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Abstract

Most machine learning classifiers are designed to output posterior probabilities for the classes
given the input sample. These probabilities may be used to make the categorical decision on
the class of the sample; provided as input to a downstream system; or provided to a human
for interpretation. Evaluating the quality of the posteriors generated by these system is
an essential problem which was addressed decades ago with the invention of proper scoring
rules (PSRs). Unfortunately, much of the recent machine learning literature uses calibra-
tion metrics—most commonly, the expected calibration error (ECE)—as a proxy to assess
posterior performance. The problem with this approach is that calibration metrics reflect
only one aspect of the quality of the posteriors, ignoring the discrimination performance.
For this reason, we argue that calibration metrics should play no role in the assessment of
posterior quality. Expected PSRs should instead be used for this job, preferably normalized
for ease of interpretation. In this work, we first give a brief review of PSRs from a prac-
tical perspective, motivating their definition using Bayes decision theory. We discuss why
expected PSRs provide a principled measure of the quality of a system’s posteriors and why
calibration metrics are not the right tool for this job. We argue that calibration metrics,
while not useful for performance assessment, may be used as diagnostic tools during system
development. With this purpose in mind, we discuss a simple and practical calibration met-
ric, called calibration loss, derived from a decomposition of expected PSRs. We compare
this metric with the ECE and with the expected score divergence calibration metric from
the PSR literature and argue, using theoretical and empirical evidence, that calibration loss
is superior to these two metrics.

1 Introduction

High-stakes machine learning applications, like those used to make health, military or legal decisions, often
require systems that can provide a measure of uncertainty of the prediction given the input sample (Tomsett
et al., 2020; Quinonero-Candela et al., 2005). In classification tasks, the uncertainty is a property of the
posterior probability for the classes given the input sample. We use the term probabilistic classifier to refer
to a classification system that outputs posterior probabilities. The posterior probabilities produced by a
good probabilistic classifier can be used to make decisions for a given cost function using Bayes decision
theory (DeGroot, 1970; Bernardo & Smith, 1994; Jaynes, 2003). They can also be readily interpreted by
an end user or passed on to a downstream system. Evaluating the quality of the posteriors produced by a
classification system is not a trivial task since, unlike for the evaluation of categorical decisions for which
class labels are used as ground truth, there are no ground-truth posteriors against which to compare the
system-generated posteriors. Except in simulations, the true posterior distribution is not available to us.
All we ever have are models trained on data. Every model we develop for a given problem provides us with
a new probabilistic classifier that does inference of the class of an input sample in the form of a posterior
distribution. The focus of this work is how assess the goodness of such models.

The conclusions in this paper are based on one fundamental premise: that classification decisions should
be made rationally and that, in the face of uncertainty, rational decisions are supported by Bayes decision
theory (see, for example, Good, 1952; Peterson, 2009; Parmigiani & Inoue, 2009; Savage, 1972). Bayes

1



Under review as submission to TMLR

decision theory provides a procedure for making decisions based on a given posterior distribution such that
the expectation of a cost function of interest is minimized (Duda et al., 2001; Bishop, 2006; Hastie et al.,
2001). Given this premise, a principled way to assess the quality of posterior probabilities is through proper
scoring rules (PSR), which are constructed as the cost that results from making Bayes decisions using the
posteriors under evaluation. A PSR measures the quality of the class posterior distribution for one specific
input sample. To obtain a metric to assess the quality of a probabilistic classifier’s output we take the
expectation of the PSR (EPSR) over the data (Brümmer, 2010; Filho et al., 2023). For example, the cross-
entropy, widely used as objective function to train classification systems, is the expectation of the PSR given
by the negative logarithmic loss.

A defining property of PSRs is that their expectation with respect to a given reference probability distribution
over the classes is minimized when the distribution under evaluation coincides with this reference distribution.
Hence, a low PSR expectation indicates that the distribution under evaluation is close to the reference
distribution with respect to which the expectation is taken. Note that we need to refer to a reference
distribution since, as mentioned above, the true distribution is never available in practice.

The term PSR was first introduced by Winkler & Murphy (1968) who motivated their work by the need
to assess the quality of weather forecasts. Brier score and the negative logarithmic loss (NLL), proposed in
the 1950s, are special cases of PSRs (Brier, 1950; Good, 1952). PSRs were later further studied in a large
number of works (see, for example, Dawid et al., 2016; Gneiting & Raftery, 2007; Bröcker, 2009; Ovcharov,
2015; Gneiting, 2011, among many others).

In contrast to this large body of literature on PSRs, many of the recent machine learning works concerned
with the evaluation of posteriors do not use PSRs for the task, resorting instead to calibration metrics (for
example, Guo et al., 2017; Widmann et al., 2019; Gruber & Buettner, 2022; Nixon et al., 2019; Popordanoska
et al., 2022; Vaicenavicius et al., 2019; Van Hoorde et al., 2015; Huang et al., 2020; Müller et al., 2019;
Mukhoti et al., 2020; Minderer et al., 2021; Jiang et al., 2021; Desai & Durrett, 2020; Dehghani et al., 2023).
A classification system is said to be well-calibrated if its output, q, coincides with a reference posterior
distribution for the classes given q, for every possible input sample, x (Bröcker, 2009; Guo et al., 2017;
Widmann et al., 2019). As before, we need to refer to a reference posterior since the true posterior is
not available in practice. The reference posterior needed to check calibration is yet another model of the
posterior, one that we trust to be good.

Note that the calibration definition does not refer to posteriors for the classes given the input sample. Instead,
it refers to posteriors for the classes given the system’s output. Hence, good calibration does not imply that
the system’s posteriors are doing a good job of inferring the classes from the inputs, which is what matters
in practice. In fact, a calibrated system can be useless. For example, a naive system that always outputs
the prior probabilities of the classes is perfectly calibrated but does not provide any information about the
input samples. As we will see, the overall quality of the system’s posteriors, as measured by EPSRs, can be
decomposed in two terms: a calibration and a discrimination or refinement component (Filho et al., 2023;
Bröcker, 2009). The discrimination component quantifies the amount of information present in the system’s
output about the class of the samples while the calibration component quantifies the similarity between the
system’s output and a reference distribution for the class given that output. Neither component by its own
fully describes the goodness of the posteriors produced by the system.

As a consequence of the fact that calibration metrics only reflect one aspect of the posteriors’ performance,
they do not inform how useful the classifier will be in practice. To address this problem, papers that use
calibration metrics resort to a separate metric, usually accuracy, error rate, or area under the ROC curve,
to complement the calibration metric (see, for example, Guo et al., 2017; Van Hoorde et al., 2015; Minderer
et al., 2021; Mukhoti et al., 2020). This is a problematic practice since it does not allow for a direct
comparison between two systems. If a system’s calibration error is lower but the error rate is higher than
for another system, which of them is better? Which one should we choose for deployment if our main goal
is to produce good posteriors for interpretation and decision-making? Also, this practice does not solve the
problem of assessing whether the performance of the posteriors is good enough for a certain task. These
questions are answered by EPSRs which provide a comprehensive measure of the value provided by the
system’s posteriors. Using calibration metrics, on the other hand, leads to unnecessary conflict.
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Papers that report calibration metrics motivate its use by arguing that good calibration is an essential
characteristic for a probabilistic system to be interpretable, safe, or reliable (Guo et al., 2017; Widmann
et al., 2019; Mukhoti et al., 2020; Kumar et al., 2019; Minderer et al., 2021; Nixon et al., 2019), using
statements like: “a network should provide a calibrated confidence” (Guo et al., 2017), “miscalibration [...]
makes [...] predictions hard to rely on” (Mukhoti et al., 2020), and “model calibration is essential for the
safe application of neural networks” (Minderer et al., 2021). The implicit or explicit implication in those
statements is that a very discriminative system with relatively high calibration loss should not be used in
high-stakes scenarios. We challenge this view and propose that calibration is neither necessary, nor sufficient
for posterior probabilities to be useful to the end user. A system may be somewhat miscalibrated but still
be useful, as long as the posteriors that it outputs result in sufficiently good Bayes decisions. In particular, a
miscalibrated system may be much more useful than the perfectly-calibrated naive system mentioned above.
If a system’s EPSR is lower than the EPSR of an alternative system, we can conclude that its posteriors are
better, regardless of the calibration error of either system. Hence, when evaluating the utility of posteriors
we should not be concerned with whether they are calibrated or not. Assessing the quality of probabilistic
classifiers is exactly the purpose of EPSRs. When the goal is to assess the value of an individual classifier
or compare classifiers with each other to select the best one, there is no need to resort to the concept of
calibration.

In this paper, we argue that the only purpose of calibration metrics should be to diagnose whether a system
is well-calibrated in order to fix it if that is not the case, much like learning curves over validation and
training data are used to diagnose overfitting. While regularization, early stopping, or smaller models may
be explored when overfitting is detected, various approaches can be explored when miscalibration is detected.
In particular, a miscalibrated system can be very easily improved by adding a post-hoc calibration stage
(Filho et al., 2023): a transformation of the system output designed to reduce the calibration error. Such a
stage, if successful, would result in a new system with a lower EPSR, which is our final goal. Beyond the use
as a diagnostic tool during development, calibration metrics should not play any role in system evaluation
since they do not provide any particular insight about the value of a system for the end user. If changing
the system is not an option, assessing and reporting calibration performance has no practical role.

For the calibration analysis needed during system development, we propose to use the calibration loss metric.
Calibration loss is obtained from a decomposition of an EPSR into calibration and discrimination terms, and
directly reflects the improvement we would obtain if a post-hoc calibration stage was added to the system.
A particular version of this metric was introduced in the literature years ago for the binary task of speaker
verification (Brümmer & du Preez, 2006) and later adopted in forensic science (Ramos & Gonzalez-Rodriguez,
2013; Ramos et al., 2017; 2020). We compare it, theoretically and empirically, with the widely-used expected
calibration error (ECE) metric (Naeini et al., 2015a; Guo et al., 2017), and argue that ECE has no theoretical
or practical advantage over calibration loss having, on the other hand, various disadvantages.

The rest of this paper gives an introduction to Bayes decision theory and PSRs, highlighting their tight
relationship. Then, it describes the problem of calibration, introduces the calibration loss metric, and
compares it with the ECE and the expected score divergence, a classic calibration metric from the statistics
literature, providing novel insights and discussing the advantages of the calibration loss over those classic
alternatives. Finally, it presents empirical results on synthetic and real datasets to demonstrate and further
discuss the theoretical ideas in the previous sections. A substantial part of the content in this paper revisits
well-established concepts, some dating back decades. Yet, we believe a discussion of these ideas is still needed
in the machine learning community, given the current wide-spread use of calibration metrics as a proxy to
assess the quality of a system’s posteriors.

In summary, the goals of this work are to argue: 1) that calibration metrics should only be used during
system development, for example, for the purpose of deciding whether a post-hoc calibration stage is needed
in the system, 2) that for those cases, calibration loss, a simple and principled calibration metric, is preferable
to the ECE and to the expected score divergence, 3) that the goodness of a probabilistic system, as will be
perceived by an end user, a downstream system, or a decision stage, should be assessed using EPSRs, not
calibration metrics.
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2 From Bayes decision theory to calibration

The goal of this section is to review known concepts from the statistical learning literature and discuss them
in the light of current trends in the machine learning literature, where the quality of posterior probabilities
is most often assessed using the ECE or one of its variants. First, we discuss the reference distribution, a
necessary construct when dealing with real data where the underlying data-generating distribution is not
known. Then, we describe how to make optimal (Bayes) decisions for a given cost function selected for the
application of interest. We then define PSRs as the cost of Bayes decisions motivating their use as metrics
to evaluate the quality of posteriors. We also explain how they can be normalized to obtain interpretable
metrics. Further, we explain how EPSRs can be understood as integrals over a family of Bayes risks,
providing further intuition on why and how EPSRs reflect the quality of posteriors. Finally, we show how
to decompose an EPSR into calibration and discrimination components in two ways, using the traditional
divergence-entropy decomposition, and using the calibration loss decomposition, and compare the resulting
metrics with the widely used ECE metric.

