quantization-based algorithms during synchronization, FedAQ shows a much faster convergence
speed with regard to the number of communicated bits. However, plots of communicated bits fail
to reflect how algorithms converge in real estimated time for FL scenarios, which consists of both
communication and computation. Thus, we further analyze algorithms with human time. We observe
that FedAQ with 8 quantization bits performs slightly better than FedPAQ and FedCOMGATE for
both MNIST and CIFAR-10. This occurs because while all quantization-based algorithms send
the same number of communicated bits, the number of communication rounds for FedAQ is much
smaller than others. Then, this also indicates that FedAQ takes less computation time than other
methods while reaching the same accuracy.
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A Related works

The practical usefulness of federated learning arouses researchers’ curiosity why FedAvg, the simplest
form of federated optimization algorithms indispensable for communication efficient distributed
training, works well in the real world. The first convergence guarantee that FedAvg converges at the
same rate as mini-batch SGD on IID local data distribution in strongly convex scenarios is proposed
by Stich (2018). The further convergence analysis of FedAvg for non-convex functions is done by
several works (Wang and Joshi, 2018; Haddadpour et al., 2019b; Yu et al., 2019b). Wang and Joshi
(2018); Stich and Karimireddy (2019); Haddadpour et al. (2019a); Khaled et al. (2020); Woodworth
et al. (2020) remove unnecessary assumptions such as uniformly bounded gradients and achieve
better convergence rate. Moreover, Li et al. (2018); Haddadpour and Mahdavi (2019); Li et al. (2019);
Khaled et al. (2020); Karimireddy et al. (2020b) individually define the quantity of non-IID and
analyze the convergence of FedAvg and its variants in heterogeneous settings.

Reducing the transmitted bits between a server and clients through compression techniques is pivotal
to saving communication costs in federated learning. This motivates researchers to develop various
compression techniques such as sparsification and quantization without significantly sacrificing
accuracy (Konečnỳ et al., 2016; Alistarh et al., 2017; Suresh et al., 2017; Wangni et al., 2017;
Bernstein et al., 2018; Wang et al., 2018; Vogels et al., 2019; Horvath et al., 2019; Basu et al., 2019;
Rothchild et al., 2020). Reisizadeh et al. (2020) show near-optimal theoretical guarantees of the first
federated optimization algorithm that incorporates federated averaging, partial node participation
and quantization in homogeneous local data distribution settings. Haddadpour et al. (2021) further
provide improved convergence rates for both homogeneous and heterogeneous settings.

Furthermore, we can achieve better communication efficiency by applying acceleration methods
into client updates. Yuan and Ma (2020) proposes the first provable acceleration of FedAvg that
achieves a linear speedup with the smallest communication rounds. Several other works aim to
achieve communication efficiency by using momentum or adaptive optimizers (Yu et al., 2019a;
Karimireddy et al., 2020a; Wang et al., 2021b). Our work is not the first to combine acceleration
and quantization. Li et al. (2020b); Li and Richtárik (2021) propose compressed and accelerated
gradient distributed optimization methods that are neither stochastic nor FedAvg variants. Singh et al.
(2021) propose communication efficient momentum SGD for decentralized optimization with the first
theoretical analysis. However, to the best of our knowledge, FedAQ is the first accelerated version of
federated averaging for master-worker topology that successfully integrates a quantization scheme
and provides rigorous convergence guarantees.

B Algorithm details

Algorithm 1 Federated Accelerated SGD with Quantization (FedAQ)

1: Input: α, β, η, γ, initial vector w0 = wag,m
0,0 = wm

0,0 for all devices m ∈ [M ]
2: for k = 0, · · · ,K − 1 do
3: for each client m in parallel do
4: wm

k,0 ← wk, w
ag,m
k,0 ← wag

k

5: for t = 0, · · · , τ − 1 do
6: wmd,m

k,t ← β−1wm
k,t + (1− β−1)wag,m

k,t

7: gmk,t ← ∇f(w
md,m
k,t , ξmk,t)

8: wag,m
k,t+1 ← wmd,m

k,t − ηgmk,t
9: wm

k,t+1 ← (1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t
10: end for
11: send Q(wm

k,τ − wk), Q(wag,m
k,τ − w

ag
k )

12: end for

13: server finds wk+1 ← wk + 1
M

M∑
m=1

Q(wm
k,τ − wk), w

ag
k+1 ← wag

k + 1
M

M∑
m=1

Q(wag,m
k,τ − w

ag
k )

14: end for
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B.1 Two parameter condition sets

We carefully determine two parameter condition sets that theoretically ensure the convergence
guarantees. The first one is

η, γ ∈
(
0,

1

L

]
, γ = max

(√ η

µτ
, η
)
, α =

1

γµ
, β = α+ 1 (1)

We add one more condition γ ∈ (0, 1
L ] to the FedAC-I condition (Yuan and Ma, 2020) and create our

parameter condition set (1). The second one is

η, γ ∈
(
0,

1

L

]
, γ = max

(√ η

µτ
, η
)
, α =

3

2γµ
− 1

2
, β =

2α2 − 1

α− 1
, γµ ≤ 3

4
(2)

We add two more conditions γ ∈ (0, 1
L ] and γµ ≤ 3

4 to the FedAC-II condition to build our parameter
condition set (2). Even though quantization adds complexity to the algorithm, these weak assumptions
are the only additional requirements for showing the convergence of FedAQ. Moreover, although the
better convergence rate Õ( 1+q

MT + 1+q
TK3 ) is obtained from the condition set (2), we also analyze the

convergence of FedAQ under the condition set (1) because this set empirically leads to more stable
training and better performance in experiments than the condition set (2) (See Strongly convex case
in Section 5.1).

C More details and results about experiments

C.1 Experimental setup details

Implementation environment. We follow the implementation setup in Haddadpour et al. (2021).
We use the Distributed library of PyTorch to implement our algorithm because this library allows us
to simulate real-world communication and distributed training. The 18 cores of Intel Xeon E5-2676
CPU are used as computing sources. Each core is considered as one local client. We use 16 cores for
strongly convex MNIST, 18 cores for the non-convex MNIST, and 8 cores for the CIFAR-10. For
MNIST, the strongly convex experiment and the non-convex one respectively run for 300 rounds of
communication with 20 local updates and 50 rounds of communication with 100 local updates. The
CIFAR-10 experiment runs for 100 rounds of communication with 100 local updates.

Datasets. For image classification tasks, we choose two main classical image datasets: MNIST
and CIFAR-10. Since we assume homogeneous settings, data is distributed homogeneously among
clients, which also means each device has access to all 10 classes.

Training models. For MNIST, we use a l2-regularized logistic regression model for the strongly
convex case and a multilayer perceptron (MLP) with two hidden layers for the non-convex case.
For CIFAR-10, we use a Convolutional Neural Network (CNN). Here, we note that the number of
parameters in a neural network model is directly related to the number of communicated bits. We
discuss more on this in Appx. C.2.

Hyperparameter choice. The important hyperparmeters in our experiments are learning rates for
each algorithm. For the client learning rate η, we respectively use 0.002, 0.1, and 0.01 for strongly
convex MNIST, non-convex MNIST, and CIFAR-10 for all algorithms. For FedAQ and FedAC, once
we set the value of µ, other hyperparameters (γ, α, β) are automatically determined (See condition set
(1) and (2)). Thus, we choose 0.1, 0.01, and 0.2 for µ value for strongly convex MNIST, non-convex
MNIST, and CIFAR-10. Since too large µ leads to slow convergence and too small µ leads to unstable
training, we get these µ values by tuning µ appropriately. FedCOMGATE has a server learning rate,
and we set this value as 1 for all experiments.

Quantization bits. We have three quantization-based federated algorithms: FedAQ, FedPAQ,
FedCOMGATE. We quantize the updates from 32 bits to 8 bits for all quantization-based algorithms
in both MNIST and CIFAR-10. Additionally, particularly for FedAQ in non-convex experiments,
we consider 4 bits quantization as well. Since FedAQ sends twice as many messages as FedPAQ or
FedCOMGATE at every synchronization when we use 8 bits quantization for all cases, we apply 4
bits quantization to FedAQ to let FedAQ send the same amount of information in each communication
round as other quantization-based algorithms for a fair comparison.
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New time metric. In our experiments, communication between CPU cores is very fast, so it is
hard to say that the environment of our experiments fully reflects the real-world federated learning
when there is a heavy communication burden. Thus, we use a linear model to estimate the execution
time Tround(A) between two consecutive communication rounds for real federated learning scenarios
(Wang et al., 2021a).

Tround(A) = Tcomm(A) + Tcomp(A), Tcomm(A) =
Sdown(A)

Bdown
+
Sup(A)

Bup

Tcomp(A) = max
j
T j

client(A) + Tserver(A), T j
client(A) = RcompT

j
sim(A) + Ccomp

Since Tserver(A) is relatively smaller than T j
client(A), we ignore Tserver(A) in our experiments. We get

client download size Sdown(A) and upload size Sup(A) from the number of neural network parameters.
maxj T

j
sim(A) is the computation time in our simulation.

Bdown ∼ 0.75MB/secs, Bup ∼ 0.25B/secs, Rcomp ∼ 7, Ccomp ∼ 10secs

Wang et al. (2021a) estimate each value of the above parameters from a real world cross-device FL
system. The upload bandwidth Bup is generally smaller than download bandwidth Bdown. We define
human time as the parallel time estimated by this new time metric.

C.2 Neural network parameters & communicated bits

C.2.1 MLP model for MNIST

As you can see in Appx. C.1 (Training models), we use a multilayer perceptron (MLP) with two
hidden layers. Each hidden layer consists of 200 neurons with ReLU activations. Thus, we compute
the total number of parameters in this MLP model as below.

(# of MLP parameters) = (# of input features) × (# of neurons in the 1st layer)
+ (# of neurons in the 1st layer) × (# of neurons in the 2nd layer)
+ (# of neurons in the 2nd layer) × (# of MNIST classes)
+ (# of neurons in the 1st layer) + (# of neurons in the 2nd layer)
+ (# of MNIST classes)
= 28× 28× 200 + 200× 200 + 200× 10 + 200 + 200 + 10 = 199210

Finally, we derive Sup(A)(= Sdown(A)), defined in Appx. C.1 (New time metric), by using the above
fact. We use 32 bits floating-point if there is no quantization.

