
A Hierarchical Reinforcement Learning Approach to
Control Legged Mobile Manipulators

Anonymous Author(s)
Affiliation
Address
email

Abstract: Recent years have seen a Cambrian explosion of robotic systems yield-1

ing ever more capable and affordable systems, with quadrupedal robotic platforms2

emerging as a commercially-viable base to perform a wide variety of tasks across3

uneven terrain. Augmenting these with a robotic arm allows the possibility of even4

more complex interactions. At the same time, there has been a growing body of5

research into using deep reinforcement learning (DRL) for embodied agent navi-6

gation and object manipulation, which promises a more sample-efficient, flexible,7

and robust approach to learning such policies than existing classical methods. Re-8

cent works have shown a functional approach for learning a joint base and arm9

policy with DRL but have not yet demonstrated how the result can be used in10

downstream tasks. In this work, we investigate the problem of learning an ob-11

ject manipulation and navigation policy for a quadrupedal robot with a mounted12

robotic arm - specifically, we address the problem of fetching stationary and mov-13

ing objects autonomously (“playing fetch” with the robot dog). Our method con-14

sists of (a) a low-level policy that moves the base and arm and (b) a high-level15

policy that generates the commands for the low-level policy. The low-level policy16

is jointly learned for both the arm and the base which generates joint torques for17

directional commands. The high-level policy is task-specific, translates the ball18

position to directional commands for the low-level policy, and deals with accel-19

eration/deceleration and stability. We demonstrate that our high-level policy can20

outperform a tuned Proportional-Derivative (PD) controller.21

Keywords: Reinforcement Learning, Quadruped Robots, Object Manipulation22

1 Introduction23

Mobile ground-based robots have been used to solve many tasks such as delivery, inspection, and24

exploration [1]. More specifically, quadrupedal legged robots have the agility to navigate uneven25

terrain and traverse obstacles commonly found in indoor settings such as stairs. At the same time,26

robotic arms are very useful for manipulation tasks that require grasping and picking up objects,27

but are most often stationary. Merging both of these technologies could yield very effective robotic28

assistants, capable of accomplishing useful tasks in uncontrolled real-world environment. However,29

this combination of quadruped base with robotic arm poses a difficult control problem.30

Many classic control and Reinforcement Learning (RL) methods have been proposed for each of31

these domains, quadrupedal locomotion [2, 3] and robotic arm manipulation [4, 5]. Far fewer meth-32

ods have been proposed for the control of quadrupedal robots with robotic arms. Such methods33

must take into account the interactions between the two robotic systems, especially when dealing34

with moving objects or rapidly changing commands. As an example, [6] propose to add a correction35

term to their state estimation pipeline to compensate for the fact that the arm is moving and affecting36

the locomotion controller behavior. In this work, we target the problem of “playing fetch” with a37

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

Figure 1: Example trajectory. Image sequence from our method of a robot dog running towards a
thrown ball, picking it up before the ball comes to rest, and returning to the origin to drop off the
ball.

quadruped robot because we believe it exemplifies a hard control task involving both locomotion38

and manipulation of dynamic objects.39

We propose a hierarchical system with a task-independent low-level policy that learns to convert40

directional commands for the base and position offsets for the gripper to joint torques, and a high-41

level policy that translates object goals to commands for the low-level policy, balances speed and42

stability and learns task-specific knowledge.43

Figure 1 shows an example of our method in action. Figure 2 shows the schematics of the proposed44

architecture, with the high-level and low-level control policy.45

Our contributions are as follows. (a) A Hierarchical Reinforcement Learning (HRL) framework46

for jointly training a movable base and a robot arm to solve arbitrary control tasks. (b) Experi-47

ments demonstrating that the method can be applied to solve the problem of playing fetch with a48

quadrupedal robot. (c) Comparisons illustrating how our high-level policy outperforms a PD con-49

troller.50

All experiments were conducted on the Unitree Go1 quadruped with the Interbotix ReactorX 15051

arm in simulation but with the manufacturer’s URDF robot models and realistic (manufacturer)52

dynamics. If this works is accepted, we will present a demo on a real robot at the workshop. Videos53

of the robot playing fetch can be found at our project website:54

https://robotdogfetch.github.io55

2 Related Work56

Control for Legged Mobile Manipulators. Broadly speaking, control methods for mobile manipu-57

lators can be placed in two categories: Model Predictive Control (MPC) and learning-based control.58

