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ABSTRACT

We examine a multi-armed bandit problem with contextual information, where
the objective is to ensure that each arm receives a minimum aggregated reward
across contexts while simultaneously maximizing the total cumulative reward. This
framework captures a broad class of real-world applications where fair revenue
allocation is critical and contextual variation is inherent. The cross-context aggrega-
tion of minimum reward constraints, while enabling better performance and easier
feasibility, introduces significant technical challenges—particularly the absence
of closed-form optimal allocations typically available in standard MAB settings.
We design and analyze algorithms that either optimistically prioritize performance
or pessimistically enforce constraint satisfaction. For each algorithm, we derive
problem-dependent upper bounds on both regret and constraint violations. Further-
more, we establish a lower bound demonstrating that the dependence on the time
horizon in our results is optimal in general and revealing fundamental limitations
of the free exploration principle leveraged in prior work.

1 INTRODUCTION

The Multi-Armed Bandit (MAB) problem provides a foundational model for sequential decision-
making under uncertainty (Thompson, |1933}; [Lattimore and Szepesvari, |2020; |Auer et al., [2002;
Bubeck and Cesa-Bianchil, [2012). At each step of a T" period run, an agent selects one of K
actions (arms), each yielding stochastic rewards, with the goal of maximizing cumulative reward. A
central challenge is to balance exploration—gathering information about unknown rewards—and
exploitation—leveraging current knowledge to optimize performance. Many variants and extensions
of the synthetic bandit framework have been proposed to address specific challenges arising in
real-world applications. In particular, for clinical trials, stringent safety constraints require the
selection of treatment—dosage combinations that balance efficacy with the mitigation of adverse
effects (Chen et al.| 2022; [Pacchiano et al.,2021; | Amani et al.,[2019). Similarly, budget-constrained
scenarios give rise to knapsack bandits, where the objective is to maximize cumulative rewards while
adhering to a fixed resource allocation (Badanidiyuru et al.l 2018;|Chzhen et al., 2023)). Additionally,
fairness considerations may impose further constraints, such as ensuring equitable exposure across
arms (Wang et al., 2021} |Li et al., 2020) or guaranteeing minimum revenue thresholds for each
arm (Baudry et al.|[2024). Those settings require to extending the MAB framework to accommodate
with reward maximization under various constraints.

We investigate a contextual MAB problem subject to per-arm minimum revenue guarantees. The
learner’s objective is to maximize the cumulative reward over time while ensuring that, on average,
each arm k achieves a reward of at least Ay, a predefined minimum aggregated reward over all
contexts. The learner must balance the trade-off between selecting the best arm in a given context
and favoring a suboptimal arm to ensure it meets its minimum revenue requirement. As illustrated in
Figure[T] depending on the problem parameters, different regimes can arise: (i) infeasibility, where the
constraints cannot be satisfied; (ii) feasibility with high cost, where satisfying the constraints requires
playing significantly suboptimal arms; and (iii) feasibility with moderate cost, where the performance
gap is small and balancing reward and constraint satisfaction is relatively easy. This rich setting
is motivated by several real-world applications. For instance, consider a movie recommendation
platform that collaborates with multiple content providers. Each provider offers a catalog of movies
spanning various categories, such as action, romance, and comedy. Users interact with the platform
by selecting a category, and the system recommends a movie accordingly. While the platform aims to
match users with the most relevant content (i.e., to maximize the reward), it must also ensure that
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each provider receives a minimum level of user engagement or revenue. This guarantee is essential to
maintain providers’ incentives for participating in the platform.
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Figure 1: Illustration of a MAB problem with minimum aggregated reward constraints with two
arms and multiple contexts. Arm 1 is optimal in all contexts. We fix the threshold A; for arm 1 and

we consider how different thresholds )\g) for arm 2 change the problem. If Ay = AS’% the problem
becomes infeasible. If Ay = Aé2), then arm 2 must be played frequently in contexts ¢ > 6, which

substantially reduces overall performance due to the large performance gap. However, if Ao = )\gl),
it is sufficient to play arm 2 in contexts ¢ < 5, where the performance gap is small, thus preserving
overall reward.

1.1 RELATED WORK

Motivated by the demands of real-world applications, several extensions of the MAB framework
have been proposed. The problem studied in this work belongs to the broader class of constrained
bandit problems, which have been investigated under various motivations such as safety (Chen et al.,
2022), fairness (Wang et al., 2021), return-on-spend guarantees (Feng et al.| [2023)), conservative
behavior (Wu et al.} 2016} |[Deb et al., [2025)), and knapsack constraints (Badanidiyuru et al.,|2018;
Bernasconi et al., [2024).

Constrained bandit problems has been studied under two distinct perspectives: a first stream of
research focuses on hard constraints where violations are strictly prohibited, for instance in the linear
constrained bandits setting (see (Pacchiano et al.,[2021; /Amani et al., 2019)). These approaches
require prior knowledge of a feasible (safe) policy and employ carefully constructed pessimistic
confidence sets to maintain zero constraint violation while achieving O(v/T') regret. An alternative
approach relaxes the initial safe action requirement, allowing round-wise constraint violations while
studying the fundamental trade-off between performance and constraint satisfaction, the two central
metrics in constrained bandit problems. Notably, (Chen et al.,[2022) developed two algorithms for the
non-contextual MAB setting: the first achieves O(+/T) regret with logarithmic constraint violation,
while the second exhibits the inverse behavior. (Gangrade et al.,|2024) introduced an algorithm for
safe linear bandits to learn the optimal action defined by max,cpa z ' 6* s.t. Az < b, achieving

poly-logarithmic regret with (’)(\/T ) constraint violation.

Bandits with knapsacks (BwK) have been extensively studied (Tran-Thanh et al., 2012} Badanidiyuru
et al.l |2014; Sivakumar et al.} [2022; Kumar and Kleinberg, [2022; |Han et al., 2023}, |Slivkins et al.,
2024; \Guo and Liu, 2025). In particular, (Agrawal et al.l 2016) extend BwK to the contextual
case using the optimization framework of (Agarwal et al., 2014), incorporating constraints via a
primal-dual approach to achieve O(+/T') regret. However, there is a fundamental difference between
BwK and our setting: in BWK, costs accrue until a fixed budget is exhausted, which inherently
guarantees constraint satisfaction, whereas in our setting the constraint is stochastic and enforced
only in expectation, allowing for trade-offs between regret and constraint violation.

A special case of our setting is the context-free stochastic MAB problem with minimum revenue
guarantees per arm studied in (Baudry et al.|[2024)). In this setting, the optimal solution consists in
sampling arms proportionally to the revenue guarantee over performance ratio for each arm which
translates in pulling all arms a linear fraction of time. They propose different strategies to learn the
optimal allocation online, building on optimistic/pessimistic estimates for the arms’ performance:
optimistic estimation enhances reward performance at the cost of higher constraint violations, while
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pessimistic estimation improves constraint satisfaction but increases regret. Interestingly, they show
one can favor constant performance regret at the cost of v/7" constraint violation and vice versa, thus
improving the results of (Chen et al.,[2022). From a learning-theoretic standpoint, the constant regret
is attained thanks to the free exploration induced by the optimal allocation structure where all arms
are sampled with constant probability.

A generalization of our setting is the stochastic contextual bandit problem under general constraints,
considered by (Slivkins et al [2023)). Assuming strict feasibility characterized by a known Slater
constant v*, they introduce a primal-dual optimization algorithm and establish (’)(\/T /") upper
bounds on both regret and constraint violation. (Guo and Liul 2024)) extend this setting by removing
the Slater condition, proving O(T3/*) bounds for both regret and constraint violation. Furthermore,
when Slater’s condition does hold, their method achieves improved bounds of O(v/T /v*?), notably
without requiring prior knowledge of v*. The recent work of (Guo et al.}2025) considers exactly the
same setting and assumptions as (Guo and Liu, [2024)), but proposes an algorithm that integrates a
primal-dual approach with optimistic estimation, yielding O(+/T") bounds on both metrics.

1.2 CHALLENGES AND CONTRIBUTIONS

How to leverage contextual information while preserving revenue guarantee for each arm is a
challenging (and open) question (Baudry et al.,|2024). The reason is that most contextual learning
problems can be reduced to a family of "local" independent problems. For instance, a contextual
bandit problem reduces to many standard multi-armed bandits (Perchet and Rigollet,|2013)), where
the optimal decision can be computed based solely on the reward functions, context by context. With
revenue constraints, this would be possible if the latter were defined context-wise — i.e., by specifying
Ak, for all pairs (k, ¢), and would result in straightforward extension (by considering |C| parallel
instances). Unfortunately, with aggregated constraints, this local reduction is impossible: it is not
enough to learn that an arm is sub-optimal for a given context; what really matters is how much
sub-optimal it is compared to others, so that a global planning can be computed. Even the planning
problem becomes more complex with global constraints; we shall show that it can be reduced to
solving a linear program, which preserves computational efficiency but sacrifices the closed-form
solution that played a central role in the theoretical analysis of (Baudry et al.| 2024)).

While the works of (Slivkins et al., 2023 /Guo and Liu, 2024; Guo et al., 2025)) address contextual
MARB problems that subsume our setting, we claim that their primal-dual approach—which guarantees
(’)(\/T) bounds for both performance and constraint regret— is suboptimal in our case, as it overlooks
the finer structure inherent to our problem formulation.

Consequently, our work is the first to bridge the gap between the non-contextual MAB with minimum
revenue constraints studied in (Baudry et al.,|2024), and the contextual MAB frameworks with general
stochastic constraints explored in (Slivkins et al.,[2023}|Guo and Liul 2024} |Guo et al., 2025). We
achieve this by introducing a novel approach that circumvents the absence of a closed-form solution
to the planning problem, without relying on the primal-dual methodology. Our main contributions
are the following:

1. We introduce two novel algorithms, OLP and OPLP, that seamlessly integrate linear
programming with optimistic and pessimistic estimation techniques. These algorithms
effectively navigate the trade-off between performance and constraint satisfaction, each
capturing distinct points along the Pareto frontier of these competing objectives. They
provably achieve poly-logarithmic regret with (’)(\/T ) constraint violation, and vice versa.