Sup(A) = (# of device) × (# of MLP parameters) × (# of bits)
= 18× 199210× 32 = 114744960

The FedAvg algorithm follows the above calculation. If we use 8 bits quantization for FedPAQ,
FedCOMGATE, and FedAQ, (# of bits) in the above equation will respectively be 8, 8, and 16.
Since FedAQ sends twice as many messages as others at every communication round, (# of bits) for
FedAQ is 16. Similarly, (# of bits) for FedAC, which has no quantization, is 64.

C.2.2 CNN model for CIFAR-10

We use a CNN model, which consists of two 2-dimensional convolutional layers, two max pooling
layers, and two fully connected layers. The ReLU activations are used in this CNN model. Let’s
clarify (# of input channel, # of output channel, kernel size, stride) for convolutional layers. We
respectively use (3, 20, 5, 1), (20, 50, 5, 1) for the 1st and 2nd convolutional layer. Let’s denote each
convolutional layer and fully connected layer as CONV1, CONV2, FC3, FC4. At first, the activation
shape of input layer for CIFAR-10 is (32, 32, 3). Then, we get the activation shape after CONV1 and
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the number of parameters for CONV1.

(width of activation shape) =
(width of previous activation shape) − kernel size + 1

stride

=
32− 5 + 1

1
= 28 ⇒ activation shape = (28, 28, 20)

(# of CONV1 parameters) =
(

kernel size × kernel size

× (# of filters in the previous layer) + 1
)

× (# of filters in the current layer)
= (5× 5× 3 + 1)× 20 = 1520

The activation shape becomes (14, 14, 20) after max pooling. There are no learnable parameters in
pooling layers. We do similar calculation for CONV2.

(width of activation shape) =
(width of previous activation shape) − kernel size + 1

stride

=
14− 5 + 1

1
= 10 ⇒ activation shape = (10, 10, 50)

(# of CONV2 parameters) =
(

kernel size × kernel size × (# of filters in the previous layer)

+ 1
)
× (# of filters in the current layer)

= (5× 5× 20 + 1)× 50 = 25050

The activation shape becomes (5, 5, 50) after second max pooling. Then, we calculate the number of
parameters in FC3 and FC4 similar to Appx. C.2.1.

(# of FC3 parameters ) = (5× 5× 50)× 512 + 512 = 640512

(# of FC4 parameters ) = 512× 10 + 10 = 5130

Thus, the total number of parameters in this CNN model is

(# of CNN parameters) = (# of CONV1 parameters) + (# of CONV2 parameters)
+ (# of FC3 parameters) + (# of FC4 parameters)
= 1520 + 25050 + 640512 + 5130 = 672212

Finally, we derive Sup(A)(= Sdown(A)) in this case.

Sup(A) = (# of device) × (# of CNN parameters) × (# of bits)
= 8× 672212× 32 = 172086272

We can do the similar discussion in Appx. C.2.1 when it comes to applying this to quantization-based
federated optimization algorithms.

C.3 Experimental plots

C.3.1 Strongly convex case for MNIST
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Figure 1: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC-I on MNIST
with strongly convex settings. We observe how the global training loss and test accuracy change
across communication rounds (first column), communicated bits (second column), and human time
(third column). We use a l2-regularized logistic regression model for the strongly convex MNIST
experiment. FedAQ-I outperforms other algorithms in all plots.

C.3.2 Non-convex case for MNIST

Figure 2: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on MNIST with
non-convex settings. We observe how the global training loss and test accuracy change across
communication rounds (first column), communicated bits (second column), and human time (third
column). We use a MLP model for the non-convex MNIST experiment. FedAQ(4bits) sends the same
number of communicated bits as FedPAQ(8bits) and FedCOMGATE(8bits) in each communication
round, which indicates a fair comparison (See Quantization bits in Appx. C.1). FedAQ(4bits)
outperforms other algorithms in all plots.

C.3.3 Non-convex case for CIFAR-10
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Figure 3: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on CIFAR-10. We
observe how the global training loss and test accuracy change across communication rounds (first
column), communicated bits (second column), and human time (third column). We use a CNN model
for CIFAR-10. Similar to the MNIST experiment, FedAQ (4 bits) outperforms all other algorithms in
every case.

C.3.4 Quantitative results for plots

We provide quantitative results to help readers understand plots better. To be specific, for all plots,
we observe the number of communication rounds, the number of communicated bits, and the human
time required to achieve a particular test accuracy by each federated optimization algorithm.

For the strongly convex experiment on MNIST (See Figure 1), the number of communication rounds
required to achieve 90.28% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC-
I, FedAQ-I(8bits), FedAQ-II(8bits) are respectively 217, 216, 260, 28, 26, 99. The number of
communicated bits required to achieve the same accuracy are respectively 5.4e7, 1.4e7, 1.6e7, 1.4e7,
3.3e6, 1.2e7. Lastly, the required human time are respectively 3220s, 2760s, 3336s, 484s, 344s,
1323s. In this experiment, FedAQ-I(8bits) requires the smallest number of communication rounds,
the smallest number of communicated bits, and the shortest human time to achieve the same test
accuracy. These experimental results support the validity of our theoretical analysis on strongly
convex cases.

For the non-convex experiment on MNIST (See Figure 2), the number of communication rounds
required to achieve 97.6% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC,
FedAQ(8bits), FedAQ(4bits) are respectively 23, 48, 38, 18, 18, 16. The number of communi-
cated bits required to achieve the same accuracy are respectively 1.5e8, 7.6e7, 6.1e7, 2.3e8, 5.7e7,
2.5e7. Finally, the required human time are respectively 2424s, 2311s, 1834s, 3327s, 1248s, 805s.
Thus, we conclude that FedAQ(4bits) outperforms other algorithms, and even FedAQ(8bits) needs
smaller number of communicated bits/less human time to achieve the goal accuracy than Fed-
PAQ(8bits)/FedCOMGATE(8bits).

For the non-convex experiment on CIFAR-10 (See Figure 3), the number of communication rounds
required to achieve 65.4% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC,
FedAQ(8bits), FedAQ(4bits) are respectively 98, 89, 95, 49, 50, 48. The number of commu-
nicated bits required to achieve the same accuracy are respectively 2.1e9, 4.8e8, 5.1e8, 2.1e9,
5.4e8, 2.6e8. Finally, the required human time are respectively 31798s, 11526s, 12240s, 28720s,
9902s, 6464s. As with the non-convex experiment on MNIST, FedAQ(4bits) outperforms other
algorithms, and even FedAQ(8bits) requires less human time to achieve the same accuracy than
FedPAQ(8bits)/FedCOMGATE(8bits).

Remark C.1. Our current experimental setup only allows us to scale the number of clients up to
the number of CPU cores in our machine. Since FedAQ achieves linear speed up in the number of
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workers with much fewer communication rounds than other quantization based methods, we expect
FedAQ to outperform other methods by an even larger margin as we scale the number of workers.

C.3.5 Additional experiment on linear speedup in terms of the number of clients

We do further experiments about a linear speedup that can validate our theoretical claims. We follow
the experimental setup in Yuan and Ma (2020) for this experiment. We compare the performance
of FedAQ with FedAvg, FedPAQ, and FedAC on l2-regularized logistic regression for UCI a9a
dataset (Dua and Graff, 2017). We set regularization strength as 10−3. In this experiment, FedAC
and FedAQ respectively stand for FedAC-I and FedAQ-I. The number of quantization levels for
FedAQ and FedPAQ is 16. We do experiments with M = 1, 4, 16, 128, 512, 2048 workers and
K = 1, 8, 32, 64, 128, 256 synchronization intervals. We choose η for each point that leads to
the best suboptimality. We can say that an algorithm achieves a linear speedup when the best
suboptimality decreases as the number of workers (M ) increases. From Figure 4, we observe that
FedAQ and FedAC achieve a linear speedup even when the synchronization interval K is large, while
FedAvg and FedPAQ lose a linear speedup when K = 8. This observation aligns well with our
theoretical results that FedAQ and FedAC require a small number of communication rounds to achieve
a linear speedup. That’s why FedAQ and FedAC are more robust to infrequent communication in
these experiments. Furthermore, the plots of FedAQ and FedAC are very similar. This empirical
result reminds us of our theoretical result that the added quantization scheme does not hurt the
convergence of the original algorithm that much.
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Figure 4: Comparing FedAQ with FedAvg, FedPAQ, and FedAC on UCI a9a dataset. We can say
that an algorithm achieves a linear speedup when the best suboptimality decreases as the number of
workers (M ) increases. FedAQ and FedAC achieve a linear speedup even when the synchronization
interval K is large.

D Missing proofs for FedAQ under the parameter condition set (1)

Before diving into proof details, we define w̄k,τ , w̄
ag
k,τ ,Ψ

m
k,t,Ψk,t,Ψk, A

m
k,t as below.

w̄k,τ =
1

M

M∑
m=1

wm
k,τ

w̄ag
k,τ =

1

M

M∑
m=1

wag,m
k,τ

Ψm
k,t = F (wag,m

k,t )− F ∗ +
1

2
µ∥wm

k,t − w∗∥2

Ψk,t =
1

M

M∑
m=1

F (wag,m
k,t )− F ∗ +

1

2
µ∥w̄k,t − w∗∥2

Ψk : = Ψk,0 = F (wag
k )− F ∗ +

1

2
µ∥wk − w∗∥2

Am
k,t =

γ2µ2(µ+ L)

(1 + γµ)2
∥wm

k,t − w
ag,m
k,t ∥

2 + γ2(µ+ L)
2L

1 + γµ
Ψm

k,t

The above notations are essential to our convergence analysis. Intuitively, if the FedAQ algorithm
converges to the optimal point, w̄k,τ , w̄

ag
k,τ become w∗, and Ψm

k,t,Ψk,t,Ψk, A
m
k,t become 0. In order

to denote the σ-algebra generated by {wm
k′,t′ , w

ag,m
k′,t′ }(k′<k) or (k′=k,t′≤t),m∈[M ], we use Fk,t.
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D.1 Proof of Lemma D.1

Lemma D.1. Let F be µ-strongly convex, and assume Assumption 2.1, 2.2, 2.3, 2.4, then for
α = 1

γµ , β = α+ 1, γ ∈ [η,
√

η
µ ], η, γ ∈ (0, 1

L ], τ ≥ 2, FedAQ yields

E[Ψk+1] ≤ C(γ, τ)E[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄ag

k,t − w
ag,m
k,t )∥]

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

( (γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2︸ ︷︷ ︸

Additional terms due to quantization

Where C(γ, τ) is defined as

C(γ, τ) = (1− γµ)τ +
q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2︸ ︷︷ ︸

Additional terms due to quantization

In this section, we first introduce five crucial Propositions for proving Lemma D.1. Then, we prove
Lemma D.1 by using Propositions in the last part of this section.