MPC can produce a simple control policy for complex systems and provides generic consideration59

of constraints and complex control goals [6, 7]. However, MPC requires a faithful dynamical model60

based on forces and torques and can suffer from long re-planning times in dynamic scenes.61

In this work, our goal is to provide a policy that can solve legged manipulation tasks with increased62

robustness and involving dynamic objects. However, manipulation so far has required more precise63

control, combining MPC and RL methods [8]. By contrast, our method does not require an exact64

specification of the dynamics of the robot to work. Only very recently, Fu et al. [9] showed that a65

joint policy can be learned for the base and arm. This work, however, leaves adding task-specific66

knowledge as an exercise to the reader. In our work, we address this explicitly through the high-level67

policy that gives the system the autonomy to solve a task without remote control.68

Hierarchical Reinforcement Learning. Hierarchical Reinforcement Learning frameworks [10, 11,69

12] typically extend the usual notion of action to include options, a closed-loop policy for taking70

a sequence of actions over a period of time. The concept of an option is quite broad and includes71

turning around, picking up an object, and driving a commute, as well as lower-level actions such as72

joint torques. Many such methods train both low and high level policies jointly [13, 14, 15]. The73

high-level policy operates at a slower frequency than low-level policy options, which may have a74

fixed or learned duration. For example, [16] used a gradient-based approach to model the termination75

2

https://robotdogfetch.github.io

Figure 2: Abstract policy network. The high-
level policy module takes as input a state vector
that describes the robot and world state and pro-
duces a command vector. This command vector
is then fed into the low-level policy to produce
the robot’s actuation. The high-level policy and
low-level operate at different frequencies, with the
low-level policy having to produce joint angles for
multiple timesteps to achieve a goal specified by
the command vector.

of semi-Markov options by a logistic distribution on a cumulative measure of the features observed76

during the execution of that option. In this work, low-level policy options correspond to motor77

actuations which can benefit from very high-frequency control to manage high aleatoric uncertainty78

in real-world environments, and as a result we fix the duration of low-level policy options.79

3 Method80

Our method uses a 2-layer hierarchical policy (see Fig.2), where the low-level policy learns loco-81

motion and relative end effector control with respect to the base (based on external commands), and82

the high-level policy learns to generate commands for the low-level policy for a given task.83

Background. We use Nvidia’s Isaac Gym simulator to train thousands of quadrupeds in parallel on84

a GPU to follow commands [17]. In their work, the agent and in our work, the low-level policy is85

trained via Proximal Policy Optimization (PPO) [18] to obey linear and angular velocity commands.86

Each command is a 3-dimensional vector, representing the desired linear velocities along the x and y87

axes (both of which are parallel to the ground) and the yaw rate (rotation speed around the “up” axis).88

At each timestep, the policy outputs a 12-dimensional vector corresponding to joint angles for the89

joints of the quadruped (4x hip, upper leg, lower leg). Similar to Rudin et al. [19], we use a weighted90

combination of 10 reward terms to teach the robot dog to walk in a physically plausible way, e.g.,91

by rewarding the feet to not drag along the floor, or to exert low torques. The most important reward92

terms are rtracking lin vel, which incentivizes the agent to match the robot body’s linear velocity to93

the first two command terms and rtracking ang vel, which does the same for the yaw rate.94

Task & Robot. Our experiments are performed on a simulated Unitree Go1 robot with a manipulator95

attached to the top of the robot body (see Fig.1). The mounting location was chosen to optimize96

balance while maximizing forward reach. We use the Interbotix ReactorX 150 robot arm due to its97

light weight. To train the arm as part of the low-level policy, we added to the observation space98

the positions and velocities of all joints, to the action space the 5 degrees of freedom, and to the99

command vector 3 elements corresponding to the desired position of the end effector with respect to100

the base. For our fetch task, we use a rubber ball and a simple grasping model that closes the gripper101

when the ball is in the center of the gripper.102

High-level Policy. Our high-level policy also uses a 3-layer MLP architecture for both actor and103

critic networks with [256, 256, 256] hidden units and ELU non-linearities in between. The observa-104

tions are task-specific and consist of linear/angular velocity of the base, projected gravity, distance105

between end effector and goal, the current relative position of the end effector, the direction of the106

goal, and the current heading of the base. The action space consists of the 6 commands comprising107

the goal conditioning of the low-level policy.108

Reward Terms. The high-level policy follows the same PPO training procedure as the low-level109

policy but with different reward terms. We have reused the existing reward terms and coefficients for110

action rate (discouraging large changes between timesteps), and large action values (discouraging111

