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Abstract

Temporal graph neural networks (TGNN) have
achieved significant momentum in many real-
world dynamic graph tasks. While most existing
TGNN attack methods assume worst-case scenar-
ios where attackers have complete knowledge of
the input graph, the assumption may not always
hold in real-world situations, where attackers can,
at best, access information about existing nodes
and edges but not future ones after the attack.
However, studying adversarial attacks under these
constraints is crucial, as limited future knowledge
can reveal TGNN vulnerabilities overlooked in
idealized settings. Nevertheless, designing effec-
tive attacks in such scenarios is challenging: the
evolving graph can weaken their impact and make
it hard to affect unseen nodes. To address these
challenges, we introduce MemFreezing, a novel
adversarial attack framework that delivers long-
lasting and spreading disruptions in TGNNs with-
out requiring post-attack knowledge of the graph.
MemFreezing strategically injects fake nodes or
edges to push node memories into a stable “frozen
state,” reducing their responsiveness to subse-
quent graph changes and limiting their ability to
convey meaningful information. As the graph
evolves, these affected nodes maintain and prop-
agate their frozen state through their neighbors.
Experimental results show that MemFreezing per-
sistently degrades TGNN performance across var-
ious tasks, offering a more enduring adversarial
strategy under limited future knowledge.
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1. Introduction
Dynamic graphs are prevalent in real-world scenarios, span-
ning areas like social media (Kumar et al., 2018), knowl-
edge graphs (Leblay & Chekol, 2018), autonomous sys-
tems (Leskovec et al., 2005), and traffic graphs (Pareja et al.,
2020). Inspired by the success of GNNs (Kipf & Welling,
2016; Hamilton et al., 2017; Veličković et al., 2017; Xu et al.,
2018), Temporal Graph Neural Networks (TGNNs) have
become leading solutions for dynamic graph tasks (Trivedi
et al., 2019; Kumar et al., 2019; Rossi et al., 2020; Zhang
et al., 2023; You et al., 2022). As such, there is a pressing
need to study their robustness towards adversarial attacks,
especially since such attacks have shown significant effi-
cacy against traditional GNNs (Wang et al., 2018; Tao et al.,
2021; Zügner et al., 2018; Zou et al., 2021; Ma et al., 2020;
Zang et al., 2020; Bojchevski & Günnemann, 2019; Sun
et al., 2022; Li et al., 2022). By modifying the input graphs
with imperceptible and subtle perturbations, the adversarial
attacks can make the models yield incorrect or adversary-
expected results. For instance, a social media such as RED-
DIT (Kumar et al., 2018) may employ TGNN to decide
whether comments (as edges) from users to posts (as nodes)
should be banned based on his/her comment histories. With
subtle adversarial attacks, malicious messages can easily
bypass this checking functionality.

While several studies have explored the effectiveness of
adversarial attacks on dynamic graphs (Lee et al., 2024;
Sharma et al., 2022; 2023; Chen et al., 2021), they often
assume that attackers have complete knowledge of the input
graphs at the time of the attack, which may be challenging
to achieve in many real-world scenarios. In practice, as
dynamic graphs evolve, by the time attackers observe the
entire evolution (i.e., track all changing nodes and edges)
and identify the optimal timestamps to inject adversarial
perturbations (e.g., adding fake nodes or edges), those key
timestamps may have already passed, making it challenging
to inject noises timely. Hence, in real-world cases, despite
white-box (i.e., model parameters are known) or black-box
setups (i.e., model parameters are unknown), the adversary
may attack TGNN without knowing future changes on the
graph. Therefore, studying TGNN adversarial attacks under
these real-world constraints is essential since attacking un-
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der limited future knowledge may exhibit unique patterns
that reveal TGNN vulnerabilities overlooked in idealized,
full-knowledge analyses. However, attacking TGNNs with
limited knowledge up to the attack time faces significant
challenges due to the evolving nature of dynamic graphs.
First, the impact of adversarial noise can quickly decay as
the graph evolves and node information updates. Second, it
is difficult to influence unseen nodes or edges that appear
after the attack, as their information is unknown. Thus, an
effective strategy must endure the graph’s evolution and
affect both current and future nodes despite this uncertainty.

Interestingly, the node updating mechanism in Temporal
Graph Neural Networks (TGNNs) offers unique potentials
for persisting and propagating adversarial noises in dynamic
graphs. Generally, TGNNs maintain and update node status
vectors, often referred to as node memory by recent stud-
ies (Rossi et al., 2020; Zhou et al., 2022; Wang & Mendis,
2024; Zhou et al., 2023; Wang & Mendis, 2023), to capture
nodes’ temporal history, which is crucial for delivering accu-
rate predictions in dynamic graph tasks. Moreover, a node’s
memory vector can potentially affect its neighbors. When
graph changes occur—such as the addition and deletion of
nodes or edges—the memory vectors of related nodes are
updated based on their neighbors’ memories. This raises
intriguing questions: Can TGNN predictions be disrupted
by disabling their memories, and can this effect persist and
spread through their memory updates?

To address this inquiry, we thoroughly investigated the mem-
ory update patterns of nodes within TGNNs and made the
following observations: (1) Although it is not possible to
directly affect unseen predictions, we can degrade TGNN
prediction accuracy by pushing nodes—whether seen or un-
seen—into a relatively ‘frozen’ state, their memories remain
stable and exhibit limited responsiveness to surrounding
changes, reducing their ability to convey updated or mean-
ingful information. (2) While a noisy node’s memory vector
may struggle to maintain its noisy state over time on its
own, this state can persist for much longer if its neighboring
nodes have similar memory states.

To this end, we introduce MemFreezing, a novel adversar-
ial attack to expose TGNN vulnerabilities under limited
knowledge about input graphs. At a specific attack times-
tamp, MemFreezing strategically selects groups of victim
nodes that reinforce each other’s noisy states using a scheme
called cross-freezing. By injecting carefully crafted fake
messages, MemFreezing leads nodes into a stable “frozen
state”, reducing their responsiveness to graph changes and
thereby misleading predictions. Additionally, it simulates
victim nodes’ future neighbors to encourage the propaga-
tion of the frozen effect. We summarize our contributions
as follows:

• We identify a highly possible threat model where attack-

ers only see the graph up to the attack time, posing unique
challenges for adversarial attacks on TGNNs.

• We propose MemFreezing, which disrupts TGNN node
memories by pushing them into unnaturally stable states.
It adopts a cross-freezing mechanism to keep nodes’ mem-
ories stable despite future updates and encourages af-
fected nodes to propagate stable states by simulating their
future neighbors.

• We compare our method with prior GNN adversarial at-
tacks on various dynamic graphs. Experimental results
show that, MemFreezing effectively and persistently mis-
leads TGNN predictions across diverse datasets and mod-
els, outperforming state-of-the-art GNN attacks, even in
the presence of defenses.

2. Background and Related Work
Dynamic Graphs. Unlike a static graph, a dynamic graph
consists of nodes and edges evolving over time. Dynamic
graphs can be represented in two ways: Discrete-Time Dy-
namic Graphs (DTDGs) describe dynamic graphs as a series
of static snapshots taken periodically, while Continuous-
Time Dynamic Graphs (CTDGs) view the graph as a col-
lection of events—each event detailing updates like node
or edge changes. Recent TGNNs focus on CTDGs since
they can retain more information than DTDGs’ fixed inter-
vals and more complex (Kazemi et al., 2020). Within the
CTDG paradigm, the dynamic graphs are represented as
G = {x(t1), x(t2), ...}, in which x(ti) indicates an event
happened at timestamp ti. Generally, the prediction task for
CTDGs can be depicted in equation 1.

yi = fθ(Gi, ti) = fθ({x(t1), x(t2), ...x(ti−1)}, ti) (1)

At the prediction time ti, the model fθ(·) takes all previ-
ous events Gi = {x(t1), x(t2), ...x(ti−1)} as inputs and
predicts the testing nodes’ classes or future edges.

Temporal Graph Neural Networks. The memory-based
Temporal Graph Neural Networks (TGNN) are widely stud-
ied and achieve state-of-the-art accuracies in dynamic graph
tasks (Trivedi et al., 2019; Kumar et al., 2019; Rossi et al.,
2020; Kazemi et al., 2020; Zhang et al., 2023; You et al.,
2022; Ahmadi, 2020). Generally, these TGNNs maintain
a state vector for each node that tracks the node’s history,
and use it for predictions. Note that, despite their differ-
ent names (e.g., node memories (Rossi et al., 2020; Wang
et al., 2021), node representations (Trivedi et al., 2019),
node dynamic embeddings (Kumar et al., 2019)) across
various TGNNs, these node features are represented as vec-
tors on presented nodes and evolve over time to capture the
temporal information of these nodes. Following existing
general TGNN frameworks (Zhou et al., 2022; 2023; Wang
& Mendis, 2024; 2023; Rossi et al., 2020), we refer to these
evolving node feature vectors as node memories. As illus-
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Figure 1. The three steps of TGNN computing assuming a new event at timestamp t−0 adds an edge e23 to the dynamic graph: Firstly,
messages msg23 are generated for the nodes involved in this event nodes 2 and 3. Next, the nodes aggregate messages from their
neighbors and update their memories (e.g., s2 → s+2 ). At a future prediction time t0, nodes aggregate memories (e.g., s1 and s2) from
their neighbors and embed them into node vectors (e.g., h2) for the prediction.

trated in Figure 1, TGNNs produce node embedding for the
predictions in three steps. When an event x(ti) adds an edge
euv from node u to node v (i.e., x(ti) = euv), two messages
are generated as equation 2 (Step 1). For simplicity, we only
present the updating and following operations of node u,
which is the same for node v.

mvu = msg(sv, su,∆T, euv) (2)

The msg(·) is a learnable function such as Multi-Layer-
Perceptions (MLPs). The su and sv denote the memories
of node u and node v at their last updated times, and ∆T
represents the difference between the current timestamp and
the nodes’ last updated times. Next, nodes u and v aggregate
messages from their neighbors and update their memories
as equation 3 (Step 2).

s+u = UPDT (su, AGGR(mku|k ∈ N(u))), (3)

The N(u) denotes the neighbors of node u. The AGGR(·)
is usually implemented by a mean or most_recent func-
tion to aggregate messages from the node’s neighbors (Rossi
et al., 2020). The UPDT (·) uses the aggregated messages
to update the node’s memory and is usually implemented
by a Gated-Recurrent-Unit (GRU) (Chung et al., 2014).
When there is a prediction involving node u, TGNNs use
a graph embedding module, such as Graph Attention Net-
work (Veličković et al., 2017), to embed the node’s memory
into the final node embedding, as depicted in equation 4
(Step 3).

hu = GNN(su, sk|k ∈ N(u)), (4)

During prediction, TGNNs use nodes’ latest memories to
compute the node embedding hu. The resulting node em-
bedding hu is fed into an MLP for the final predictions.