Proposition D.2. Let Assumption 2.1 hold and consider any k synchronization round. Then, we can
decompose the expectation as follows:

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]

E[F (wag
k+1)− F

∗] = E[F (wag
k+1)−

1

M

M∑
m=1

F (wag,m
k,τ )] + E[

1

M

M∑
m=1

F (wag,m
k,τ )− F ∗]

Proof of Proposition D.2 The second equality is trivial. Let’s focus on the first equality. By
Assumption 2.1, the quantizer Q is unbiased and we get,

EQ[wk+1] = wk +
1

M

M∑
m=1

EQQ(wm
k,τ − wk)

=
1

M

M∑
m=1

wm
k,τ

= w̄k,τ

Thus, we finally obtain

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ + w̄k,τ − w∗∥2]
= E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]

Proposition D.3. Let F be µ-strongly convex, and assume Assumption 2.2, 2.3, 2.4, then for α =
1
γµ , β = α+ 1, γ ∈ [η,

√
η
µ ], η ∈ (0, 1

L ], FedAQ yields

E[Ψk,τ ] ≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄ag

k,t − w
ag,m
k,t )∥]

Proof of Proposition D.3 We refer to the proof of Lemma B.2 in Yuan and Ma (2020). There is no
quantization between Ψk,τ and Ψk. Thus, we can directly apply useful inequalities in the proof of
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Lemma B.2 in Yuan and Ma (2020) to our proof. Then, we obtain

E[Ψk,t+1|Fk,t] ≤ (1− γµ)Ψk,t +
1

2
(η2L+

γ2µ

M
)σ2 + γµL

· 1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄ag

k,t − w
ag,m
k,t )∥

From the above relationship between Ψk,t+1 and Ψk,t, we get

E[Ψk,τ ] ≤ (1− γµ)τE[Ψk] +
( τ−1∑

t=0

(1− γµ)t
)1
2
(η2L+

γ2µ

M
)σ2 + γµL ·

τ−1∑
t=0

{
(1− γµ)τ−t−1

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄ag

k,t − w
ag,m
k,t )∥]

}
≤ (1− γµ)τE[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄ag

k,t − w
ag,m
k,t )∥]

Proposition D.4. Let Assumption 2.1 hold. Then, we have

E[∥wk+1 − w̄k,τ∥2] ≤
q

M2

M∑
m=1

E[∥wm
k,τ − wk∥2]

E[F (wag
k+1)−

1

M

M∑
m=1

F (wag,m
k,τ )] ≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proof of Proposition D.4 First, let’s consider the first inequality. According to Assumption 2.1, we
get

E[∥wk+1 − w̄k,τ∥2] = E[∥wk +
1

M

M∑
m=1

Q(wm
k,τ − wk)−

1

M

M∑
m=1

wm
k,τ∥2]

= E[∥ 1

M

M∑
m=1

Q(wm
k,τ − wk)− (wm

k,τ − wk)∥2]

=
1

M2

M∑
m=1

E[∥Q(wm
k,τ − wk)− (wm

k,τ − wk)∥2]

≤ q

M2

M∑
m=1

E∥wm
k,τ − wk∥2
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The third equality comes from the unbiasedness of Q, and the last inequality stems from the variance
assumption of Q. Similarly, we obtain

E[F (wag
k+1)−

1

M

M∑
m=1

F (wag,m
k,τ )] = E[F (wag

k +
1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k ))− 1

M

M∑
m=1

F (wag,m
k,τ )]

= E[
1

M

M∑
m=1

F (wag
k +

1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k ))− F (wag,m

k,τ )]

≤ E
[ 1

M

M∑
m=1

⟨∇F (wag,m
k,τ ),

1

M

M∑
m=1

(
Q(wag,m

k,τ − w
ag
k )− (wag,m

k,τ

− wag
k )

)
⟩+ L

2
∥ 1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k )− (wag,m

k,τ − w
ag
k )∥2

]
=
L

2
E[∥ 1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k )− (wag,m

k,τ − w
ag
k )∥2]

=
L

2M2

M∑
m=1

E[∥Q(wag,m
k,τ − w

ag
k )− (wag,m

k,τ − w
ag
k )∥2]

≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proposition D.5. Let F be µ-strongly convex, and assume Assumption 2.2, 2.3, 2.4, then for α =
1
γµ , β = α+ 1, γ ∈ [η,

√
η
µ ], η, γ ∈ (0, 1

L ], we get

E[Am
k,t] ≤ E[Am

k,0] +
( (γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

Proof of Proposition D.5 From the notation mentioned in the beginning of Section D,

E[Am
k,t+1|Fk,t] =

γ2µ2(µ+ L)

(1 + γµ)2
E[∥wm

k,t+1 − w
ag,m
k,t+1∥

2|Fk,t] + γ2(µ+ L)
2L

1 + γµ
E[Ψm

k,t+1|Fk,t]

(3)

Thus, let’s sequentially compute E[∥wm
k,t+1 − w

ag,m
k,t+1∥2|Fk,t] and E[Ψm

k,t+1|Fk,t].

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] = E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w
md,m
k,t + ηgmk,t∥2|Fk,t]

= E[∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)gmk,t∥2|Fk,t] (← γ ≥ η)

= ∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)∇F (wmd,m

k,t )∥2

+ (γ − η)2E[∥∇F (wmd,m
k,t )− gmk,t∥2|Fk,t]

≤ (1− α−1)2∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2∥∇F (wmd,m
k,t )∥2

+ (γ − η)2σ2 − 2(γ − η)⟨(1− α−1)(wm
k,t − w

md,m
k,t ),∇F (wmd,m

k,t )⟩

≤ (1− α−1)2(1 + γµ)∥wm
k,t − w

md,m
k,t ∥

2

+ (γ − η)2(1 + 1

γµ
)∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

=
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ
∥∇F (wmd,m

k,t )∥2

+ (γ − η)2σ2
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Here, we need to bound ∥∇F (wmd,m
k,t )∥2.

∥∇F (wmd,m
k,t )∥2 ≤ 2L(F (wmd,m

k,t )− F ∗) (∵ Assumption 2.3)

≤ 2L
(
β−1(F (wm

k,t)− F (w∗)) + (1− β−1)(F (wag,m
k,t )− F ∗)

)
≤ β−1L2∥wm

k,t − w∗∥2 + 2(1− β−1)L(F (wag,m
k,t )− F ∗)

=
γµL2

1 + γµ
∥wm

k,t − w∗∥2 + 2L

1 + γµ
(F (wag,m

k,t )− F ∗)

≤ µL

1 + γµ
∥wm

k,t − w∗∥2 + 2L

1 + γµ
(F (wag,m

k,t )− F ∗) =
2L

1 + γµ
Ψm

k,t (4)

The last inequality comes from the fact γ ∈ [0, 1
L ). Therefore, we finally get

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t]

≤ (1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ
∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

≤ (1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ

( 2L

1 + γµ
Ψm

k,t

)
+ (γ − η)2σ2 (5)

Now, let’s compute E[Ψm
k,t+1|Fk,t]. We need to compute E[∥wm

k,t+1−w∗∥2|Fk,t] and E[F (wag,m
k,t+1)−

F ∗|Fk,t] first.

E[∥wm
k,t+1 − w∗∥2|Fk,t]

= E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w∗∥2|Fk,t]

≤ ∥(1− α−1)wm
k,t + α−1wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t )∥2 + γ2σ2

− 2γ⟨(1− α−1)wm
k,t + α−1wmd,m

k,t − w∗,∇F (wmd,m
k,t )⟩

≤ (1− α−1)∥wm
k,t − w∗∥2 + α−1∥wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t )∥2 + γ2σ2

− 2γ⟨(1− α−1(1− β−1))wm
k,t + α−1(1− β−1)wag,m

k,t − w
∗,∇F (wmd,m

k,t )⟩

= (1− γµ)∥wm
k,t − w∗∥2 + γµ∥wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t )∥2 + γ2σ2

− 2γ⟨ 1

1 + γµ
wm

k,t +
γµ

1 + γµ
wag,m

k,t − w
∗,∇F (wmd,m

k,t )⟩
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E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ E[F (wmd,m
k,t ) + ⟨∇F (wmd,m

k,t ), wag,m
k,t+1 − w

md,m
k,t ⟩+

L

2
∥wag,m

k,t+1 − w
md,m
k,t ∥

2 − F ∗|Fk,t]

≤ F (wmd,m
k,t )− F ∗ − η∥∇F (wmd,m

k,t )∥2 + η2L

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

≤ F (wmd,m
k,t )− F ∗ − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2 (∵ 1− ηL

2
≥ 1

2
← η ∈ [0,

1

L
])

= (1− α−1)(F (wag,m
k,t )− F ∗) + α−1(F (wmd,m

k,t )− F ∗)

+ (1− α−1)(F (wmd,m
k,t )− F (wag,m

k,t ))− η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

≤ (1− α−1)(F (wag,m
k,t )− F ∗)− µα−1

2
∥wmd,m

k,t − w∗∥2

+ α−1⟨∇F (wmd,m
k,t ), wmd,m

k,t − w∗⟩+ (1− α−1)⟨∇F (wmd,m
k,t ), wmd,m

k,t − wag,m
k,t ⟩

− η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

= (1− α−1)(F (wag,m
k,t )− F ∗)− µα−1

2
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

+ α−1⟨∇F (wmd,m
k,t ), αβ−1wm

k,t + (1− αβ−1)wag,m
k,t − w

∗⟩

= (1− γµ)(F (wag,m
k,t )− F ∗)− γµ2

2
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

+ γµ⟨ 1

1 + γµ
wm

k,t +
γµ

1 + γµ
wag,m

k,t − w
∗,∇F (wmd,m

k,t )⟩

Then, we bound E[Ψm
k,t+1|Fk,t] by using the above results.