While most of the content in this section is based on decades-old concepts from the statistical literature, our
treatment is different from that in most works in that the need for a reference distribution is made explicit
in every step of the way. As we will see, this uncovers some practical issues that are usually not considered
in the literature.

2.1 The reference distribution

In statistics and machine learning literature, it is common practice to explicitly or implicitly rely on ‘the true
distribution of the data’. We find this an ill-defined concept, which is not useful in practice and which, in
particular, poses formidable obstacles to understanding calibration. Even if one could theoretically consider
that a given dataset was created by sampling from true underlying probability distribution (an infinite-size
dataset), such a distribution will never be known to us—except in simulations.

In machine learning, though, both at training time and test time, it is very useful to work with probabil-
ity distributions for1 the data. By ‘the data’ we refer to some future, or otherwise unseen data, and by
‘distributions for the data’ we refer to probabilistic predictions of the unseen data. For example, if you are
training a classifier by minimizing the cross-entropy over a supervised training dataset, you are effectively
minimizing a prediction of the cross-entropy on future, unseen data. If you are testing your classifier with
error-rate or cross-entropy, you are also effectively predicting how it will perform on future data. We can
obtain the probabilistic predictions of the data, which we will call reference distributions, by selecting mod-
eling assumptions and then fitting the model to a given dataset. Different assumptions will lead to different
reference distributions.

The reference distributions can be very simple. Perhaps the simplest reference distribution is the empirical
one, obtained by uniformly sampling with replacement from a dataset. Expectations with respect to the
empirical distribution are given by averages over the samples in the dataset. The empirical distribution
is the most common reference distribution used in machine learning both for training and testing models,
where cross-entropy or error rates are computed as averages over the training or test samples. As we
will see, though, it turns out that empirical distributions do not provide useful references against which
to judge calibration—if we make use of the classical definition of calibration. It is therefore necessary for
our exploration and understanding of calibration to consider more general reference distributions than the
empirical ones. In the theoretical sections below we will simply leave the reference undefined, assuming
enough regularity conditions are imposed in the model to result in a good predictor of future data. We will
discuss a simple way to build such reference distributions in Section 3.4.

1We follow the advice by Jaynes (2003) of using the preposition for, rather than of to refer to the relationships between
distributions and data. Distributions that we choose to use to model some unseen data are not an intrinsic property of the
unseen data, rather they are induced by assumptions and given data.
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2.2 Bayes decision theory

Assume that we have selected a cost function for our classification problem of interest, C(h, d), where
h ∈ H = {H1, . . . , HK} is the true class of the sample, d ∈ D is the decision made by the system, and
C : H×D → R. Decisions can be categorical, in which case we take D = {D1, . . . , DM }. The set of decisions
and the set of classes do not need to be the same. The decisions are, in general, the actions that will be
taken based on the system’s output (Duda et al., 2001). For example, D could include a “reject” or “abstain”
option (see, for example, Bishop, 2006, section 1.5). Decisions can also be soft, in the form of a distribution
over classes, in which case D = SK , the simplex where K-class categorical distributions live.

Given the cost function, our goal will be to make optimal decisions in the sense that they minimize the expec-
tation of this cost (Peterson, 2009), Eh∼Pr(h|x) [C(h, d(x))], where we have explicitly added the dependency
of d on the input sample, x. The expectation is taken with respect to Pr(h | x), a reference distribution for
the class label given the input. This expectation is minimized by taking2 (Bishop, 2006; Hastie et al., 2001):

d(x) = dB(x) := arg min
d

K∑
i=1

C(Hi, d)Pr(Hi|x) (1)

The decision dB is called the Bayes decision. If decisions are made in this way for every x, then the expected
cost with respect to the joint distribution Pr(h, x) is also minimized.

2.3 Proper scoring rules

Proper scoring rules (PSRs) are a family of functions specifically designed to assess the quality of posterior
probabilities (Gneiting & Raftery, 2007; Brümmer, 2010). The principle behind PSRs is that the quality
of posteriors is given by the quality of the Bayes decisions made with them: better decisions imply better
posteriors. Formally, given a posterior for a sample x provided by a classifier, which we denote3 as q(x) =
Pc(.|x), and a cost function C(h, d), we can construct a PSR, C∗(h, q), as follows (Dawid & Musio, 2014;
Brümmer, 2010):

C∗(h, q) = C(h, dB(q)). (2)

That is, C∗ is the cost of the Bayes decision made with q. Note that here we have expressed dB as a function
of q rather than x since, as shown in Equation (1), Bayes decisions only depend on the posterior which,
here, is given by q.

The C∗ constructed in this way satisfies the defining property of PSRs which is that their expected value
with respect to any distribution p over the classes is minimized if q coincides with p (Dawid & Musio, 2014;
Brümmer, 2010). That is,

p ∈ arg min
q

Eh∼p [C∗(h, q)] . (3)

When the minimum is unique, the PSR is called strict.

A PSR measures the quality of the posterior vector q for a single sample. To obtain a metric that can be used
for evaluation, we can compute the expectation of the PSR with respect to the joint reference distribution:

EPSR = EPr(h,x) [C∗(h, q(x))] . (4)

Now, since C∗ is a function of x only through q, we can invoke the law of the unconscious statistician
(DeGroot & Schervish, 2014, page 213) and compute the expectation with respect to q instead:

EPSR = EPr(h,q) [C∗(h, q)] . (5)
2There may sometimes be more than one minimizing decision. In such cases we assume arg min applies a tie-breaker to

return a single minimizing decision. The details of such tie breakers is unimportant here.
3We use bold q for vectors in SK representing discrete distributions, and italic with a subindex qi to refer to the ith

component of the q vector.
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This equation shows that we do not need a reference distribution for (h, x) to compute the EPSR. Instead,
we only need a reference for (h, q).

In practice, to compute this metric, we take the reference distribution to be the empirical distribution in the
test dataset so that the EPSR is given by

EPSR = 1
N

N∑
t=1

C∗(ht, qt). (6)

where qt and ht are the classifier’s output and the label for sample t in a test dataset containing N samples.

Different EPSRs can be obtained by using different cost functions C. Below we will discuss the three most
common EPSRs.

2.3.1 Bayes risk

When the decision d is categorical (d ∈ {D1, . . . , DM }), the cost function can be expressed as a matrix
of costs cij for each combination of true class Hi and decision Dj . The expected cost with respect to the
empirical distribution in a test dataset is given by the average cost over the samples:

EC =
K∑

i=1

M∑
j=1

cij
Nij

N
=

K∑
i=1

M∑
j=1

cijPiRij (7)

where Pi = Ni/N is the empirical prior probability of class Hi, Ni is the number of samples of class Hi,
and Rij = Nij/Ni is the fraction of samples from class Hi for which the system made decision Dj . The
EC can be normalized to ease interpretation by dividing it by the EC of a system that outputs always the
least-costly decision, which is given by mind

∑K
i=1 cidPi. A special case of this metric is obtained for the 0-1

cost matrix where cij = 1 when i ̸= j (the decision is incorrect), and cij = 0 when i = j (the decision is
correct). The average cost in this case reduces to the standard error rate, which is equal to one minus the
accuracy.

The EC can be computed regardless of how decisions are made. If decisions are made using Bayes decision
theory, though, the resulting EC is an EPSR commonly called Bayes risk (Duda et al., 2001). Given a
cost matrix, Equation (1) corresponds to a specific partition of the simplex SK into decision regions. For
binary classification with a square cost matrix (M = 2), the regions can be determined by a threshold on
either of the two posteriors. For the 0-1 cost, the Bayes decision is the class with the maximum posterior
(Hastie et al., 2001), or argmax decision. Hence, the error rate of argmax decisions, a widely-used metric
in the machine learning classification literature, is one instance of the Bayes risk. The left plot in Figure 1
illustrates a cost function for binary classification when the Bayes threshold is used.

When evaluating Bayes risk, we are, as for any EPSR, measuring the quality of the posteriors used to make
the Bayes decisions. Yet, we are restricting our assessment of the posteriors to one specific operating point
defined by the cost matrix. As a result of this, the Bayes risk is not a strict PSR: Two classifiers that produce
posterior distributions for which the Bayes decisions for the selected cost matrix are the same, will lead to
the same Bayes risk. The Bayes risk for other cost matrices, though, will not necessarily be the same for
both classifiers, since their posteriors are different.

2.3.2 Cross-entropy

When we want to evaluate the quality of posteriors in general rather than for a single operating point, we
need to resort to strict PSRs. One such PSR can be obtained by setting C to be the negative logarithmic loss
(NLL), C(h, d) = − log(dh), where d ∈ SK and dh is the element of d corresponding to class h (if h = Hi,
then dh is the ith element of vector d). It can be shown that, for this cost function, the Bayes decision
(Equation 1) is dB(q) = q, since, by Gibbs inequality,

∑
i C(Hi, d) qi = −

∑
i log(di) qi ≥ −

∑
i log(qi) qi.

That is, the (soft) decision that minimizes the expected NLL is q itself. Hence, the PSR resulting from
this cost function is C∗(h, q) = − log(qh) (Equation 2), which is again the NLL. It is easy to show that the
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Figure 1: Three PSRs on a binary classification task as a function of the posterior for class H2, q2: (left)
the cost function with c12 = 1 and c21 = 2 for the Bayes threshold given by c12/(c12 + c21), (center) the
logarithmic loss, and (right) the Brier loss. The blue curve corresponds to the loss for samples of class H1,
which is maximum when q2 = 1 (conversely for the orange curve). The logarithmic loss goes to infinity in
the extremes in which the posterior is 1 for the wrong class, while the other two losses stay bounded. The
expectation of these PSRs corresponds to the Bayes risk, the Cross-entropy, and the Brier score, respectively.

NLL is a strict PSR (Dawid & Musio, 2014). The middle plot in Figure 1 illustrates the logarithmic loss for
binary classification.

The expectation of the NLL over the data is the cross-entropy, which is widely used as objective function
for training. Taking the expectation with respect to the empirical distribution, we get

CE = − 1
N

N∑
t=1

log(qht
(xt)), (8)

where qht(xt) is the system’s output for sample xt for class ht, the true class of sample t. This expression
can be rewritten to make its dependence on the class priors explicit (see Appendix A), which allows us to
manipulate these priors independently of those in the test data. This is useful when the priors in our test
data do not reflect those we expect to see when the system is deployed, in which case we can use the target
priors instead of the ones in our data when computing the CE.

The absolute CE values are not easily interpretable. This issue, though, can be solved by normalizing its
value with the CE of the best naive system. A naive system is one that does not have access to the input
data. The best naive system for any EPSR is the one that outputs the prior distribution in the test data
(Brümmer, 2010, Section 2.4.1). The CE of a system that always outputs the prior distribution is the
entropy of such distribution, −

∑K
i=1 Pi log(Pi). Dividing the CE by this value we obtain the normalized

CE, or NCE for short. The NCE values can be readily interpreted: values above 1.0 mean that the system
is worse than the best naive system and, hence, one should either 1) throw it away and replace it with a
system that outputs the prior distribution, or 2) fix it by doing calibration (as we will see in Section 2.4.2).
A well-calibrated system will never have a normalized CE larger than one.