Adversarial Attacks on Graph Neural Networks. The
considerable achievements of GNNs have catalyzed numer-
ous investigations into their resilience against adversarial
attacks (Chen et al., 2017; Bai et al., 2018; Wang et al.,
2018; Zügner et al., 2018; Bojchevski & Günnemann, 2019;
Ma et al., 2020; Zang et al., 2020; Tao et al., 2021; Zou
et al., 2021; Sun et al., 2022; Li et al., 2022; Zou et al.,
2023). These adversarial attacks generally seek to misguide

GNN predictions by modifying the nodes and edges of input
graphs. For example, (Wang et al., 2018) introduces fake
nodes with fake features that can minimize the loss between
prediction results in the original graphs and the targeted fake
results; (Zügner et al., 2020) adds and deletes edges that can
cause the most substantial increases in the training losses
on the original graphs. Recently, there have also been a few
studies that explored the effectiveness of adversarial attacks
on dynamic graphs and TGNNs (Lee et al., 2024; Sharma
et al., 2023; 2022; Chen et al., 2021).

3. Problem Analysis
Threat Model under Limited Future Knowledge. Prior
TGNN attacks (Lee et al., 2024; Sharma et al., 2023; 2022;
Chen et al., 2021) assume that attackers have full knowledge
of the target graphs and that these graphs remain static after
the attacks. However, this assumption may not hold in
many real-world settings, as attackers cannot return to the
optimal attack times after observing the entire evolution of a
dynamic graph. In particular, when an attacker observes the
evolution of a dynamic graph at tn and identifies optimal
attack timestamps ta1

, ta2
, ..., tak

≤ tn, they would need
to go back to these past timestamps to inject noise, which
is infeasible in practice. To this end, we assume that an
attacker’s knowledge is limited to events up to the attack
timestamp, and the graph continues to evolve afterward.
Specifically, we set up the attack model as follows.

• Attacker’s Goal: Given an evolving dynamic graph and
a TGNN model, the attacker’s goal is to misguide the
TGNN predictions by introducing a limited amount of
changes to the entire graph (e.g., affecting a small number
of total nodes limited by the attack budget.)

• Attacker’s Knowledge: Attackers have access only to in-
formation up to the attack’s timestamps—namely, model
parameters, presented graph inputs, and node memories
before the attack—but not future graph changes. Re-
garding acquiring presented graph information, platforms
like Wikipedia, Reddit, Meta, or X typically offer pub-
licly accessible dynamic graphs, allowing adversaries to
reconstruct them reasonably. Likewise, many TGNN ar-
chitectures and pre-trained models are open-sourced, and
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even when they are not, techniques like insider threats or
model extraction (Yao et al., 2024; Oliynyk et al., 2023)
can be used to obtain model parameters. (We also discuss
black-box scenarios in Appendix B.15.)

• Attacker’s Capability: Attackers can add fake events as
adding nodes/edges at the attack time. For example, while
attacking TGNNs in social media, attackers can create
fake user accounts as fake nodes and make junk com-
ments to the blogs as fake edges.

Challenges in Limited Future Knowledge. Due to lim-
ited knowledge up to the attack time, adversarial attacks
on TGNNs must contend with unknown future changes in
dynamic graphs. However, the subsequent changes after the
attack may significantly limit the attack performances for
two reasons: First, for seen and attacked targets, the noise
that misleads their predictions becomes mixed with new
information from future changes (as described in equation 3
and equation 4), making it too weak to mislead future pre-
dictions. Second, unseen nodes and edges added after the
attack are difficult to affect, as the attackers have no knowl-
edge of these future elements and cannot generate effective
noise to mislead them. As details shown in Section 5 (e.g.,
Figure 5 and Table 1), while existing GNN attacks (Wang
et al., 2018; Zou et al., 2021; Li et al., 2022) effectively
reduce the model’s accuracy immediately after the attack,
they struggle to perturb predictions in the future timestamps.

4. The MemFreezing Attack
We propose MemFreezing, an adversarial attack specifically
tailored for TGNNs. It consists of two key features: i) To
create long-lasting adversarial effects, we induce nodes to
mutually lock their memories, keeping them stable during
future updates. Consequently, the victim nodes become less
responsive to surrounding changes, limiting their ability to

provide critical information for predictions. ii) To affect
unseen nodes and edges, we simulate future neighbors for
the victim nodes and encourage these victim nodes to update
the memories of their simulated future neighbors into simi-
lar, stable states. As a result, the adversarial effects remain
persistent through future changes and influence subsequent
predictions, as illustrated in Figure 2.

Memory Freezing Objective. Instead of focusing on maxi-
mizing prediction losses as prior adversarial attacks, which
are limited by unknown and diverse future events, we pro-
pose to transform victim nodes’ memories into similar and
stable states, which we refer to as Frozen State. In particular,
by keeping node memories similar and unchanged over time,
nodes in TGNNs can hardly carry or convey meaningful in-
formation, consequently disturbing predictions. To quantita-
tively investigate the potential effectiveness of freezing node
memories, we freeze the node memories in TGN (Rossi
et al., 2020) and JODIE (Kumar et al., 2019) by consistently
forcing their node memories to all zero, then evaluate their
performances on edge prediction tasks on Wikipedia (Ku-
mar et al., 2018) dataset. As shown in Figure 3(a), this leads
to significant accuracy drops over time, demonstrating the
impact of freezing node memories. Thus, we set our attack
objective as freezing node memories unchanged.

4.1. Freezing and Persisting Node Memory

Challenges in Persisting Frozen Memories. However,
keeping nodes’ memories in frozen states is challenging, as
unpredictable neighbor messages can significantly alter a
node’s memory during updates. An intuitive solution is to
minimize the impact of incoming messages during an update.
To explore the feasibility of this approach, we conducted a
case study using TGN on the Wikipedia dataset. Specifically,
we sampled 100 victim nodes, manipulated each node’s
memory to minimize the interference of messages during
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updates, and assessed whether they remained unchanged
over subsequent timestamps. As shown in Figure 3(b), the
cosine similarities between nodes’ pre- and post-update
memories still dropped remarkably, indicating that future
messages cannot be fully blocked in RNN or attention-based
memory updating modules. We show further experimental
details and theoretical analysis in Appendix A.1.

Opportunities in Freezing. Although blocking messages
from a node’s neighbors is infeasible, we can inject noise
into those neighbors so that their updates help sustain the
node’s frozen memory. In particular, we assume that node
memories in TGNN can remain stable when surrounded by
neighbors with similar memories. We verify the assumption
using the same model and data as Figure 3(b). Specifically,
we first sample one-third of 100 victim nodes as root node,
then sample two neighbors for each root node (referred to
as support neighbors) and set their memories the same as
the root node, then observe their memory changes over time.
As depicted in Figure 3(c), if nodes have similar neighbors,
their memories quickly converge to a relatively stable state
and persist through future changes—we term this state as
the node’s ideal frozen state. Hence, if the victim nodes
have similar ideal frozen states, they can mutually lock
each other once they fall into these states. We give further
theoretical analysis on the phenomenon in Appendix A.2.
Fortunately, as shown in Figure 3(d), the ideal frozen states
from different nodes are similar; therefore, it is possible to
keep nodes frozen by driving their memories into similar
and stable states.

Cross-Freezing Loss. To this end, we propose to freeze
victim nodes in connected groups and make them persist
frozen with mutual support from each other. We termed this
approach as Cross-Freezing. Specifically, we first sample
one-third of the victim node as the root node, then sample
two of its neighbors as support nodes—note that these sup-
port neighbors also cost our attack budgets—then force their
memories to minimize the loss in equation 5.

Lfreeze
u =

∑
k∈Nsupp(u)

(
Lmse(s

∗
k, s

+
k ) + Lmse(s

+
u , s

+
k )

)
(5)

For any given node u with its memory denoted as su and
support neighbors as Nsupp(u), our objective relies on two
Mean-Squared-Error (MSE) losses. The first, Lmse(s

∗
k, s

+
k ),

aims to ensure that it updates its support neighbors’ memory
s+k close to their ideal frozen state s∗k so they cannot sense
future changes after the attack. We get node k’s ideal frozen
state s∗k by repeatedly updating its memory using itself and
its two support neighbors’ memory until it is stabilized (i.e.,
has more than 0.9 cosine similarity before/after updates) or
the maximum number of repeats is reached. The second
loss, represented by Lmse(s

+
u , s

+
k ), is designed to make sure

that it updates its support neighbors’ memory s+k close to
its own memory after updates (i.e., s+u ) so that the messages
generated between them can potentially help to lock each
other and keep their memory unchanged.

4.2. Propagating Frozen States

Future Simulating. To make a node’s memory influence
unknown future neighbors, we propose using its existing
neighbors to simulate potential future ones, which can then
be used to optimize the victim nodes’ ability to propagate
their frozen state. This approach is based on the principle of
homophily in real-world graphs, where neighboring nodes
often exhibit strong similarities (McPherson et al., 2001).
As an example, while applying TGN for the edge prediction
tasks on Wikipedia dataset, nodes’ neighbors have 0.87
cosine similarity on average, with over 60% neighboring
nodes having similarities over 0.9. Hence, for a given node
u, we simulate its future neighbors in two steps:

For a node u, we first augment its current neighbor set N(u)
by adding “presented fake future neighbors”, created by
sampling up to ten of the most recent neighbors and injecting
Gaussian noise (mean 0, standard deviation at 0.2 times the
neighbor’s memory std) into their memories. Next, we
simulate “newly presented fake future neighbors” to reflect
brand-new nodes in the graph, initializing their memories
to all zeros. The number of these new fake neighbors is
proportional to the fraction of newly appeared nodes among
the most recent ten neighbors of u. We also include more
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Figure 4. The two stages of the MemFreezing attack. In the victim node selecting stage, we greedily select victim nodes under the attack
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The solved messages are added to the graphs as fake events and removed after the attack timestamp.

details about the future simulation in Appendix A.3 and
further discuss its effectiveness under extremely random
and irregular graphs, where nodes have drastically changing
neighbors, in Appendix B.16.

Propagating Loss. To make the frozen nodes contagious
to potential future neighbors, we then use the resulting aug-
mented neighbors Naug(u) to solve the problem described
in equation 6.

Lprop
u =

∑
k∈Naug(u)

Lmse(su, UPDT (sk,muk)) (6)

The objective of this loss is to minimize the Mean Squared
Errors (MSEs) between a node’s memory and the mem-
ories of its new neighbors after an update. By doing so,
we encourage the node’s memory to update its neighbors’
memories (i.e., sk) to become similar to itself (i.e., su).

4.3. Attack Framework

Combining the above-mentioned goals together, we intro-
duce the two-stage attack framework as illustrated in Fig-
ure 4 (Detailed algorithm is presented in Appendix A.4).

Stage 1: Victim Node Selecting. In this stage, we use a
simple greedy approach to select victim nodes in two steps:
First, we select the nodes with the highest degrees in the
current graph as root nodes. The intuition behind this is that
we want the injected noises to be propagated to as many
nodes as possible, and these high-degree nodes, such as
top-commented posts on social media, are usually popular
in existing and future graphs. Next, for each root node, we
select its two highest-degree neighbors as its support nodes.
The following procedure will treat all the root and support
nodes as victim nodes and transform them into frozen states.