E[Ψm
k,t+1|Fk,t] =

µ

2
E[∥wm

k,t+1 − w∗∥2|Fk,t] + E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ (1− γµ)Ψm
k,t −

η − γ2µ
2

∥∇F (wmd,m
k,t )∥2 + γ2µ+ η2L

2
σ2

≤ (1− γµ)Ψm
k,t +

γ2µ+ η2L

2
σ2 (∵ γ ≤

√
η

µ
)

≤ (1− γµ)Ψm
k,t +

γ2(µ+ L)

2
σ2 (6)

Plugging (5), (6) in (3) yields,

E[Am
k,t+1|Fk,t]

≤ γ2µ2(µ+ L)

(1 + γµ)2

(
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ

( 2L

1 + γµ
Ψm

k,t

)
+ (γ − η)2σ2

)
+ γ2(µ+ L)

2L

1 + γµ

(
(1− γµ)Ψm

k,t +
γ2(µ+ L)

2
σ2

)
=

(1− γµ)2

1 + γµ
· γ

2µ2(µ+ L)

(1 + γµ)2
∥wm

k,t − w
ag,m
k,t ∥

2 +
(γµ(γ − η)2(µ+ L)

1 + γµ

+ γ2(µ+ L)(1− γµ)
) 2L

1 + γµ
Ψm

k,t +
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2 (7)

Since η ≤ γ, we get (γ − η)2 ≤ γ2. By using this fact, we obtain

γµ(γ − η)2(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ) ≤ γ3µ(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ)

= γ2(µ+ L)(1− γµ+
γµ

1 + γµ
) (8)
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It is easy to show that 1− γµ+ γµ
1+γµ < 1. Also, we get

(1− γµ)2

1 + γµ
< 1− γµ < 1− γµ+

γµ

1 + γµ
(9)

From (7), (8), and (9) we finally get

E[Am
k,t+1|Fk,t] ≤ (1− γµ+

γµ

1 + γµ
)Am

k,t +
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2

From this relationship between Am
k,t+1 and Am

k,t, we obtain the result of Proposition D.5.

E[Am
k,t] ≤ (1− γµ+

γµ

1 + γµ
)tE[Am

k,0] +
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2

·
1− (1− γµ+ γµ

1+γµ )
t

1− (1− γµ+ γµ
1+γµ )

= (1− γµ+
γµ

1 + γµ
)tE[Am

k,0] +
( (γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
σ2

·
(
1− (1− γµ+

γµ

1 + γµ
)t
)

≤ E[Am
k,0] +

( (γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

Proposition D.6. Let F be µ-strongly convex, and assume Assumption 2.2, 2.3, 2.4, then for α =
1
γµ , β = α+ 1, γ ∈ [η,

√
η
µ ], η, γ ∈ (0, 1

L ], τ ≥ 2, FedAQ yields

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk]

+ (γ2µ+ η2L)τσ2

+
( (γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2

2
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Proof of Proposition D.6 Let’s first bound E[∥wm
k,τ − wk∥2] and E[∥wag,m

k,τ − w
ag
k ∥2] individually.

E[∥wm
k,τ − wk∥2] = E[∥(wm

k,τ − wm
k,τ−1) + · · ·+ (wm

k,1 − wm
k,0)∥2]

= E
[∥∥∥ τ−1∑

t=0

(
(1− α−1)wm

k,t + α−1wmd, m
k,t − wm

k,t − γgmk,t
)∥∥∥2]

= E
[∥∥∥α−1

τ−1∑
t=0

(wmd,m
k,t − wm

k,t)− γ
τ−1∑
t=0

gmk,t

∥∥∥2]
≤ 2α−2E[∥

τ−1∑
t=0

(wmd,m
k,t − wm

k,t)∥2] + 2γ2E[∥
τ−1∑
t=0

gmk,t∥2]

≤ 2α−2τ

τ−1∑
t=0

E[∥wmd,m
k,t − wm

k,t∥2] + 2γ2E[∥
τ−1∑
t=0

∇F (wmd,m
k,t )∥2]

+ 2γ2E[∥
τ−1∑
t=0

(gmk,t −∇F (w
md,m
k,t ))∥2]

≤ 2α−2(1− β−1)2τ

τ−1∑
t=0

E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2τ

τ−1∑
t=0

E[∥∇F (wmd,m
k,t )∥2]

+ 2γ2
τ−1∑
t=0

E[∥gmk,t −∇F (w
md,m
k,t )∥2]

= τ
( τ−1∑

t=0

2α−2(1− β−1)2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τγ2σ2

E[∥wag,m
k,τ − w

ag
k ∥

2] = E[∥
τ−1∑
t=0

(wag,m
k,t+1 − w

ag,m
k,t )∥2]

= E[∥
τ−1∑
t=0

(wmd,m
k,t − wag,m

k,t − ηg
m
k,t)∥2]

≤ 2E[∥
τ−1∑
t=0

(wmd,m
k,t − wag,m

k,t )∥2] + 2η2E[∥
τ−1∑
t=0

gmk,t∥2]

= 2β−2E[∥
τ−1∑
t=0

(wm
k,t − w

ag,m
k,t )∥2] + 2η2E[∥

τ−1∑
t=0

∇F (wmd,m
k,t )∥2]

+ 2η2E[∥
τ−1∑
t=0

(gmk,t −∇F (w
md,m
k,t ))∥2]

≤ 2β−2τ

τ−1∑
t=0

E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2τ

τ−1∑
t=0

E[∥∇F (wmd,m
k,t )∥2]

+ 2η2
τ−1∑
t=0

E[∥gmk,t −∇F (w
md,m
k,t )∥2]

= τ
( τ−1∑

t=0

2β−2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τη2σ2
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Thus, by using the above results, we get

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
τ−1∑
t=0

{(
µα−2(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (γ2µ+ η2L)E[∥∇F (wmd,m
k,t )∥2]

}
+ (γ2µ+ η2L)τσ2

≤ τ
τ−1∑
t=0

{(
µα−2(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (γ2µ+ η2L)
2L

1 + γµ
E[Ψm

k,t]
}

+ (γ2µ+ η2L)τσ2 (∵ (4))

≤ τ
τ−1∑
t=0

{γ2µ2(µ+ L)

(1 + γµ)2
E[∥wm

k,t − w
ag,m
k,t ∥

2] + γ2(µ+ L)
2L

1 + γµ
E[Ψm

k,t]
}
+ (γ2µ+ η2L)τσ2

= τ
( τ−1∑

t=0

E[Am
k,t]

)
+ (γ2µ+ η2L)τσ2

By Proposition D.5 and the fact Ψm
k,0 = Ψk, we obtain

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
{ τ−1∑

t=0

E[Am
k,0] +

( (γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

}
+ (γ2µ+ η2L)τσ2

= τ2
(γ2µ2(µ+ L)

(1 + γµ)2
E[∥wk − wag

k ∥
2] + γ2(µ+ L)

2L

1 + γµ
E[Ψk]

)
+ τ

( (γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)( τ−1∑
t=0

1− (1− γµ+
γµ

1 + γµ
)t
)
σ2 + (γ2µ+ η2L)τσ2

Before we get to the final result, let’s find the upper bound for ∥wk − wag
k ∥2,

∑τ−1
t=0

(
1− (1− γµ+

γµ
1+γµ )

t
)
∥wk − wag

k ∥
2 = ∥wk − w∗ − (wag

k − w
∗)∥2

≤ 2∥wk − w∗∥2 + 2∥wag
k − w

∗∥2

≤ 2∥wk − w∗∥2 + 2 · 2
µ

(
F (wag

k )− F ∗ − ⟨∇F (w∗), wag
k − w

∗⟩
)

= 2∥wk − w∗∥2 + 4

µ
(F (wag

k )− F ∗) =
4

µ
Ψk

τ−1∑
t=0

(
1− (1− γµ+

γµ

1 + γµ
)t
)
= τ −

τ−1∑
t=0

(1− γµ+
γµ

1 + γµ
)t

= τ −
1− (1− γµ+ γµ

1+γµ )
τ

1− (1− γµ+ γµ
1+γµ )

≤ τ −
1− (1− γ2µ2

1+γµτ + ( γ2µ2

1+γµ )
2 τ(τ−1)

2 )

γ2µ2

1+γµ

=
γ2µ2

1 + γµ
· τ(τ − 1)

2
≤ γ2µ2

1 + γµ
· τ

2

2
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Therefore, we conclude as below

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
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k ∥

2] ≤
(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk]

+ (γ2µ+ η2L)τσ2

+
( (γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2

2

Proof of Lemma D.1 By the definition of Ψk,Ψk,t and Proposition D.2,

E[Ψk+1] = E[Ψk,τ ] +
µ

2
E[∥wk+1 − w̄k,τ∥2] + E[F (wag

k+1)−
1

M

M∑
m=1

F (wag,m
k,τ )]

Applying Proposition D.3 and Proposition D.4, we have

E[Ψk+1]

≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
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M
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k,t )∥]

+
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M∑
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E[∥wm
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2M2

M∑
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E[∥wag,m
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2]

≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ
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1

M
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1
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+
q

M
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(1 + γµ)2
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)
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+
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+
γ4(µ+ L)2L

1 + γµ
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2

]
=

{
(1− γµ)τ +

q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2
}
E[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2

+
q

M
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q

2M
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+
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)
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The second inequality comes from Proposition D.6. Then, let’s define C(γ, τ) as

C(γ, τ) = (1− γµ)τ +
q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2

Finally, we obtain

E[Ψk+1] ≤ C(γ, τ)E[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2 +

q

M
(γ2µ+ η2L)τσ2

+
q

2M

( (γ − η)2γ2µ2(µ+ L)
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+
γ4(µ+ L)2L
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)
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· max
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E[
1

M
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∥w̄md
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1
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k,t) +
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D.2 Proof of Theorem D.7

Theorem D.7. Let F be µ-strongly convex, and assume Assumption 2.1, 2.2, 2.3, 2.4, then for
α = 1

γµ , β = α+ 1, γ = max(η,
√

η
µτ ), η, γ ∈ (0, 1

L ], τ ≥ 2, if the learning rate γ satisfies(
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γτ ≤ 1

2
µ (10)

FedAQ yields

E[ΨK ] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 + (2q + 1)(

η
1
2σ2

µ
1
2Mτ

1
2

+
ησ2

M
) + 14η2Lτσ2

+
(780 + 2q

M )η
3
2Lτ

1
2σ2

µ
1
2

+
(µ+ L)(µ2 + µL+ L2)qη

3
2 τ

1
2σ2

µ
5
2M

+
qη3τ2(µ+ L)2Lσ2

µM

Proof of Theorem D.7 At first, due to the condition (10) in Theorem D.7, we get

C(γ, τ) = (1− γµ)τ +
q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2

≤ 1− γµτ + γ2µ2τ2 +
q

M
γ2(µ+ L)(4µ+ 2L)τ2

= 1− γµτ +
(
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γ2τ2

≤ 1− 1

2
γµτ (∵ condition (10))