3

Success (%) Ball Pickup (%) Ball Pickup Time (s) Goal Time (s)

PD Controller & πLL 0 % 3 % 2.7±0.4 n/a
No Random Command 8 % 18 % 1.5±1.1 0.8±0.2
Ours 97 % 99 % 1.6±1.6 1.0±0.7
Table 1: Results. We show the results of our method compared to an ablation (“no command
frequency randomization”) and a PD controller. We list the success rate, which includes ball pickup
and return within 10s, ball pickup rate, average time to pick up the ball, normalized by distance of
pickup, and average time to return the ball to the goal (also normalized by ball distance).

extreme joint positions), and we added the terms rgoal distance (Euclidean distance between grip-112

per and goal), rgoal distance eps (bounded exponential reward for minimizing the distance between113

gripper and goal), and rfacing goal (encouraging facing towards the goal) - implementation details114

can be found in the appendix (App.A.1). We also note that the last reward term is both cosmetic and115

practical for this task as facing the ball reduces the risk of accidentally kicking it further away.116

4 Experiments117

Experimental Setup. We train our low-level policy for 1,500 timesteps with 4096 parallel environ-118

ments with a fixed command sampling rate of 1
10 Hz. We fine-tune the same low-level policy for119

another 1,500 steps with a variable command sampling rate uniformly sampled from [14 ,
1
16] Hz. We120

found that this domain randomization leads to better generalization. We compare the fine-tuned pol-121

icy to one that was only trained on the default command resampling time (marked as “No Random122

Command”). The high-level policy was trained for 3,000 timesteps, corresponding to approximately123

2 hours of wall clock time on a single Nvidia Geforce RTX 2080 Ti GPU, which makes this approach124

suitable to be retrained to a wide range of tasks. To illustrate the necessity of the high-level policy125

in communicating the task goal to the low-level policy, we also compare to the setting where we126

replace the high-level policy with the PD controller. The PD controller was manually tuned to strike127

a balance between stability and speed and to face the goal in order to prevent accidental kicks. The128

PD controller minimizes the distance between the end effector and the target ball. The target ball129

is thrown from a position close to the robot in a random direction and the robot has to retrieve the130

ball and return it to the origin point at (0, 0, 0) (marked in blue in Fig.1) within 10s. We repeat this131

experiment with 100 random throws for each approach.132

Results. The results are listed in Tab.1. We can see that our method solves the task with high133

efficiency. The few failure cases were due to sharp turns when the robot was moving at a high134

speed. The results also highlight the necessity of randomizing the control frequency during training,135

since the ball is a moving target and commands change very quickly, especially in the beginning of136

an episode. When investigating the runs that use a PD controller, we noticed an interesting detail:137

The PD controller is often able to approach the ball and lower the gripper to a position right above138

but it is not able to bend the body of the robot towards the goal. And indeed, there is no way in which139

the high-level policy can communicate this directly to the low-level policy. The goal command for140

the gripper is relative to the body of the robot, i.e., moves with the base. In other words, the high-141

level policy found a way to “trick” the low-level policy into lowering its body when approaching the142

goal.143

Conclusion. We presented a hierarchical control approach for combining quadruped locomotion144

and robot arm manipulation and we demonstrated its efficacy on a difficult rolling ball pickup task.145

There are still several avenues for improvement of this method that we would like to explore. So146

far, we have only trained the method on flat ground but going forward, we want to investigate how147

the method handles bumpy terrain and stairs. We are also excited to train the high-level policy on148

different tasks with the same low-level policy to analyze how well our method generalizes to new149

problems and environments.150

4

References151

[1] F. Rubio, F. Valero, and C. Llopis-Albert. A review of mobile robots: Concepts, methods,152

theoretical framework, and applications. International Journal of Advanced Robotic Systems,153

16(2):1729881419839596, 2019.154

[2] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-155

tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.156

[3] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-157

ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,158

2022.159

[4] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-160

tion with asynchronous off-policy updates. In 2017 IEEE international conference on robotics161

and automation (ICRA), pages 3389–3396. IEEE, 2017.162

[5] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Goldberg.163

Learning ambidextrous robot grasping policies. Science Robotics, 4(26):eaau4984, 2019.164