2. The analytical techniques employed in this work are non-standard and may be of indepen-
dent interest to the MAB literature. In particular, we derive poly-logarithmic bounds by
introducing a novel and more refined notion of the sub-optimality gap, which leverages
the structure of the underlying linear program and quantifies the complexity of learning
the optimal policy. The proposed methodology extends naturally to a wide range of MAB
problems that require enforcing global linear constraints.

3. We establish a lower bound that confirms the (near) optimality of our algorithms and we
highlight a more intriguing interpretation of the exploration-exploitation trade-off in MAB
with revenue guarantees. While non-contextual setting enjoys a free-exploration property
inherited from the constrained structure, this no longer holds in the contextual setting, where
the exploration-exploitation trade-off is reinstated.
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2 PROBLEM STATEMENT

Notations Let a denote a generic quantity of interest. We use the notation ay, . € R to represent
the value associated with arm k in context c. The vector a. = (ak,c) ke{l,..,K} in R¥ collects these
values across arms for a fixed context ¢, and the matrix a = (ak,c)ke{l,...,K},cec in REx[C| gathers
all arm-context values. We denote by ax, .(t), a.(t), and a(t) the time-dependent versions of these
quantities at round . We denote by ey, the matrix in RX*X with a 1 in the (k, k)-th position and

zeros elsewhere, and by ey, the k-th canonical basis vector in RX. The set of arms is X = {1,..., K},
and the set of arm-context pairs is J = {(k,c) | k € K, ¢ € C}, with total cardinality x = K|C|.
IC|

Finally, 7 denotes the /-dimensional probability simplex, 7 ' denotes the set of K x |C'| matrices
whose columns each belong to the simplex 7, ()4 = max(z,0) represents the positive part of z,
and |S| stands for the cardinality of a set S.

2.1 SETTING

We study a multi-armed bandit problem involving K stochastic arms and a number of contextual
scenarios. Let C denote the set of all possible contexts where each ¢ € C occurs with probability p..
The expected reward of arm k in a given context c is represented by fix .

At each time step ¢, the learner observes a con- MAB-ARC: MAB with Aggregated Revenue
text c;, selects an arm k; € K and receives a re- (Constraints

ward r;, which is independently drawn from the Inputs: {\; hecx
distribution Dy, .,. At each time ¢, the choice of g+ — 1 to T do
the arm is based on history of past interactions

Observe context ¢;

Hi1 = (c1,k1,715. .. Ct—1,ke—1,7:—1) and cur- Choose arm k;
rent context c;. The interaction structure of this Receive reward 7y ~ fuy,
. . . (&
Multi-Armed Bandit with Aggregated Revenue Con- Update H; — H;_1 U {ét tkt re}
- ) )

straints (MAB-ARC) is summarized on the right.

The learner aims to maximize the expected cumulative revenue over 7' time steps while ensuring
that the expected aggregated revenue from each arm k over all contexts is larger than a predefined
threshold \;.

Planning Problem. Formally, given known thresholds Ay and mean reward p, the optimization
problem is defined as:

T

Z Tt L[, =)

t=1

OBJ : max E

> M T.
{kt}er, .1 Z Ak

T
Zrtl subject to: Vk € I, E
t=1

Optimal solutions to this constrained optimization problem consist in policies, i.e. allocation rules
that map the current context to the probability of sampling an arm. We summarize allocation rules by
w, where wy, . = P(k|c). Interestingly, there is in general no unique optimal solution to OBJ - but a
set of time-varying allocation rules, of the form {w*(¢) };:<r. Indeed, the objective and constraint
criteria do not penalize strategy that periodically violates then over-satisfies the constraint as long
as it remains met over the whole trajectory. In contrast, an optimal stationary solution, denoted by
w™*, would ensure uniform performance and constraint satisfaction over the trajectory. This stability
is crucial in applications where constraint satisfaction is monitored over sliding windows, or where
oscillatory behavior must be strictly avoided, such as in clinical or medical trials. Interestingly, an
optimal stationary policy can always be derived from an optimal time-varying one by leveraging the

linearity of the problem and the use of expectations, constructing w* = %]E {Zthl Q*(t)} .

We focus from now on the stationary solution of the planning problem, which can be reformulated as
solution of the linear program:

LP(™, ™) s max f(u, w) with  f(p,w) =3 pep. we

S. L. gk(ﬁconsvw) Z Ak? Vk € IC? gk(qu

(S

) =D, o Pe bl exrwe

hi(c,w) = el—lc—wm qe(w) = lTwC
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Namely, f denotes the expected total revenue; gy, represents the expected aggregated revenue of arm
k over all contexts; hy(c, w) = wy . is the probability of selecting arm % in context ¢; and g, is the
£1-norm of w,, used to ensure that the vector lies in the K -dimensional probability simplex. Hence,
the optimal stationary allocation w* is the solution to LP(u, 1) Eland sampling arm k according to
the optimal weights w?* upon observing context c yields the optimal strategy of interest for OBJ.

Learning Problem. At each round ¢, the learner utilizes the available information H;_; U ¢;, and
selects an arm according to learned allocations w(t). To evaluate the performance of the learner’s
algorithm, two key metrics are considered: the performance regret and the constraint violation.

Definition 1. The cumulative regret R and the cumulative constraint violation Vr are respectively
defined as:

T

T
Re =3~ (flww) — frw®) . Vr=3> (M —almw®)) -
t=1 t=1 kek
The positive part accounts only for non-negative deviations and its role is twofold. First, it favors
stable long-term behavior and prevents convergence to optimal time-varying allocation. Second, it
penalizes strategies that oscillate during the learning between being overly conservative and severely
violating the constraints to ease the exploration, hence favoring a tracking of w* in a round wise
stable manner.

2.2 ASSUMPTIONS

We rely on the following standard assumptions, which concern the stochastic nature of the setting
and the feasibility of the associated planning problem.
Assumption 1 (Sub-Gaussian rewards). The reward distributions are conditionally 1-sub-Gaussian:

VoeR, E [exp (b (re — Elre | (e, kt)])) | (ct,kt)} < exp (b;) )

Assumption 2 (Known Contexts Probabilities). The contexts probabilities {p.}.cc are known.

Assumption[2)is mild and primarily adopted for simplicity. Since context arrivals are exogenous to the
decision-making process, their distribution can be estimated online by leveraging the full-information
nature of context observations. Although this may introduce an additive estimation error, the error
vanishes naturally, as context occurrences are fully observable and independent of the learner’s
actions. Consequently, this assumption is common in the literature (see Guo et al.| (2025)).

Assumption 3 (Strict Feasibility and Non-degeneracy). The optimization problem LP(, p) is
strictly feasible and non-degenerate.

Strict feasibility is required only for OPLP. The corresponding feasibility margin is quantified by v*.
Definition 2 (Feasibility Margin).

7* :=max {s € R}, ‘ D(s) £ 0}, where O(s) := {Q € 77‘[9 ‘ Vk € K, gr(p,w) > A\ + s} .

In addition, we quantify the sensitivity of the optimal performance w.r.t. uniform constraint perturba-
tions through a problem dependent constant S.,+, intrinsically linked to the feasibility margin. We
prove in Appendix [B] Prop.[B.T|that S.,« < oo for any MAB-ARC instance satisfying Assumption

Definition 3 (Performance Sensitivity Coefficient).

Sy i=min{S € Ry : V0 < 51 < 52 <%, max f(p,w)— max f(pu,w)<S(s2—s1)}
wed(s1) weP(s2)

3 ORACLE-GUIDED BEHAVIOR AND OPTIMALITY CHARACTERIZATION

Proper Tracking of the Optimal Planning. The problem formulation yields a linear program (LP)
optimizing allocations over the probability simplex, whose solution lies at a vertex determined by

"For brevity, we adopt the shorthand: w* = arg max LP( I ).
w
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binding constraints (Boyd and Vandenberghel 2004; Nesterov, |2014)). The characterization of the
optimal solution can thus be decomposed into identifying the optimal active set of constraints Z* for
LP(p, pt), then computing the best allocation that saturates these constraints. More precisely:

() If k € Z* N K, then gx(p, w*) = A, indicating that arm k exactly attains its minimum
required revenue.

(i) If (k,c) € I* N J, then hy(c,w*) = 0, which implies that arm & is never selected in
context ¢, i.€., w;_yc =0.

Consequently, the oracle effectively solves the optimization problem OPT(p, pt, Z*), defined as:
OPT(HObj7H°0”5, 7): maximize f(u°%, w)

w -

subjectto g (u",w) =Nk, Vke KNI,

hi(c,w) =0, VY(k,c)e TNI,
g.(w) =1, VceC.

Directly quantifying the sub-optimality of an allocation w w.r.t. w* is challenging due to the linear
nature of the allocation problem. Yet, the introduction of the intermediate quantity Z allows us to
retrieve a notion of gap, similarly to standard MAB problem. In what follow, we define p(Z) which
quantifies the sub-optimality of a candidate set Z. p(Z) will play a key role in showing that Z* can be
quickly identified by a learning strategy.

Optimality Characterization. One form of sub-optimality arises from infeasibility—that is, the
absence of any allocation that satisfies the constraints in Z. We formalize this as follows.

Definition 4 (Feasibility Gap). For any set Z, define: s(Z) = min{s > 0 : 1(s,Z) # 0}, where:
VkE’Cv gk(ﬂ7w) Z)\kfsa
(s D)= weng : YkeKNI, ge(p.w) < A+ s,
V(k,c) e TNZ, hi(c,w)=0

The quantity s(Z) captures the minimum slack required to make the revenue constraints feasible while
saturating - up to some margin - the arms in C N Z and satisfying the allocation sparsity prescribed
by J NZ (i.e, the set of (k, ¢) s.t. wy . = 0).

Beyond feasibility, we also quantify sub-optimality from a performance standpoint.

Definition 5 (Performance Gap). For any candidate set T, we define the performance sensitivity
L(T) and the performance gap P(T) as:

LZ):=min{L e Ry :Vs(T) <s1 <s2, max f(p,w)— max f(p,w) < L(s2—s1)},
weP(s2,T) - weP(s1,I)

PI) = (f(ﬁxﬂ*)*ﬂeff(lsaé))z)f(ﬁvﬂ))/(max(l,s.y*)+E(I)).