2.3.3 Brier score

If we take C(h, d) = 1
K

∑K
i=1(di − I(h = Hi))2, with d ∈ SK , we get another PSR called Brier loss. Here,

I(h = Hi) is the indicator function which is 1 if the argument is true and 0 otherwise. As for the NLL, it
can be shown that the Bayes decision for this loss is the posterior used to make the decision. Hence, as for
the NLL, the PSR coincides with the cost function. The right plot in Figure 1 illustrates the behavior of the
Brier loss for binary classification.

Averaging the Brier loss over the data we get the Brier score

BS = 1
N

N∑
t=1

1
K

K∑
i=1

(qi(xt) − I(ht = Hi))2. (9)
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As for the CE, this expression can be manipulated to show its dependency with the priors explicitly which
allows us to turn the priors into parameters of the metric (see Appendix A). Further, as for CE, it can be
shown that BS is a strict PSR (Dawid & Musio, 2014). Unlike the CE, though, which can be infinite if the
posterior for the right class is 0.0 for any sample in the dataset, BS is bounded, being more forgiving of
extremely incorrect posteriors. Finally, we can compute a normalized version of BS, NBS, by dividing its
value by the BS of the best naive system, which is given by

∑K
i=1 Pi(1 − Pi)/K.

2.3.4 EPSRs as integrals over Bayes risks

As explained, for example in (Gneiting & Raftery, 2007) and in (Brümmer, 2010), we can construct a PSR,
C∗

W , by taking the following integral:

C∗
W (h, q) =

∫
SK

W (a) C∗
a(h, q) da (10)

where h is the class of the sample, q ∈ SK is a posterior distribution, and W (a) is a function of a ∈ SK that
satisfies W (a) ≥ 0 ∀a. The C∗

a function inside that integral is the PSR obtained as explained in Section
2.3.1 for the following cost function:

Ca(i, j) = 1 − I(i = j)
(N − 1) ai

, (11)

where Ca(i, j) is the cost for deciding Dj when the true class of the sample is Hi. For this construction, we
take the set of decisions to be the same as the set of classes. This matrix has zeroes in the diagonal and a
cost proportional to 1/ai everywhere else. Taking the expectation with respect to the data on both sides of
Equation (10), we get that

EPSR =
∫
SK

W (a) Risk(a) dr where Risk(a) = E [C∗
a(h, q)] . (12)

The function W (a) determines how much each Bayes risk inside the integral influences the final value.
Taking W (a) to be uniform in the simplex, we obtain the CE. For the binary case, taking W (a) to be a
Beta distribution with both parameters equal to 2, so that W (a) = a1 (1 − a1)/B(2, 2), where B is the beta
function, we obtain the BS. The proofs for these statements can be found in (Brümmer, 2010, section 7.4).
Section 3.1 shows an illustration of this way of constructing the CE and BS metrics.

2.4 Calibration

Following the literature (for example, Bröcker, 2009; Guo et al., 2017; Vaicenavicius et al., 2019; Nixon et al.,
2019; Gruber & Buettner, 2022), a classifier, Pc, that for input x, outputs the class posterior, q = [q1, . . . , qK ],
where qi = Pc(Hi | x), has perfect calibration with respect to a reference distribution Pr, if:

qi = Pr(Hi | q), ∀i, x (13)

In the cited literature, the role of Pr is implicitly deferred to the ill-defined concept of the ‘true distribution’.
With the reference made explicit, we note that a classifier may be calibrated with respect to some reference
distribution, but miscalibrated with respect to another. In this section we carefully analyze this definition
of perfect calibration and also compare it to the optimal classifier.

Given a reference distribution for h and x, Pr(h, x), the optimal classifier is the one that outputs the class
posterior, p = [p1, . . . , pK ] = Pr(· | x) with components:

pi = Pr(Hi | x) = Pr(Hi, x)∑K
k=1 Pr(Hk, x)

(14)

Note that this distribution is not the reference for perfect calibration of the classifier: the right hand side in
Equation (13) is Pr(. | q), not Pr(. | x). In other words, perfect calibration does not ensure that q is the
optimal classifier—it is a weaker condition that can hold for q ̸= p, that is, for a suboptimal classifier.
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Before moving on to analyzing the calibration of q, we need to understand the implicit perfect calibration
of the optimal classifier, p. Since p is a function of x, it is also a random variable for which the joint,
marginal and conditional distributions can be derived from Pr(h, x). The perfect calibration of p is defined
as pi = Pr(Hi | p), and this equality always holds if pi = Pr(Hi | x). This can be seen as follows:4

Pr(Hi, p) =
∫

x̃:Pr(·|x̃)=p
Pr(Hi, x̃) dx̃

=
∫

x̃:Pr(·|x̃)=p
Pr(Hi | x̃)Pr(x̃) dx̃

= pi

∫
x̃:Pr(·|x̃)=p

Pr(x̃) dx̃

= pi Pr(p)

(15)

where we used that P (Hi | x̃) is constant with value pi = Pr(Hi | x), for the values of x̃ over which we are
integrating. Rearranging, we find:

Pr(Hi | p) = Pr(Hi, p)
Pr(p) = pi = Pr(Hi | x) (16)

This result can be summarized succinctly as:

Pr(· | p) = p = Pr(· | x) (17)

This is intuitive: We have already inferred h from x in the form of p, so that if we want to infer h directly
from p, without any extra information, the result remains the same.

We have shown that p, the optimal classifier for a reference Pr(h, x), is perfectly calibrated with respect
to the posterior distribution consistent with that reference. Now, recall that our classifier is the model Pc,
that outputs the posterior q = Pc(· | x), with components qi = Pc(Hi | x). In general, our classifier will be
different from the optimal classifier:

q = Pc(· | x) ̸= p = Pr(· | x). (18)

Here and elsewhere, by ‘̸=’, we mean not equal in general. In contrast to Pr(h, x) which provides the full joint
distribution, all we need to practically implement a classifier is the conditional, Pc(h | x). We can however
allow the thought experiment to extend this model to Pc(h, x) = Pc(x)Pc(h | x). Then Equation (15) shows
that the classifier is also perfectly calibrated—if we use Pc itself as reference:

Pc(· | q) = q = Pc(· | x) (19)

What we want to do however, is to judge the calibration of q with respect to Pr instead. Again, since q is a
function of x, the model Pr provides also the posterior Pr(. | q), which we will call s, against which q may
be judged.5 We have now defined a total of three different posteriors, q ̸= s ̸= p: our classifier, the class
posterior given our classifier’s output, and the optimal classifier, the latter two derived from the reference
distribution. Their definitions and relationships may be summarized as (see also Figure 2):

q = Pc(· | x) = Pc(· | q) ̸= s = Pr(· | q) ̸= Pr(· | p) = p = Pr(· | x) (20)

The first ‘ ̸=’ is simply because Pc ̸= Pr. The second ‘̸=’ follows from the data processing inequality6 if we
assume the function from x to q is non-invertible. As noted above, the literature defines perfect calibration
as the special case when q = Pr(· | q), for every x, that is, when the first ‘̸=’ in Equation (20) is replaced
with equality. Even then, we still have the second ‘ ̸=’, which highlights the fact that a perfectly calibrated
classifier is not necessarily optimal.

4A measure-theoretic (terse, perhaps less accessible) derivation is given in the appendix of Bröcker (2009). Our derivation
is more similar to a derivation of likelihood-ratio calibration, in the appendix of Slooten & Meester (2012).

5Pr(h | q) ∝ Pr(h, q) =
∫

x̃:Pc(·|x̃)=q Pr(h, x̃) dx̃.
6With Pr as reference, the data processing inequality states that I(h; x) = I(h; p) ≥ I(h; q), where I denotes mutual

information (Cover & Thomas, 2006). While p contains all of the information about h that is present in x, q generally contains
less. The non-invertible function x 7→ p is also subject to the data processing inequality, but in this special case, equality is
given by Equation (15).
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Our classifier

Optimal classifier

Pc(· | x) = q
Calibrator

Pr(· | q) = s

Pr(· | x) = p
x

Figure 2: Diagram of the posteriors in Section 2.4. The posterior q is the output of our classifier. After
calibration according to the reference distribution Pr(h, x), we obtain the posterior s. If our classifier is
perfectly calibrated with respect to the reference, then s = q. On the other hand, the optimal classifier
under the reference distribution Pr(h, x) is the one that produces p. These are the posteriors we ideally
want to have. In general, though, q is different from p. Further, perfect calibration does not guarantee that
s is equal to p.

The classifier Pc is optimal with respect to the reference, if Pc(· | x) = q = p = Pr(· | x). But this is a much
stronger requirement than merely having perfect calibration, as defined by Equation (13). While q = p for
all x implies perfect calibration by Equation (17), the converse is not true. An extreme counterexample is
the naive classifier, say Pc = P0, that completely ignores its input, while having perfect calibration:

qi = P0(Hi | x) = Pr(Hi) = Pr(Hi | q) (21)

where the first two equalities define P0: it outputs the class prior as given by the reference Pr, irrespective of
the value of x. The last equality, which shows that P0 has perfect calibration, follows because q is constant.
The naive classifier is just an example of a perfectly-calibrated but useless classifier that highlights the
problem with using calibration metrics to assess performance of probabilistic prediction.

To illustre this argument further, we argue that calibration quality can be seen as analogous to the size of the
training set in the sense that both aspects affect but do not reflect the quality of the posteriors produced by
the system. Specifically, a system may be trained with a small amount of data or be miscalibrated and still
produce good posteriors. A system may be trained with a large amount of data and be perfectly calibrated
and still produce poor posteriors. Further, if we increase the size of the training set for a given system, the
quality of the system will usually improve or, at least, not degrade. Similarly, if we calibrate a given system
(as explained in Section 2.4.2), it will usually improve or, at least, not degrade. Finally, given two different
systems, the size of their training sets or its calibration quality are not reliable indicators of which system
has better posteriors. One system may be trained with more data or be better calibrated than another but
produce poorer posteriors than the other. So, just as we would not use the size of the training set as a
measure of the quality of a system’s posteriors, we should not use calibration metrics for this purpose either.
Instead, EPSRs are the right tool for that job.

2.4.1 Calibration and Bayes decisions

Most machine learning classifiers make their final decisions based only on the classifier output, q. This means
that the x in Equation (1) is given by q, since those are the input features available for decision making.
Replacing x with q in Equation (1), we get that the Bayes decisions based on q are given by

dB(q) = arg min
d

K∑
i=1

C(Hi, d)Pr(Hi | q) (22)

Those decisions minimize the expected cost with respect to that same reference distribution, Pr.

According to the definition of calibration given by Equation (13), a system is perfectly calibrated with respect
to Pr if Pr(Hi | q) = qi. This means that, for a perfectly calibrated system, we can simply plug in qi in
place of the posterior in the equation above to get optimal decisions. In other words, Bayes decisions made
with posteriors provided by a perfectly calibrated system are the best possible decisions, as long as both
calibration and optimality of the decisions are judged with respect to the same distribution, Pr. No other
strategy for making decisions based on the system’s output would result in a better expected cost. On the
other hand, if we had access to the system’s input features, there could very well exist a better decision
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strategy. A calibrated system does not guarantee that the Bayes decisions are the best that can be made
with our system’s input, x. Rather, it guarantees that they are the best that can be made with our system’s
output, q. If the system is poor, the decisions will be poor, regardless of how well calibrated it may be.

2.4.2 Calibration transformations

The posterior Pr(Hi | q) in Equation (13), which we have called si (Equation 20), can be interpreted as a
transformation of the classifier’s posterior q = Pc(· | x), into a posterior that is perfectly calibrated with
respect to Pr. To see this, we can use the proof in Equation (15), substituting p → s and x → q, to find
that Pr(Hi | s) = si. That is, s is perfectly calibrated. For this reason, s = Pr(. | q) is called a calibration
transformation. This transformation needs to be learned from data.