[6] S. Zimmermann, R. Poranne, and S. Coros. Go fetch! - dynamic grasps using boston dynam-165

ics spot with external robotic arm. In 2021 IEEE International Conference on Robotics and166

Automation (ICRA), pages 4488–4494, 2021. doi:10.1109/ICRA48506.2021.9561835.167

[7] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter. A unified mpc framework for168

whole-body dynamic locomotion and manipulation. IEEE Robotics and Automation Letters, 6169

(3):4688–4695, 2021.170

[8] Y. Ma, F. Farshidian, T. Miki, J. Lee, and M. Hutter. Combining learning-based lo-171

comotion policy with model-based manipulation for legged mobile manipulators. CoRR,172

abs/2201.03871, 2022. URL https://arxiv.org/abs/2201.03871.173

[9] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: Learning a unified policy for174

manipulation and locomotion. arXiv preprint arXiv:2210.10044, 2022.175

[10] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In Proceedings176

of the 1997 Conference on Advances in Neural Information Processing Systems 10, NIPS ’97,177

page 1043–1049, Cambridge, MA, USA, 1998. MIT Press. ISBN 0262100762.178

[11] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-179

position. CoRR, cs.LG/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.180

[12] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for181

temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.182

ISSN 0004-3702. doi:https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.183

sciencedirect.com/science/article/pii/S0004370299000521.184

[13] P. Bacon, J. Harb, and D. Precup. The option-critic architecture. CoRR, abs/1609.05140, 2016.185

URL http://arxiv.org/abs/1609.05140.186

[14] S. Yu, S. Rammohan, K. Zheng, and G. Konidaris. Hierarchical reinforcement learning of187

locomotion policies in response to approaching objects: A preliminary study, 2022. URL188

https://arxiv.org/abs/2203.10616.189

[15] C. Li, F. Xia, R. Martin-Martin, and S. Savarese. Hrl4in: Hierarchical reinforcement learning190

for interactive navigation with mobile manipulators, 2019. URL https://arxiv.org/abs/191

1910.11432.192

[16] G. Comanici and D. Precup. Optimal policy switching algorithms for reinforcement learning.193

volume 2, pages 709–714, 01 2010. doi:10.1145/1838206.1838300.194

5

http://dx.doi.org/10.1109/ICRA48506.2021.9561835
https://arxiv.org/abs/2201.03871
https://arxiv.org/abs/cs/9905014
http://dx.doi.org/https://doi.org/10.1016/S0004-3702(99)00052-1
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
http://arxiv.org/abs/1609.05140
https://arxiv.org/abs/2203.10616
https://arxiv.org/abs/1910.11432
https://arxiv.org/abs/1910.11432
https://arxiv.org/abs/1910.11432
http://dx.doi.org/10.1145/1838206.1838300

[17] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox. Gpu-accelerated195

robotic simulation for distributed reinforcement learning. In Conference on Robot Learning,196

pages 270–282. PMLR, 2018.197

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization198

algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.199

[19] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively200

parallel deep reinforcement learning. CoRR, abs/2109.11978, 2021. URL https://arxiv.201

org/abs/2109.11978.202

6

http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/2109.11978

A Appendix203

A.1 Implementation Details204

The reward terms for the high-level policy are as follows:205

rgoal distance (normalized Euclidean distance between gripper and goal) is calculated as206

rgoal distance =
dMAX − dcurr

dMAX
,

where207

dMAX .. maximal distance a goal can spawn from the robot’s base.208

dcurr.. current distance between end effector and goal.209

rgoal distance eps (bounded exponential reward for minimizing the distance between gripper and210

goal) is calculated as211

rgoal distance eps = e
−dcurr

σ ,

where212

σ.. hyperparameter, set to 0.1 in our experiments.213

rfacing goal (encouraging facing towards the goal) is calculated as214

rfacing goal = || ⃗fwd− ⃗goal||,

where215

⃗fwd.. unit vector representing the forward direction of the robot body, parallel to the ground plane.216

⃗goal.. unit vector representing the direction towards the goal, also ground-parallel.217

218

A.2 Hyperparameters219

Parameter Value

σ 0.1
coefficient for rgoal distance 1.0
coefficient for rgoal distance eps 1.5
coefficient for rfacing goal 0.5

7

	Introduction
	Related Work
	Method
	Experiments
	Appendix
	Implementation Details
	Hyperparameters