Stage 2: Adversarial Message Solving. In this stage, we

solve the adversarial event to be injected to each victim node
u in three steps: In the first step, we find the nodes’ ideal
frozen states (i.e., s∗u in equation 5) by updating its memory
using current neighbors until convergence. In the second
step, we simulate the future changes by augmenting victim
nodes’ neighbors with simulated futures (i.e., nodes/edges).
The resulting neighbors are used as N ′(u) in equation 6.
In the third step, we solve the adversarial memory ŝu of
the victim nodes by minimizing the total memory loss in
equation 7, which is calculated by summing its persisting
(i.e., equation 5) and propagating (i.e., equation 6) losses.

Lu = Lfreeze
u + Lprop

u (7)

Then, we solve the adversarial messages described in equa-
tion 8 so that these messages can update the nodes’ memo-
ries into their solved frozen states.

argmin
mAu

Lmse(UPDT (su, AGGR(mAu, m̃u), ŝu)) (8)

The m̃u represents the aggregated messages collected from
u’s other neighbors. In short, for node u, the solution aims
to find a fake message mAu that minimizes the MSE loss
between the expected noise memory ŝu and the memory
updated after inserting it to the graph. Lastly, for each
victim node, we add the solved noisy message as a fake
event from a fake node and remove it after the attack.

5. Evaluation
5.1. Experimental Setup

Models and Datasets: We use on four TGNN models for
evaluation: JODIE (Kumar et al., 2019), Dyrep (Trivedi
et al., 2019), TGN (Rossi et al., 2020) and Roland (You
et al., 2022). The experiments use four dynamic graph
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Table 1. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps; lower matrices indicate
more effective attacks. Results on more datasets and node classification tasks are included in Appendix B.4

Dataset WIKI REDDIT REDDIT-BODY
Model TGN JODIE Dyrep Roland TGN JODIE Dyrep Roland TGN JODIE Dyrep Roland
Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95 0.90 0.87 0.90 0.88

t0

FN 0.81 0.74 0.74 0.82 0.84 0.83 0.84 0.83 0.76 0.82 0.77 0.79
Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92 0.86 0.83 0.88 0.85
TDGIA 0.77 0.72 0.71 0.80 0.74 0.80 0.81 0.74 0.72 0.81 0.74 0.76
Ours 0.89 0.78 0.83 0.87 0.75 0.84 0.94 0.82 0.84 0.85 0.81 0.78

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.93 0.90 0.86 0.89 0.88
Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96 0.89 0.86 0.90 0.87
TDGIA 0.93 0.81 0.84 0.92 0.94 0.95 0.95 0.90 0.89 0.85 0.89 0.88
Ours 0.80 0.75 0.77 0.85 0.81 0.84 0.91 0.80 0.81 0.84 0.76 0.80

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95 0.90 0.86 0.90 0.88
Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95 0.90 0.86 0.90 0.88
TDGIA 0.93 0.87 0.85 0.93 0.96 0.97 0.95 0.92 0.89 0.86 0.90 0.87
Ours 0.75 0.76 0.75 0.84 0.80 0.84 0.91 0.80 0.77 0.82 0.76 0.77
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Figure 5. Accumulated accuracies of TGN under no defense(left), Adv_train(middle), and Lip_reg(right) with FakeNode and our
attack on WIKI dataset. More results in Appendix B.5

datasets: Wikipedia (WIKI), Reddit (REDDIT) (Kumar
et al., 2019), Reddit-body (REDDIT-BODY) and Reddit-
title (REDDIT-TITLE) (Kumar et al., 2018). More details
about the models and datasets are included in Appendix B.1.
We also present results on a million-node dataset, Wikipedia
Talk Network (Wiki-Talk-Temporal) (Leskovec et al.,
2010) in Appendix B.4.4.

Tasks & Metrics: We evaluate the models on two tasks:
node classification and edge prediction (Rossi et al., 2020).
For a timestamp, we measure the accuracy or area under the
ROC Curve (ROC-AUC) based on all presented predictions
from the beginning, which we termed as accumulated ac-
curacy and accumulated ROC-AUC. More details about the
tasks and matrices are in Appendix B.1

Attack Setup: We compare our work with three state-
of-the-art GNN attacks: FakeNode (FN) (Wang et al.,
2018), TDGIA(TDGIA) (Zou et al., 2021) and Meta-Attack-
Heuristic(Meta-h) (Li et al., 2022). The results from Table
1 evaluate all attacks with 5% attack budgets, where we
inject noises to 5% nodes of the input graph. In Appendix
B.4, we evaluate attacks with 1% attack budgets. For our
attack, we use a 1/3 budget for the root nodes and 2/3 for
support nodes. All methods attack at the beginning of the
test set (i.e., attack at t0). We also include more details
about the baseline attacks in Appendix B.2 and the results
of injecting attacks in multiple timestamps in Appendix B.6.

Defense Setup: We adopt following defenses: Adversar-
ial Training(Adv_train), Regularization under empirical
Lipschitz (Lip_reg), and GNNGuard from static GNNs.
More details about the defense setup are in Appendix B.3.

5.2. Experimental result

Overall Performance. We examine the accumulated accu-
racy at three timestamps: t0 = 0, t25 = 25, and t50 = 50.
The results of the edge prediction task are presented in
Table 1. As observed, all prior attacks cause significant ac-
curacy drops at t0, but their impact quickly diminishes over
time. By t25 and t50, the accumulated accuracy under these
attacks is nearly identical to the baseline. In contrast, Mem-
Freezing consistently disrupts model predictions. While it
does not cause the largest accuracy drop at t0 compared
to other attacks due to the freezing objective, its effects
are more persistent and even increase over time, achieving
greater drops as the timestamps shift to t25 and t50. We
also observe similar effects on MemFreezing when con-
ducting the attack at different timestamps as detailed in
Appendix B.7. The attacks on JODIE are less effective
because JODIE employs a memory decay mechanism that
uniformly decays previous memories. This introduces addi-
tional information outside the node memory, making JODIE
more resilient to memory-based attacks. We discuss this
phenomenon in more detail and explore potential defenses
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Figure 6. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent
neighbors’ memories in MemFreezing(left), MemFreezing w/o (middle-left) frozen state, MemFreezing w/o cross-freezing loss (middle-
right), and regular nodes (right). All results above are from TGN and WIKI. More results are included in Appendix B.8.

A
ff

ec
te

d 
N

od
e 

C
ou

nt A
ccum

ulated A
ccuracy

A
ff

ec
te

d 
N

od
e 

C
ou

nt
A

ccum
ulated A

ccuracy A
cc

um
ul

at
ed

 A
cc

ur
ac

y

Timestamp Timestamp Attack Budget

Figure 7. (left) Count of nodes affected by MemFreezing and accuracy for the affected nodes over time. (middle) Count of affected nodes
and overall accuracy over time with two strategies for selecting the injected node: 1% lowest degree versus 1% highest degree nodes.
(right) The accumulated accuracy at t0, t25, and t50 under different attack budgets (% of total nodes). All results above are from TGN and
WIKI. Results on more models and datasets are included in Appendix B.11.

against MemFreezing in Appendix C. We further illustrate
the accumulated accuracy of TGNs under different defenses
in Figure 5. Similar results are observed: the effects of
baseline attacks quickly diminish, resulting in only a 1.1%
accumulated accuracy drop by t50. In contrast, MemFreez-
ing causes progressively larger accuracy drops over time,
averaging over 10% drop by t50.

Ablation Studies. To analyze the propagating and persist-
ing capability of the noise solved by MemFreezing, we
capture 100 victim nodes in TGN in edge prediction on
WIKI and monitor the changes in their memory and their
neighbors’ memory. In Figure 6, we compare the cosine
similarity between the memories of the victim nodes at
t0 with those in themselves and their one-hop and two-hop
neighbors at each timestamp after the attack in four versions:
(1) MemFreezing, (2) MemFreezing w/o frozen state (i.e.,
w/o using Lmse(s

∗
k, s

+
k ) in equation 5), (3) MemFreezing

w/o cross-freezing loss (i.e., without using entire Lfreeze
u

in equation 5), and (4) original TGNN without attacks. The
result shows that, in MemFreezing, the noise in the victim
node can persist over ten timestamps, with over 0.92 co-
sine similarities. For the one-hop neighbors, at t = 1, they
achieve 0.51 average similarities after the first update by
the message from victim nodes, and at t = 15, the average
rises to 0.88. The two-hop neighbors, whose memories are
updated by the message from one-hop neighbor, have av-
erage similarities that grow from 0.24 to 0.84. In contrast,

the similarity between nodes’ initial attacked memory and
their future counterparts drops drastically in the original
TGNNs like (4). If the frozen states are not guaranteed
like (2), the similarities also suffer drops and fail to achieve
comparable similarities as (1). This is because, in such
cases, the memories will change before reaching their con-
verged states, making the final converged state different
from the original adversarial memory states. Therefore, the
converged state is essential for persisting noisy memories.
The similarities drop faster if we remove the cross-freezing
loss like (3) since the cross-freezing mechanism is entirely
disabled. Moreover, despite removing cross-freezing losses,
the neighbors are getting more similar to the target nodes,
indicating that the propagating loss works as expected. We
also analyzed the advances of freezing node memories com-
pared to maximizing prediction losses in Appendix B.9 and
the stealthiness of the injected noises in Appendix B.10.

Propagation in Dynamic Graphs. To better understand
how frozen effects spread in MemFreezing, we track all
topologically connected nodes to the victim node, labeling
them as affected nodes since noise can potentially propagate
to them. We then measure the prediction accuracy of these
affected nodes (represented by colored lines). As shown in
Figure 7 (left), MemFreezing progressively impacts more
nodes (shaded area) and significantly reduces prediction
accuracy, even though some nodes were unseen at the attack
timestamp. On the one hand, attacking high-degree nodes
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helps propagate the noises to more nodes, nearly doubling
the number of affected nodes compared to selecting low-
degree nodes, as shown in Figure 7 (middle). On the other
hand, once nodes enter a stable (frozen) state, they propagate
adversarial effects to future neighbors, ensuring the attack’s
persistence and adaptability despite dynamic graph changes.

Scale with Attack Budget. We also evaluate MemFreez-
ing under broader attack budgets ranging from 1% to 15%.
As shown in Figure 7 (right), higher attack budgets lead
to greater accuracy drops, demonstrating MemFreezing’s
scalability with increased attack costs.