For binary classification tasks, the calibration transformation can be constructed by collecting pairs q, h
for several samples from the task. Noting that q = [q1, 1 − q1], we can quantize q1 into, say, 10 bins and
compute the frequency of each class h on each bin to obtain Pr(h | q). As we will see, this is the basis for the
computation of the ECE metric. Quantizing and counting, though, is often problematic, as we will discuss
later in this work, and is not appropriate for multi-class problems. Fortunately, a large variety of calibration
transformations that do not rely on quantization have been proposed in the literature over the last decades.
A review of these approaches can be found, for example, in the work by Filho et al. (2023).

One of the most standard calibration approaches consists of applying an affine transformation to the loga-
rithm of the posterior vector, training the parameters of this transformation to minimize the cross-entropy.
Since the cross-entropy is a strict EPSR, minimizing this loss guides the parameters of the affine transforma-
tion toward values that produce good posteriors. Instances of this approach are linear logistic regression, also
known as Platt scaling for binary classification (Platt, 2000), an extension of Platt scaling for the multi-class
case (Brümmer & van Leeuwen, 2006), and temperature scaling which is a single-parameter version of the
latter method (Guo et al., 2017). In our experiments, we will use the direction-preserving (DP) transfor-
mation proposed by Brümmer & van Leeuwen (2006) where the transformed posterior s = R(q) is given
by

s = softmax(α log(q) + β) (23)

where q, s, and β are vectors of dimension K, the number of classes, and α > 0 is a scalar. When taking
β = 0, this transformation reduces to temperature scaling7.

For the binary classification case, it is possible to obtain a monotonic transformation of one of the two
posterior probabilities output by the system that leads to the lowest EPSR value on the test data itself. This
transformation can be obtained with the pool-adjacent-violator (PAV) algorithm (Ayer et al., 1955). The
EPSR resulting after this transformation can be seen as the minimum EPSR possible on that test dataset
that does not change the ranking of the posteriors. Interestingly, the transformation is simultaneously
optimal for all EPSRs regardless of which one is used to obtain it (Ahuja & Orlin, 1998; Brümmer, 2010).
This minimum is likely not achievable on any other dataset, though, since the transform is non-parametric
and overfits easily.

To train any calibration transform, a dataset of q values obtained by running the classifier on a set of samples
needs to be created. For supervised approaches like those mentioned above, the class, h, for each sample is
also required. It is important to note that these samples should not be extracted from the dataset used to
train the classifier we are aiming to calibrate. The posteriors that the classifiers produce on their training
samples are, for most modern models, already well-calibrated. Yet, unless no degree of overfitting occurred
during training, the distribution of those posteriors is not representative of the distribution on unseen data,
which is where we wish the calibration transform to perform well. Hence, the data used to train the classifier
should not be used to train the calibration model. Ideally, a fraction of the available training data should be
held-out when training the classifier to be used as training data for the calibration model. It is particularly
important that this data is representative of the one we expect to see when the system is deployed since

7Temperature scaling, as defined by Guo et al. (2017), takes the pre-softmax activations of a neural network as input, instead
of the log posterior as in Equation (23). Yet, in both cases the final calibrated output is transformed by the softmax function,
making both expressions equivalent.
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calibration performance appears to be more sensitive to domain mismatch than discrimination performance
(Ferrer et al., 2021).

2.5 Calibration metrics

Equation (13) gives the definition of perfect calibration with respect to a reference distribution. It does not
provide a calibration metric, that is, a way to measure a degree of (imperfect) calibration. In this section
we describe three calibration metrics: the expected divergence, commonly studied in theoretical papers;
the expected calibration error, commonly used in empirical machine learning papers; and the calibration
loss, our proposed metric, which we believe has various advantages and no disadvantages over both of those
well-established metrics.

2.5.1 Expected score divergence

Much of the literature on calibration solves the problem of measuring the degree of imperfect calibration
by defining a divergence between the left-hand side and the right-hand side in Equation (13), where the
left-hand side is given by the output of the system under evaluation, q, and the right-hand side is given by
the reference posterior, s. A permissive definition of a divergence is a non-negative function d(s, q) that is
zero if s = q. A strict divergence is zero only at s = q and positive, or infinite otherwise. Then, a class of
metrics that evaluate the goodness of the calibration of a probabilistic classifier Pc, relative to a reference
model Pr, can be defined as the expectation of the divergence with respect to the reference distribution
(Bröcker, 2009):

D(Pr, Pc) = EPr(q) [d(R(q); q)] . (24)

where we defined R(q) = s, making explicit the fact that s is a function of q.

Interestingly, it can be shown that EPSRs (Equation 5) can be decomposed into an expected divergence and
a generalized entropy term (DeGroot & Fienberg, 1983; Bröcker, 2009; Brümmer, 2010; Gneiting & Raftery,
2007; Dawid, 2007):

EPr(h,q) [C∗(h, q)] = EPr(q) [d(R(q); q)] + EPr(h,s) [C∗(h, s)] (25)

where

d(s, q) = Eh∼s [C∗(h, q) − C∗(h, s)] . (26)

which satisfies the conditions listed above. That is, it is zero if s = q, and non-negative otherwise. This last
property derives directly from the defining property of PSRs, Equation (3). When the PSR is strict, the
divergence is zero if and only if s = q. A divergence that is induced by a PSR as in Equation (26) is called
a score divergence (Ovcharov, 2015). The score divergence corresponding to the Brier loss is the squared
Euclidean distance,

∑
i(si − qi)2, and the one corresponding to the logarithmic loss is the Kullback-Leibler

divergence,
∑

i si log(si/qi).

The right-most term in Equation (25) is the EPSR of s which, for the logarithmic loss, is the entropy of this
distribution. This term measures the discrimination or refinement of q: it is the EPSR that is obtained after
solving (as best as we could) any miscalibration problem by adding the calibration transform s to the system.
Hence, Equation (25) expresses the overall performance of the system, given by the EPSR on the left-hand
side, as a sum of a calibration and a discrimination term. Note, though, that all terms in the decomposition
depend on Pr, a model that needs to be learned from data. Different models will lead to different values for
all three terms. While this may be unsettling, it is an issue inherent to the fact that the true distribution
is not known in practice and, hence, it applies to all metrics designed to assess the performance of posterior
probabilities.

The decomposition in Equation (25) is theoretically appealing but it is problematic in practice. The two
EPSRs in this equation are given by expectations taken with respect to a reference distribution consistent
with s. In particular, Pr(h, q) should be given by Pr(q)Pr(h | q) with the second factor given by s, and in
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order for the equality to hold. Hence, the left-hand side, which corresponds to the overall performance of
the classifier, depends on the output of a calibration model, s. If this model is poor, the assessment of the
system performance may be suboptimal (examples of this problem are given in Section 3.4).

In contrast, the common practice in the literature is to take the expectations of PSRs with respect to the
empirical distribution, that is, as the average PSR over the data. Unfortunately, doing this in Equation (25)
leads to a meaningless decomposition. The posterior s derived from the empirical distribution consists of a
one-hot vector with a one at the index corresponding to the sample’s true class for the q values obtained on
the dataset and undefined values for any other value of q. This s will, for most systems, have an entropy term
of 0 (unless two samples from different classes have exactly the same q value) suggesting that the system
has perfect discrimination. Yet, such s would certainly not result in zero entropy on any other dataset.

In order for the decomposition in Equation (25) to be meaningful, s needs to be a good predictive model.
That is, a model that generalizes well to unseen data. The empirical distribution does not satisfy this
condition and, hence, cannot be used for the decomposition. Perhaps for this reason, the divergence/entropy
decomposition of EPSRs is not commonly used in empirical papers. As we will see in Section 2.5.3, our
proposed calibration loss metric solves this problem.

2.5.2 ECE: Expected calibration error

The most common calibration metric in current machine learning literature is the expected calibration error
(ECE) (for example, Guo et al., 2017; Liang et al., 2023; Müller et al., 2019; Ovadia et al., 2019), which,
as we will see, is a variant of the expected divergence described above. This metric was proposed by Naeini
et al. (2015a) as a metric to assess the calibration quality of binary classification systems. To compute the
ECE, the posteriors for class H2 for all the samples in the test dataset are binned into M bins. The ECE is
then computed as (Guo et al., 2017):

ECE =
M∑

m=1

|Bm|
N

|class2(Bm) − avep2(Bm)| (27)

where Bm is the set of samples for which the posterior for class H2 is in the mth bin, |Bm| is the number of
samples in that bin, class2(Bm) is the fraction of samples of class H2 within that bin, and avep2(Bm) is the
average posterior for class H2 for the samples in that bin.

The expression above can be rewritten to look like the divergence in Equation (24), with the expectation
taken with respect to the empirical distribution, by replacing |Bm| with a sum over all samples in that bin:

ECE = 1
N

N∑
t=1

d(s(xt), q̂(xt)) (28)

where q̂ is such that q̂2(xt) = avep2(Bmt), and s is such that s2(xt) = class2(Bmt), where Bmt is the
bin corresponding to q2(xt), the output of the system for class H2. The s defined this way corresponds
to a very common calibration method called histogram binning (Zadrozny & Elkan, 2001; Naeini et al.,
2015b). To obtain the ECE defined by Equation (27), the distance d should be defined as d(s, q) = |s2 − q2|.
Unfortunately, the absolute distance is not a score divergence, that is, it is not induced by any PSR. To see
this, we can use the fact that all score divergences are Bregman divergences and Bregman divergences satisfy
the following property (Ovcharov, 2015):

E [s] = arg min
q0

E [d(s; q0)] (29)

where q0 is a fixed vector. That is, the divergence between s and a fixed posterior vector is minimized when
that vector is equal to the expectation of s. It is easy to find counterexamples (see Appendix B) where this
property is not satisfied for the absolute distance and, hence, we can conclude that the absolute distance
is not induced by any PSR. As a consequence, the standard form of the ECE cannot be decomposed as in
Equation (25).
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The histogram binning calibration transformation used to compute the ECE is, in all works we found that
used this metric, always trained on the test data itself. If this transformation overfits the data, the ECE
will be overestimated. Alternative versions for the ECE have been proposed where the bins are adapted to
contain equal number of samples, showing that the resulting ECE is less prone to overfitting (Nixon et al.,
2019). Yet, this only mitigates the problem, without fully solving it. A direct solution to the problem is to
treat the calibration transform like any other stage of the system, estimating its parameters on held-out data
or through cross-validation on the test data. This, as far as we know, has never been done in the literature
where ECE is computed. Further, histogram binning is not necessarily a good calibration transform for
every problem (we will show examples of this in the experimental section). If the calibration transform used
to compute the calibrated posteriors is not a good match for the problem, then the calibration error will be
underestimated since the calibrated posteriors will be poorer than they could be. Again, the ECE could be
computed using a different calibration transformation, but this it not what is done in the literature where
the ECE definition is always tied to using histogram binning as transform.

Finally, perhaps the biggest weakness of the ECE appears when it is used for multi-class problems. In
that case, in order to be able to continue using histogram binning as calibration transform, the multi-class
problem is mapped to a new binary problem where only the quality of the confidences is evaluated, ignoring
all other values in the posterior vector (Nixon et al., 2019). The confidence is the posterior corresponding
to the class selected by the system which, in the literature that uses ECE is taken to be the one with
the maximum posterior. This effectively maps the multi-class problem into a binary classification problem:
deciding whether the system was correct in its decision by using its confidence as the posterior for correctness.
Given this new problem, one can now use the definition for the ECE, where class2 is the fraction of samples
correctly classified by the system and avep2 is the average confidence. We call the multi-class version of ECE,
ECEmc. As a consequence of the fact that ECEmc only evaluates confidences rather than the full posterior,
it may fail to diagnose calibration problems on any of the other components of the posterior distribution
(see Section 3.3). Whenever good posteriors are required, the full vector of posteriors should be evaluated
and not just its maximum value (Popordanoska et al., 2022). Notably, in some works, including (Guo et al.,
2017), the multi-class definition of ECE is unnecesarily used for binary problems.