The denominator of P(Z), beyond its technical role in the proof, can be interpreted as a scaling factor
that reflects both the geometry of the candidate set Z and the problem’s sensitivity to perturbations.
Propositionin Appendix shows that, for any candidate Z, £(Z) is finite . Combining feasibility
and performance considerations, we define the overall sub-optimality gap as follows:

Definition 6 (Sub-optimality Gap). For a candidate set I, the sub-optimality gap is defined as
p(Z) := max (s(Z), P(I)), with the worst-case sub-optimality given by p* := Il%lir%*p(l).

This characterization enables distinguishing optimal from suboptimal sets of saturated constraints.
Lemma formalizes this, showing that p(Z) plays a role analogous to the gap in classical MAB.
The proof is deferred to Appendix [B.T]

Lemma 3.1 (Suboptimality Characterization). Under Assumption[3  p(Z*) =0 and p* > 0.

4 ALGORITHMS

The learner’s objective is to find the optimal allocation w* without prior knowledge of the true
parameters . While estimates can be constructed from data, the agent must carefully trade-off
between exploration and exploitation. We summarize in this section the confidence set construction
and our proposed strategies that focus either on performance or on constraints satisfaction.
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Confidence Set. The unknown parameter p can be estimated online from past interactions with a
standard empirical mean, formally given by:

Mk c = T er ks=k,cs=c]» where nk‘vc(t) = Zﬂ[ks:k7 cs=c| M
Further, the concentration of the empirical estimator is prescribed by the set
. . . 2log (28
Si((t),0) = {p : Y(k, ), lfin,e(t) = purel < ene(t)}, with ey o(t) = nk(t(—al)) (@)

Proposition . T|ensures that S; is a valid confidence set for g and provides prediction error bounds

on the performance and constraints violation. The proof is deferred to Appendix

Proposition 4.1 (Confidence set). Under Assumption[l| let fi(t) and S; defined in Eq.[l|and[2] then:
(i) Vvt > 1, P(p € S(a(t),8) >1 -4,

(i3) Vt > 1, wp. at least 1 — 6, for any w € W‘Igl, a(t) € Se(fa(t),6) and k € K,
|9 (A1), w) = gi (. w)| < pr(e(t).w),  where  pr(e(t),w) =D 2ex.c(t)wrc(t),

|F(R(), w) — f(p,w)| < ple(t), w), ple(t), w) = Zkem pr(€(t), ).

Equipped with the confidence set construction, we define the upper and lower confidence bounds as
UCB(t) = ja(t) + €(t) and LCB(t) = ja(t) — €(t), both of which belong to S;(a(t), 0).

OLP: Optimistic Linear Programming OPLP: Optimistic-Pessimistic Linear Program-
Inputs: {Ak}ke{l ..... K} {pc}cec ming
fort=1,...,Tdo 1 Inputs: {)\k}ke{l ..... K}» {pc}eec

Observe context Ct 2 fort=1,...,T do

Set§ « 1/t Observe context ¢;

Ie| if LP(UCB(t),LCB(t)) is feasible then

WET &

3

w(t) = argmax LP(UCB(t), UCB(t)) 4 Setd < 1/t
5
6

w(t) = argmax LP(UCB(1), LCB(t))

Sample arm k; ~ w,, (t)
Receive reward 1y ~ fig, ¢, werld!
Update n(t), fa(t), €(t) 7 end
Update history H; = H;—1 U {cs, ki, e} 8 else
end 9 w(t) = argmlecm‘x LP(UCB(t), UCB(t))
wenT
We propose two algorithms that focus either on 10 end K
the performance or on the constraint v1olat1.0n. " Sample arm k; ~ we, (t)
OLP adopts an optimistic approach by solving Receive reward 7; ~ fux

the underlying LP problem using UCB(t) as a dat - ’
parameter for both the objective function and the ? Update n(t), f2(t), €(?)
constraints. Under Asm.[3] the inner maximiza-
tion problem remains feasible at all times.

14 Update histor;Ht =M1 U{ct, ke, 7}
15 end

On the other hand, OPLP proposes an asymmetric estimation strategy that leverages an optimistic
estimate UCB(t) for the objective and a pessimistic estimate LCB(¢) for the constraints parameters.
In contrast with OLP, the inner maximization problem may not always be feasible. In such cases, a
fallback procedure based on a doubly optimistic approach is used instead.

5 MAIN RESULTS

5.1 ALGORITHM GUARANTEES

The following theorems provide regret and constraint violation guarantees for OLP and OPLP,
highlighting their respective focus on reward performance and constraint satisfaction. The proof
sketches are presented in Appendix [D] while the detailed proofs are deferred to Appendix [E]
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Theorem 5.1 (Upper bounds for OLP). Under Assumptions|[I} [2|and 3] the performance and con-
straint regret of OLP satisfy:

ERr] <O <10g(T)2> ,

p*

E[Vr] <O <1°gp(*T)2 + VK NZ*|log (T) T) .

Theorem 5.2 (Upper bounds for OPLP). Under Assumptions [1} 2| and [3| the performance and
constraint regret of OPLP satisfy:

E[R7] <O <(W12 + plg> log (T)* + v/|K N T*| log (T) T> ,

EVr] <O (/*\2 log (T)2> , where A = Z Ak
v keKx

Discussion. OLP and OPLP enjoy regret guarantees that stand at two different points in the
performance/constraint violation Pareto front. OLP prioritizes performance, achieving polyloga-
rithmic regret, but may incur constraint violations as large as O(v/T). Interestingly, its bounds
adapt to the number of arms that saturate their minimum reward constraints. In particular, when
no arm saturates its constraint Eki.e |KC. N Z*| = 0), we recover polylogarithmic guarantees for both
regret and constraint violations. In contrast, OPLP emphasizes constraint satisfaction at the cost of
performance. Its theoretical guarantees depend on a richer set of problem-dependent constants. In
Theorems [5.1]and[5.2] p* characterizes the speed at which each algorithm converges to the optimal
set of saturated constraints, i.e., the point at which Z, = Z*. The constant v* - which appears only
in OPLP - arises from its intrinsic phased structure and quantifies how fast LCB becomes feasible.
The pessimistic strategy ensures a more conservative treatment of constraints by incorporating safety
margins. However, this comes at the expense of performance, as a portion of the allocation budget is
diverted from non-saturating (typically high-reward) arms to those saturating their constraints leading
to v/T loss in performance.

5.2 LOWER BOUND

In line with previous works in the non-contextual setting, OLP and OPLP enjoys a cumulated
guarantee on R + V of order v/T'. On the other hand, the performance (resp. constraint violation)
regret bound for OLP (resp. OPLP) is only logarithmic, in contrast with the no-regret (constant)
guarantee of (Baudry et al.,2024)). We propose in this section a lower bound which stresses this is
not due to algorithmic design or analysis weaknesses but structural to the MAB-ARC setting. In
particular, this refutes the free exploration property leveraged in prior work as soon as |C| > 1 and
K > 2.

Let v = (u, A, {pc}eec) represent a generic Table 1: Nominal instance v/(?).
MAB-ARC instance, and denote by R, (1)

and V,, (T the performance and constraint re- k ‘ Pe bk,c ‘ A
gret under policy 7 on instance v. We consider | e=1 c—9 c=3 |

a nominal instance v(*) with K = 3 arms and

IC| = 3 contexts as well as a set of nearby in- | | H1,1 =3 fpu2 = } ps =1 %
stances Y (v(?), ¢) defined in Table. and Eq. 2| p21=0 pap=35 p23=0/37
respectively. 31 #31=0 p32=0 psz=2]1

T, e) = {V = (u, 2O (PO : po ‘M2,2 - /,LéO%’ < %, otherwise iz, . = u;ﬁi } 3)
Theorem 5.3 (Lower Bound). Let v(?) and Y (1), &) defined in Table|l|and Eq.[3| then:
(i) ForT' > 16, there exists e small enough such that:
min = max E[R,(T)+ V(1) = (\/T) .

T veY(wO er)
(ii) For any consistent policy w, 3Ty > 0st. VT > Ty, E [Ry(mﬂr (T)} =QogT).

2This occurs when the revenue constraints are small compared to the optimal performance of each arm.
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Discussion. Theorem|5.3]establishes two distinct results (the proof is deferred in Appendix[E.I). The
first assertion proposes a locally minimax lower bound around the nominal instance ©(?) and confirms
that no strategy can enjoy a cumulated regret R + 1 uniformly better than v/7" in a neighborhood of
v(0), There always exists a nearby alternative which suffers from large performance (R) or constraint
violation (V) regret. Such result offers a finite time counterpart to the asymptotic lower bound of
(Baudry et al., 2024) extended to the contextual setting but limited to the instance v/(?).

Theorem (1) indicates that both OLP and OPLP offer the correct /7' dependency (but for
logarithmic factor) for the overall regret R + V but leaves open the question of whether the pair
(R, V) is optimally positioned in the performance/constraint violation Pareto front. Indeed, in the

non-contextual setting, constant performance regret and /7" constraint violation is attainable.

The second assertion (%) rules out this possibility in the contextual setting and shows that no policy
can offer better guarantees than /7 constraint violation and log(7’) performance regret for the
instance (). This demonstrates the near-optimality of OLP with respect to 7’ but more importantly
refutes the possibility of free exploration in the contextual setting. This is in shark contrast with
the non-contextual setting where all arms are sampled linearly with 7", a property heavily exploited
in (Baudry et al.}[2024). In MAB-ARC, optimal allocations may assign zero probability to certain
arms, meaning that no natural exploration occurs, which reinstates the exploration-exploitation
trade-off. Notice that while v/(°) exhibits such optimal allocation structure, the following lemma
ensures this is shared among a large family of instances. The proof of Lemma [5.1]is deferred to

Appendix [F.2]

Lemma 5.1. For any MAB-ARC instance such that K > 2 and |C| > 1, there exists at least one pair
(k,c) € J for which the optimal allocation satisfies wj; . = 0.