6. Conclusion
In this work, we propose MemFreezing, a novel adversarial
attack tailored for TGNNs, to overcome the challenges in
attacking TGNN under limited-knowledge scenarios. The
MemFreezing attack misleads model predictions by freezing
node memories in TGNNs into stable and dysfunctional
states. The experimental results show that our approach
can produce long-lasting and contagious noises in dynamic
graphs, leading to significant performance drops in TGNNs.
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Impact Statement
Temporal Graph Neural Networks (TGNNs) have emerged
as the state-of-the-art paradigm for modeling dynamic re-
lational data in domains ranging from social networks to
recommendation systems. As they become increasingly in-
tegral to real-world systems, understanding and enhancing
their robustness is essential. Our work introduces Mem-
Freezing, the first adversarial attack that assumes only lim-
ited future knowledge—a constraint inherent to live envi-
ronments—and shows how subtle memory-freezing pertur-
bations can persistently degrade TGNN performance. By
exposing this practical vulnerability, we underscore the ur-
gent need for defenses specifically designed for the dynamic,
streaming nature of real-world graph applications.
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A. Extended Design
A.1. Self-freezing experimental setup and theoretical analysis

We explored the viability of freezing a node by itself with a case study in TGN (Rossi et al., 2020), where the UPDT (·)
function is typically realized using a GRU (Chung et al., 2014). At a particular timestamp, we randomly sample 100 nodes
from the Wikipedia dataset and modify their memories. For each node, we use Adam optimizer (Kingma & Ba, 2014) to
find a memory vector to suppress GRU updates by minimizing its reset gates (Chung et al., 2014). We then assessed if this
memory state remains consistent over time.

The TGN used by the experiment uses GRU for memory updating (i.e., for implementing UPDT (·) function in equation 3),
as depicted in equation 9-12.

rt = σ(Wirm̃t + bir +Whrst−1 + bhr) (9)
zt = σ(Wizm̃t + biz +Whzst−1 + bhz) (10)
nt = tanh(Winm̃t + bin + rt ⊙ σ(Winm̃t + bin) (11)
st = (1− zt)⊙ nt + zt ⊙ st−1 (12)

where σ(·) is the sigmoid function. Given the node memory st−1 ∈ RM at the previous timestamp, and the aggregated
message m̃t ∈ RD at time t, GRUs first compute reset gate rt ∈ RM , update gate zt ∈ RM , and new gate nt ∈ RM .

In this experiment, we aim to minimize the interference of the message, m̃t, and maintain the updated memory, st, close to
the previous memory, st−1. To this scope, we can maximize all the features in the update gate, zt, until it approaches 1,
where the update gate will be directly used to control the portion of the previous memory, which is:

as zt → 1, st → 0⊙ nt + 1⊙ st−1 ≈ st−1 (13)

Additionally, according to Equation 10, the update gate zt is computed by the sum of two linear processes, and one is from
the message, m̃t and the other one is from memory st−1. As we maximize the linear output of the memory, Whz · st−1, the
update gate, zt, is then maximized.

Hence, to analyze the maximum output of the linear process, Whz · st−1, we formulate it into a linear program problem
with the equations:

max
∑

Whz · st−1

s.t. − 1 ≤ st−1 ≤ 1

Whz · st−1 > δ

(14)

As the memory is the output of the tanh function rather than the unit-length vector, st is bounded by the limit of the tanh
function, [−1, 1]M . Further, we introduce an addition constraint Whz · st−1 > δ to guarantee all dimensions of the linear
output are bound by a constant, δ.

The optimal result for the memory, s∗t−1, for the linear problem only depends on the model weights, where given a
TGN model, the solution of the self-freezing memory is unique, and we have conducted the experiment on three models
TGN+WIKI, TGN+REDDIT, and a randomly initialized model.

The result in Figure 8-10 (a) shows the maximum update gate, z∗t , computed by σ(Whz · s∗t−1). In the TGN+wiki example,
z∗t is a 172-dimension vector, and it is distributed with a mean of 0.64 and a standard deviation of 0.12. As aforementioned,
to achieve the self-freezing memory, the update gate, zt, is required to approach 1, but it is infeasible to fine the solution
in the real world case under the constraints. In Figure 8-10 (b), we simulate the GRU updating starting with the optimal
memory, s∗t−1, and monitor the cosine similarity between the memory before updated and after updated. The results further
demonstrate even the optimal solution cannot accomplish the self-freezing goal.

To theoretically analyze the maximum of the in the general case, we divide them into their eigen-representations, and we use
the SVD decomposition:

Whz = U · Σ · V T =
∑
i

ei · Ui · V T
i , st−1 =

∑
i|Vi∈V

αi · Vi (15)
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In SVD decomposition, U and V are the unitary matrix, and we use the basis from V to decompose st−1. Moreover, the
linear process is written as:

Whz · st−1 =
∑
i

ei · αi · Ui · V T
i · Vi =

∑
i

αi · ei · Ui (16)

This linear process is represented by the linear combination on the basis of U . We can easily acquire the theoretical
maximum of the output. As st−1 ∈ [−1, 1]M , if Vθ is a basis of {− 1√

M
, 1√

M
}M , st−1 = sθ can achieve the maximum

projection to this basis, which is, αθ =
√
M and st−1 = Vθ. Similarly, the linear output Whz · st−1 achieves the maximum

by there exist a basis Uθ = { 1√
M
}M , and the linear output,

Wθ · sθ = eθ ·
1√
M
·
√
M · 1 = eθ · 1 (17)

As is shown, the maximum output of the linear process is equal to the eigenvalue. According to the experiment, the largest
eigenvalue of the weight matrix is usually around 2. Therefore, the update gate,zt, has the theoretical maximum value,
σ(eθ) ≈ 0.88.

However, the weights, Whz , are trained through the model update, which makes it impossible to find the ideal maximum in
the practical case.
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Figure 8. (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between memory before the update and after the
update, starting with the optimal self-freezing memory s∗t . Experiments are conducted in the TGN model with WIKI datasets.
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Figure 9. (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between memory before the update and after the
update, starting with the optimal self-freezing memory s∗t . Experiments are conducted in the TGN model with REDDIT datasets.
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Figure 10. (a) The distribution of the optimal update gate z∗t . (b) The cosine similarity between memory before the update and after the
update, starting with the optimal self-freezing memory s∗t . Experiments are conducted in the randomly sampled GRU model.

A.2. Theoretical analysis for memory under cross-freezing

In Appendix A.1, we show that the self-freezing will be hard to achieve as the update gate zt is hard to achieve all ones,
1. The update gate is computed by, zt = σ(Wizm̃t + biz +Whzst−1 + bhz), and in equation (14), we only consider the
self-freeze term, Whzst−1. For the cross-freezing case, we introduce two or more supporting nodes, and thus, we can jointly
maximize the first two terms for the update gate, Wizm̃t +Whzst−1, and the objective function can be written as:

max(Wiz1 +Wiz2)(ϵ⊙ s) +Whzs

s.t. 1 ≤ s ≤ 1
(18)

The message has four variable concatenated: mt = [ssrc, sdst, e, t], and the matrix product, Mizm = Wiz1ssrc +Wiz2sdst +
Wiz3e+Wiz3t. In this object function, we assume in the cross-freeze state, the source and destination memory converge to
a certain optimal, s∗. Consider that there might be other non-supported nodes contributing to the message, m̃, so we model
this by a coefficient ϵ vector, where ϵ⊙ s = s̃. As the support node become the majority among the connected nodes, the
coefficient vector ϵ→ 1.

To simplify this problem, we rewrite the equation as:

(Wiz1 +Wiz2)(E[ϵ] · s) +Whzs+O(1)
= (E[ϵ] ·Wiz1 + E[ϵ] ·Wiz2 +Whz)s+O(1)

(19)

The above equation will be similar to Equation (14), as considering (E[ϵ] ·Wiz1 + E[ϵ] ·Wiz2 +Whz) as a new matrix.
Let the weights in the GRU unit follows the Gassuian distribution, w ∈ N(0, 1√

M
), then the new matrix would follow,

w′ ∈ N(0,

√
2E[ϵ]2+1√

M
). Hence, the optimal basis will then be, {−

√
2E[ϵ]2+1√

M
,

√
2E[ϵ]2+1√

M
}M , where its egienvalue can achieve√

2E[ϵ]2 + 1 times larger than self-freeze one.

As a result, the output update gate, zt, will scale accroding to E[ϵ], and here is the list of the outcome:

E[ϵ] = 0.5, z∗t = 0.919

E[ϵ] = 0.75, z∗t = 0.94

E[ϵ] = 1, z∗t = 0.96

(20)

Hence, it will become easier to freeze the memory by introducing the support nodes

A.3. Details of simulating fake future neighbors

To simulate the potential future neighbors of the victim nodes and enhance their capability to contaminate those nodes,
we randomly sample existing neighbors from victim nodes’ and add Gaussian noise to their features. For the mean of the
Gaussian noise, we use 0 as the mean for all nodes. We use 0.2 times the standard variation of the original neighbor’s
memory for the standard variations of the Gaussian noise. In summary, for a node v, we follow Equation equation 21 to
simulate a victim node’s neighbors,

s′i = si +N (0, η · σ(s(v))), i ∈ N(v) (21)
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In which s′i stands for the fake future neighbors and si stands for the memories from a sampled existing neighbor, N(v)
indicates the current neighbor set of node v. For the Gaussian noise N (0, η · σ(s(v))), it has meant as 0, η = 0.2, and
σ(s(v)) as the standard variation of all features in existing neighbors.

We use the ∆T of the most recent clean message on the victim nodes for the timestamp of their appearances. For example,
if we attack node n, whose most recent message before our attack uses ∆Tk at its updating, then the timestamp of the fake
future neighbors will also be ∆Tk. It is also worth mentioning that, the ∆T has limited effects on the updating process. As
proposed in TGAT and used in TGN and other TGNN models, the ∆T is encoded into a time vector first as

E(∆T ) = W ∗ cos(∆T )

in which W is a weight vector with 172 dimensions with descending magnitudes (for example, [1.00, 0.88, 0.78, ...1.12e−
09, 9.99e− 10]). Then, W is used to update the memory. The value of W is very small except for the first few dimensions,
making them can hardly affect the updating process.
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A.4. Overall Algorithm

Algorithm 1 MemFrezzing Attack
Input :G = (V, s(V ))← Original graph with Node V , memories s(V )
Input :∀i,j|Vi,Vj∈V m(si, sj , eij ,∆t)←Messages before t0
Input :B ← Number of attacked nodes (attack budget)
Input :q ← Number of support neighbors for each root node.
Input :N(V ), Nsupp(V ), Naug(V )← the full neighbors sets, supported neighbors, and augmented neighbors set
Output :VA, eA: Perturbed nodes and message.