While the expression for the ECE in Equation (27) is the one used in most machine learning empirical
papers, a more general form for the ECE is sometimes used in theoretical papers where the quantization
of the system’s output is not done, and the divergence is a general function that satisfies d(s, q) = 0 when
s = q and positive otherwise (Widmann et al., 2019). Setting d to be the square euclidean distance, the
ECE directly corresponds to the expected divergence for the Brier loss, when s is obtained by histogram
binning. In fact, the transform could also be changed to a general transform in which case the ECE simply
coincides with the expected divergence in Equation (24). As we discussed above, though, the expected
divergence corresponds to a decomposition of the raw EPSR where the expectation is taken with respect
to a distribution based on a calibration model, making it a rather impractical decomposition. The calibration
loss proposed in the next section aims to solve this problem.

2.5.3 Calibration loss

As discussed earlier in this work, in our view, the main goal of calibration metrics should be to diagnose
calibration problems during system development. We then propose the following procedure for computing
a calibration metric for that purpose: 1) add a calibration transform at the output of the system, and 2)
assess the level of improvement obtained from this additional stage. The level of improvement, measured as
the difference in EPSR before and after adding the calibration stage, indicates the degree of miscalibration
of the system. We call this metric calibration loss. If the calibration loss is large relative to the original
EPSR value, then it means the system was poorly calibrated and would benefit from the addition of the
proposed calibration stage. If the improvement is relatively small, then it means that the system is already
well calibrated. Alternatively, a small relative improvement may be due to the calibration transform being
poor. This is the same problem discussed several times above. In order to measure calibration, a reference
distribution needs to be created first. The quality of the calibration metric will strongly depend on the
quality of this reference distribution. No calibration metric is immune to this issue.
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Our classifier
{x1, . . . , xN}

Calibrator

EPSRraw EPSRcalEquation (31) Equation (32)
{h1, . . . , hN}

{q1, . . . ,qN} {s1, . . . , sN}

Figure 3: Process for computing the two EPSRs needed to obtain the relative calibration loss metric (Equa-
tion 33) using a dataset with N samples.

Note that the process to obtain the calibration loss is, essentially, what is done at every step during system
development: a new approach is tried (in this case, the addition of a calibration stage) and its benefit is
assessed by measuring the relative improvement obtained compared to the baseline (in this case, the system
without the calibration stage). As for every other development process, the assessment of the gains will be
more reliable if the data where the performance is computed is not used for training or tuning purposes.
When computing calibration loss, this means that the test data should not be used to train the calibration
transform. This approach which, as far as we know, was never proposed in the calibration literature, ensures
that the estimation of the calibration error will not be biased by overfitting effects.

Formally, we define the calibration loss (CalLoss for short) as:

CalLoss = EPSRraw − EPSRcal (30)

where EPSRraw and EPSRcal are the two EPSRs in Equation (25) with the expectation taken with respect
to the empirical distribution, that is, computed as averages over the data, as in Equation (6):

EPSRraw = 1
N

N∑
t=1

C∗(ht, qt) (31)

EPSRcal = 1
N

N∑
t=1

C∗(ht, st) (32)

These two EPSRs measure the overall performance of the posteriors with (EPSRcal) and without (EPSRraw)
the addition of the calibration stage (see Figure 3). As we discussed with regards to Equation (25), EPSRcal
can be seen to measure the inherent discrimination performance of the system since it is the EPSR that
remains after the miscalibration has been fixed. Again, this holds as long as the calibration transform is
doing a good job at reducing the miscalibration.

For ease of interpretation, in our experiments we report relative CalLoss, RCL for short:

RCL = 100 (EPSRraw − EPSRcal)/ EPSRraw . (33)

The RCL reflects the relative improvement in EPSR that we would be able to achieve by adding a post-hoc
calibration stage given by s to our system.

CalLoss differs from the divergence defined by Equation (24) in the way the expectations of the PSRs are
computed on both sides. Instead of computing them with respect to a distribution consistent with s they
are computed with respect to the empirical distribution. As a consequence, the calibration term is no longer
an expected score divergence. Instead, it is simply the difference between the two empirical EPSRs. As we
will show in the experimental section, as long as s is a good calibration model, the EPSRs computed as in
Equation (24) or as in Equation (30) are very similar, resulting in the same value for the calibration metric,
which is the difference between the two EPSRs. On the other hand, when s is not a good calibration model,
the left-hand side in Equation (25) can be a very poor estimator of the classifier’s performance, resulting, as
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a consequence, in a meaningless decomposition. In contrast, EPSRraw computed as in Equation (31) does
not depend on a calibration model, resulting in a more reliable measure of the overall performance of the
classifier. Even if the calibration model is poor, the calibration loss value is still meaningful: it indicates the
improvement in EPSR that can be achieved by using that same calibration model as part of the system.

A specific instance of the calibration loss metric was proposed almost two decades ago for the binary classifi-
cation problem of speaker verification by Brümmer & du Preez (2006). This metric which, as far as we know,
has since only been used for the speaker verification and forensic applications (Ramos et al., 2017; 2020),
is a special case of our proposed approach above for binary classification where the calibration transform is
given by the best isotonic transformation obtained on the test data itself. In this work, we consider a general
form of the calibration loss where the transform can be adapted to the problem of interest and, preferably,
trained on held-out data rather than on the test data itself. This generalization allows us to use the metric
for multi-class problems where the isotonic transformation is not applicable and to avoid the bias produced
by the train-on-test approach.

3 Experiments

In this section we show an analysis of the metrics discussed in the previous section using both synthetic and
real datasets. Synthetic datasets allow us to have the ground-truth distribution, which in turn allows us
to obtain perfectly-calibrated posteriors where we would expect any good calibration metric to give a value
of zero. As we will see, this does not always happen, allowing us to revisit some of the theoretical issues
discussed in previous sections.

For synthetic data, the procedure for generating calibrated and miscalibrated posteriors is described in
Appendix C. Briefly, N samples are generated by sampling the input features from a multivariate Gaussian
distribution for each class. The number of samples generated for each class is determined by an imbalanced
prior distribution with a prior for class H1 of 0.8 and equal prior for other classes, unless otherwise noted. The
per-class multivariate Gaussian distributions are determined such that the means are equidistant at an L2
distance of 1. The covariance is diagonal with same variance for all dimensions and shared across all classes
and it controls the performance of the resulting posteriors. We set the variance to 0.15 unless otherwise
indicated. Perfectly calibrated posteriors are obtained using the known feature distribution for each class.
This is the optimal classifier for this data since it is derived from the generating distribution. Then, three
miscalibrated versions of these posteriors are created, one by artificially manipulating the prior distribution
to be mismatched to that in the data (mcp), another one by scaling the logarithm of the posteriors and
renormalizing the result to produce overconfident or underconfident posteriors depending on the scale (mcs),
and a final one combining both causes of miscalibration (mcps).

In Section 3.1 through 3.4 we show and discuss results for datasets with 2 and 10 classes, including first an
illustration of the property described in Section 2.3.4 and then focusing on the comparison of various EPSRs
and calibration metrics. Finally, in Section 3.5, results on real datasets are presented and discussed, showing
the effect of post-hoc calibration on the different metrics on posteriors produced by actual systems.

In practice, it is important to assess the robustness of the performance estimate obtained on our test dataset,
specially when the number of samples is small. Appendix E includes an example on how to obtain confidence
intervals using bootstrapping. We do not include confidence intervals in the results in this section to keep
both the code that produces them and the plots simple.

3.1 Illustration of EPSR construction as integrals over Bayes risks

In this section we illustrate the construction of CE and BS as integrals over Bayes risks (see Section 2.3.4)
using synthetic posteriors for a 2-class dataset. We generate posteriors for four different classifiers as described
above and further detailed in Appendix C:

• cal: Perfectly calibrated system obtained with a per-class variance of 0.15.
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Figure 4: Weighted Bayes risk curves for four different systems. Left: the weight is 1.0 so that the integral
under these curves is the CE. Right: the weight is a1 (1 − a1)/β(2, 2) so that the integral is the BS. The
normalized CE, NCE, and normalized BS, NBS, are shown in the legends.

• mcs-u: Miscalibrated system obtained by scaling the log posteriors from the cal system by 0.48
to simulate an underconfident system, and then converting the result back into posteriors by doing
softmax.

• mcs-o: Same as mcs-u but scaling the log posteriors by 2.0, to simulate an overconfident system.

• cal-h: Same the cal system but with a variance of 0.19 to obtain a harder dataset.

In all cases, the prior for class H1 is set to 0.6 and the total number of samples is set to 100,000.

The left plot in Figure 4 shows the Bayes risk for those four systems for cost matrices given by

Ca =
[

0 1/a1
1/(1 − a1) 0

]
(34)

while varying the value of a1 between 0 and 1. The CE for each system is simply the area under the
corresponding curve. Systems cal, mcs-u, and mcs-o have the same Bayes risk for a1 = 0.5, which corresponds
to the total error rate multiplied by 2. The corresponding Bayes decisions are given by the argmax rule.
Since mcs-u and mcs-o are constructed by scaling the log posteriors of the cal system, which does not
affect the argmax decisions, the total error rate is the same for all three systems. Yet, since the Bayes
risk at other values of a1 differs across systems, the CE also differs, being higher for the two miscalibrated
systems. Finally, we can see that the calibrated posteriors for the harder dataset, cal-h, have a worse total
error rate than the other three systems, but better Bayes risk than the mcs posteriors at extreme values of
a1. Overall, integrating the curves for mcs-u, mcs-o and cal-h leads to the same NCE values (recall that
NCE = CE /(−

∑
Pi log Pi), with P1 = 0.6 and P2 = 0.4 in these synthetic datasets).

The right plot in Figure 4 shows the Bayes risk multiplied by W (s) = a1 (1 − a1)/β(2, 2) so that the area
under these curves corresponds to the BS. We can see that the BS de-emphasizes the performance of the
system at extreme values of a1. Note that the Bayes decisions corresponding to the cost matrix defined by
Equation (34) are given by thresholding the posterior for class H1 at a threshold of a1 (this can be derived
by replacing C(H1, D2) = 1/a1 and C(H2, D1) = 1/(1 − a1) in Equation (1)). Hence, the operating points
that are deemphasized by BS are those corresponding to extreme threshold values. Poor posteriors in those
regions will be penalized much less by BS than by CE. A similar conclusions can be derived from comparing
the log-loss expression corresponding to the CE and the squared loss expression corresponding to BS. While
the squared loss is bounded by one, which happens when the posterior for the true class is zero, the log-loss
gives infinite penalization to those errors. This difference between CE and the BS results in a difference in
ranking of the four systems according to each metric. While systems mcs-u, mcs-o, and cal-h are identical
in terms of CE, they are not so in terms of BS due to the different weighting given to each operating point.

As is clear from this example, different EPSRs may result in different development decisions. Hence, it is
important to choose an EPSR that correctly reflects the needs of the application. Expression (10) provides
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Figure 5: Various metrics for a binary classification task for four different systems, one perfectly calibrated
(cal) and three miscalibrated ones (mcs, mcp, mcps). Left: normalized overall performance metrics. The
dashed line indicates the performance of a naive system. Right: calibration metrics including the binary
ECE, the multiclass ECE (ECEmc), and the RCL based on BS for two calibration approaches, DP (D), and
histogram binning (H), trained either through cross-validation on the test data (xv) or training on the full
test dataset (tt).

an intuitive way of creating new PSRs, allowing us to select a weight function W appropriate for the task.
By default, though, if no specific needs are identified, the uniform weighting function, which results in the
CE metric, is a good general choice. The BS may not be a desirable choice for high-stakes application due
to the effect observed in Figure 4 where the behavior of the risk for extremely imbalanced cost matrices is
deemphasized. This means that if a system produces poor posteriors in the extremes (very high or very low
values), the BS will not correctly diagnose the problem. The CE, on the other hand, will severely penalize
such systems, making it a more appropriate choice for high-stakes applications where having good extreme
posteriors is important.