The first inequality comes from the fact that (1 − γµ)τ ≤ e−γµτ ≤ 1 − γµτ + γ2µ2τ2 when
0 ≤ γµ ≤ 1. Also, it is trivial that γ = max(η,

√
η
µτ ) ∈ [η,

√
η
µ ]. Thus, we can use Lemma D.1. By

using Lemma D.1 and the above result, we obtain

E[Ψk+1] ≤ (1− 1

2
γµτ)E[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

( (γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L
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)
τ3σ2 + γµLτ

· max
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M
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1
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k,t )∥]

(11)

By the Lemma B.3 in Yuan and Ma (2020), we know that the below quantity is bounded.

max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w
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k,t ∥∥

1

1 + γµ
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γµ
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(w̄ag
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k,t )∥] ≤ B

B =

7ηγτσ2
(
1 + 2γ2µ

η

)2τ

, if γ ∈
(
η,
√

η
µ

]
7η2τσ2, if γ = η

Telescoping (11) yields

E[ΨK ] ≤ (1− 1

2
γµτ)KΨ0 +

(K−1∑
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(1− 1

2
γµτ)k

′
)
·
[1
2
(η2L+

γ2µ

M
)τσ2 + γµLτB

+
q

M
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q
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+
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]
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2
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η2Lσ2
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M
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(γσ2

M
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+
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M
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The last inequality comes from the fact that
∑K−1

k′=0(1 −
1
2γµτ)

k′ ≤ 2
γµτ . Since we plug in γ =

max(η,
√

η
µτ ), we can use Lemma B.4 in Yuan and Ma (2020). Therefore, we obtain

E[ΨK ] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 +

η
1
2σ2

µ
1
2Mτ

1
2

+
ησ2

M
+
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3
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1
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µ
1
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1
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1
2 τ
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(2qη 3
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+
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µ
3
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3
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+
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3
2 (µ+ L)2L

µ
5
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3
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,
η3(µ+ L)2L

µ

)
The first term stems directly from Lemma B.4 in Yuan and Ma (2020). Also, the last term comes
from the fact that

(γ − η)2γµ(µ+ L)

(1 + γµ)2
+
γ3(µ+ L)2L

(1 + γµ)µ
≤

{
γ3µ(µ+ L) + γ3(µ+L)2L

µ , if γ ̸= η
η3(µ+L)2L

µ , if γ = η

Therefore, by simple inequalities such as max(a, b) ≤ a+ b and min(a, b) ≤ a, we ultimately get

E[ΨK ] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 +

(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
(2q + 1)ησ2
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+
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M )η
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µ
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3
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µ
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qη3τ2(µ+ L)2Lσ2

µM
(12)

D.3 Proof of Corollary D.8

Corollary D.8. Let C1, C2, and η0 as below. Note that T = Kτ .

C1 =
(µ+ L)(µ2 + µL+ L2)q

µ
5
2

, C2 =
q(µ+ L)2L

µ

η0 =
4τ

µT 2
log2

(
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µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)

Then for η = min( 1
L , η0), FedAQ yields

E[ΨK ] ≤ min
(
exp(−µT

2L
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1
2T

2L
1
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1
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)
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µMT
log2
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µMTΨ0
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log4
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µ3MT 3
log6
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(µ
3
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)
(15)

Proof of Corollary D.8 Let’s decompose the final result (12) of the Theorem D.7 into a decreasing
term and an increasing term. We denote the decreasing term ψ1 and the increasing term ψ2 as below.

ψ1(η) = exp
(
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2
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√
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τ
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)
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Since ψ1 is the decreasing term, we have

ψ1(η) ≤ ψ1(
1

L
) + ψ1(η0) (16)

where

ψ1(
1

L
) = min

(
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+
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Since ψ2 is the increasing term, we have

ψ2(η)

≤ ψ2(η0)
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+
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3
2C1 + 8C2)τ2σ2

)
≤ 6(2q + 1)σ2

µMT
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
+

(6464 + 16q
M )Lτ2σ2

µ2T 3
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

8(µ
3
2C1 + 8C2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
(17)

The last inequality comes from τ
T ≤ 1. Therefore, by combining (16) and (17), we finally get

E[ΨK ] ≤ ψ1(η) + ψ2(η)

≤ ψ1(
1

L
) + ψ1(η0) + ψ2(η0)

≤ min
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2L
), exp(− µ

1
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2L
1
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1
2

)
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D.4 Why the condition (10) is satisfied

The synchronization rounds K required for linear speedup in M for FedAQ is Õ(( M
1+q )

1
2 ) (See

Remark 4.2). Since we derive this result from Theorem D.7, we should show that K = Õ(( M
1+q )

1
2 )

satisfies the condition (10) in Theorem D.7.(
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γτ ≤ 1

2
µ

We rewrite the above condition as below.

γτ ≤ µ

2µ2 + 2q
M (µ+ L)(4µ+ 2L)

(18)
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We know γ = max(η,
√

η
µτ ) and η = min( 1

L , η0). Since η0 becomes smaller and smaller as T
increases, we assume η = η0 here. Therefore, we get

γτ = max(η0τ,

√
η0τ

µ
)

= max
( 4τ2

µT 2
log2

(
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Lτ2σ2
,

µ3MT 3Ψ0
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3
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)
))

Note that K = T
τ = Õ(( M

1+q )
1
2 ) = C( M

1+q )
1
2 log(T ) because Õ contains hidden multiplicative

polylog factors with respect to T . We can assume T is sufficiently large here. Then, we have

γτ = max
( 4(1 + q)

µC2M log2(T )
log2

(
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For an arbitrary constant k1 > 0, it is easy to show that limT→∞

log(k1T )
log(T ) = 1. Thus, we obtain

γτ ≤ max
( 4(1 + q)

µC2M log2(T )
log2

( 2µMTΨ0
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)
,

2(1 + q)
1
2

µCM
1
2 log(T )

log
( 2µMTΨ0
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µC2M
,
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1
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)
≤ µ

2µ2 + 2q
M (µ+ L)(4µ+ 2L)

Finally, we conclude that there exists a constant C that meets the last inequality. Therefore, K =

Õ(( M
1+q )

1
2 ) satisfies the condition (10).

E Details about Haddadpour et al. (2021) & contribution 2 in Introduction

E.1 Why Haddadpour et al. (2021) cannot achieve a linear speedup

It is hard to say that Haddadpour et al. (2021) achieves a linear speedup in M in strongly-convex
and homogeneous settings. Let’s first recap Corollary D.8 in Haddadpour et al. (2021). They let
ηγµτ ≤ 1

2 , κ = L
µ , γ ≥M and tune η as η = 1

2L( q
M +1)τγ . Here, η is the client learning rate, and γ

is the server learning rate. Other parameters are the same as we defined. Then, they obtain the below
result.

E[F (wK)− F ∗] ≤ exp(−ηγµτK)(F (w0)− F ∗) +
1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
(19)

≤ O
(
exp(− K

2( q
M + 1)κ

)(F (w0)− F ∗) +
σ2

γ2µτ
+

(q + 1)σ2

µ( q
M + 1)τM

)
= O

(
exp(− K

2( q
M + 1)κ

)(F (w0)− F ∗) +
σ2K

γ2µT
+

(q + 1)Kσ2

µ( q
M + 1)TM

)
Let’s focus on the second and third term. We assume M is large enough and represent them only
with γ,K, T,M to easily check the linear speedup of this convergence rate. Then, we obtain

O
( K

γ2T
+

K

MT

)
≤ O

( K

M2T
+

K

MT

)
(∵ γ ≥M) (20)
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Thus, it seemingly achieves a linear speedup in M when K is just a constant. However, we are
missing the critical point in this analysis. To be specific, let’s consider the case when γ = 1. Then,
the convergence rate (20) changes into O

(
K
T + K

MT

)
that cannot achieve a linear speedup in M .

This is implausible because the convergence rate (19) becomes tighter when γ = 1 than γ ≥ M
(See the last term of (19)). Actually, we can achieve a linear speedup in M when γ = 1 if we tune
η = 1

2L( q
M +1)τM . However, this is not an appropriate tuning because there is M in the denominator.

Similarly, Haddadpour et al. (2021) tunes η = 1
2L( q

M +1)τγ where γ ≥M . Even though there is no
M in the denominator, the condition γ ≥ M forcibly makes the convergence rate achieve a linear
speedup without any theoretical benefits of the algorithm. Therefore, we cannot say their η makes
their algorithm achieve a linear speedup in M . We should tune in a different way that does not
contain M in a denominator. For reference, our tuning parameter η for the FedAQ algorithm does not
contain M in the denominator (See Corollary D.8 and Corollary F.8).

E.2 New convergence rate for Haddadpour et al. (2021)

We propose new η and convergence rate for Haddadpour et al. (2021). This new η makes the algorithm
achieve a linear speedup in M . Let’s denote Φ0 = F (w0)− F ∗. We also know that T = Kτ . Then,
we choose η as

η =
1

γµT
log

(
e+min(

γ2µ3T 2Φ0

τL2σ2
,
µ2MTΦ0

(1 + q)Lσ2
)
)

We plug in this η to (19). We bound the first term as below.

exp(−ηγµτK)(F (w0)− F ∗) =
(
e+min(

γ2µ3T 2Φ0

τL2σ2
,
µ2MTΦ0

(1 + q)Lσ2
)
)−1

Φ0

≤ τL2σ2

γ2µ3T 2
+

(1 + q)Lσ2

µ2MT

The another terms are bounded as below.
1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
≤ τL2σ2

2γ2µ3T 2
log2

(
e+

γ2µ3T 2Φ0

τL2σ2

)
+

(1 + q)Lσ2

2µ2MT
log

(
e+

µ2MTΦ0

(1 + q)Lσ2

)
Thus, we obtain a new convergence rate by combining the above two bounds.

E[F (wK)− F ∗] ≤ exp(−ηγµτK)(F (w0)− F ∗) +
1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
≤ 3τL2σ2

2γ2µ3T 2
log2

(
e+

γ2µ3T 2Φ0

τL2σ2

)
+

3(1 + q)Lσ2

2µ2MT
log

(
e+

µ2MTΦ0

(1 + q)Lσ2

)
Here, we replace τ with T

K . Then, we represent the above convergence rate with only T,K,M, q.