/* Stage 1. Victim Node Sampling */
n← B/(q + 1)
V root
1 , V root

2 , · · · , V root
n ← topk(degree(V ), n)

for i ∈ {1, 2, · · · , n} do
Vsupport ← V root

i ∪ {V1, V2, · · ·Vq ∈ N(V root
i )}

{ŝ0, ŝ1, · · · ŝq} ← ComputeConvergeState(Vsupport)
VA, eA ← ComputeAdversarialMessage({ŝ0, ŝ1, · · · ŝq},Vsupport)

/* Stage 2. Solving Frozen State */
Function ComputeConvergeState(Vsupport)

/* 2.1. Solving the Ideal Frozen State */
for i | Vi ∈ Vsupport do

si ← s(Vi)
m← m(si, si, eij ,∆t) , where j |Vj ∈ Vsupport

do
si ← s+i
m← m(si, si, eij ,∆t)
s+i ← UPDT (si,m)

while ||s+i − si||22 > ϵ;

s∗1, s
∗
2, · · · s∗q ← s+1 , s

+
2 , · · · s+q

/* 2.2. Solving the Cross-Frozen State */
s
(0)
1 , s

(0)
1 , · · · s(0)q ← s∗1, s

∗
2, · · · s∗q +N (0, η · σ(s(V )))

for t ∈ {0, 1, 2, · · · , T} do
∀i∈{1,2,···q} , s

(t)+
i ← UPDT (s

(t)
i , m̃i)

for i ∈ {0, 1, 2, · · · , q} do
Lfreeze
i ←

∑
k∈Nsupp(i)

(
Lmse(s

(t)+
k , s∗k) + Lmse(s

(t)+
i , s

(t)+
k )

)
Lprop
i ←

∑
k∈Naug(i)

Lmse(s
(t)
i , UPDT (s

(t)
i ,mik))

∀i∈{1,2,···q} , s
(t+1)
i ← s

(t)+
i − α · ∇si(L

freeze
i + Lprop

i )

return {s(T )
0 , s

(T )
1 , s

(T )
2 , · · · s(T )

q }

/* Stage 3. Solving the Adversarial Message */
Function ComputeAdversarialMessage({ŝ0, ŝ1, · · · ŝq},Vsupport)

for Vi ∈ Vsupport do
Vi,A ← V | V ∈ N(Vi)
for t ∈ {0, 1, · · · , T} do

m
(t)
Ai ← m(si, s(VA), e

(t)
Ai,∆t)

LA ← Lmse(UPDT (si, AGGR(m
(t)
Ai, m̃i), ŝi)

e
(t+1)
Ai ← e

(t)
Ai − α · ∇

e
(t)
Ai

LA

return {V1,A, V2,A, · · · , Vq,A} , {eA1, eA2, · · · , eAq}
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B. Extended Evaluation
B.1. Experimental Details.

Model Details. All four TGNNs we included maintain a memory vector in each node and follow the memory updating
process as discussed in Section 2. And they are different in their node embedding procedure (i.e., equation 4). Specifically,
Dyrep directly uses the node memories for the predictions (i.e., ht

i = sti). JODIE applies a time-decay coefficient to the
scale memories before classification (i.e., ht

i = δ(t) · sti). TGN, on the other hand, refines memories using a single-layer
graph attention module, as outlined in equation 4. Unlike prior models, ROLAND (You et al., 2022) is a recent model
designed for DTDG graphs, yet it also maintains a history node feature for each node as memory. Specifically, it adopts
a multi-layer memory mechanism by keeping memory for both memory and embedding stages. In other words, for the
graph embedding part, it also adopts a GRU to combine nodes’ previous embedding with the current embedding gathered
from updated node memories. All the models update and embed memory for one time at each prediction (i.e., one layer
aggregation in equation 3 and equation 4). The node memory dimension is set to 172, and the node embedding dimension is
set to 100. Following the training steps in (Rossi et al., 2020), we use Adam optimizer with learning rate α = 0.01 to train
the models 120 epochs.

Tasks Details. Models for node classification are trained to predict binary labels on each node. We use the commonly
used Area under the ROC Curve (ROC-AUC) to measure the model performances. The models for edge prediction are
self-supervise trained, using the edge information in future steps. During the testing, given a source node, they predict the
possibility of whether another node will be its next incoming destination node and then decide which node will be its next
neighbor. We use prediction accuracy for evaluating the edge prediction result.

Dataset Details. Reddit and Wikipedia are dynamic interaction graphs retrieved from online resources in (Rossi et al.,
2020). In Wikipedia datasets, the nodes represent users and wiki pages, and the edges indicate editing from users to pages.
In the Reddit dataset, the nodes represent users and subreddits, and an edge within it represents a poster from a user posted
on a subreddit. The edge features are represented by text features, and the node labels indicate whether a user is banned. All
the abovementioned information is accompanied by timestamps. Align with their original designs (Kumar et al., 2019), and
we set the newly input nodes’ features as zero feature vectors. Reddit-body and Reddit-title are two larger-scale datasets that
represent the directed connections between two subreddits (a subreddit is a community on Reddit). The dataset is collected
by SNAP using publicly available Reddit data of 2.5 years from Jan 2014 to April 2017 (Kumar et al., 2018). The statistics
of the dataset used are shown in Table 2.

Table 2. Dataset details
# of Nodes # of Edges # Edge Feature # of Node Feature

Wikipedia(WIKI) 9,227 157,474 172 172
Reddit(REDDIT) 11,000 672,447 172 172
Reddit-Body(REDDIT-BODY) 35,776 286,561 64 172
Reddit-Title(REDDIT-TITLE) 54,075 571,927 64 172

Platform details. We list then environment details in Table 3.

Table 3. Experimental Environment Setting
Environment Details

OS Windows 11
CPU Intel i9-13900K

Memory 64GB DDR5 RAM
GPU NVIDIA RTX 4090

Platform PyTorch 2.2.1
CUDA Version CUDA 12.1

B.2. Baseline attack and attack setup

We adopt the following attacks toward static GNNs. Specifically, we adopt the attack at the same time as our attack time by
attacking the existing dynamic graph as a static graph:

FakeNode (Wang et al., 2018) uses a greedy approach to generate edges of malicious nodes and their corresponding features
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to mislead the static GNN predictions. Note that this approach assumes that the added nodes/edges will be kept in the graph,
so we keep the fake nodes and edges still after the attack timestamp. Differently, the attacking nodes in MemFrezzing are
removed after the attack.

TDGIA (Zou et al., 2021) is a cutting-edge Graph Injection Attack tailored to compromise static GNNs. This method
exploits the inherent vulnerabilities of GNNs and the unique topological characteristics of graphs. In our implementation
for each target node, we adhere to the established methodology of TDGIA to identify the top 65% susceptible edges,
utilizing their specialized scheme for selecting topologically defective edges. These edges are then optimized using gradient
descent. Notably, the scale of modifications applied to each target node in the TDGIA method is substantially larger than our
approach, involving adjustments to 65% edges per node instead of just one edge per node. Furthermore, these modifications
will be kept after the attack instead of being removed as our attack.

Meta_Attack_Heuristic (Li et al., 2022) is a heuristic-based attack inspired by the meta attack (Zügner & Günnemann,
2019). This heuristic-based approach is an evolution of the original meta-attack, which relied on gradient-based edge
selection. The updated heuristic version demonstrates greater versatility across a variety of GNN models and large-scale
graphs, and it exhibits enhanced effectiveness compared to its predecessor. Notably, the meta-attack and its heuristic
counterpart operate under the assumption that edges lack attributes. Consequently, in our application, we assign an all-zero
feature to the fake edges inserted as part of the attack process.

For all attacks (including our attack), We select ranges of noisy messages (i.e., magnitudes of message features ) between -1
and 1 since -1 and 1 are the theoretical minimum and maximum values of the clean messages. The messages in TGNNs
are usually memories of the nodes updated from previous timestamps, which have activation functions such as tanh/cosine
functions right before the outputs. Therefore, all features of these messages (i.e., memories) should be within the range of
-1 and 1 as the minimum and maximum values of the activation functions (i.e., tanh). Therefore, using -1 and 1 produces
messages that are exactly similar to those of the other features in the graph.

All adversarial messages/nodes in the baselines and our attacks use the ∆T of the most recent clean message on the victim
nodes. For example, if we attack node n, whose most recent message before our attack uses ∆Tk at its updating, then the
timestamp of the fake messages added to this node will be ∆Tk as well. It is also worth mentioning that the delta T has
limited effects on the updating process, as we discussed in Appendix A.3.

For all attacks, we define the attack budget as the ratio of nodes that are affected. To ensure a fair comparison, all attacks
target the same set of victim nodes (the highest-degree ones). We would also like to mention that, although targeting these
high-degree nodes, all benchmarked attacks, including MemFreezing, either inject one-degree nodes or edges into the graph
and affect the same number of victim nodes at the time of the attack.

Specifically, MemFreezing targets high-degree nodes by introducing a temporary fake node for each target and creating an
event (i.e., an edge) between the fake node and the target. In this way, MemFreezing, like FakeNode, injects nodes with a
degree of one into the graph. However, unlike FakeNode, which retains the injected fake nodes and can potentially cause
stronger adversarial effects, MemFreezing removes these fake nodes after the attack, minimizing structural changes while
inducing long-lasting adversarial effects. Therefore, given a graph with V nodes and E edges and targeting N = 5%V
victim nodes (i.e., 5% budget), MemFreezing adds N fake edges. Since nodes typically have a degree greater than one,
K = 5%E > 5%V = N , the edge changes are less than 5% edges.

B.3. Baseline defenses setup

We adopt the following defensive strategies for the vanilla TGNN models:

Adversarial Training: In line with the approach detailed in (Madry et al., 2017), we introduce perturbations to the node
memories in TGNN models during the training. We then employ a minimax adversarial training scheme to enhance the
robustness of the TGNN model against these perturbations.

Regularization under empirical Lipschitz bound: Following the methodology in (Jia et al., 2023), we minimize the
empirical Lipschitz bound during the TGNN training process, where the empirical Lipschitz bound, L, is computed by:

L = sup∆
||f(x+∆)− f(x)||22

||∆||22
(22)

This regularization aims to bound the effectiveness of small perturbations, such as adversarial examples.
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GNNGurad: Following the insights that only the similar node may provide significant information for prediction, GNN-
Guard(Zhang & Zitnik, 2020) adopts a cosine-similarity-based approach to discount the messages passing between dissimilar
nodes.

Notably, most robust GCN models, such as RobustGCN, SGCN, GraphSAGE, and TAGCN mentioned in (Zou et al., 2021),
are primarily tailored for static graph benchmarks. Given their design constraints, these models are unsuited for TGNN
setup with dynamic graph benchmarks and do not offer a viable defense for the TGNN models targeted by our attack.
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B.4. Extra Main Results

Here we report edge prediction accuracies on REDDIT-TITLE in Table 4, and node classification AUCs on WIKI in
Table 5. The results indicate that: (1) The static attacks cannot last long and affect future nods. (2) Our approach can be
more and more effective after the attack time.

B.4.1. EDGE PREDICTION RESULTS (5% ATTACK BUDGET)

Here, we report edge prediction accuracies on REDDIT-TITLE in Table 4. The results indicate that: (1) The static attacks
cannot last long and affect future nods. (2) Our approach can be more and more effective after the attack time.

Table 4. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on REDDIT-TITLE; lower
matrices indicate more effective attacks.