The plots in Figure 4 also help us illustrate our argument about the role that calibration should (or, rather,
should not) play in the evaluation of posteriors. While system mcs-o is miscalibrated, it is better than system
cal-h which is perfectly calibrated in terms of BS (and the same in terms of CE). If we had decided that BS
is the EPSR of choice for our problem, there would be no reason to select the cal-h system over the mcs-o
system, despite the fact that the latter system is miscalibrated. If we had the chance to add a post-hoc
calibration stage to our system, we could compute a calibration metric to see that the mcs-o posteriors are
miscalibrated which would indicate that a calibration stage is needed. Yet, after adding that stage, the
performance of the system should again be assessed in terms of its new EPSR.

3.2 Results on a Binary classification problem

The left plot in Figure 5 shows five different metrics for the 2-class synthetic dataset, using the procedure
described in Appendix C to produce 400 samples. We chose to use a relatively small dataset to show the
effect that overfitting of the calibration transform may have in some of the metrics. The metrics include
normalized cross-entropy (NCE), normalized Brier score (NBS), and three normalized Bayes risks, with cost
matrices given by 1) the 0-1 cost matrix (NRisk-01), 2) the 0-1 cost matrix with an additional column
corresponding to a reject decision with cost of 0.1 for both classes (NRisk-01r), and 3) a square imbalanced
cost matrix with c12 = 1 and c21 = 10 (NRisk-imb). The accuracy for each system can be computed as
1 − 0.2 NRisk-01, since NRisk-01 = Risk-01/0.2, where Risk-01 is total error rate.

The results show that NRisk-01 is unaffected by the miscalibration in mcs, a scaling in the logarithm of the
posteriors which results in overconfident posteriors. This happens because the argmax decisions, which are
the Bayes decisions for this cost function, are not affected by the scaling. NRisk-01r and NRisk-im, on the
other hand, are affected by this type of miscalibration, with NRisk-im being less affected than NRisk-01 by
the mismatch in priors in mcp. As expected, we see that the risks have different behavior depending on the
cost matrix, highlighting the importance of correctly selecting this matrix for the problem of interest when
categorical decisions are required.

The three risks in the figure are EPSRs since they are computed using Bayes decisions. Yet, they are not
strict PSRs. They only assess the performance of the posteriors for one specific operating point given by
the cost matrix, which corresponds to a set of decision regions determined by Equation (1). The decisions
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regions are, in turn, used to make categorical decisions which are then used to compute the risk. Hence,
two systems that results on the same categorical decisions for a given cost matrix would have the same risk
value, while one may have better posteriors than the other for other cost matrices.

If we want to assess the goodness of the posteriors in general, across the full simplex, we need to use the
expectation of strict PSRs, like the CE or BS. These two metrics assess the goodness of the posteriors
without going through the step of making categorical decisions. As discussed in Section 3.1, despite both
metrics being strict PSRs, they may result in different conclusions about the quality of the posteriors. This
can be observed in the left plot in Figure 5 where the normalized CE and BS metrics show a rather different
assessment of the quality of the mcs and mcps systems. This happens because the overconfident posteriors
from the mcs and mcps systems are pushed to the extremes, where the BS pays little attention.

The right plot in Figure 5 shows various calibration metrics: binary ECE, multiclass ECE, and various RCL
metrics. The RCL metrics are computed using histogram binning or DP calibration trained with cross-
validation or on the test data to obtain EPSRcal (Equation 32). We can see that the histogram binning
approach is problematic for the cal and mcs datasets. When using cross-validation to train it (as for RCL-
BS-Hxv), the transform overfits the training data for each fold resulting in bad calibration when applying
that transform on the test data for that fold. Hence, the posteriors are actually worse than the original
ones, resulting in a negative calibration loss, something that should never happen for a well-designed well-
trained calibration transform. When training on the test data (as for RCL-BS-Htt), the transform overfits
the data and the metric diagnoses a non-existing calibration problem on the cal posteriors. These results
show that, for this particular problem, histogram binning is a poor calibration approach. In contrast,
the RCL values obtained with the DP transform are quite robust for both training approaches, since the
number of parameters in this transform is small and it is much less prone to overfitting. Both of these RCL
metrics correctly diagnose the calibration problem in the mc posteriors, and the correct calibration in the
cal posteriors. The value of these metrics tell us the relative improvement in BS that we would get from
adding an DP calibration stage to the system and, hence, directly quantify how badly calibrated the original
posteriors are without this stage.

Note that, given the way the posteriors are generated in our synthetic datasets, the DP transformation is,
by design, able to perfectly reverse the miscalibration present in those posteriors. In other datasets, the DP
transformation may not be necessarily optimal since misscalibration can potentially have non-linear effects
in the posteriors. Other calibration transformations available in the literature could be explored in those
cases. In our experience, though, DP calibration has given excellent results across a variety of tasks. We
will see further evidence of this in Section 3.5. As discussed in the next section, this is not the case for
temperature scaling, which fails in cases where the prior distribution in the training and the test data are
different, a common scenario in many applications.

Turning to the ECE metrics, we can see that ECEmc gives a different estimate of the calibration error than
the original binary ECE, which is expected since ECEmc is evaluating the performance of a different binary
problem, as explained in Section 2.5.2. We can also see that the ECE shows a similar trend as the RCL-BS-
Htt since these two metrics use the same calibrated posteriors obtained with histogram binning trained on
the test data, differing only in the way the distance between the raw posteriors and the calibrated posteriors
is computed (see Section 2.5.2). Hence, the ECE suffers from the same problem as RCL-BS-Htt discussed
above, mistakenly diagnosing a small calibration problem in the cal posteriors. Finally, note that the value
of the ECE does not have a clear interpretation, while, as discussed above, the RCL values directly indicate
the percentage of the EPSR of the original posteriors which can be reduced by doing calibration, providing
a more actionable result.

3.3 Results on a Multi-class classification problem

In this section we show results for a multi-class classification task instead of a binary task as above, including
additional versions of the calibration loss, using CE as the EPSR as well as BS, and using temperature scaling
as well as DP calibration to obtain the calibrated posteriors needed to compute that metric. The dataset
was created following the process described in Appendix C with K = 10 classes, feature variance of 0.08,
and a total number of samples N = 2000.
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Figure 6: Overall and calibration metrics as in Figure 5 but for a 10-class classfication task.

The left plot in Figure 6 shows the results for various overall metrics. The three risks are a direct gener-
alization of the ones for the 2-class case: 1) the 0-1 cost matrix (NRisk-01), 2) the 0-1 cost matrix with
an additional column corresponding to a reject decision with costs equal to 0.1 for all classes (NRisk-01r),
and 3) a square cost matrix with imbalanced costs, cij = 1 for all i ̸= j, except when i = 10 in which case
cij = 10 (NRisk-imb). The conclusion from these results is similar to that for the binary case: each risk
gives a different ranking of systems, and the NCE is more severely degraded by the scaling miscalibration in
mcs and mcps than the NBS.

The right plot in this figure shows the relative CalLoss (RCL) based on BS and CE for two calibration
methods, DP calibration and temperature scaling trained with cross-validation, and the multiclass ECE.
These results show a large difference between some of the calibration metrics. Those that use temperature
scaling for calibration fail to diagnose the severity of the calibration problem in mcp. This is because this
method cannot compensate for calibration problems due to mismatched priors and, hence, it also cannot be
used to diagnose them. As any other calibration metric, CalLoss fails if the calibration transform is not a
good match for the problem. Yet, the CalLoss framework allows us to explore a variety of transforms. If
one such transform leads to a relatively large CalLoss, and that transform was not trained on the test data
itself, then we can conclude that the system is miscalibrated. Importantly, the same transform that was
used to diagnose the problem can be used as post-hoc calibration stage and reduce the EPSR by the CalLoss
amount.

Turning to ECEmc, we can see that it gives a different assessement of the relative severity of the miscalibration
of the different datasets compared to the RCL metrics. This is partly because it uses a different way to
measure the distance between the raw and calibrated scores—one that is not induced by any PSR—and
partly because it only evaluates the quality of the maximum posterior for each sample rather than the full
vector. When the miscalibration occurs on classes other than the one with maximum posterior, the ECEmc
metric cannot properly diagnose the problem. This issue with the multi-class ECE has also been discussed
by Nixon et al. (2019). The CalLoss metric does not suffer from this problem as it assesses the quality of the
full posterior vector. In addition, note that the scale of the ECEmc is not interpretable. While, for example,
the RCL-CE-Dxv values for miscalibrated systems indicate that over 70% of the CE is due to miscalibration,
no equivalent interpretation is possible with the ECEmc.

3.4 Effect of the reference distribution in the EPSR value

As explained in Section 2.5, EPSRs values may differ depending on the reference distribution used to take
the expectation. In this section, we compare cross-entropy values (the expectation of the NLL) given by:

EPr(h,q) [C∗(h, q)] = EPr(h,q) [− log(qh)] (35)

for different reference distributions: the empirical distribution in the test data used in all prior results in this
section (Equation 8) and various semi-empirical distributions where Pr(q) is the empirical distribution for q,
but Pr(h | q) is given by a classifier. Since we are working with synthetic data, we can derive Pr(h | q) from
the true generating distribution. This posterior, of course, would not be available on real data. Hence, we
compare with different Pr(h | q) given by calibrating the posteriors using histogram binning, DP calibration,
and temperature scaling calibration trained with cross-validation or directly on the test data.
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System cal mcs mcp mcps
#Samples 200 2000 20000 200 2000 20000 200 2000 20000 200 2000 20000

po
st

er
io

rs
true -3 -5 -2 -7 -10 -5 4 -2 0 4 -2 0
Dtt 0 0 0 0 0 0 0 0 0 0 0 0
Dxv 1 0 0 1 0 0 1 0 0 0 0 0
Ttt 1 -1 0 1 -1 0 29 28 28 29 28 28
Txv 1 -1 0 2 -1 0 29 28 28 29 28 28
Htt -6 -8 -9 -153 -143 -132 -19 -21 -17 -62 -84 -82
Hxv -2 -8 -9 -171 -144 -132 -15 -21 -17 -62 -83 -82

Table 1: Relative difference between the semi-empirical cross-entropy (CEse) and the empirical cross-entropy
(CEe) computed as (CEe − CEse)/ CEe ∗100 and then rounded to the nearest integer. Results are shown
for synthetic posteriors as in Figure 5, for different number of samples. The semi-empirical cross-entropy
is computed with respect to posteriors given by the true posterior (true), and by calibrated versions of
the posteriors using DP calibration (D), temperature scaling (T), and histogram binning (H) trained with
cross-validation (xv) or trained on the test data (tt).

Table 1 shows the relative difference between the semi-empirical cross-entropy and the empirical cross-
entropy for the same four datasets used in Figure 5 with varying number of samples. We can see that, in
most cases, the relative difference between the empirical and the semi-empirical cross-entropy is very small,
specially for the larger datasets where the empirical cross-entropy is less noisy. Larger differences occur when
the calibration transformation does not fully fix the calibration problem, which happens with temperature
scaling for the mcs and mcps posteriors and for histogram binning in most cases, even for the larger datasets.