Numerical Illustrations. For completeness, we conduct numerical evaluations on synthetic data to
concretely illustrate the concept of Z* and to compare our algorithms with Optimistic® from (Guo
et al.| (2023)), as well as with DOC and SPOC from Baudry et al.| (2024). We further examine the
sensitivity of the OPLP algorithm with respect to variations in v*. Complete experimental details
and results are provided in Appendix

6 LIMITATIONS AND FUTURE WORK

Beyond the optimistic and pessimistic strategies discussed in this paper, the greedy policy is well-
known but inefficient in the contextual setting. In the single-context case Baudry et al.[(2024), it
achieves sublinear regret as constraints enforce exploration: satisfying per-arm revenue constraints
requires playing all arms, improving estimates over time. In contrast, in the multi-context setting,
constraints do not inherently induce exploration—a counterexample illustrating this is provided in
the Appendix [H]

We consider finite arms and context sets to remain within the standard MAB framework. Extending
to vary large or infinite spaces would require additional structure on the reward function—such
as Lipschitz continuity or parametric assumptions—to ensure tractability. While this extension is
beyond the scope of the present work, it represents a promising direction for future research.

CONCLUSION

We introduced a novel contextual bandit problem with minimum aggregated reward constraints, along
with analytical tools tailored to the structure of this constrained optimization problem. We proposed
two algorithms that explore different regions of the Pareto frontier—one favoring performance, the
other emphasizing constraint satisfaction. Our upper bound analysis highlights the adaptability of the
proposed approach across regimes with both saturating and non-saturating constraints, outperforming
standard linear bandit models that rely on self-normalized concentration inequalities and fail to
capture the fine structure of the problem. We also established a lower bound that confirms the near
optimality of our upper bounds and challenges the previously leveraged notion of free exploration
in the non-contextual setting. While our primary focus is on guaranteeing a minimum aggregated
revenue per arm, the algorithmic and analytical framework generalizes naturally to broader constraint
structures, such as ensuring that the cumulative reward from a subset of arms exceeds a given
threshold—a formulation relevant in generic monitoring problems.
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A USEFUL INEQUALITIES

Theorem A.1 (Hoeffding’s Inequality). Let X1, ..., X,, be a sequence of independent 1-subgaussian
random variables with mean pi. Define i = % >, Xi. Then, for any € > 0, we have:

ne

2
P (i~ > o) < 2exp (—2). @

Fact A.1. For sufficiently large T, the following inequality holds:

iﬁ<2[ﬁ—11+1<0(ﬁ) ®)

Fact A.2. For sufficiently large T, the following inequality holds:
T

S 1 <log(T) +1< O (log (1)) ©)

t=1

B ORACLE BEHAVIOR

Lemma B.1. Let w be the optimal solution of the problem OPT (., i, T*). The following property
holds: -

I lrcyegnz) =0, then Ljpexnzs) =0 = py . = ||/ co-

In other words, for any arm k in context c, if the optimal allocation probability wy, . is strictly positive
(wy,c > 0) and the arm’s revenue g (¢, w) exceeds its minimum constraint A\ (i.e., g (1, w) > Ax),
then arm &k must necessarily be the optimal arm for context c.

Proof of Lemma|B.1} The proof is based in the dual analysis of the optimization problem. Recall:

OPT(p, p,7) :  maximize f(p,w)

subjectto  gr(p,w) = A\, Ve € KNI,
0, V(k,c)eJNI,

QC(Q) =1, VceC.

Let «, 3, and 7 be dual vectors of dimensions K, x, and |C
associated with the primal problem is:

L(w,a,B8,m) = f(pw)+ > ak(gk(g,m)—/\k>+ > Bkchk(c,w)Janc(qc(w)—l)

, respectively. The Lagrangian function

kekKnZ* (k,c)eTNT* ceC
=flpw)+ > argr(pw)+ D Brehn(ew) + D mege(w) = D> Meak— > 7
keknz+ (k,c)eTNI* ceC keKNI* cec
= Z IJ‘cTwc + Z Qg Z NcTekkwc + Z ﬁkcezwc + Z nc]-Twc - Z )\k:ak: - Z e
ceC keKnI* ceC (k,c)egnz* ceC keKnz* ceC
K K
= Z p, we + Z me' ( Z ak]l[keKﬂI*]ekk>wc + Z (Z ﬂ[(k,e)EJﬁI*]ﬂkce;—)wc + Z nel w,
ceC ceC k=1 ceC k=1 ceC
- D k=) e
keknZ+ cec
T
K K
= Z K+ (Zak]l[keKﬂI*]ekk)ﬂc + Zﬁkc]l[(k,c)ejmz*]ek +n.1 | we— Z kOt — Zﬂc
ceC k=1 k=1 kelknZ* ceC
ac
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Given that the primal problem is feasible and finite, the dual problem is also feasible and finite. This
implies the following condition:

a.=0, VeeC
& pk,e + e lipexnztk,e + Brelk,cpegnze) + M. =0, VkeEK,ceC (7N

Let k, ¢ such that 1 )e7nz+) = 0 meaning that wy . # 0. Hence, equation () becomes:

Hk,e + aplikercnzs ik, = —Ne

From this, we deduce:
Likexnz<) =0 = ke = e

From strong duality we have : OPT (u, , T) = — >, cjcnze Ak — D ¢ Nle» hence to maximize
the performance, —7). should be as maximum as possible. As a result:

If Ljp,cpegnzs) = 0 then Ljpexnze) = 0 = phe = [[Belloo = —7e-

B.1 SUB-OPTIMALITY GAP
Proposition B.1 (S, Property). The coefficient S~ given in DeﬁnitiOnE] is positive and finite.

Proof of Proposition The positivity of S+ follows immediately from its definition. To establish
finiteness, we adopt a sensitivity analysis approach. Consider the mapping:

Vs € [0,8+], s = y(s) = S fp, w).

It is easy to show that the mapping is decreasing and bounded.

Following same steps as in the proof of Lemma [B.T] the Lagrangian function associated to the
optimization problem defined by y(s) is given by:

Lo(w,a(s), B(s),n(s)) = . w) + Y anls) (gu(ps, ) = e — 5)
kek

+ Y Bre($)hr(e,w) + Y nels (c 1)

(k,c)eT ceC

-

:Z (Z(Jék ekk)p‘c"i'Zﬂkc Jer +ne(s)1 | we— Z()\k—l—s (s ch

ceC kel kek o
= — Z )\k + s Ozk ch

kex ceC

where the last line is due to finiteness of the objective function and the strong duality of the linear
programming. Furthermore, using (Enrique Castillo and Castillo, 2006), it follows that:

-— = Z )\kak(O)

ke

The latter is bounded, given the feasibility of the linear programming z,. This completes the
proof. O

Proposition B.2 (L(Z) Property). For any candidate set T, the coefficient L(I) given in Definition
is positive and finite.
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Proof of Proposition|B.2] The positivity of £(Z) follows immediately from its definition. To estab-
lish finiteness, we adopt a sensitivity analysis approach. Consider the mapping:

Vs > s(Z): s 27(s) = werr&}:%zcz)f(ﬁ,y).

It is easy to show that the mapping is increasing and bounded.

Following same steps as in the proof of Lemma [B.T] the Lagrangian function associated to the
optimization problem defined by z; is given by:

£y(w,a(s),0/(5), B(s),1(5), T) = + 3 anls) (gnlrw) = A +5)
kek
+ Y Ak (—anlmw >+Ak+s)+ > Bre(hulew) + > ne(s) (ae(w) — 1)
kexnZ (k,c)egnT ceC
.
K K
:Z Ko+ (Z ) — (s )ﬂ[kennz])ekk>uc+25kc $) Lk, cpegnzier +ne(s)1 | we
ceC k=1 k=1

Q.

=D Ak —s)ails)+ D (et s)ap(s) =) me

ke keknNnZ ceC
== (e —s)ar(s)+ Y Ak +s)ap(s) =D ne
kex keKknZ ceC

where the last line is due to finiteness of the objective function and the strong duality of the linear
programming. Furthermore, using [Enrique Castillo and Castillo| (2006)), it follows that for all

s> s(2): )
Tr = D Man(s(@) = Y Mak(s(D)

keKx keKnz

The latter is bounded, given the feasibility of the linear programming 27 (s(Z)). This completes the
proof. O

Lemma 3.1 (Suboptimality Characterization). Under Assumption[3|  p(Z*) =0 and p* > 0.
Proof of Lemma[3.1} The result p(Z*) = 0 follows directly from the fact that w* € v(0,7*) and
that f(p, w*) = Qe@l?o)fmf (1 w).
Let Z # 7*, then:

» If (0,Z) = 0, then s(Z) > 0 and thus p(Z) > 0.

* Otherwise, if ¢(0,Z) # 0, then s(Z) = 0 and all allocations in ¥(0,Z) are feasible for

LP(p, p), implying f(p, w*) — Iﬁ%gz)f(m w) > 0, and thus p(Z) > 0.
- - we

Since the number of suboptimal Z is finite (of number (:fllgl) ), it follows that p* > 0. O

C CONFIDENCE SET CONSTRUCTION
Proposition 4.1 (Confidence set). Under Assumption let fu(t) and S; defined in Eq. and then:

(i) Vt > 1, P(p e Si(iat),0) >1-4,
(i) YVt > 1, wp. at least 1 — 6, for any w € TI"Igl, B(t) € Se(fa(t),6) and k € K,
gk ((t), w) — gr(p, w)| < pr(e(t), w), where py(e(t), w) = Zcec 2¢k,c(t)wr.e(t),

!f(&(t)&) — flp,w)| < ple(t), w), ple(t), w) = Zkem pi(€(t), w).
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Proof of Proposition.1] The confidence set relies on concentration inequalities to bound the de-
viation between the empirical mean jix () and the true mean puy . for each arm k and context
C.

Using Hoeffding’s inequality, the probability that fij, .(¢) deviates from i, . is bounded as:

]

Pr(|fn,c(t) = prel < ene(t)) 21— .

Applying a union bound over all k and ¢, we ensure that:

Pr(V(k,c), |fu,c(t) — ti,e] < €re(t)) >1—4.

This establishes that the true parameter p lies within S;(f1(t), §) with probability at least 1 — 6.

Under the consistency property, both fi(¢) and u belong to the confidence set S;(fa(t), §). Therefore,
for any k € [K] and ¢ € C, we have:

|ﬂk7c(t) - Nk,C| = |,L~Lk,c(t) - ﬂk,c(t) + ﬂk,c(t) - Nk,c|
< ke (t) = fir,e (O] + [fik,e(t) = firc]
< Ck,c(t) + €k7c(t)
= 2€k,c(t)'

Expanding f and gy with respect to their definitions concludes the proof. O

We finish this section by a result on the estimation error that plays a central role in deriving the upper
bounds for both OLP and OPLP.