Dataset REDDIT-TITLE
Model TGN JODIE Dyrep ROLAND
Vanilla 0.93 0.92 0.91 0.91

t0

FN 0.76 0.82 0.77 0.79
Meta_h 0.86 0.83 0.88 0.85
TDGIA 0.72 0.81 0.74 0.76
ours 0.84 0.85 0.81 0.78

t25

FN 0.9 0.86 0.89 0.88
Meta_h 0.89 0.86 0.9 0.87
TDGIA 0.89 0.85 0.89 0.88
ours 0.81 0.84 0.76 0.80

t50

FN 0.9 0.86 0.9 0.88
Meta_h 0.9 0.86 0.9 0.88
TDGIA 0.89 0.86 0.9 0.87
ours 0.77 0.82 0.76 0.77

B.4.2. NODE CLASSIFICATION RESULTS (5% ATTACK BUDGET)

Here, we report node classification AUCs on WIKI in Table 5. The results are similar to the edge predictions: Static attacks
are good at the first attack time but cannot last long and affect future nods. In contrast, MemFrezzing can be more and more
effective after the attack time.

Table 5. The AUC of vanilla/attacked TGNNs on the node classification task; lower matrices indicate more effective attacks.
Dataset WIKI
Model TGN JODIE Dyrep ROLAND
Vanilla 0.90 0.88 0.89 0.90

t0

FN 0.77 0.87 0.75 0.78
Meta 0.86 0.83 0.86 0.85
TDGIA 0.73 0.82 0.76 0.75
ours 0.82 0.88 0.84 0.80

t25

FN 0.90 0.88 0.88 0.88
Meta 0.89 0.87 0.88 0.89
TDGIA 0.88 0.87 0.88 0.89
ours 0.82 0.85 0.81 0.79

t50

FN 0.90 0.88 0.88 0.90
Meta 0.90 0.89 0.90 0.90
TDGIA 0.90 0.88 0.88 0.90
ours 0.80 0.85 0.77 0.77

20



MemFreezing: A Novel Adversarial Attack on Temporal Graph Neural Networks under Limited Future Knowledge

B.4.3. RESULTS WITH DIFFERENT BUDGET(1% ATTACK BUDGET)

To more comprehensively show the impact of the attack budget, we include detailed results of baselines’ and our attacks’
effectiveness under the attack budget as 1%. As shown in Table 6, Table 7, and Table 8, our approach can outperform
baselines as well, despite fewer nodes being attacked.

Table 6. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on WIKI and REDDIT; The
attack budget is 1% for all attacks; lower matrices indicate more effective attacks.

Dataset WIKI REDDIT
Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND
Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95

t0

FN 0.89 0.83 0.82 0.85 0.93 0.93 0.92 0.85
Meta 0.92 0.85 0.83 0.89 0.95 0.96 0.94 0.93
TDGIA 0.83 0.81 0.77 0.83 0.89 0.88 0.88 0.8
ours 0.9 0.82 0.84 0.9 0.93 0.94 0.94 0.86

t25

FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.95
Meta 0.93 0.86 0.85 0.93 0.95 0.98 0.95 0.94
TDGIA 0.91 0.84 0.83 0.93 0.94 0.96 0.96 0.92
ours 0.8 0.82 0.82 0.88 0.81 0.84 0.91 0.84

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95
Meta 0.94 0.87 0.86 0.93 0.96 0.98 0.95 0.95
TDGIA 0.94 0.87 0.85 0.93 0.96 0.97 0.95 0.93
ours 0.85 0.81 0.80 0.86 0.83 0.84 0.91 0.83

Table 7. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on REDDIT-BODY and
REDDIT-TITLE; The attack budget is 1% for all attacks; lower matrices indicate more effective attacks.

Dataset REDDIT-BODY REDDIT-TITLE
Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND
Vanilla 0.9 0.87 0.9 0.88 0.93 0.92 0.91 0.91

t0

FN 0.85 0.85 0.81 0.83 0.88 0.88 0.85 0.83
Meta 0.87 0.85 0.87 0.86 0.92 0.89 0.89 0.9
TDGIA 0.81 0.83 0.79 0.78 0.85 0.87 0.85 0.83
ours 0.87 0.85 0.85 0.82 0.88 0.9 0.86 0.85

t25

FN 0.9 0.84 0.89 0.88 0.92 0.92 0.9 0.91
Meta 0.9 0.87 0.9 0.88 0.93 0.93 0.91 0.91
TDGIA 0.88 0.86 0.9 0.87 0.92 0.92 0.9 0.91
ours 0.84 0.86 0.8 0.82 0.85 0.88 0.81 0.86

t50

FN 0.9 0.87 0.9 0.88 0.93 0.92 0.9 0.91
Meta 0.9 0.88 0.9 0.88 0.93 0.93 0.9 0.91
TDGIA 0.89 0.87 0.9 0.87 0.93 0.91 0.9 0.9
ours 0.79 0.85 0.77 0.83 0.8 0.83 0.82 0.83
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Table 8. The AUC of vanilla/attacked TGNNs on the node classification task under 1% node attacked budget; lower matrices indicate
more effective attacks.

Dataset WIKI
Model TGN JODIE Dyrep ROLAND
Vanilla 0.9 0.88 0.89 0.9

t0

FN 0.83 0.88 0.83 0.83
Meta 0.87 0.85 0.88 0.88

TDGIA 0.81 0.85 0.83 0.8
ours 0.86 0.88 0.86 0.85

t25

FN 0.89 0.88 0.89 0.9
Meta 0.9 0.88 0.88 0.89

TDGIA 0.9 0.87 0.89 0.89
ours 0.82 0.85 0.81 0.81

t50

FN 0.9 0.87 0.89 0.9
Meta 0.9 0.88 0.89 0.9

TDGIA 0.9 0.87 0.89 0.89
ours 0.82 0.88 0.79 0.82

B.4.4. RESULTS WITH LARGE-SCALE DATASET

To measure our approach on a larger dataset, we select the largest temporal graph dataset on the SNAP dataset collec-
tion(Leskovec & Sosič, 2016)—Wiki-Talk-Temporal(Paranjape et al., 2017)—for further analysis. This dataset
represents Wikipedia users editing each other’s Talk page. A directed edge (u, v, t) means user u edited v’s talk page at time
t. The graph has 1,140,149 nodes and 7,833,140 collected over 2320 days.

The dataset has non-attributed edges, so we set them as all zero vectors. Note that we set the memory size to 64 instead of
172 to avoid the Out-Of-Memory issue. Due to the time limit, we train TGN and Roland for ten epochs instead of 20 in our
prior experimental settings. The results are shown in Table 9. As we can observe, even for a very large graph with a 1%
node budget, our attack shows a similar behavior as our prior results –Our attack is long-lasting and can affect more nodes’
predictions in the future.

Table 9. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on Wiki-Talk-Temporal.

Dataset Wiki-Talk-Temporal
Attack Budget 1% 5%

Model TGN ROLAND TGN ROLAND
Vanilla 0.97 0.98 0.97 0.98

t0
FN 0.89 0.90 0.83 0.88
ours 0.94 0.91 0.86 0.88

t25
FN 0.98 0.97 0.97 0.96
ours 0.92 0.90 0.82 0.89

t50
FN 0.97 0.98 0.97 0.97
ours 0.91 0.91 0.84 0.86
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B.5. Extra results on attacks under defenses

We include the results of two attacks, i.e., FakeNode and MemFrezzing, under the two defenses, i.e., adv_train and
Lip_reg, on two TGNN models, i.e., JODIE and Dyrep. The observations are similar to the prior analysis.
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Figure 11. Accumulated accuracies of DyRep under Adv_train(left), and Lip_reg(right) with FakeNode and our attack on WIKI.
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Figure 12. Accumulated accuracies of JODIE under Adv_train(left), and Lip_reg(right) with FakeNode and our attack on WIKI.

To give a more in-depth evaluation, we design a defending method by leveraging the data-filtering concept in GNN-
Guard(Zhang & Zitnik, 2020) for the evasion attack. Specifically, following the insights that only the similar node may
provide significant information for prediction, GNNGuard adopts a cosine-similarity-based approach to discount the mes-
sages passing between dissimilar nodes. So, we also use the cosine similarities to rank and filter the messages. Specifically,
similar to the GNNGuard, we compute the similarities between two nodes. For each node, we normalize the similarities
between it and its neighbors, then prune the lower 50% (same as GNNGuard). We show the experiment results in Table 10.

Table 10. Attack Performance under the GNNGurad.
Attack Budget 1% 5%

Dataset WIKI REDDIT WIKI REDDIT
Model TGN ROLAND TGN ROLAND TGN ROLAND TGN ROLAND
Vanilla 0.93 0.94 0.96 0.95 0.93 0.94 0.96 0.95

After defense Acc. 0.92 0.91 0.94 0.90 0.92 0.91 0.94 0.90

t0
FN 0.87 0.81 0.9 0.84 0.82 0.86 0.82 0.81
ours 0.87 0.88 0.91 0.88 0.85 0.83 0.8 0.82

t25
FN 0.9 0.91 0.93 0.9 0.91 0.91 0.92 0.9
ours 0.84 0.87 0.82 0.81 0.79 0.81 0.81 0.8

t50
FN 0.92 0.91 0.94 0.9 0.92 0.91 0.93 0.9
ours 0.83 0.85 0.81 0.81 0.76 0.82 0.8 0.83
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B.6. Extra results with gradually injected attacks

MemFreezing can be effective in both one-time and multiple-time attacks. We show the results of multiple-time attacks, in
which attacks are injected right before t0, t5, t10, t15 with 1% attack budget (i.e., 1% of all nodes) each time. The results are
shown in Table 13.

Figure 13. The accumulated accuracy under gradually injected attack to TGN on WIKI(left) and REDDIT(right). The attacks are injected
right before t0, t5, t10, t15 with 1% attack budget (i.e., 1% of all nodes) each time.

As one can observe, with multiple attack times, MemFreezing effectively decreases accuracies, while the FakeNode and
TDGIA attacks have shorter effective periods and fail to achieve similar accuracy drops. This is because the attack introduced
by these baseline attacks will be weakened once there are changes between the graph at the attack and the prediction
timestamp, and even multiple-time attacks cannot ensure that the attacks are just injected right before each prediction; in
contrast, the noises from our attack can last over graph changes and even be boosted by future attacks.

Figure 14. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent
neighbors’ memories in MemFreezing under one-time attack setup and multiple-times attack setup.

To evaluate the effectiveness of cross-freezing under multiple-time attack cases, we investigate the similarities between
victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent neighbors’ memories in
MemFreezing under one-time attack setup and multiple-times attack setup (following the setup in Figure 7 in our paper). As
shown in Figure 14, despite multiple times of injections, MemFreezing significantly raises the similarities between nodes’
memories. The results demonstrate that the cross-freezing mechanism works effectively under multiple time attacks.
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B.7. Extra results on injecting attacks at different time stamps

To examine if MemFreezing can be effective despite the time of injection. We test its effectiveness under different injection
timestamps instead of t0, then evaluate its performance in the subsequent 50 timestamps. For instance, we may inject it at
t10 and then evaluate the accumulated accuracies in the original TGNN models and those under attack at t50. The results
of TGN on WIKI and REDDIT are shown in Figure 15. As one can observe, the attack effects remain similar despite its
injecting time, demonstrating that MemFreezing can yield long-lasting and contagious attack at arbitrary attack time.