These examples illustrate the practical problem involved in using the expected score divergence as a cali-
bration metric. If the calibration model used to obtain s(q) = Pr(. | q) in Equation (25) does not do a
good job at calibrating the posteriors, the EPSR in the left-hand side may be a poor estimate of the system
performance. This will, in turn, result in a meaningless decomposition with the two terms adding up to a
value that does not reflect the actual performance of the system. On the other hand, CalLoss is meaningful
regardless of the quality of the calibration model. The EPSRraw and EPSRcal used to compute it reflect the
performance of the system before and after calibration with that same—perhaps suboptimal—calibration
model. Hence, CalLoss always measures the level of improvement in EPSR that can be obtained from using
the selected calibration transform. For this reason, we believe that, in practice, CalLoss is a better calibration
metric than the expected score divergence.

3.5 Results on real datasets

In this section, we show results on real datasets for a number of different tasks corresponding to speech,
image, and natural language processing (NLP) tasks.

For NLP we include SST2 and AGNEWS. SST2 (Socher et al., 2013) is a natural language processing
dataset where the task is to decide whether a certain text has positive or negative sentiment. In AGNEWS
(Gulli, 2005; Zhang et al., 2015) the task is to classify news into 4 different classes. The posteriors for
these datasets were produced with the GPT-2 model using the code provided in https://github.com/
LautaroEst/efficient-reestimation using zero-shot prompts.

For speech processing we include three datasets, SITW, FVCAUS and IEMOCAP. SITW (McLaren et al.,
2016) and FVCAUS (Morrison et al., 2015; 2012) are two speaker verification datasets where the task is to
decide whether two audio samples belong to the same speaker or not. To obtain posteriors for these two
datasets, we ran an X-vector PLDA system using the code provided in [link hidden to preserve anonymity].
IEMOCAP is a speech processing dataset where the task is to classify each speech sample into a set of
emotions: angry, happy, sad, and neutral. The posteriors were downloaded from https://github.com/
habla-liaa/ser-with-w2v2/tree/master/experiments/w2v2PT-fusion.

Finally, for image processing we include results on CIFAR10, which is an image processing datasets where
the task is to classify the object in an image into one of 10 classes. The posteriors for this dataset were
obtained using the code available in https://github.com/chenyaofo/image-classification-codebase.
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We evaluate three models: resnet20, vgg19, and repvgg_a2. These models have approximately 0.27 million,
20 million, and 27 million parameters, respectively. We also include three medical imaging tasks from the
MedMNIST dataset Yang et al. (2023): PATH, composed of histological images where the task is to classify
into 9 types of tissues; PNEUM, composed of pediatric chest x-rays classified as pneumonia or normal; and
ADRENAL, composed of tomography scans of adrenal glands classified as “normal adrenal" or “adrenal
mass". The posteriors were downloaded from https://zenodo.org/records/7782114 for the Resnet-50
models using the maximum image resolution.

We also created binary classification tasks for the detection of one specific class versus all others for CI-
FAR100, a dataset similar to CIFAR10 but with 100 classes, using the posterior obtained with a resnet20
system (using the same codebase as above for CIFAR10) for that class and 1 minus that posterior for the
“other” class. We call these posteriors CIFAR-XvsO, where X identifies the target class.

Table 3 in Appendix D shows the number of classes, the priors, and the total number of samples for all the
datasets. SST2, SITW and FVCAUS as well as the CIGAR-XvsO sets are binary classification problems,
while all others are multi-class problems.

For each dataset and system, we show results obtained on the raw posteriors as they come out of the system,
and on calibrated posteriors using DP calibration trained with cross-validation on the test data. For the
binary classification tasks, we also show results for the best calibrated posteriors obtained with the PAV
algorithm run on the full test set. Table 2 shows three normalized risk metrics, and NCE, RCL, ECE, and
ECEmc for each of those systems.

Focusing on the calibration metrics for the raw posteriors (see entries highlighted in red), we can see that
both ECE metrics often fail to diagnose calibration problems. For example, according to ECE, the SITW raw
posteriors are calibrated, while we know they are not since their NCE improves significantly after calibration.
Similarly, while for FVCAUS the miscalibration is to blame for almost 100% of the NCE value, ECE is below
10 and ECEmc is close to 0: both ECE metrics strikingly fail to diagnose the severity of the miscalibration
of this system. A similar thing happens for PNEUM and PATH, where the ECE values are relatively low,
but the RCL is quite large. Notably, for ADRENAL, the ECEs are higher than for PNEUM and PATH, but
the RCL is much lower. Overall, we can see a very weak relationship between the ECEs and the gain that
can be achieved from calibration, given by the difference between the NCE of the raw and the calibrated
systems. This indicates that the ECE is not a useful tool for diagnosing misscalibration. On the other hand,
the RCL is defined as the relative gain that can be achieved from post-hoc calibration, directly indicating
the impact that adding such a stage would have on the system.

In some cases, ECEmc suggests that a miscalibration problem exists where RCL does not. For example,
for the CIFAR100 RepVgg-a2 raw posteriors, the ECEmc of 5.6 indicates a small calibration error while
the RCL of 0.8 suggest the system is very well-calibrated. First, it is important to note that the ECEmc
is not a relative measure. It is not possible to assess the impact that an ECE value of 5.6 would have on
the performance of a system. In fact, the impact will be different depending on the overall performance of
the system. Unfortunately, this metric cannot be turned into a relative value like the RCL because there
is no corresponding NCE to use as reference. In contrast, an RCL value of 0.8 means that only 0.8% of
the NCE value is due to miscalibration. Further, note that ECEmc only assesses the performance of the
maximum posterior for each sample while RCL assesses the performance of the full vector of posteriors. The
ECEmc would tend to overestimate the impact of a small miscalibration in the maximum posterior since it
disregards the other posteriors (99 of them in this 100-class task) which may be very well calibrated. Finally,
it is possible that the low RCL is due to the DP calibration transformation not being enough to fix the
misscalibration problem, resulting in an underestimation of the RCL. In practice, a developer could explore
several calibration alternatives before deciding on one approach. The best calibration approach is the one
that results in the lowest EPSR value (and, hence, the largest RCL), as long as the calibration model was
not trained on the test data. Exploration of various calibration techniques is out of the scope of this paper.

Another important observation from this table is the fact that, sometimes, a miscalibrated system is better
in terms of the quality of its posteriors than one that is well calibrated. See, for example, the results for the
CIFAR10 posteriors (entries highlighted in green). The Resnet-20 Dxv-calibrated posteriors have perfect
calibration and an NCE of 0.101. The RepVgg-a2 raw posteriors, on the other hand, are miscalibrated with
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NRisk Calibration
Dataset System proc C01 Cab Cimb NCE RCL ECEmc ECE

SST2

GPT2-4sh raw 0.996 0.812 1.000 1.073 62.4 34.4 34.8
cal 0.226 0.585 0.711 0.404 -0.6 1.6 2.2
calp 0.223 0.555 0.660 0.385 -0.4 0.0 0.0

GPT2-0sh raw 0.828 0.818 1.000 0.917 46.0 20.0 27.3
cal 0.310 0.655 0.685 0.495 -0.6 1.4 1.5
calp 0.298 0.638 0.661 0.478 -0.4 0.0 0.0

SITW XvPLDA raw 0.324 0.225 0.191 0.189 16.7 0.2 0.2
cal 0.306 0.190 0.153 0.158 -0.1 0.0 0.0
calp 0.304 0.188 0.152 0.155 -0.0 0.0 0.0

FVCAUS XvPLDA raw 3.915 1.992 1.049 1.966 99.6 1.8 8.6
cal 0.012 0.008 0.005 0.008 -1.0 0.0 0.0
calp 0.012 0.007 0.004 0.006 -0.9 0.0 0.0

CIFAR-1vsO Resnet-20 raw 0.420 0.236 0.158 0.214 7.1 0.2 0.2
cal 0.430 0.199 0.130 0.199 -2.3 0.1 0.2
calp 0.400 0.175 0.132 0.169 -1.1 0.0 0.0

CIFAR-2vsO Resnet-20 raw 0.700 0.442 0.371 0.393 8.2 0.3 0.4
cal 0.560 0.440 0.367 0.361 -0.4 0.3 0.3
calp 0.560 0.415 0.363 0.329 -0.5 0.0 0.0

PNEUM Resnet-50 raw 0.278 0.736 0.479 0.802 58.1 7.7 8.6
cal 0.239 0.433 0.453 0.336 -2.0 2.0 2.4
calp 0.218 0.404 0.449 0.302 -1.8 0.0 0.0

ADRENAL Resnet-50 raw 0.928 1.013 1.122 0.931 15.9 11.1 12.0
cal 0.913 0.815 0.747 0.783 -1.3 3.7 4.3
calp 0.826 0.705 0.668 0.714 -0.9 0.0 0.0

PATH Resnet-50 raw 0.114 0.684 0.142 0.329 69.0 7.2 -
cal 0.076 0.281 0.106 0.102 -0.6 1.4 -

IEMOCAP W2V2 raw 0.504 1.056 0.607 0.635 3.1 6.3 -
cal 0.494 0.984 0.606 0.615 -0.1 2.7 -

AGNEWS GPT2-0sh raw 0.780 1.009 0.936 0.814 34.2 18.4 -
cal 0.378 1.014 0.762 0.536 -0.1 3.7 -

CIFAR10

Resnet-20 raw 0.082 0.406 0.121 0.122 17.2 3.9 -
cal 0.083 0.311 0.112 0.101 -0.8 0.8 -

Vgg19 raw 0.068 0.486 0.100 0.153 32.4 5.0 -
cal 0.069 0.322 0.097 0.103 -0.6 1.7 -

RepVgg-a2 raw 0.053 0.309 0.076 0.092 19.9 3.2 -
cal 0.052 0.239 0.067 0.074 -1.2 0.9 -

Table 2: Various metrics on raw and calibrated posteriors for different speech, image and natural language
processing datasets. Calibrated posteriors (cal) are obtained with DP calibration using a cross-validation
procedure. For the binary tasks, calibrated posteriors obtained with the PAV algorithm (calp) are also con-
sidered. We report three normalized risk values (NRisk) for the same cost matrices as in Figure 5, normalized
empirical cross-entropy (NCE), relative calibration loss for CE using DP calibration with cross-validation
(RCL-CE-Dxv in Figures 5 and 6, here RCL for short), binary ECE, and multi-class ECE (ECEmc). Colored
entries highlight comparisons made in the text.
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an RCL of 19.9%, but have an NCE of 0.092. This means that the posterior probabilities generated by the
latter system are better. Further evidence of this can be found in the NRisk values, which are consistently
better for the RepVgg-a2 raw posteriors than for the Resnet-20 calibrates ones. This example illustrates
why assessing calibration is not helpful to determine the quality of posterior probabilities and should never
be used to compare systems with each other.

Results for CIFAR10 also illustrate the fact that two systems with the same NCE are not necessarily equally
good for every operating point, as determined by a specific risk function. For example, the Resnet-20 and
Vgg19 Dxv-calibrated posteriors have almost identical NCE (0.101 vs 0.103), but show different trends for
the three NRisk metrics (see entries highlighted in blue and the green ones above). When the application
of interest has a specific well-defined risk function, then that metric should be used to make development
decisions rather than NCE, which integrates over all operating points instead of focusing on the one relevant
for the task.

Comparing the results for Dxv-calibrated (cal) and PAV-calibrated posteriors (calp) we can see that they
are very similar in most cases (see entries highlighted in orange). This implies that the Dxv-calibration
procedure is doing a near optimal job at calibrating the posteriors for those datasets. The small difference
between cal and calp may be due to a number of reasons: 1) that the DP transformation is not sufficiently
expressive for these datasets, 2) that the transforms trained with cross-validation are not generalizing well to
the test sets due to the small number of samples available, or 3) that the isotonic PAV transform overfitted
the test data resulting in an unrealistically low NCE value. The only way to determine whether the NCE
for calp posteriors is too low or the one for cal posteriors is too large is to keep working on the calibration
transformation in search of one that, when trained on held-out data or through cross-validation, reduces the
NCE further than Dxv calibration.