Proposition C.1 (Pairwise Estimation Error Upper Bound). For any arm k € K and context c € C
where at each step 0; = 1/, the following bounds hold:

= O (log (T) E [log (ng,(T))]) »

~o(veeme ]

Proof of Proposition|C.1} We denote by F; the sigma algebra containing the information available at
t,i.eset F; = o{H_1,ct}. Then:

T
E lz (€k,c(t)wp,e( ] ZE eh.c(t)?wro(t)?]
210 2/<;t

< 2log (2kT) ZIE [E [{(’““C'(’“)HE 1”

n c(t — 1)
L (ks en)=(k,0)}

<2log (2kT)E

o8 (2 Z Mot — 1) ]
<2log (2:T)E Z _
=8 L (- 1)

t;(ke,ce)=(k,c)

< 2log (2kT) E [log(ng,.(T) + 1)] (uses Fact[A.2))

< O (log (T) E [log (n,(T))])

17
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T
Wk.c
ehe(wpe(t)| < V/2log ZRDE | ——kee
lz ] Dy =y
1
< 2log (26T) Y E |E | ke Zo) 7 H

7 N c(t— 1)

2log (2+T)E Z {(kesc)= (’”}]

%bg (2xT)E [m + 1] (uses Fact[A.1)
go( Tog (TVE \/TD

D PROOF IDEAS FOR THE UPPER-BOUND RESULTS

Theorem 5.1 (Upper bounds for OLP). Under Assumptions|[I} [2|and[3] the performance and con-
straint regret of OLP satisfy:

E['RT] < O <log(T)2> ,

p*

EVr] <O (k’gp@z + /KN Z*log (T) T> .

Theorem 5.2 (Upper bounds for OPLP). Under Assumptions [1} 2| and [3| the performance and
constraint regret of OPLP satisfy:

1

E[RT]go<<w+pI >log )? + VK N T+ log (T )T>,

E[VT] <O (1\2 log (T)2> , where \ = Z A
Y

ke

From Section 3] the problem of learning the optimal allocation w* can be decomposed in two parts:
first, identifying the optimal allocation structure - governed by Z*, and then, determining the optimal
weights for such structure. This decomposition allows a finer analysis at the intersection between
MAB - finding Z*, which plays the role of the optimal arm, and linear bandit - finding the optimal
structured allocation.

Both OLP and OPLP recover Z* at a logarithmic rate, with convergence speed governed by p*
- which is connected to the notion of gap in MAB: when either algorithm activates an incorrect
constraint set (Z; # Z*), this indicates insufficient estimation precision. Formally, the confidence
radius satisfies p(e(t), w(t)) > p*, as shown in Propositions|E.I|and [E.6]

The optimistic strategy used by OLP ensures no performance regret once the optimal constraint
set Z* is identified, thus leading to logarithmic performance regret overall. When no arms saturate
their revenue constraints, this is also the only source of constraint violation. With binding revenue
constraints, however, finding the exact structured allocation which satisfies the constraints resembles
a linear bandit problem and translates in O(+/T') additional term in V.

OPLP operates in phases and builds on pessimism to propose conservative allocations that satisfies
the constraints by design in the second stage (Proposition[E.3]). The constraint violation V7 is thus
tied to the number of rounds where LP(UCB(¢), LCB(t)) is infeasible, which implies insufficient
precision as p(e(t), w(t)) > ~*. This occurs only logarithmically often, with the bound scaling
inversely with v* (Proposition[E.2). On the performance side, the regret incurred to identify Z*
and reach feasibility scales logarithmically (Propositions [E.4] andE.6). Once those are met, the
pessimistic strategy’s surplus allocation to saturating arms in C N Z* dominates the regret. The

resulting cumulative regret is bounded by: (9(\/ [KNZI* |T), as established in Proposition

18
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E UPPER-BOUNDS
E.1 RESULTS OF OLP

Theorem 5.1 (Upper bounds for OLP). Under Assumptions[I} [2|and[3] the performance and con-
straint regret of OLP satisfy:

BRe] <O (1<>> ,

]E[VT]g(’)(lng( + /KN Z*log (T )T).

The proof of Theorem [5.1] primarily relies on analyzing the rate at which Algorithm [I]succeeds in
identifying the optimal set Z*, and on understanding the implications of correctly (or incorrectly)
identifying this set on both the regret and the constraint violations.

Knowing Z* effectively localizes and defines the optimal allocation w*. Hence, having a very tight
estimate is strongly tied to activating Z* and achieving the optimal allocation. Conversely, activating
a suboptimal set Z; is closely linked to the largeness of the confidence radius p(e(t), w(t)).
Proposition E.1. For all rounds t where OLP saturated the wrong set T, # T*, the following
inequality holds wh.p 1 — 1/t

p(e(t), w(t)) = p*.

This implies that if a suboptimal Z; is activated, the corresponding confidence set is necessarily loose,
indicating the presence of a non-negligible confidence radius.

Proof of Proposition[E-l] We rely for the proof on the impact of saturating the wrong set Z; # Z* on
feasibility and perfomance.

Infeasibility. Recall the set ¢(s,Z), given in Definition
Vk € IC? gk(ﬁh ) > A — S,

(s, T) = weng : VEeKNTZ, gelpw) < A +s,
V(k,e) e TNZ, hi(c,w)=0

Atround ¢, this set allows to link effectively the chosen allocation w(t), the set of activated constraints
7, and the radius of confidence set.
Lemma E.1. If w(t) is the allocation chosen by OLP at time t, then wh.p 1 — 1/t :

w(t) € ¢(p(§(t)aw(t))71f)

Proof of Lemma|E.1] By the definition of UCB(¢) and w(¢ ) we have:
VE €K, gr(UCB(t), w(t)) > Ak, ®)
VEe KNIy, ge(UCB(t),w(t)) = A, ©))
w(t) € T . (10)

Given Proposition w.h.p 1 — 1/t, we also have:

VE e, gr(pw(t) - pr(elt), w(t) < gx(UCB(),
pr(€(t), w(t)). (11)
From (B)) and (TIJ), we conclude:

Ve K, gu(pw(t) > A — pile(t), w(t)) > A, — ple(t), w(t)).
Similarly, from (@) and (TT):
Ve KNIy, gr(p,w(t)) < A + prle(t), w(t)).
Finally, by the definition of Z;, we also have:
V(k,c) € TNI;, hi(c,w(t)) =0,

which completes the proof. O
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The inclusion w(t) € ¥ (p(e(t),w(t)),Z;) established in Lemma implies that the set
¥ (p(€(t), Z;)) must contain at least one feasible point. For this to hold, it must be the case that:

ple(t), w(t)) = s(T),
where s(Z,) is given in Definition 4}
Performance Gap. Another tension arises due to performance. We consider the following problem:

S 7I = =)
sl = me) few)

Given Definition[5] we have:

Zp(e(t)a(t) (0 Te) — zs(z,) (1, L) < L(Zy) (p(€(t), w(t)) — 5(Zy)) -

On the other hand, it holds that:
and by optimism:

Hence, we obtain:

flp, w”) = plet), w(t) = zs(z,) (1 ) < L(Tr) (ple(t), w(t)) = s(Zy)) -

This implies:

, W) — 2z 4 Ly L(Z;)s(Iy
o) = 2eaa 20+ LRI )

W) — 2z t Ly
f(Igax(l? 57*)(1 )E(?It) ) < p(et), w(?))
= p(Zy) < p(e(t), w(t))

Hence, if Z, is sub-optimal then p(Z;) > p* which completes the proof.

E.1.1 REGRET OF OLP

To prove the upper bound on the regret of OLP, we examine the per-round regret incurred when the
algorithm activates (or fails to activate) the optimal set of constraints, Z*. Note that for any round ¢
of OLP, it holds :

whpl -1/, f(p,w*) — f(p,w(t)) < ple(t), w(t)) (12)

Proof of Equation[IZ} Optimism ensures that f(p, w*) < f(UCB(t),w(t)). By Proposition 4.1}
we have f(UCB(t), w(t)) < f(p,w(t)) + p(e(t), w(t)). Combining these two steps concludes the
proof. O

For Suboptimal 7, # Z*: Recall the Proposition[E.1jon p*, then wh.p 1 — 1/i:

fp,w*) — f(p,w(t)) Eqﬁ@ p(e(t), w(t))=p(e(t), W)L pe(t) w()>p] < p(e(t);:}(t))
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For optimal Z, = 7*: Both w(t) and w* share the same localization of non-zero entries. However,
the estimate y4(t) used at time ¢ may lead to differences in their values. Given that N Z; = K N Z*:

VEeL;NK, gr(UCB(t), w(t)) = A\ = gr(p, w")
)

= VkeL,NK, gr(p,w(t)) < ge(p,w” (14)

Notice that:

flp, w") ZZchwkc

ceC k=1

(a)

E 7 {weelpelloo + D7 pcwne
cec KAk

= Z ||IJ‘C||C>O - Z Ak?}cu]k,c
cec k#k:

(b)

= Z (llu’(‘|00 - Z Ak,cwk,c)
ceC keknNZ*

where in (a), k} = argmaxye(k k,c» and (b) uses Lemma [B. 1} which shows that in a given context,
the only non-saturating arm that may have non-zero probability is the best arm in that context.

And given that 7, = 7*, then similarly:

flp,w(t) = Z (”Nc”oo - Z Ak,cwk,C(t)>

ceC keKnz*

Hence:

(s, =3 D A (wre(t) — wpe) <O (15)

ceC keKNZ*

\8

This demonstrates that, the UCB-based approach ensures nor regret between the optimal solution w*
and the estimated solution w(t), if Z, = T*.

Thus, the regret is upper bounded by:

T
Re <> (flw) - fp,w(t),

T
Eq (15)
< D (flpw) = flw(t))), Lz
t=1
T
E[Rr] <E > (f(,w") = f(p,w(t))), Uiz, 7
t=1

For each round, we decompose the round wise regret by analyzing two distinct scenarios: the good
event (denoted by G€) occurring with high probability 1 — 1/; as guaranteed by Proposition and
the bad event occurring with complementary probability 1/:. In the latter case, we conservatively

bounded the roundwise regret by the quantity ;1 = > ||it,.||co, Which provides a worst-case losses.
ceC
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[~
=
i3
5
N

|
=
3
5

(ﬂ»+1m¢p4

T
<> E [(f(&ﬂ*) — fl,w()) , Tz, 22+ | Qc‘i} 1+ E [(f(& w) = f(p,w(t))), Liz,274) |§} e

(“)_T €(t), w(t))?
2§ [ n0)?)