Õ( 1

TK
+

1 + q

MT
)

This is the new convergence rate we propose for Haddadpour et al. (2021). We also get K = Õ( M
1+q )

communication rounds make this algorithm achieve a linear speedup in M .

E.3 More details on contribution 2 in Introduction

Low-precision quantizer (Alistarh et al. (2017)) Given x ∈ Rd, the quantizer Q : Rd → Rd is
defined by

Qi(x) = sign(xi) · ∥x∥ · ξi(x, s), i ∈ [d]

ξi is defined as below.

ξi(x, s) =

{
l+1
s , with probability |xi|

∥x∥s− l
l
s , o/w

s is the number of quantization levels. l ∈ [0, s) is an integer which satisfies |xi|
∥x∥ ∈ [ ls ,

l+1
s ).
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More details on dquant This paragraph explains why FedAQ needs to send only dquant = O(log 1
q )

bits for each value. We use the result of Lemma 3.1 in Alistarh et al. (2017). They show the below
result with a low-precision quantizer.

E[∥Q(x, s)− x∥22] ≤ min(
n

s2
,

√
n

s
)∥x∥22

where n is the dimension of x, and s is the number of quantization levels. Then, we regard q as

q =

√
n

s
=

√
n

2dquant
(21)

Thus, we obtain the following conclusion.

dquant =

1
2 log n+ log 1

q

log 2
= O(log

1

q
)

Comparing FedAQ to FedAC We compare computation and communication efficiency of FedAC-
II and FedAQ under the condition set (2) to achieve the same error. Let’s recall the convergence rate
of FedAC and FedAQ. The convergence rate of FedAC and FedAQ is respectively Õ( 1

MT + 1
TK3 )

and Õ( 1+q
MT + 1+q

TK3 ). Let’s say FedAC requires T iterations and K =M
1
3 communication rounds to

achieve the error 1
MT . Then, FedAQ requires

T ′ = (1 + q)T, K ′ =M
1
3

to achieve the same error 1
MT . This means FedAQ needs 1 + q times more local steps and the same

number of communication rounds to achieve the same error of FedAC. These local steps do no require
any communication with the server hence can be performed without any additional communication
overhead.

From discussion in the previous section, if we use the simple low-precision quantizer, we need only
dquant = O(log 1

q ) bits for communicating values with enough precision that can lead to an error rate
of O( 1

MT ). In comparison, FedAC would require O(log(MT )) bits to maintain enough precision
to achieve the same error rate. In a majority of tasks in the real world, 32 bits are usually enough
for dfull to achieve enough precision as we usually don’t need converge to a very small error rate.
Nonetheless, even if we compare FedAQ(8bits) with to FedAC(32bits), we argue that the overall
benefit from less communication by quantization is more influential than the slowdown effect from
quantization.

For example, if we consider a l2-regularized logistic regression model for MNIST (strongly convex
experiment) and quantize from 32 bits to dquant = 8 bits. Here, n = 784× 10. We get the following
results by using (21).

1 + q = 1 +

√
n

2dquant
= 1 +

√
7840

28
≃ 1.346,

On the other hand, the ratio of data communicated by FedAC and FedAQ is

32

dquant
= 4

In contribution 2, we claim 1 + q ≪ dfull
dquant

because dfull is unbounded as T goes to infinity. In the real

world example, dfull
dquant

= 4 is still much greater than 1 + q. Furthermore, since the local computation
is much cheaper than data communication, we conclude that the benefit from less communication
by quantization (4 times less bits) overwhelm the slowdown effect from quantization ((1 + q) times
more local computation).
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F Further analysis of FedAQ under the parameter condition set (2)

We use notations defined in Appx. D here as well. We newly define Φm
k,t,Φk,t,Φk, B

m
k,t as below.

Φm
k,t = F (wag,m

k,t )− F ∗ +
1

6
µ∥wm

k,t − w∗∥2

Φk,t = F (w̄ag
k,t)− F

∗ +
1

6
µ∥w̄k,t − w∗∥2

Φk : = Φk,0 = F (wag
k )− F ∗ +

1

6
µ∥wk − w∗∥2

Bm
k,t =

(µα−2

3
(1− β−1)2 + Lβ−2

)
∥wm

k,t − w
ag,m
k,t ∥

2 + γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

· 2LΦm
k,t

The flow of proof is similar to Appx. D. We need one more condition γµ ≤ 3
4 to show the convergence

of FedAQ under the parameter condition set (2).

F.1 Proof of Lemma F.1

Lemma F.1. Let F be µ-strongly convex, and assume Assumption 2.1, 2.2, 2.3, 2.4, then for
α = 3

2γµ −
1
2 , β = 2α2−1

α−1 , γ ∈ [η,
√

η
µ ], η, γ ∈ (0, 1

L ], γµ ≤
3
4 , τ ≥ 2, FedAQ yields

E[Φk+1]

≤ D(γ, τ)E[Φk] + (
η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(

µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2︸ ︷︷ ︸

additional terms due to quantization

Where D(γ, τ) is defined as

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2︸ ︷︷ ︸

additional terms due to quantization

In order to prove Lemma F.1, we first introduce five crucial Propositions for proving Lemma F.1.
Then, we prove Lemma F.1 by using Propositions in the last part of this section.
Proposition F.2. Let Assumption 2.1 hold and consider any k synchronization round. Then, we can
decompose the expectation as follows:

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]
E[F (wag

k+1)− F
∗] = E[F (wag

k+1)− F (w̄
ag
k,τ )] + E[F (w̄ag

k,τ )− F
∗]

Proof of Proposition F.2 The second equality is trivial. The first equality is the same as one in
Proposition D.2.
Proposition F.3. Let F be µ-strongly convex, and assume Assumption 2.2, 2.3, 2.4, then for α =
3

2γµ −
1
2 , β = 2α2−1

α−1 , γ ∈ [η,
√

η
µ ], η ∈ (0, 1

L ], FedAQ yields

E[Φk,τ ] ≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M

+ γτ · max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

Proof of Proposition F.3 We refer to the proof of Lemma C.2 in Yuan and Ma (2020). There is no
quantization between Φk,τ and Φk. Thus, we can directly apply useful inequalities in the proof of
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Lemma C.2 in Yuan and Ma (2020) to our proof. Then, we obtain

E[Φk,t+1|Fk,t] ≤ (1− 1

3
γµ)Φk,t + (

η2L

2
+
γ2µ

6
)
σ2

M
+ γ∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2

From the above relationship between Φk,t+1 and Φk,t, we get

E[Φk,τ ] ≤ (1− 1

3
γµ)τE[Φk] +

( τ−1∑
t=0

(1− 1

3
γµ)t

)
· (η

2L

2
+
γ2µ

6
)
σ2

M

+ γ

τ−1∑
t=0

{
(1− 1

3
γµ)τ−t−1E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

}
≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M

+ γτ · max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

Proposition F.4. Let Assumption 2.1 hold. Then, we have

E[∥wk+1 − w̄k,τ∥2] ≤
q

M2

M∑
m=1

E[∥wm
k,τ − wk∥2]

E[F (wag
k+1)− F (w̄

ag
k,τ )] ≤

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proof of Proposition F.4 The first inequality is the same as one in Proposition D.4. The proof of the
second inequality is similar to Proposition D.4 as well.

E[F (wag
k+1)− F (w̄

ag
k,τ )] = E[F (wag

k +
1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k ))− F ( 1

M

M∑
m=1

wag,m
k,τ )]

≤ E
[
⟨∇F ( 1

M

M∑
m=1

wag,m
k,τ ),

1

M

M∑
m=1

(
Q(wag,m

k,τ − w
ag
k )

− (wag,m
k,τ − w

ag
k )

)
⟩+ L

2
∥ 1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k )− (wag,m

k,τ − w
ag
k )∥2

]
=
L

2
E[∥ 1

M

M∑
m=1

Q(wag,m
k,τ − w

ag
k )− (wag,m

k,τ − w
ag
k )∥2]

=
L

2M2

M∑
m=1

E[∥Q(wag,m
k,τ − w

ag
k )− (wag,m

k,τ − w
ag
k )∥2]

≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proposition F.5. Let F be µ-strongly convex, and assume Assumption 2.2, 2.3, 2.4, then for α =
3

2γµ −
1
2 , β = 2α2−1

α−1 , γ ∈ [η,
√

η
µ ], η, γ ∈ (0, 1

L ], γµ ≤
3
4 , we get

E[Bm
k,t] ≤ E[Bm

k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
·
1 + 1

2α
−1

1
4α

−2
·
(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2
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Proof of Proposition F.5 From the notation mentioned in the beginning of Section F,

E[Bm
k,t+1|Fk,t] =

(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t+1 − w
ag,m
k,t+1∥

2|Fk,t]

+ γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

· 2LE[Φm
k,t+1|Fk,t] (22)

Thus, let’s sequentially compute E[∥wm
k,t+1 − w

ag,m
k,t+1∥2|Fk,t] and E[Φm

k,t+1|Fk,t].

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] = E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w
md,m
k,t + ηgmk,t∥2|Fk,t]

= E[∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)gmk,t∥2|Fk,t] (← γ ≥ η)

= ∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)∇F (wmd,m

k,t )∥2

+ (γ − η)2E[∥∇F (wmd,m
k,t )− gmk,t∥2|Fk,t]

≤ (1− α−1)2∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2∥∇F (wmd,m
k,t )∥2

+ (γ − η)2σ2 − 2(γ − η)⟨(1− α−1)(wm
k,t − w

md,m
k,t ),∇F (wmd,m

k,t )⟩

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2

+ (γ − η)2(1 + α

2
)∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

Here, we need to bound ∥∇F (wmd,m
k,t )∥2.

∥∇F (wmd,m
k,t )∥2 ≤ 2L(F (wmd,m

k,t )− F ∗) (∵ Assumption 2.3)

≤ 2L
(
β−1(F (wm

k,t)− F (w∗)) + (1− β−1)(F (wag,m
k,t )− F ∗)

)
≤ β−1L2∥wm

k,t − w∗∥2 + 2(1− β−1)L(F (wag,m
k,t )− F ∗)

=
α− 1

2α2 − 1
L2∥wm

k,t − w∗∥2 + 2L · 2α
2 − α

2α2 − 1
(F (wag,m

k,t )− F ∗)

≤
µ
3 (2α

2 − α)
2α2 − 1

L∥wm
k,t − w∗∥2 + 2L · 2α

2 − α
2α2 − 1

(F (wag,m
k,t )− F ∗)

=
2α2 − α
2α2 − 1

· 2LΦm
k,t (23)

It is easy to show (α− 1)L ≤ µ
3 (2α

2 − α) by using the fact γL ≤ 1. Therefore, we finally get

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t]

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2(1 + α

2
)∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2(1 + α

2
)(
2α2 − α
2α2 − 1

· 2LΦm
k,t)

+ (γ − η)2σ2 (24)
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Now, let’s compute E[Φm
k,t+1|Fk,t]. We need to compute E[∥wm

k,t+1−w∗∥2|Fk,t] and E[F (wag,m
k,t+1)−

F ∗|Fk,t] first.