4 Discussion and conclusions

In this work, we focus on the problem of evaluating the quality of probabilistic classifiers. We review
the classical concept of proper scoring rules (PSRs) which are scoring functions designed to assess the
performance of probability distributions. The expectation of a PSR (EPSR) reflects the quality of the
posterior probabilities provided by a classifier. When comparing two systems, a lower normalized EPSR
indicates that the system’s posteriors are better for making decisions and, hence, also better for interpretation
by an end user. A normalized EPSR larger than 1.0 indicates that making decisions with those posteriors
would be worse than making decisions simply based on the class priors.

Despite the existence of this elegant and principled tool to assess the performance of probabilistic classifiers,
the current trend in much of the machine learning literature is to use calibration metrics for this purpose,
under the claim that good calibration is an essential requirement for posteriors to be interpretable, safe, and
reliable. In this work, we contend this view and argue that good calibration is neither necessary nor sufficient
for a probabilistic classifier’s posterior to be of value to the end user. A system can have a relatively high
calibration error and still be useful to the user, as long as its EPSR is low. On the other hand, a system
might be perfectly calibrated but provide very little value to the user if its EPSR is too high. Hence, we see
no reason to report calibration metrics as a way to assess the value of a probabilistic classifier’s outputs.

It is important to note, though, that there is also usually no reason to tolerate a miscalibrated system.
Any miscalibrated system can be fixed by adding a post-hoc calibration stage at the end of the pipeline,
transforming the posteriors output by the system into better posteriors. We believe the only role of calibration
metrics should be to aid the developer in deciding whether such post-hoc calibration stage is needed for a
given system. After that decision has been made, though, we argue, calibration metrics should play no
further role in evaluation. In particular, calibration metrics should not be used to compare systems with
each other or to decide whether a system is safe for use in high-stakes applications. EPSRs should instead
be used for these purposes.

If the role of calibration metrics is simply to reflect the performance gain that can be achieved by fixing the
potential miscalibration of the system, then, we argue, they should be designed to do exactly that. A direct
way to measure the impact of a classifier’s miscalibration is to add a post-hoc calibration stage to the system
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and assess the gain in EPSR provided by this addition. The difference between the EPSR of the original
classifier and the EPSR after adding post-hoc calibration—called calibration loss—is a direct measure of
the miscalibration of the original system. If the calibration loss relative to the EPSR of the original system
is large, then a calibration stage should be added to the system. Importantly, the calibration stage should
be designed and trained as any other system stage, without using the test data to avoid overestimating the
impact that a calibrator would have in the system’s performance.

We compared calibration loss with the ECE, the most widely used calibration metric in the machine learning
literature, and show both theoretically and empirically that the ECE has a number of important disadvan-
tages. First, it lacks interpretability since it is not related to a PSR and cannot be turned into a relative
measure of the gains that would be achieved with post-hoc calibration. In addition, the multi-class version
of ECE measures only the performance of the largest posterior probability generated by the system for each
sample rather than of the full posterior, failing to directly address the question of interest. In contrast, cal-
ibration loss is directly interpretable, evaluating the calibration of the full posterior distribution as the gain
that can be obtained from adding a post-hoc calibrator to the system. Other problems with the ECE include
the fact that it relies on histogram binning, an often poor choice as calibration transformation, and that this
transformation is trained on the test data itself, leading to potential overestimation of the miscalibration due
to overfitting of the transform. While calibration loss could also be computed with this choice of calibration
transform, we recommend against it, favoring instead the use of a direction-preserving calibration trained
with cross-validation on the test data or on held-out data.

Finally, we also compared calibration loss with a calibration metric obtained from a classic decomposition
of the expected PSR of the classifier. We show that, in practice, this decomposition is highly affected by the
quality of the calibration transform used to compute it, loosing its meaning when the transform does not
adequately fix the classifier’s miscalibration. Calibration loss, on the other hand, retains its interpretation as
the gain that can be obtained after post-hoc calibration with the selected transform, even if the calibration
transform is suboptimal.

The paper is accompanied by an open-source repository which provides code for the computation of the
various metrics in this paper. All plots and tables in this paper can be replicated using the repository. We
hope that this work along with the provided code will facilitate the wider adoption of these metrics that
offer a principled, elegant, and general solution to the evaluation and diagnosis of probabilistic classifiers.
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Figure 7: Expected divergence between synthetic posteriors for a binary task and q0, a fixed vector of
posteriors. The figure shows the expected divergence as a function of the first component of q0, which we
call q01, for different divergences (blue curves) and the mean value of the first component of the posterior
(star). The star has to coincide with the minimum of the curve for valid score divergences proving by
contradiction that the L1 loss is not a score divergence.

A Cross-entropy and Brier score parameterized by the priors

The cross-entropy (CE) and the Brier scores (BS) can be expressed as a function of the priors, allowing us
to turn them into parameters of the metric. For the CE, the expression is given by

CE = −
N∑

t=1

Pht

Nht

log(qht
(xt)) (36)

where Nht is the number of samples of class ht. Setting the prior for each class h, Ph, to Nh/N we recover
the standard CE expression (Equation 8). The advantage of the expression above is that it allows us to
manipulate Ph independently of the test dataset. This is useful when the class frequencies present in the test
data do not reflect the prior distribution that is expected during deployment. In that case, the Ph’s can be
set to those we expect to see when the system is used. The resulting CE will then better reflect the values
we would measure on that target data if it was available for evaluation.

For the BS, the expression parameterized by the priors is given by:

BS =
N∑

t=1

Pht

Nht

1
K

K∑
i=1

(qi(xt) − I(ht = Hi))2 (37)

B The absolute distance loss is not a score divergence

Here we provide a counterexample to show that the absolute distance loss does not satisfy the mean-as-
minimizer property of Bregman divergences. To show this, we generate posteriors s as described in Ap-
pendix C for a 2-class problem with P1 = 0.6. Then, we take the expectation with respect to the empirical
distribution of their divergence to a fixed posterior q0. We do this for a range of q0 and plot the result-
ing expected divergence as a function of the first component of q0. Further, we plot with a star the first
component of the mean s. For valid score divergences, the mean should coincide with the minimum of the
curve.

Figure 7 shows these curves for four different divergences: 1) the L1 loss only over the posterior for H2, which
is, approximately (given that the ECE actually quantizes the posteriors before computing the distance), what
the ECE computes, 2) the L1 loss between the full posterior vectors, 3) the L2 loss, which corresponds to
the Brier score PSR, and 4) the Kullback-Leibler loss, which corresponds to the negative logarithmic loss
PSR. We can see that the first two losses do not satisfy the mean-as-minimizer property and, hence, are not
score divergences.
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C Synthetic dataset for experiments

Here we describe the procedure used to create synthetic datasets for the experiments in this paper. Given a
number of classes K, a total number of samples N , a prior for class H1 of P1, and a variance σ, which are
taken as a parameters of the simulation, we proceed as follows:

1. Set the class priors to P1 for class H1, and Pi = (1 − P1)/(K − 1) for classes 2 through K. Unless
otherwise indicated, P1 is set to 0.8.

2. Determine the number of samples for each class, Ni as the closest integer to Pi N .

3. Generate Ni samples using a multivariate Gaussian distribution N (µi, σI), with mean µi given by a
one-hot vector with the one at the ith dimension and diagonal covariance matrix with equal variance
in all dimensions given by σ which, unless is otherwise indicated, is set to 0.15. We take these
samples to be the xt, the input features for each sample.

4. Compute the likelihoods for each class for each generated sample according to the class distributions
used to draw these samples, that is, P (x|Hi) ∼ N (µi, σI).

5. Finally, we assume two possible prior distributions: 1) the same prior distribution given by the Pis
according to which the data was generated in step 3, and 2) a mismatched distribution P̂ , where
P̂i = 0.1/(K − 1) for i ̸= K and P̂K = 0.9.

6. Using those two prior distributions, compute two sets of posteriors which we call cal and mcp (for
mis-calibrated due to a mismatch in posteriors) which correspond to using the data priors and the
mismatched priors, respectively, to obtain the posteriors according to:

P (Hi|x) = P (x|Hi) P (Hi)
P (x) = P (x|Hi) P (Hi)∑

j P (x|Hj) P (Hj) . (38)

where the P (x|Hi) are the likelihoods computed in step 4 and P (Hi) are the corresponding matched
or mismatched priors, Pi and P̂i, respectively.

Note that with the procedure above, the cal posteriors are perfectly calibrated for the test data. The mcp
posteriors, though, are not calibrated because, even though the likelihoods used to compute it are obtained
from the generating distribution, the priors are mismatched to the ones used for testing. Further, we create
misscalibrated versions of the posteriors which we call mcs and mcps by scaling the cal and mcp posteriors,
respectively, in the log domain and then converting them back to posteriors by computing the softmax. The
scale is set to 5.0 unless otherwise indicated, simulating an overfitted system that produces overconfident
posteriors.

D Real datasets for experiments

Table 3 shows the priors and total number of samples for all the datasets used in Section 3.5.

E Confidence Intervals

The metrics in the main text and in prior sections of this appendix are computed as averages over the
whole test set. For small datasets, this estimate might be quite unreliable, not necessarily reflecting the
performance we would observe in practice. Hence, having an estimate of the range of values that our metric
of interest could take on a new dataset is essential, specially for small datasets. A standard method for
obtaining such ranges is the bootstrapping approach (Tibshirani & Efron, 1993; Keller et al., 2005; Poh &
Bengio, 2007). Given a test set of size N , the procedure for obtaining confidence intervals is as follows:

• Obtain B bootstrap sets of size N by sampling the original test set with replacement.

30



Under review as submission to TMLR

Dataset #Classes #Samples Priors

SST2 2 1821 0.50 0.50
SITW 2 721788 0.99 0.01
FVCAUS 2 114072 0.98 0.02
CIFAR-1vsO 2 10000 0.99 0.01
CIFAR-2vsO 2 10000 0.99 0.01
PNEUM 2 624 0.38 0.62
ADRENAL 2 298 0.77 0.23
PATH 9 7180 0.05 0.06 0.08 0.09 0.10 0.12 0.14 0.17 0.19
IEMOCAP 4 5473 0.20 0.29 0.31 0.20
AGNEWS 4 7600 0.25 0.25 0.25 0.25
CIFAR10 10 10000 0.10 for all classes

Table 3: Number of classes, number of samples, and class priors for each dataset included in our experiments.
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Figure 8: Metrics with confidence intervals obtained with bootstrapping. Left: the normalized BS for the
same posteriors as in Figure 5. Right: the RCL for BS using the same calibration methods as in Figure 5.

• Compute the metric of interest in each of the B bootstrap sets.

• Compute the confidence interval with confidence level γ by calculating the γ/2 and 100 − γ/2
percentiles from the list of B metric values computed above.

The confidence intervals obtained in this way assume that the system is fixed and exactly what will be
deployed. Only the variability due to the test data is reflected in these intervals (Raschka, 2018). Importantly,
when computing calibration metrics, the calibration transform, if computed using cross-validation or train-
on-test rather than using a separate calibration dataset (in which case the calibration transform can be
considered part of the system and also frozen), should be retrained for each bootstrap set. This allows the
confidence interval to reflect the variability in metric values due to changes in the transform training data.
Importantly, when doing cross-validation, the folds should be defined by original sample to avoid having the
same sample across more than one fold.

To illustrate, Figure 8 shows the confidence intervals obtained from 100 bootstrap samples for the same
posteriors as in Figure 5 for NBS and BS-based RCL. The code to create this plot can be found in the
accompanying repository.
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