£l € w 2
<) E {” ((t);(t)) } + O (ulog (T))

Where in (a), we use Equation (I3)) for the first term and as discussed we upper bound the roundwise
regret by pu for the second term. Hence, to control the expected regret, it remains to control

T 1 T
ZP(E(t)vw(t))Q] = B> [ encuwnclt)

t=1

1
E

log(.)concavity 2
e (“ log (T)Q) (16)
p

which concludes the proof.

E.1.2 CONSTRAINTS VIOLATION OF OLP

Using Proposition w.h.p 1 — 1/, for any arm k, the constraints evaluated using the estimated and
true means satisfy the following relationship:

gr(UCB(t),w(t)) < gr(p, w(t)) + pr(e(t), w(t)).

Additionally, by the feasibility condition of the solution to LP(UCB(¢), UCB(t)), we have:
gr(UCB(t),w(t)) > A, Vk € K.

Combining the above results yields:

Ak = gr(p,w(t)) < prle(t), w(t), Vkek. (17)

Now, consider rounds ¢ such that 7, = 7*:

L. If k € KNZ*, then gi(p, w*) = Ai. On the other hand, given (I4)), we have g (p, w*) >
gr(p, w(t)). Thus,
Ak 2 gr(p, w(t)).

2. If k ¢ KNZ*, then A\ < gi(p, w*). Furthermore, we have
ge(p, w*) < gr(p,w(t)) = M < ge(p, w(t)).

Consequently, when Z, = 7%, the violation arises only from saturating arms and is given by:

V= Y M amw@) D Y ple) ().

kelknZ* keknI*
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Thus, the total constraint violation up to time 7" can be expressed as:

> (M = 9epr. (1)) |
ek
liz,—z9 ) (Ak — k(1w ) + Z liz,27 Y ()\k = gr(p, w(t)))

M‘ﬂ i MH

t=1 kex ke +
T T
=> lg—z9 >, (/\k — 9B w(t))) +Y gz Y (/\k — 9B w(t)))
t=1 keXNT* o kex *
A B

We proceed by establishing upper bounds for the expected values of both A and . Our analysis
decomposes these quantities under two scenarios: the good event G€ from Proposition . 1] and its
complementary event. Let A = ) ;- ;- A, denote the worst-case constraint violation that may occur
in any given round ¢.

=k Z Liz,=14 Z ()\k — gk(m, w(t))) +]

t=1 keknZ*

IA
M=
=

tgez) Y (M- a(rw®)) [GE[1HE [Tz > (- almw®)) | gs] e

t=1 keKXNT* + keKNZ* +

d A
<Y B |z Yo (e w®)| + 5

t=1 keEKXNT*

< Y E Z pr(e + O (Mog (T))

keknNzZ* t=1

Z Zekc wio(t) | + O (Mog ()

exn t=1
Pro @]

< ( log (T) > > y/ne(T) >+O(Alog(T))

keEKNZ* ceC

\[concavu

< 0 (VI KA T log (T) T + Ao (7)) (18)

—E Y Lz Y (- o)
t=1

ke
T
<Y B[z, zz0(e(t), w(t) | GE] 1+ AE [Li7, 4741 | GE] 1/r
t=1

Combining E[A] + E[B] concludes the proof.
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E.2 RESULTS OF OPLP

Theorem 5.2 (Upper bounds for OPLP). Under Assumptions [1} 2| and [5| the performance and
constraint regret of OPLP satisfy:

E[RT]§O<<71*2+p1 >10g )2 4+ VK N T+ log (T) >

E[Vr] <0 <i\2 log (T)2> , where \ = Z Ak
gl

ke

The specificity of OPLP lies in its use of pessimistic estimates as parameters for the constraints,
introducing a safety margin that enhances constraint satisfaction. However, step [6]is not guaranteed
to be feasible from the outset. For this reason, the algorithm relies on an optimistic approach as a
fallback. Under Assumption [3] one can control the number of rounds during which the pessimistic
step is infeasible. Recall the Definition 2]of +*, that quantifies the strong feasibility of the problem. It
is crucial to control the number of rounds pessimism is infeasible.

Proposition E.2. Consider the event £(t) = {p(e(t), w(t)) >~} , and define Er = Zt 1 Lig@y)-
Let T denote the number of rounds in which step[9)of Algorithm[2is executed. Then, under OPLP
the following holds:

TSSTa

Elgr] <O (%Y’flog (T) log (?)) .

Proof of Proposition[E.Z] Consider the event £(t) = {p(e(t), w(t)) >~}
To ensure the feasibility of the LCB, the following suffices to hold:

Jw € W‘C‘ Vk € [K], gk(g,y) — pr(e,w) > Ag.

Thus, it suffices to ensure that:

Vke K, prle,w) <4,

Implying that:
T T T 2
TS Z ﬂ[g(t)] =&r < Z [p(e(t),w(t))>~] < Z I e—
t=1 t—1 1
1 T oy sameas Eq (T6) K2 )

E.2.1 CONSTRAINTS VIOLATION OF OPLP

The use of pessimistic estimates for the constraints is advantageous in terms of limiting constraint
violations.

Proposition E.3. If at round t, the problem LP(UCB(t), LCB(t)) is feasible, then w.h.p 1 — 1/t, the
corresponding constraint violation is zero.

Proof of Proposition[E3] Suppose that step@of OPLP is feasible at round ¢, and let w(¢) denote
the corresponding solution. Then, by feasibility, we have:
Vk e K, gr(LCB(t), w(t)) > Ak
By the pessimism property of the lower confidence bounds in Proposition we know that w.h.p
1—1/
gr(p, w(t)) = gi(LCB(1), w(t)) = .

Hence, the constraints are satisfied under the true means u, implying that the constraint violation is
ZEero. 0

24



Under review as a conference paper at ICLR 2026

Thus, at each round ¢:
* If step[6]is feasible, then the per-round constraint violation is zero.

¢ Otherwise, the per-round constraint violation is at most A = > Ag.
kek

Using Proposition[E.2] we have:

T
Ve <Y (A — gi(p,w"))+ (]1[5@)] + L) Lice) + 1@}1@]) ;
t=1

T
A /62/\ 2

@ O Z
(c)
Where (a) is the consequence of Proposition[E.2] (b) is the consequence of Proposition [E.3]and (c)
is the result of the low probability event of Proposition 4.1} This concludes the proof of the upper
bound on the cumulative constraints violation under OPLP.

E.2.2 REGRET OF OPLP

The regret of OPLPs can be decomposed based on whether step [6] is feasible or not. Once the
pessimistic step is feasible, a further decomposition considers whether the optimal set of constraints,
T*, is saturated or not.

I
[~
—
=
=
&
N
|
=
=
g
=
=
+
=
~
+
agh
—~
=
=
(5
N
|
=
¥
g
=
=
+
=
=

o~
Il
—
Il

~
Il
—
~
Il
-

.A1 AZ

T
+ D (Flw”) = f(pw®) , Vgl

As
Then we proceed by upper-bounding each term A;, A5 and Ajs.

Upper-bounding .4;. This quantifies the regret induced during the infeasibility of the pessimistic
approach.
Proposition E.4. Under OPLP, we have:

2
Bl <0 (Ss ().
Proof of Proposition The per round regret is upperbounded by = > || tt..]| o Hence:
ceC

E[A]=E

T
> (flpw*) = fp, w(t)), ]1[5@)]]

t=1

T
Zﬁﬂl[aml
t=1

(a) 2
<o (5opy?)
where (a) is based on Proposition O

<E
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Upper-bounding .4,. This term corresponds to the rounds where step[6|of OPLP is feasible and
the optimal constraints are saturated, i.e., Z; = Z*. During these rounds, the algorithm safely activates
the saturating arms, i.e., k € K N Z*, by allocating them more budget, which induces the regret.
Proposition E.5. Under OPLP, we have:

E[A)] <O (\/|C| KN 2+ log (T) T) :

Proof of Proposition[EZ3] For the second phase, when using LCB becomes possible, we consider
rounds ¢ where Z; = Z*. This implies that both LP(u, pt) and LP(u, LCB(t)) saturate the same
arms, i.e:

VEe ,NK, gp(LCB(t),w(t)) = A\ = gr(p, w")
= whp: 1 -1,VEke ,NK, ge(p,w(t)) — pr(e(t), w(t)) ")
— whp: 1 -1, VEe L,NK, gi(p,w(t)) — gr(p, w")

Notice that:

fp, w*) ZZNkcwkc

ceC k=1

(@)

D3 e cllclloo + 5 et
ceC ktk?

= Z ||IJ’c||OO - Z Ak?,cwk:,c
ceC k#k®

b

0y <|uc|oo S Ak,cwm)
ceC keKNT*

where in (a), k) = argmaxyc g fk,c, and (b) uses Lemma |[B.1] which shows that in a given context,
the only non-saturating arm that may have non-zero probabilify is the best arm in that context.

And given that 7, = Z*, then similarly:

Flpw(t) =3 (IIucHoo - > Ak,cwk,c(t)>

ceC kekNZ*
Hence:
Flpw®) = fpw®) =Y Y Ape(wielt) — wye)
ceC keKNZ*
= Z Z ,uk c wk ('(t) - wk,c)
kekKnZ* cec ke
S g Z Z Hk.c (wk,c(t) - wk,c)
kekKnI* ceC
<o > ge(pw(t) - gr(p w?)
kekKnZ*

Thus w.h.p 1 — 1/, we get:
Fw®) — fpw@) 2o S pulelt)w(t))

a keKNZ*
Taking the expectation:

T
S pulelt),wit

o
_|_ -
Z t
t=1 keKNZI* t=1

same as Eq (T8)
<0 (\/|C| KN T log (1) T + plog (T))

E[Ay] < o
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O

Upper-bounding A;3. This term corresponds to the rounds where step [6 of OPLP is feasible, but
the algorithm saturates the wrong set of constraints, i.e., Z; # Z*.
Proposition E.6. Under OPLP, the following holds:

1. If T, # T* and E(t) holds, then w.h.p. 1 — 1/i:
p(e(t), w(t)) = p*.
2. Moreover, it holds that
E[A;] <O (;;log (T)Q) :

Proof of Proposition[E.6] We prove each point of the Proposition separately.