E[∥wm
k,t+1 − w∗∥2|Fk,t]

= E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w∗∥2|Fk,t]

≤ ∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γ∇F (wmd,m
k,t )− w∗∥2 + γ2σ2

≤ (1 +
1

2
α−1)∥(1− α−1)wm

k,t + α−1wmd,m
k,t − γ∇F (wmd,m

k,t )− w∗∥2 + γ2σ2

= (1 +
1

2
α−1)∥(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗∥2 + γ2(1 +

1

2
α−1)∥∇F (wmd,m

k,t )∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t )⟩+ γ2σ2

≤ (1 +
1

2
α−1)

(
(1− α−1)∥wm

k,t − w∗∥2 + α−1∥wmd,m
k,t − w∗∥2

)
+ γ2(1 +

1

2
α−1)

· ∥∇F (wmd,m
k,t )∥2 − 2γ(1 +

1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t )⟩+ γ2σ2

It is easy to show (1 + 1
2α

−1)(1− α−1) < 1− 1
2α

−1, 1 + 1
2α

−1 ≤ 3
2 . Due to these facts, we obtain

E[∥wm
k,t+1 − w∗∥2|Fk,t]

≤ (1− 1

2
α−1)∥wm

k,t − w∗∥2 + 3

2
α−1∥wmd,m

k,t − w∗∥2 + 3

2
γ2∥∇F (wmd,m

k,t )∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t )⟩+ γ2σ2

≤ (1− 1

2
α−1)∥wm

k,t − w∗∥2 + 3

2
α−1∥wmd,m

k,t − w∗∥2 + 3

2
γ2∥∇F (wmd,m

k,t )∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1(1− β−1))wm

k,t + α−1(1− β−1)wag,m
k,t − w

∗,∇F (wmd,m
k,t )⟩+ γ2σ2

Next, we compute the upper bound of E[F (wag,m
k,t+1)− F ∗|Fk,t].

E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ E[F (wmd,m
k,t ) + ⟨∇F (wmd,m

k,t ), wag,m
k,t+1 − w

md,m
k,t ⟩+

L

2
∥wag,m

k,t+1 − w
md,m
k,t ∥

2 − F ∗|Fk,t]

≤ F (wmd,m
k,t )− F ∗ − η∥∇F (wmd,m

k,t )∥2 + η2L

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

≤ F (wmd,m
k,t )− F ∗ − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2 (∵ 1− ηL

2
≥ 1

2
← η ∈ [0,

1

L
])

= (1− 1

2
α−1)(F (wag,m

k,t )− F ∗) +
1

2
α−1(F (wmd,m

k,t )− F ∗)

+ (1− 1

2
α−1)(F (wmd,m

k,t )− F (wag,m
k,t ))− η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

≤ (1− 1

2
α−1)(F (wag,m

k,t )− F ∗)− µα−1

4
∥wmd,m

k,t − w∗∥2 + 1

2
α−1⟨∇F (wmd,m

k,t ), wmd,m
k,t − w∗⟩

+ (1− 1

2
α−1)⟨∇F (wmd,m

k,t ), wmd,m
k,t − wag,m

k,t ⟩ −
η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

= (1− 1

2
α−1)(F (wag,m

k,t )− F ∗)− µα−1

4
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

+
1

2
α−1⟨∇F (wmd,m

k,t ), 2αβ−1wm
k,t + (1− 2αβ−1)wag,m

k,t − w
∗⟩
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It is easy to show 1
2α

−1 = γµ
3 (1 + 1

2α
−1). Then, we bound E[Φm

k,t+1|Fk,t] by using the above
results.

E[Φm
k,t+1|Fk,t] =

µ

6
E[∥wm

k,t+1 − w∗∥2|Fk,t] + E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ (1− 1

2
α−1)Φm

k,t −
2η − γ2µ

4
∥∇F (wmd,m

k,t )∥2 + 1

2
(
γ2µ

3
+ η2L)σ2

≤ (1− 1

2
α−1)Φm

k,t +
1

2
(
γ2µ

3
+ η2L)σ2 (∵ γ ≤

√
η

µ
)

≤ (1− 1

2
α−1)Φm

k,t +
γ2

2
(
µ

3
+ L)σ2 (25)

Plugging (24), (25) in (22) yields,

E[Bm
k,t+1|Fk,t]

≤
(µα−2

3
(1− β−1)2 + Lβ−2

)(
(1− α−1)2(1 + 2α−1)∥wm

k,t − w
md,m
k,t ∥

2

+ (γ − η)2(1 + α

2
) · (2α

2 − α
2α2 − 1

· 2LΦm
k,t) + (γ − η)2σ2

)
+ γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L
(
(1− 1

2
α−1)Φm

k,t +
γ2

2
(
µ

3
+ L)σ2

)
= (1− α−1)2(1 + 2α−1)

(µα−2

3
(1− β−1)2 + Lβ−2

)
∥wm

k,t − w
md,m
k,t ∥

2

+

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2(1 + α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

)
· (2α

2 − α
2α2 − 1

· 2LΦm
k,t) +

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2

(26)

We can show that both coefficients of ∥wm
k,t − w

md,m
k,t ∥2 and 2α2−α

2α2−1 · 2LΦ
m
k,t are upper bounded by

1− 1
2α

−1 +
1
2α

−1

1+ 1
2α

−1 .

(1− α−1)2(1 + 2α−1) ≤ 1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
(< 1) (27)

⇔ 1− 1

4
α−2 +

1

2
α−1 − (1− α−1)2(1 + 2α−1)(1 +

1

2
α−1) ≥ 0

Let’s define g1(α−1) = 1− 1
4α

−2 + 1
2α

−1 − (1−α−1)2(1 + 2α−1)(1 + 1
2α

−1). Then, it is easy to
check that g1(α−1) ≥ 0 for 0 < α−1 ≤ 1. Moreover, we would like to show the below inequality.(µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2(1 + α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

≤
(µα−2

3
(1− β−1)2 + Lβ−2

)
γ2(1 +

α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)γ2(

µ

3
+ L) (28)

Since µα−2

3 (1 − β−1)2 + Lβ−2 = µ
3 (

2α−1
2α2−1 )

2 + L( α−1
2α2−1 )

2 ≤ (µ3 + L
4 )(

2α−1
2α2−1 )

2, it is enough to
show

(
µ

3
+
L

4
)(

2α− 1

2α2 − 1
)2γ2(1 +

α

2
) ≤

1
2α

−1

1 + 1
2α

−1
γ2(

µ

3
+ L)
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We also know that
µ
3 +L
µ
3 +L

4

= 4− 1
1
3+

L
µ · 14

> 16
7 (∵ L

µ > 1). Then, we only need to show

(
2α− 1

2α2 − 1
)2(1 +

α

2
) ≤ 16

7
·

1
2

α+ 1
2

⇔ 8

7
(2α2 − 1)2 − (2α− 1)2(1 +

α

2
)(α+

1

2
) ≥ 0

Let’s define g2(α) = 8
7 (2α

2 − 1)2 − (2α− 1)2(1 + α
2 )(α+ 1

2 ). Then, it is easy to check g2(α) ≥ 0

for α ≥ 3
2 . As we assume γµ ≤ 3

4 , we can say α = 3
2γµ −

1
2 ≥

3
2 . This indicates that the inequality

(28) is satisfied. Thus, from (26), (27), and (28) we finally get

E[Bm
k,t+1|Fk,t] ≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)Bm

k,t

+

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2

From this relationship between Bm
k,t+1 and Bm

k,t, we obtain the result of Proposition F.5.

E[Bm
k,t] ≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)tE[Bm

k,0] +

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2

+ γ4(
µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2 ·

1− (1− 1
2α

−1 +
1
2α

−1

1+ 1
2α

−1 )
t

1− (1− 1
2α

−1 +
1
2α

−1

1+ 1
2α

−1 )

≤ E[Bm
k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
·
1 + 1

2α
−1

1
4α

−2
·
(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

Proposition F.6. Let F be µ-strongly convex, and assume Assumption 2.2, 2.3, 2.4, then for α =
3

2γµ −
1
2 , β = 2α2−1

α−1 , γ ∈ [η,
√

η
µ ], η, γ ∈ (0, 1

L ], γµ ≤
3
4 , τ ≥ 2, FedAQ yields

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk]

+ (
γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(

µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2

2

Proof of Proposition F.6 We use the same upper bounds for E[∥wm
k,τ −wk∥2] and E[∥wag,m

k,τ −w
ag
k ∥2]

as in Proposition D.6.