Figure 15. Accumulated accuracy under attack at various timestamps on TGN for WIKI (left) and REDDIT (right). Attacks are injected
at 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% of the total test set.

B.8. Extra ablation study

We include the results for the ablation studies under the TGN model and REDDIT dataset in Figure 16. The results show a
similar pattern as we observed in Section 5.
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Figure 16. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent
neighbors’ memories in MemFreezing w/o (left) converge state, MemFreezing w/o freezing loss (middle), and regular nodes (right). All
results are from the TGN model and REDDIT dataset.
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B.9. Analysis on freezing objective

To demonstrate the challenge of maximizing prediction losses, we add an extra term, Ladv
u to maximize the loss of predictions.

Specifically, for each node u we change Equation 7 in our paper as follows,

Lu = Lfreeze
u + Lprop

u − γ · Ladv
u

We use a coefficient γ to control the ratio of adversarial losses. The adversarial loss Ladv
u is defined as follows,

Ladv
u =

∑
i

ℓ(yi, ti) | i ∈ N(u)

In which yi presents the prediction result for the node i, ti is the ground truth of the prediction, and ℓ(yi, ti) indicates the
binary-cross-entropy loss between them. Similar to baselines, for each node u, the objection function is to maximize the
prediction loss of all its neighbors. We present the prediction accuracies under different γ selections in Figure 17.
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Figure 17. The accumulated accuracy with maximizing prediction losses under different γ selections on TGN in WIKI(left) and
REDDIT(right).

As shown in the figure, maximizing the adversarial losses can harm the predictions in the first batch (if and only if the
predictions are made immediately after the attack). In the later batches, the effectiveness of the noise decreases drastically.

To further understand the reasons behind this, we investigate the similarities between victim nodes’ initial noisy memories
(at the time of the attack) and their memories in the future—termed as Persist Similarity—in Figure 18, the similarities
between victim nodes’ memories and their neighbors’ memories—called Propagate Similarity in Figure 19.

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e
rs

is
t 

S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e
rs

is
t 

S
im

il
a
ri

ty

Timestamp

γ=0 γ=0.1 γ=0.25

Figure 18. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and their memories in the future. The
results are collected from TGN on WIKI(left) and REDDIT(right).

As one can observe, while introducing the adversarial losses, both persist and propagate similarities drop significantly,
indicating that the nodes’ memories cannot maintain the noisy states and may recover soon.
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Figure 19. The similarities between victim nodes’ memories and their future neighbors’ memories. The results are collected from TGN on
WIKI(left) and REDDIT(right).

B.10. Stealthness analysis

As discussed in Appendix B.2, we select ranges of noisy messages between -1 and 1 since -1 and 1 are the theoretical
minimum and maximum values of the clean messages. To further investigate if the MemFreezing attack introduces enough
stealth fake events/nodes, we further investigate the range of message-wise means (i.e., means of all features over each
message) and message-wise standard deviation (i.e., the standard deviation of all features over each message) for clean and
noisy messages produced by different attacks in Table 11.

Table 11. Ranges of message-wise mean and standard deviation over all of the clean messages (Clean) and noisy messages produced by
MemFreezing in WIKI and REDDIT.

WIKI REDDIT
Mean[min,max] Std[min,max] Mean[min,max] Std[min,max]

Clean [-0.033, 0.106] [0.206, 0.866] [-0.093, 0.146] [0.202, 0.789]
MemFreezing [-0.014, 0.044] [0.426, 0.570] [-0.012, 0.038] [0.580, 0.695]

FakeNode [0.003 , 0.008 ] [0.628 , 0.702] [-0.030, 0.018] [0.525, 0.686]

The range of mean and std of our noisy messages are included within the range of those in the clean message and are similar
to the baseline attack, demonstrating that their distributions or magnitudes are similar to the other features in the graph.
Moreover, MemFreezing can effectively penetrate the defenses of GNNGuard, which uses similarity to filter susceptible
messages in which the nodes/events with apparently different information (i.e., having low similarities compared to other
nodes/events), as shown in Appendix B.5. In summary, the results indicate that MemFreezing can freeze node memories in
TGNN without introducing significant different nodes/events that can be detected by existing GNN adversarial defenses.

B.11. Extra sensitivity study

We include more results for different target node sampling strategies and attack budgets in Figure 20. The results show a
similar pattern as we observed in Section 5.
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Figure 20. (left) Comparison between two strategies for selecting the injected node: lowest degree and highest degree nodes. Count of
affected nodes and overall accuracy over time. (RIGHT) The accumulated accuracy at t0, t25, and t50 under different attack budgets (%
of total nodes). All results above are from TGN and REDDIT
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B.12. Accumulated Accuracies Over Time on Diverse Models

We report the accumulated accuracies over time collected from TGN, JODIE, and Dyrep on the WIKI and REDDIT
datasets. The results include model accuracies under the vanilla (i.e., un-attacked), baseline (i.e., FakeNode), and our (i.e.,
MemFrezzing) attacks in edge prediction tasks.
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Figure 21. Accumulated accuracies of TGN under different attacks in link prediction tasks over time in WIKI (left) and REDDIT (right)
datasets.
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Figure 22. Accumulated accuracies of JODIE under different attacks in link predictions over time with WIKI (left) and REDDIT (right)
datasets.
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Figure 23. Accumulated accuracies of Dyrep under different attacks in link predictions over time with WIKI (left) and REDDIT (right)
datasets.
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B.13. Affected Nodes

We report the number and accumulated accuracies over time of affected nodes over time in JODIE and Dyrep on the WIKI
and REDDIT datasets. The results include model accuracies under our (i.e., MemFrezzing) attack in edge prediction tasks.
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Figure 24. Count of affected nodes (presented as the colored areas) and their accumulated accuracies (presented as lines) in WIKI (left)
and REDDIT (right) over time. The data are collected in TGN.
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Figure 25. Count of affected nodes (presented as the colored areas) and their accumulated accuracies (presented as lines) in WIKI (left)
and REDDIT (right) over time. The data are collected in JODIE.
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Figure 26. Count of affected nodes (presented as the colored areas) and their accumulated accuracies (presented as lines) in WIKI (left)
and REDDIT (right) over time. The data are collected in Dyrep.
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B.14. Noise Propagating

We report the cosine similarities between the initial victim node and its neighbors over time in JODIE and Dyrep on the
WIKI and REDDIT datasets. The results include similarities under our (i.e., MemFrezzing) attack in edge prediction tasks.
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Figure 27. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent
neighbors’ memories in WIKI (left) and REDDIT (right) over time. The data are collected in TGN.
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Figure 28. The cosine similarities between victim nodes’ initial memory (at the time of the attack) and themselves/their subsequent
neighbors’ memories in WIKI (left) and REDDIT (right) over time. The data are collected in JODIE.
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Figure 29. The cosine similarities between victim nodes’ initial memory (at the time of the attack) and themselves/their subsequent
neighbors’ memories in WIKI (left) and REDDIT (right) over time. The data are collected in Dyrep.
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B.15. Evaluation on Attacks in Black-Box Setting

In the black-box setting, attackers do not have access to the target model’s parameters. To this end, we evaluate black-box
adversarial attacks using two commonly used setups: (i) surrogate models and (ii) zero-shot attacks.

B.15.1. SURROGATE MODES

A common approach in the adversarial attack domain is to train a surrogate model locally and use it to generate adversarial
examples that can transfer to the target model. For temporal graph datasets, many popular benchmarks such as Wiki and
Reddit are open-source, providing well-labeled, diverse data annotated with detailed timestamp information. Hence, We first
evaluate Memfreezing under the following setup: (1) We first train surrogate models on randomly sampled subsets (60% or
80%) of the original training data. (2) Then, we use these models to generate adversarial examples. (3) Lastly, we inject the
generated adversarial examples into the dynamic graphs and evaluate the prediction accuracies in the target model trained on
the complete (100%) dataset.

Figure 30. Cosine similarity of model parameters between surrogate model (80% and 60% training dataset) vs. target model. (left) are
evaluated from TGN model using WIKI dataset; (right) are evaluated from TGN model using Reddit dataset.

Figure 31. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent
neighbors’ memories. The noisy patterns are computed from the surrogate model. (Top-left) the surrogate model is trained with 80%
dataset in WIKI; (Top-right) the surrogate model is trained with 80% dataset in REDDIT; (Bottom-left) the surrogate model is trained
with 60% dataset in WIKI; (Bottom-right) the surrogate model is trained with 60% dataset in REDDIT.
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We first investigate if surrogate models, which are trained with partial training data, can effectively represent the target
models. In Figure 30, we analyze the similarity of parameters between the surrogate and target models. The analysis
includes weights and biases from both the GRU units and the attention-based classifier. We track this similarity across
training epochs 1 through 20. The results show a gradual decrease in similarity as training progresses. For the surrogate
model trained on 80% of the dataset, the similarity decay is minimal, maintaining values between 0.94 and 0.96 at epoch 20.
The surrogate model trained on 60% of the dataset shows a more pronounced decay, with similarity values ranging from
0.90 to 0.92 at epoch 20.

Next, we evaluate how effectively adversarial examples generated from surrogate models persist in target models. We
first apply the MemFreezing algorithm to the surrogate model to generate noisy patterns, which we then transfer to the
target model. We assess the attack’s persistence by measuring the cosine similarity between the victim nodes’ initial noisy
memories (at the time of attacks) and both their own and their neighbors’ memories over time. As shown in Figure 31,
although the freezing capability is somewhat weakened due to the surrogate model’s incomplete training data, our attack
remains effective: the noisy patterns maintain a similarity above 0.8 even after 15 updates, and one-hop neighbors show
significant influence with similarity values exceeding 0.6 relative to the noisy pattern.

Lastly, in Table 12, we compare MemFreezing against baseline attacks under the above-mentioned black-box setting by
measuring their impact on overall model accuracy. While all attacks show reduced effectiveness in the black-box setting,
MemFreezing maintains its superiority, achieving the largest accuracy drop compared to baseline attacks.

Table 12. Accumulated accuracy of edge prediction in the vanilla/attacked TGNNs over different timestamps on REDDIT and WIKI; The
attack budget is 5% for all attacks; lower matrices indicate more effective attacks.