Proof of Point 1. Recall the definition of set ¥ already introduced in Definition 4}

Vk S IC? gk(H7Q) 2 )\k - S,
Y. D) = weng : VkeKNT, gulp,w) <\ +s,
V(k,e) e TNZ, hg(c,w)=0

It is straightforward to verify that w.h.p 1 — %:
w(t) € ¢ (p(e(t), w(t)), L) . (20)

Infeasibility. Given that w(t) € ¥ (p(e(t), w(t)),Z;) then the latter is not empty, implying that
p(e(t),w(t)) > s(Zy).

Performance Gap. Recall the set ® introduced in Definition 2}
®(s) = {we Tt Yk K], gr(pw) > A+ s }

It is clear that Vs € [0,~], the set ®(s) is non-empty. Furthermore, using Definition [3]of S+, with
s92 = p(e(t),w(t)) <+ and s; = 0 yields:

max ,w) — max ,w) < Sople(t),w(t)),
QG‘P(O)JC(E ) gemp(g(t),w(t)))ﬂﬁ ) < Sy plelt), w(t))
and hence:
,w*) — ma yw) < Syxp(e(t), w(t
fp, w") QE@(p(g(t))(,Q(t)))f(H ) < Syeple(t), w(t))
= f(p,w") — LP(p, LCB(1)) < Sy« p(e(t), w(t))
= f(ﬁ’w*) - LP(E7 LCB(t)) < max(1, Sv*)ﬂ(ﬁ(ﬂvﬂ(ﬂ)
Now using Definition [5}
ma; , W) — ma; ,w) < L(Z, €(t),w(t)) — s(Z,
weso oy zy T W) T e i ) Pl w) < LT (p(elt), (b)) = s(T))

= LP(p, LCB(1)) — (1, w) < L(T¢) (p(e(t), w(t) — s(Zt)) -

max f
weP(s(Ze),Le)

We conclude that:

flp,w”) - weX flp,w) + L(Zy)s(Ze) < (max(1, Sy+) + L(Ze))p(e(t), w(t))

flp,w*) - I )f(& w) + L(Zy)s(Zt)

— miax(lyézw) LT < p(e(t), w(t))
flp,w") — max f(p,w)

— max(1 ?j:g(iztﬁ)(zt) < p(e(t), w(t))

= p(Zy) < p(e(t), w(t)).

Hence, if Z, is sub-optimal then p(Z;) > p* which concludes the proof of first point.
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Proof of Point 2.

T
As = (flpw") = f(pw(®)), Lz, 2z L)
T

< MZ ]l[z,,;ﬁz*]]lm

t=1

T -
— B[4 <p) E _]1[:0,;&1*]]1@]}

t=1

T .
<p Z E _]l[ztﬂ*]]lm}
t=1

=

T T
<UY B Uzl | 98] 1+ Y 2
t=1 t=1

T -
< WY E [Lp(eanonzr i) | 9€] + Oulog (1)
t=1 B

<uYE p(“)“’“”} 1 O(ulog (T))
t=1 -

same as Eq (T6)
<0 (“2 log (T)2> .
p

O

In conclusion, combining Proposition [E.4] Proposition[E.5] and Proposition [E.6| completes the proof
of the upper bound on the regret of OPLP.

F LOWER BOUND

F.1 LOWER BOUND THEOREM
Theorem 5.3 (Lower Bound). Let v(?) and Y (v(©), &) defined in Table|l|and Eq.[3| then:

(i) ForT' > 16, there exists ep small enough such that:

i E[Ry(T) + Vor(T) = Q (VT) .
min _max  E[Ryx(T) + V(7)) (\7)

(ii) For any consistent policy w, 3Ty > 05.t. VT > Ty, E[R w0 .(T)] =Q(logT).

Proof of Theorem[5.3] We proof each point separately.

(i) First Lower Bound. We start by proving the first lower bound focusing on the sum of the regret
and constraints violation.

1. Used Instances. Consider the nominal instance v(?) and two perturbed instances, v and v_,
both belonging to the uncertainty set Y (v(?), £) with Gaussian distributions A(., 1). These instances
are respectively defined in Table 2] and Table[3] with the perturbation parameter € constrained to the
interval (O, i) Each of these instances admits a distinct optimal allocation, summarized in Table@
and Table [5|respectively.

2. Effect of Wrong Beliefs on the Regret—Constraint Violations Trade-off. The lower bound is
derived from the fact that an incorrect belief about the ground truth leads to either non-zero regret
when the belief is overly pessimistic, or a constraint violation when the belief is overly optimistic.

Let w9, = 1/2 be the optimal allocation under the nominal instance v° of the second arm at the
secon context:
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Arm k ‘

Arm k ‘ Pc Bk,c

A
| c=1 c= c=3 | | c=1 c=2 c=3
k=l |1 =3 =1 mz=1|1 k=1 | p11=3 mma=1 wz=1]1
k=2 | po1 =0 [0 = 1? p23 =0 i k=2 | po1 =0 jpia2= 156 p23 =0 i
k=3 | u31=0 p3z2=0 pu33=2]1 k=3 | p31=0 pu32=0 puz3z3=2]1
Table 2: v instance Table 3: v_ instance.
* *
Arm k ‘ v ‘ A Arm k ‘ v ‘
‘c:l c=2 C:3‘ ‘c:l c=2 ‘
142 1-2
1 I 1+§> E 1 | 2(1;3 E
2 0 2(1+e) 0 4 2 0 2(1—¢) 0 4
3 0 0 1 1 3 0 0 1 1

Table 4: Optimal allocation for instance v . Table 5: Optimal allocation for instance v _.

* If the instance is v and wo 2(t) > wgg, then the algorithm leads to a regret of at least

r) > (wl, 1 171+€ > 11 .17525(175)Zi.
2(1+¢) 2 2 2(1+e¢) 2 41+¢) — 10
» If the instance is v_ and wy »(t) < wgg, then the algorithm leads to a constraint violation
of at least
(t)>1 1-¢ 1 1*6>€
B SR

3. Information Theory. Let P,, and P,,_ denote the distributions induced by the learning

algorithm under the two problem instances v and v_, respectively. Explicitly consider the policy m,

and let Fr denote the trajectory induced by that policy. Given the assumptions on the rewards, the
KL-divergence between the distributions over the trajectory of 7" rounds satisfies:

Te?
<7

D (P, 5

L (Fr)IIPy_(Fr)) 1)

Proof of equation 2I). We denote by G (t) the aggregated gain received by the player at time ¢
under policy 7. Hence:

3
D (o, (Gx (1) 1Py (G (1)) = 32 D wf (0D (N2 1) [ N (11, 1)
c=1 k=1
= wiy(t)D (N (uy5, 1) [ N(pz3,1))
&2
< —
-2
Summing over the trajectory ends the proof. O

Consider the event

t=1
Note that:
erT
Iholdsunderv, =— Ry > 10’
and similarly,
_ eT
TI'holds underv_. =— Vp > 10
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Using the Bretagnolle-Huber inequality |[Lattimore and Szepesvari| (2020):

B, () + By (1) > 5 exp (<D (B, (Fr) | Bo (Fr)) > 3 exp (—TQE)

4. Lower Bound Explicitly. For any policy 7 generated by any learning algorithm:

E Ry, n(T) + Vo, n(D)] + E[Ru_ 2(T) + Vo 2(T)] 2 B[Ry, «(T)Lr)] + E [Vu_,ﬂ(T)]l[fﬂ

Te
> 15 (B, (D) + Py (T))
Te o (T
=90 P\
Choosing € = % for T' > 16 leads to:
VT
E[Ru, «(T)+ Vo, (D) + E[Ru_(T) + Vo_ (T)] > 5062

Let e = T~1/2 (where T > 16). For any policy T, since both v, and v_ belong to T(v(?) e7),
the following holds:

max E[Ry(T)+ V(1) >

veY (v er)

=

(

Ro 7 (T)+ Vo, «(D)] + E[Ru_ (T) + Vu_ +(T)])

SL\:\H
N

— max B[Ry (T)+Vu(T)] >
veY (v er)

e
[\v]

Oe

|5

i >
= m;nUETI(g%gg’ET)E[Ru,W(T) V(D] 2 55

This concludes the proof of (i).

This instance is not a corner case. It is worth noting that the instance used in the lower bound
is not a corner case; that is, the characterizing gaps are non-zero. In particular, strict feasibility is
ensured by setting v* = é, and the performance gap p* > 0 because the problem is not degenerate.
Specifically, there exists a unique solution, which results in a non-zero performance gap while
activating suboptimal indices.

(ii) Second Lower Bound. We now derive the second lower bound on the regret.

Used Instance. Consider the same nominal instance () as previously defined, and introduce a
modified instance ¢/ that differs from () only in the reward parameter of arm 1 in the third context:
u1s(@')=24¢, € €(0,1]. The modified instance v’ and its corresponding optimal allocations
are summarized in Table[6]and Table[7] respectively.

>
>
B
=

Arm k | Pe Mk, |

[
| =1 c=2 c=3 ‘ le=1 ¢=2 c=3|
1 a1 =3 pae=1 mz=2+¢<11 1 1 % : 1
2 H2,1 = 0 H22 = % H2,3 = 0 i 2 0 5 0 i
3 31 =0 p3z2=0 H3,3 =2 1 3 0 0 i 1
Table 6: Instance v’. Table 7: Optimal allocation for instance v’

Note that context ¢ = 3 does not contribute to satisfying the constraint of arm k = 1, while under
v(©) arm k = 3 is the best-performing arm in that context and can only satisfy its constraint due to
rewards obtained in context ¢ = 3.

Let 7 be any consistent policy such that there exists a strictly positive constant /3 such that for
sufficiently large T’

E[Ry ) +(T) + Rur «(T)] < BVT. (22)
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Information Theory. Consider the event

F/ = {nl’g(T) > pZT} .