E[∥wm
k,τ − wk∥2] ≤ τ

( τ−1∑
t=0

2α−2(1− β−1)2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τγ2σ2

E[∥wag,m
k,τ − w

ag
k ∥

2] ≤ τ
( τ−1∑

t=0

2β−2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τη2σ2
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Thus, by using the above results, we get

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
τ−1∑
t=0

{(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (
γ2µ

3
+ η2L)E[∥∇F (wmd,m

k,t )∥2]
}

+ (
γ2µ

3
+ η2L)τσ2

≤ τ
τ−1∑
t=0

{(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

2LE[Φm
k,t]

}
+ (

γ2µ

3
+ η2L)τσ2 (∵ (23))

= τ
( τ−1∑

t=0

E[Bm
k,t]

)
+ (

γ2µ

3
+ η2L)τσ2

By Proposition F.5 and the fact Φm
k,0 = Φk, we obtain

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
{ τ−1∑

t=0

E[Bm
k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
1 + 1

2α
−1

1
4α

−2

(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

}
+ (

γ2µ

3
+ η2L)τσ2

= τ2
((µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wk − wag

k ∥
2] + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2LE[Φk]

)
+ τ

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
1 + 1

2α
−1

1
4α

−2

·
( τ−1∑

t=0

1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2 + (

γ2µ

3
+ η2L)τσ2

Before we get to the final result, let’s find the upper bound for ∥wk−wag
k ∥2,

∑τ−1
t=0

(
1− (1− 1

2α
−1+

1
2α

−1

1+ 1
2α

−1 )
t
)

∥wk − wag
k ∥

2 = ∥wk − w∗ − (wag
k − w

∗)∥2

≤ (1 +
1

3
)∥wk − w∗∥2 + (1 + 3)∥wag

k − w
∗∥2

≤ 4

3
∥wk − w∗∥2 + 4 · 2

µ

(
F (wag

k )− F ∗ − ⟨∇F (w∗), wag
k − w

∗⟩
)

=
4

3
∥wk − w∗∥2 + 8

µ
(F (wag

k )− F ∗) =
8

µ
Φk
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τ−1∑
t=0

(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
= τ −

τ−1∑
t=0

(1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t

= τ −
1− (1− 1

2α
−1 +

1
2α

−1

1+ 1
2α

−1 )
τ

1− (1− 1
2α

−1 +
1
2α

−1

1+ 1
2α

−1 )

≤ τ −
1− (1−

1
4α

−2

1+ 1
2α

−1 τ + (
1
4α

−2

1+ 1
2α

−1 )
2 τ(τ−1)

2 )
1
4α

−2

1+ 1
2α

−1

=
1
4α

−2

1 + 1
2α

−1
· τ(τ − 1)

2
≤

1
4α

−2

1 + 1
2α

−1
· τ

2

2

Therefore, we obtain

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤
(8
3
α−2(1− β−1)2 +

8L

µ
β−2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L
)
τ2E[Φk] + (

γ2µ

3
+ η2L)τσ2

+

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
· τ

3σ2

2
(29)

Moreover, we can simplify the above inequality by replacing α, β with γ, µ. It is easy to show
2α2−α
2α2−1 ≤ 1, 2α−1

2α2−1 ≤
1
α = 2γµ

3−γµ ≤ γµ. Then, we can further show

8

3
α−2(1− β−1)2 +

8L

µ
β−2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L

=
8

3
(
2α− 1

2α2 − 1
)2 +

8L

µ
(
α− 1

2α2 − 1
)2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L

≤(8
3
+

2L

µ
)(

2α− 1

2α2 − 1
)2 + γ2(

µ

3
+ L)2L

≤(8
3
+

2L

µ
)α−2 + γ2(

µ

3
+ L)2L

≤γ2µ(8
3
µ+ 2L) + 2γ2L(

µ

3
+ L) (30)

We also get (µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

≤(µ
3
+
L

4
)(

2α− 1

2α2 − 1
)2(γ − η)2 + γ4(

µ

3
+ L)2L

≤(γ − η)2γ2µ2(
µ

3
+
L

4
) + γ4(

µ

3
+ L)2L (31)

Finally, from (29), (30), and (31), we conclude as below

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk]

+ (
γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(

µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2

2

Proof of Lemma F.1 By the definition of Φk,Φk,t and Proposition F.2,

E[Φk+1] = E[Φk,τ ] +
µ

6
E[∥wk+1 − w̄k,τ∥2] + E[F (wag

k+1)− F (w̄
ag
k,τ )]
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Applying Proposition F.3 and Proposition F.4, we have

E[Φk+1]

≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
qµ

6M2

M∑
m=1

E[∥wm
k,τ − wk∥2] +

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M

[(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk] + (

γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(

µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2

2

]
= D(γ, τ)E[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(

µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2

The second inequality comes from Proposition F.6. D(γ, τ) is defined as below.

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2

F.2 Proof of Theorem F.7

Theorem F.7. Let F be µ-strongly convex, and assume Assumption 2.1, 2.2, 2.3, 2.4, then for the
parameter condition set (2), τ ≥ 2, if the learning rate γ satisfies(

1

9
µ2 +

q

M

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

))
γτ ≤ 1

6
µ (32)

FedAQ yields

E[ΦK ] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ

+
3q
(
µ2(µ3 + L

4 ) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM

Proof of Theorem F.7 At first, due to the condition (32) in Theorem F.7, we get

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2

≤ 1− 1

3
γµτ +

1

9
γ2µ2τ2 +

q

M
γ2

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

)
τ2

= 1− 1

3
γµτ +

(
1

9
µ2 +

q

M

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

))
γ2τ2

≤ 1− 1

6
γµτ (∵ condition (32))
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It is trivial that γ = max(η,
√

η
µτ ) ∈ [η,

√
η
µ ]. Thus, we can use Lemma F.1. By using Lemma F.1

and the above result, we obtain

E[Φk+1]

≤ (1− 1

6
γµτ)E[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(

µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2 (33)

By the Lemma C.14 in Yuan and Ma (2020), we know that the below quantity is bounded.

max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t )∥2] ≤ B′

B′ =

4η2L2τσ2
(
1 + γ2µ

η

)2τ

, if γ ∈
(
η,
√

η
µ

]
4η2L2τσ2, if γ = η

Telescoping (33) yields

E[ΦK ] ≤ (1− 1

6
γµτ)KΦ0 +

(K−1∑
k′=0

(1− 1

6
γµτ)k

′
)
·
[
(
η2L

2
+
γ2µ

6
)
τσ2

M
+

q

M
(
γ2µ

3
+ η2L)τσ2

+
q

2M

(
(γ − η)2γ2µ2(

µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2 + γτB′

]
≤ exp

(
− γµτK

6

)
Φ0 +

3η2Lσ2

γµM
+
γσ2

M
+

6B′

µ
+ 2q

(γσ2

M
+

3η2Lσ2

γµM

)
+

3q

M

(
(γ − η)2γµ(µ

3
+
L

4
) +

γ3(µ3 + L)2L

µ

)
τ2σ2

The last inequality comes from the fact that
∑K−1

k′=0(1 −
1
6γµτ)

k′ ≤ 6
γµτ . Since we plug in γ =

max(η,
√

η
µτ ), we can use Lemma C.15 in Yuan and Ma (2020). Therefore, we obtain

E[ΦK ] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
4(2q + 1)η2L2τσ2

µ

+
24e2η2L2τσ2

µ
+

3qτ2σ2

M
max

(η 3
2µ(µ3 + L

4 )

µ
3
2 τ

3
2

+
η

3
2 (µ3 + L)2L

µ
5
2 τ

3
2

,
η3(µ3 + L)2L

µ

)
The first term stems directly from Lemma C.15 in Yuan and Ma (2020). Also, the last term comes
from the fact that

(γ − η)2γµ(µ
3
+
L

4
) +

γ3(µ3 + L)2L

µ
≤

{
γ3µ(µ3 + L

4 ) +
γ3(µ

3 +L)2L

µ , if γ ̸= η
η3(µ

3 +L)2L

µ , if γ = η

Therefore, by simple inequalities such as max(a, b) ≤ a+ b and min(a, b) ≤ a, we ultimately get

E[ΦK ] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ

+
3q
(
µ2(µ3 + L

4 ) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM
(34)
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F.3 Proof of Corollary F.8

Corollary F.8. Let D1, D2, and η0 as below. Note that T = Kτ .

D1 =

(
µ2(µ3 + L

4 ) + L(µ3 + L)2)
)
q

µ
5
2

, D2 =
q(µ3 + L)2L

µ

η0 =
36τ

µT 2
log2

(
e+min(

µMTΦ0

(2q + 1)σ2
,

µ3T 4Φ0

(q + 25)L2τ3σ2
,

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
)

Then for η = min( 1
L , η0), FedAQ yields

E[ΦK ] ≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0

+
13(2q + 1)σ2
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(37)

Proof of Corollary F.8 Let’s decompose the final result (34) of the Theorem F.7 into a decreasing
term and an increasing term. We denote the decreasing term ϕ1 and the increasing term ϕ2 as below.

ϕ1(η) = exp
(
− 1

6
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√
ηµ

τ
)T

)
Φ0
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1
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1
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+
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2 τ
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µ
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µM

Since ϕ1 is the decreasing term, we have

ϕ1(η) ≤ ϕ1(
1

L
) + ϕ1(η0) (38)

where

ϕ1(
1

L
) = min
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exp(−µT

6L
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2 τ
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Since ϕ2 is the increasing term, we have

ϕ2(η)
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The last inequality comes from τ
T ≤ 1. Therefore, by combining (38) and (39), we finally get

E[ΦK ] ≤ ϕ1(η) + ϕ2(η)

≤ ϕ1(
1

L
) + ϕ1(η0) + ϕ2(η0)

≤ min
(
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F.4 Complexity of combining the quantization and multiple accelerated local updates

Our theoretical goal is to show that the convergence rate of FedAQ is just linearly slower than the
convergence rate of FedAC, and FedAQ achieves the best convergence rate among quantization-based
federated algorithms. Thus, we should find the tight upper bound of the emerging terms due to
quantization so that FedAQ fully takes advantage of acceleration and achieves our goal. To be
specific, since a server aggregates two quantized local updates Q(wm

k,τ − wk), Q(wag,m
k,τ − w

ag
k ) from

all clients, the additional error from variances of the unbiased quantizer Q on two local updates
wm

k,τ − wk, w
ag,m
k,τ − w

ag
k should be well-bounded (See Proposition F.4). This is where the difficulty

of the theory of applying quantization to FedAC stems. The other quantization-based federated
algorithms only care about one quantized local update, but we need to consider two quantized local
updates that amplify the instability of FedAQ. In spite of this challenge, we obtain the tight upper
bound of the error from wm

k,τ − wk, w
ag,m
k,τ − w

ag
k with the insight that two local parameters wm

k,t,
wag,m

k,t become closer as k, t increase and both parameters converge to w∗ (See Proposition F.5, F.6,
the definition of Bm

k,t in Appx. F).

G Discussion

To sum up, we propose a novel communication-efficient federated optimization algorithm, FedAQ,
that successfully incorporates accelerated multiple local updates and quantization with solid theoreti-
cal guarantees. We achieve the best convergence rate and the smallest number of communication
rounds required for a linear speedup inM in strongly-convex and homogeneous settings. In the future,
further theoretical guarantees of FedAQ on convex and non-convex functions should be discussed.
Also, the convergence analysis of FedAQ on heterogeneous settings can be an interesting topic. Even
though Federated Learning systems provide some level of privacy to the clients as their explicit data
is not shared with the servers, careful examination of FL systems including FedAQ is necessary to
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examine how much privacy do they actually provide as information is shared in form of the iterates.
More interesting and challenging open problems can be found in Kairouz et al. (2019); Wang et al.
(2021a).
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