Surrogate
Model

Dataset WIKI REDDIT
Model TGN JODIE Dyrep ROLAND TGN JODIE Dyrep ROLAND
Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95

80%

t0

FN 0.87 0.85 0.82 0.86 0.93 0.94 0.92 0.93
Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92
TDGIA 0.87 0.84 0.82 0.85 0.91 0.88 0.86 0.88
ours 0.90 0.85 0.86 0.88 0.92 0.91 0.95 0.91

t25

FN 0.93 0.87 0.85 0.94 0.97 0.97 0.96 0.95
Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96
TDGIA 0.93 0.87 0.85 0.94 0.97 0.98 0.96 0.95
ours 0.83 0.83 0.83 0.84 0.89 0.90 0.92 0.88

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95
Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95
TDGIA 0.93 0.87 0.85 0.93 0.96 0.97 0.95 0.92
ours 0.84 0.85 0.82 0.85 0.90 0.91 0.93 0.90

60%

t0

FN 0.91 0.86 0.86 0.92 0.96 0.96 0.93 0.94
Meta-h 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92
TDGIA 0.90 0.84 0.82 0.89 0.92 0.90 0.90 0.92
ours 0.92 0.87 0.85 0.90 0.93 0.93 0.92 0.93

t25

FN 0.93 0.87 0.85 0.94 0.97 0.97 0.96 0.95
Meta-h 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96
TDGIA 0.93 0.87 0.84 0.94 0.97 0.98 0.96 0.95
ours 0.87 0.84 0.84 0.87 0.90 0.91 0.93 0.91

t50

FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95
Meta-h 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95
TDGIA 0.93 0.87 0.86 0.93 0.96 0.97 0.95 0.95
ours 0.87 0.86 0.85 0.90 0.92 0.92 0.94 0.90

B.15.2. ZERO-SHOT ATTACKS

It is also possible that, in real-world cases, the attackers have no idea about the model architecture or training datasets. To
this end, we evaluate Memfreezing under the zero-shot transfer attack setup following the ensemble-based approach first
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proposed in (Liu et al., 2016). Specifically, on the Wikipedia dataset, we generate the fake message by jointly optimizing the
adversarial message for three models and then evaluating the effectiveness of this unified adversarial message on diverse
models. As shown in 32, although it performs worse than the white-box attack, Memfreezing can still effectively perturb
model predictions. We also acknowledge that memfreezing is less harmful than cases with more accurate model information.

Figure 32. The comparisons between performances of Memfreezing under zero-shot attack setup and white-box counterparts.
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B.16. Analysis on Future Simulation

To further understand if using nodes’ current neighbor can be effective in extremely irregular and random graphs, we conduct
the following experiments.

First, we further analyze the similarity among nodes’ neighbors in diverse datasets using the same setup (e.g., model) as
Figure 3(d). As shown in Figure 33, generally, nodes tend to have similar neighbors across diverse datasets. Hence, using
current neighbors reasonably approximates future graph changes in practice.

Figure 33. The distribution of cosine similarities among the ideal frozen states in different nodes in REDDIT and REDDIT-BODY datasets.

To investigate if our future neighbor simulation scheme is sufficient to freeze neighbors under irregular or highly random
dynamic graphs, we simulate an irregular and random graph on top of the Wikipedia dataset. Specifically, we have victim
nodes in the graph connected to nodes with random memories in the future timestamps. We also explored an alternative
scheme to investigate whether the heuristic could be further enhanced. Specifically, in this alternative, we simulate nodes’
future neighbors using nodes with random memories.

(a) (b) (c) (d)

Figure 34. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent
neighbors’ memories in WIKI dataset and its randomized version under vanilla cases including (a) Using current neighbor for simulation
under a noisy future, (b) Using current neighbor for simulation under a normal future, (c) Using random memory neighbor for simulation
under a noisy future, (d) Using random memory neighbor for simulation under a normal future.

As shown in Figure 34(a), although resulting in lower similarities, MemFreezing effectively freezes these random neighbors
(as shown in (a)). This demonstrates that our future simulation schemes are effective under even (i.e., Current Simulation)
in irregular setups. The reason behind this is that, in addition to using current neighbors, we also simulate "new future
neighbors" with all-zero memories, which further enhance the noise’s capability to freeze unseen nodes.

Although the alternative scheme (i.e., Random Simulation) performs better under random neighbor cases (i.e., Noise Future),
as shown in Figure 34(c); it shows worse performances in the real cases (i.e., Normal Future), as shown in Figure 34(d)
compared to as shown in Figure 34(b). These findings collectively suggest that using current neighbors as surrogates is both
practical and effective, even in challenging dynamic graph scenarios.
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B.17. Effective in LSTM-based TGNNs

While existing TGNN uses RNN and GRU for node memory updating (Rossi et al., 2020; Trivedi et al., 2019; Kumar et al.,
2019; You et al., 2022), it is valuable to understand how nodes’ memory is frozen under a memory updater with different
RNN-variant.

To evaluate the effectiveness of MemFreezing when using LSTM as the memory updater, we replaced the GRU and RNN
components in TGN (Rossi et al., 2020) with LSTM. We then assessed the performance of MemFreezing and baseline
attacks under this new configuration. It is worth mentioning that since LSTM has two memories (i.e., long and short terms),
they are different from GRU and RNN used in existing TGNNs. To adapt these two memories into one node memory under
existing TGNN frameworks, we concatenate the two memories of a node together as its memory and freeze them altogether.

Figure 35. The accumulated accuracy of LSTM-based TGN under no-attack, TDGIA, and MemFreezing on WIKI (left) and REDDIT
(right) datasets.

We first investigate the resulting accumulated accuracies in TGN. As shown in Figure 35, the LSTM-based TGN shows
better robustness against MemFreezing. However, MemFreezing still effectively compromises predictions of LSTM-based
TGN, leading to an average of 8% accuracy drops at t100. In contrast, the baseline (i.e., TDGIA) still fails to disturb the
predictions under limited-knowledge setups.

Figure 36. The similarities between victim nodes’ initial noisy memories (at the time of the attack) and themselves’/their subsequent
neighbors’ memories in LSTM-based TGN on the WIKI dataset.

The LSTM-based TGN makes it more challenging since the attack has to freeze both long-term and short-term memories.

36



MemFreezing: A Novel Adversarial Attack on Temporal Graph Neural Networks under Limited Future Knowledge

To understand the phenomenon, we further investigate the similarities between the victim nodes’ initial memory and its
subsequent and 1-hop neighbors’ memories. As shown in Figure 36., the similarities between the victim nodes and their
1-hop neighbors are as low as around 0.6, which is not as high as the cases with GRU/RNNs (e.g., over 0.8).
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C. Discussion And Future Work
C.1. Limits under different models and graphs.

While the experiment results in Appendix B.4 and Appendix B.11 demonstrated that MemFrezzing can be well-generalized
on various inputs, several limitations can be observed according to the performance variance between different models.
While our approach can effectively mislead TGN, ROLAND, and DyRep, its effectiveness is less significant on JODIE,
which uses differences between a node’s current and its last update time to decay the memory. From these observations, we
deduce that our attack may encounter limitations in two specific scenarios:

• Limited Influence of Node Memory on Predictions: Our attack’s effectiveness may be mitigated in situations where
the node memory has a relatively minor role in influencing the model’s predictions.

• Usage of Additional Information in TGNN Models: The effectiveness may also be constrained when the targeted
TGNN model incorporates additional information beyond the node memory for its predictive processes.

While our attack strategy outperforms the baselines, these insights highlight potential limitations under certain model-specific
conditions.

Nevertheless, Detecting a MemFreezing attack by observing node memory is challenging because nodes can naturally exhibit
stable updates. For example, using TGN on the Wikipedia dataset, over 70% of node updates show high similarity (although
they may not be consistently stable), which can also occur in real-world cases (e.g., an Amazon user with consistent shopping
preferences). Thus, it is hard to differentiate an attacked node from naturally stable ones.

For instance, one could devise a “memory reset” module that resets the victim nodes’ memories. To explore the potential
of randomly and periodically resetting node memories, we conduct experiments in which we (a) randomly reset node
memories upon each update or (b) reset memories after each 25 timestamps. As the results shown in Figure 37, doing so
may jeopardize the models’ clean accuracy with limited effectiveness in defending against Memfreezing.

Figure 37. The performances of Memfreezing upon randomly resetting node memories.

C.2. Potential Defenses.

While we demonstrate that many existing defense schemes, such as adversarial training or regularization, are less effective
on our attacks, we expect a potential attack-oriented defense scheme for our attack using memory filtering. Specifically, a
potential defensive approach for our attack is to pay less attention to the nodes’ memory and rely more on their current input
adaptively.

This scheme stems from the observation that our attacks are less effective on JODIE in node classification tasks. One key
difference in JODIE is that it decays the node memory based on the time differences between the prediction time and the
node’s last update time. This mechanism introduces more hints (i.e., time differences) in addition to the memory itself,
which cannot be effectively distorted by the attacks and yields some crucial information. For example, a Wikipedia user is
less likely to be banned if he/she makes a new post after being inactive for a long while.

Therefore, using this non-memory information or current information that does not interact with node memory could
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effectively hinder adversarial noises. To this end, an intelligent defense mechanism can judiciously filter out the memory
and adaptively focus more on non-memory information if the memory is suspicious or potentially noisy.
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D. Complexity and Overheads of The Memfreezing Attack
We further approximate the time complexity of the MemFreezing, as it is crucial to understand its practicality. The time
complexity of MemFreezing is approximately O(V + V D), where V is the number of victim nodes being attacked and D
is their average degree.

The computation of MemFreezing can be divided into three main parts:

1. Finding the Stable State: For each victim node in V , we iteratively update its state using its two support neighbors until
reaching the ideal stable state. Assuming a constant number of iterations for convergence, this step incurs a time complexity
of O(V ).

2. Solving the Target Memory Using SGD: For each victim node, we optimize the target memory state using stochastic
gradient descent (SGD), considering (a) The node itself, (b) Its two support neighbors and (c)Its augmented neighbors. The
total set has a size of at most D+20 (current neighbors plus simulated neighbors), where D approximates the number of the
node’s current neighbors. This optimization incurs a cost of O(D) per node, leading to a total time complexity of O(V D)
across V victim nodes with D average degree.

3. Introducing Fake Neighbors: For each victim node, we compute and inject a fake neighbor to introduce noise. This step
has a cost of O(1) per node, resulting in O(V ) overall.

In summary, the overall time complexity of MemFreezing is dominated by the SGD optimization step for getting noisy
memory, resulting in O(V + V D) time complexity. Under the worst cases, in which D = V (e.g., fully connected graph),
the complexity isO(V 2) We further show the comparisons of each attack’s average latency per node in Table 13. The results
show that the Memfreezing attack freezes nodes within seconds, indicating its potential in an online attack setup.

Table 13. Average latency per node of four attack methods on WIKI and REDDIT datasets.

Dataset Model MemFreeze (s) Meta-h (µs) TDGIA (s) FakeNode (s)

WIKI

TGN 0.48 546.88 1.91 0.87
Jodie 0.49 957.51 1.63 0.81
Dyrep 0.45 352.00 2.10 0.91
Roland 0.53 816.78 3.28 1.27

REDDIT

TGN 0.66 262.63 1.46 0.81
Jodie 0.46 158.91 1.49 0.76
Dyrep 0.45 155.96 1.20 0.89
Roland 0.53 392.90 2.14 1.47
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