Note that:
2—1)T |
I holds under (¥ = Ry . (T) > % <
K 1 T I
[V holdsunder v/ = R, .(T)>¢ (42 4) > 54 .

Using the Bretagnolle-Huber inequality |[Lattimore and Szepesvari| (2020):

EwmmhhsﬂUK1+€WQ>

_ 1 1
P (I) 4 Pur () 2 5 050 (=D Byt (Fr) | P () = S - :

(23)

Lower Bound Explicitly. Leveraging Equation (23):

E [Ryo 1 (T) + Ror 2(T)] > B[Ry (T) 1] + E [R,,/JF(T)]I[F—,]}
)

Te'
> e (P (T

Te' ( B, - [n1,3(T))(1+ 6’)2>
=g P~ 2

/

— By 4[n15(T)] > ﬁ <log (Tg) —log (E [Ryo (T) + Rw,ﬁ(T)]))
" i (o (5) e (1)
> e (3o + s (55))

Consequently, for all T’ > Ty, where T, is defined by the condition 1 log (Tp) > [log(e’/(883))|, we
obtain the following regret lower bound:

E [Ru(o)m( )] ( ) v (0) W[nl 3(T)]
= Q(log (1))

F.2 RicH FAMILY OF MAB-ARC wITH NO FREE EXPLORATION

Lemma 5.1. For any MAB-ARC instance such that K > 2 and |C| > 1, there exists at least one pair
(k,c) € J for which the optimal allocation satisfies wy, , = 0.

Proof of Lemmal[5.1] We proceed by contradiction. Suppose there exists a feasible instance such that
IC| > &+, and for every (k,c) € 7, it holds that wy . # 0.

By Assumption [3] the linear program is feasible and non-degenerate. Hence, the optimal solution
must saturate exactly x constraints.

There are |C| equality constraints (i.e., the ¢. constraints). Thus, |C| constraints are already saturated.
The remaining x — |C| = |C|(K — 1) constraints must be saturated by the arm-level aggregated
reward constraints (i.e., the g, constralnts) because by assumption, no variable wj, . is zero, meaning
that none of the non-negativity constraints wy, . > 0 is active, and hence no saturation occurs there.
This implies that all |C|(K — 1) yet to saturate constraints must come from the X minimum reward
constraints, which is only possible if K > |C|(K — 1). But this contradicts the assumption that
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IC| > % Therefore there must exist at least one pair (k, ¢) such that wj . = 0. Given that the
function z — %5 is strictly decreasing for all x > 3, we obtain the inclusion relationship

{MAB-ARC : K > 2,|C| > 1} € {MAB-ARC: [C| > £}.

This completes the proof.

G NUMERICAL ILLUSTRATIONS

We validate our theoretical results through numerical experiments on simulated data. Specifically,
we consider the instance v defined in Table[8]| where rewards follow Gaussian distributions A/(., 1)
and contexts are uniformly distributed. The corresponding optimal allocation, which serves as our
benchmark, is provided in Table[9] For this instance the optimal set of active constraints is:

={2,3,(2,1),(3,1),(3,2),(2,3)}.

For comparison, we evaluate both our algorithms (OLP and OPLP) alongside Optimistic® from Guo
et al.|(2025) and the DOC and SPOC algorithms from |[Baudry et al.|(2024). There is no established
baseline in the literature that directly addresses contextual multi-armed bandits with revenue con-
straints for benchmarking our algorithms. However, Guo et al.[(2025) introduced Optimistic3 for
MABs with general stochastic constraints, which can be readily adapted to our setting. In addition,
one may adapt non-contextual algorithms such as DOC and SPOC by disregarding contextual
information. While this leads to an unfair comparison—since the algorithms operate under different
informational assumptions—it underscores the importance of leveraging contextual information
when available, as doing so yields markedly superior performance. Indeed, DOC and SPOC in-
herently neglect the contextual dimension of the problem, instead estimating quantities of the form
Ak/S . ce per,. for each arm and proceeding accordingly.

We conduct experiments over 7' = 50 x 10 rounds, repeated for 5 independent epochs.

Arm k ‘ Pe Bk, ‘ A Arm k ‘ ‘
‘ c=1 c=2 c=3 ‘ ‘ c=1 = ‘
1 Nl,l = 3 /LLQ = 1 ‘[L173 = 2 1 1 1 % % 1
2 po1 =0 fo2= % o3 =0 % 2 0 % 0 i
3 p31 =0 pu32=0 pu33z3=1 % 3 0 0 % %
Table 8: Instance v. Table 9: Optimal allocation for instance v.

Figure [2| reports:
* The cumulative regret and constraint violation for OLP, OPLP and Optimistic3.
* The cumulative performance of all five algorithms

From a regret perspective, OLP achieves superior performance compared to OPLP, exhibiting
logarithmic regret versus the O(+/T) regret of OPLP. Conversely, OPLP ensures stronger constraint
satisfaction than OLP, achieving logarithmic rather than O(\/T) constraint violation. In contrast,

Optimistic® yields O(+/T") bounds for both regret and constraint violation. Hence, OLP and OPLP
are better suited to the considered setting, as they achieve a polylogarithmic regime compared to the

O(+/T) behavior of Optimistic?.

The third plot highlights the performance advantage of our contextual approach: both OLP and
OPLP outperform the non-contextual baselines DOC and SPOC, justifying the need for additional
work beyond existing literature to better adapt to the MAB-ARC setting.
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Cumulative Regret Over Time Cumulative Constraint Violation Over Time Cumulative Performance Over Time
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10° 50000
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100 — oPLP — oPLP
OPT3 101 OPT3 0
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Round (t) Round (t) Round (t)

Figure 2: Display of the cumulative regret and constraint violation for OLP, OPLP and Optimistic®
(denoted by OPT3), and the cumulative performance of all five algorithms, under identical conditions
(K = 3,|C| =3, T = 50,000, Gaussian distributions A/(., 1), 5 epochs).

Non Saturating Arms. For the sake of completeness, we include an additional experiment to
illustrate the correct adaptability of our analysis in the regime where no arm saturates its revenue
constraints. We consider an instance v’ defined in Table [[1}where rewards follow Gaussian distribu-
tions A/(., 1) and contexts are uniformly distributed, and, according to the oracle solution given in
Table[TT] none of the arms saturates its respective revenue constraint. For this instance the optimal
set of active constraints is:

75 ={(2,1),(3,1),(1,2),(3,2),(1,3),(2,3)}.

*

Arm k ‘ Pe [k, ‘ A Arm k ‘ w ‘ A
‘ c=1 c=2 c=3 ‘ ‘c:l c=2 c:3‘
1 p11=3 pr2=1 paz=1]1 1 1 0 0 1
2 21 =0 poo=3 pe3=1]1 2 0 1 0 1
3 31 =1 pzo=1 p3z3=3 |1 3 0 0 1 1
Table 10: Instance v/'. Table 11: Optimal allocation for instance v’.

In accordance with Theorems [5.1] and [5.2] Figure [3] shows that both the regret and the constraint
violations for OLP and OPLP exhibit logarithmic behavior.

Cumulative Regret Over Time Cumulative Constraint Violation Over Time

Cumulative Regret
Cumulative Constraint Violation

— o — o
— o 100 — orp

0 100 200 300 400 500 0 100 200 300 400 500
Round (t) Round (t)

Figure 3: Cumulative regret and constraint violation for OLPand OPLP, evaluated under identical
conditions (K = 3, |C| = 3,T = 500, Gaussian distributions NV (., 1), 5 epochs) on an instance where,
according to the optimal stationary policy, no arm saturates its revenue constraint.

G.1 SENSITIVITY OF OPLP TO THE FEASIBILITY MARGIN

The OPLP algorithm heavily relies on the feasibility margin v*, as it adopts a conservative strategy
that prioritizes constraint satisfaction through the use of a LCB estimator for the constraints. However,
this approach may not always be feasible, which motivates the use of a UCB-based strategy as a
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Cumulative Regret Over Time Cumulative Constraint Violation Over Time

Cumulative Regret

10! e e B S 3 100
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OPLP, gamma=0.01 OPLP, gamma=0.01
—— OPLP, gamma=0.1 —— OPLP, gamma=0.1
—— OPLP, gamma=1 10t —— OPLP, gamma=1

0 10000 20000 30000 40000 50000 4 10000 20000 30000 40000 50000
Round (t) Round (t)

Figure 4: Cumulative regret and constraint violation of OPLP under different values of the feasibility
margin y*. (K = 3, |C| = 3,T = 50,000, Gaussian distributions A/(., 1), 5 epochs)

fallback. To illustrate this, we deploy OPLP under different values of v*, as shown in Figure[d] In
fact, for small values of v* (i.e., v* = 0.001 and v* = 0.01), the LCB estimator was never feasible
during the entire time horizon, and the behavior of OLP was observed instead, yielding logarithmic

regret and O(+/T') constraint violations. However, for larger values such as v* = 0.1 and v* = 1,
the LCB estimator becomes feasible, and the standard behavior of OPLP; logarithmic constraint

violations and O(v/T') regret, is recovered. Notably, we observe the expected rate of 7—12 scaling in
front of the logarithmic behavior of the constraint violation under OPLP.

H COUNTEREXAMPLE DEMONSTRATING THE INEFFICIENCY OF GREEDY
BEHAVIOR

Greedy achieves sublinear regret in the single-context setting because the constraints enforce ex-
ploration: in order to satisfy the revenue constraint for each arm, Greedy is forced to play all arms
and eventually refines its estimates. However, in the multi-context setting, the constraints do not
necessarily enforce exploration. For instance, consider the example in Table [T2}

Arm k ‘ Pc Hk,c ‘ A
| =1 c=2 |

1 m1=1 pmo2=210.1

2 H2,1 = 2 H2,2 = 1 0.1

Table 12: Counterexample instance illustrating Greedy’s inefficiency in the multi-context setting.

In this setting, the optimal allocation is p1 2 = 1,p21 = 1. However, the Greedy algorithm may
incorrectly conclude, with constant probability, that the optimal allocation is p;; = 1,pa2 = 1,
thereby incurring linear regret. This inefficiency arises because the constraints are not tight enough to
enforce sufficient exploration. It is worth noting that in the single-constraint case, Greedy may also
yield linear regret if A\, = O for the best arm in the instance.
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