
Efficient Linear System Solver with Transformers

Max Vladymyrov 1 Johannes von Oswald 1 Nolan Miller 1 Mark Sandler 1

Abstract
This paper investigates the potential of linear
Transformers as solvers for systems of linear equa-
tions. We propose a novel approach where the
Transformer encodes each equation as a separate
token, allowing the model to process the system
in a permutation-invariant manner. To enhance
generalizability and reduce the parameter count,
we introduce a block-wise re-parameterization
technique for the attention weight matrices. This
technique decouples the problem dimension from
the model’s parameter count, enabling the Trans-
former to effectively handle systems of varying
sizes. Our experiments demonstrate the Trans-
former’s competitive performance compared to
established classical methods such as Conjugate
Gradient, especially for systems with smaller
sizes. We further explore the model’s ability to
extrapolate to larger systems, providing evidence
for its potential as a versatile and efficient solver
for linear equations.

1. Introduction
Solving linear systems of equations is a fundamental prob-
lem in numerous fields, including scientific computing, ma-
chine learning, and engineering. While traditional methods
like Gaussian elimination and iterative solvers like Conju-
gate Gradient (Hestenes et al., 1952) are widely used, ex-
ploring alternative approaches holds the potential for more
efficient and versatile solutions.

Transformers, originally developed for natural language pro-
cessing tasks (Vaswani et al., 2017), have demonstrated a
remarkable ability to capture complex relationships within
sequential data. This ability extends beyond natural lan-
guage processing, as evidenced by their successful applica-
tion in solving a variety of problems, ranging from noisy
linear regression and classification (Garg et al., 2022) to the

1Google Research. Correspondence to: Max Vladymyrov
<mxv@google.com>.

The first AI for MATH Workshop at the 41st International Confer-
ence on Machine Learning, Vienna, Austria. Copyright 2024 by
the author(s).

traveling salesmen problem (Yang et al., 2023) and other
domains (Mirchandani et al., 2023). Transformers have
shown promise in various scientific computing tasks beyond
natural language processing (Li et al., 2020).

In this paper, we investigate the ability of Transformers
to solve linear systems of equations of the form Ax = b,
where A is a positive definite and symmetric matrix. This
approach presents several compelling advantages:

• Potential for Parallelism: Transformers’ inherent paral-
lelism in processing tokens could translate to efficient
solvers, particularly for large-scale systems.

• Extrapolation Capabilities: We explore the potential
of Transformers to generalize beyond the size they are
trained on, offering a more flexible tool.

We propose a novel tokenization scheme that encodes each
equation as a separate token, allowing the Transformer to
process the system in a permutation-invariant manner. We
demonstrate that even linear Transformers can solve linear
systems of equations with high accuracy.

Since the attention does not have memory, the whole lin-
ear system must be provided in-context. A naive encoding
scheme would result in the number of model parameters
scaling quadratically with the size of the linear system. To
address this, we introduce a novel re-parameterization tech-
nique for the attention weight matrices that decouples the
problem dimension from the model’s parameter count. We
empirically demonstrate that this re-parametrization does
not compromise accuracy substantially while significantly
reducing the number of parameters, requiring only dozens
of parameters per layer. This approach enables the Trans-
former to effectively handle systems of varying sizes.

Our experiments demonstrate that the proposed
Transformer-based solver achieves comparable accu-
racy to 6-8 iterations of the Conjugate Gradient method,
while demonstrating superior speed for systems with a
small number of equations. Furthermore, we investigate the
model’s ability to extrapolate to larger systems, showcasing
its potential as a versatile and efficient solver for linear
equations. This research contributes to the understanding
of Transformers’ capabilities beyond traditional sequence
processing tasks and opens avenues for further exploration

1



Efficient Linear System Solver with Transformers

of their applications in numerical problems.

2. Preliminaries
In this section we introduce notations for linear Transform-
ers, data representation, and the specific type of problem we
consider.

2.1. Linear Transformers

Given an input sequence e1, e2, ..., eN ∈ RD, a single head
in a linear self-attention layer is typically parameterized by
four matrices, key WK , query WQ, value WV and projec-
tion WP . The output of the non-causal layer at position i is
ei + ∆ei where ∆ei is computed as

∆ei = WP

 N∑
j=1

〈WQei,WKej〉WV ej

 . (1)

Equivalently, we can use the parameters P = WPWV and
Q = W>KWQ, resulting in the equation:

∆ei =

N∑
j=1

(e>j Qei)Pej . (2)

In the case of multiple heads
(P1, Q1), (P2, Q2), ..., (Ph, Qh), the effect is simply
the summation of all heads:

∆ei =

H∑
k=1

N∑
j=1

(e>j Qkei)Pkej . (3)

We define a linear Transformer as a multi-layer neural net-
work composed of L linear self-attention layers parameter-
ized by θ = {Qlk, P lk}k=1...H,l=1...L. To isolate the core
mechanisms, we consider a simplified decoder-only archi-
tecture, excluding MLPs and LayerNorm components. This
architecture has been used in previous work (von Oswald
et al., 2023; Ahn et al., 2023; Vladymyrov et al., 2024). For
clarity, we focus on the single-head attention case and drop
the index k.

2.2. System of linear equations

Our goal is to find a vector x ∈ RN that solves the system
ofN linear equations 〈ai, x〉 = bi for each i = 1 . . . N with
ai ∈ RN , and bi ∈ R. In matrix form, this problem can be
written as Ax = b, where A ∈ RN×N and b ∈ RN .

We focus on the case where A is a positive definite symmet-
ric matrix with a fixed condition number κ. The condition
number significantly impacts the convergence of iterative
methods (Trefethen & Bau, 2022). In this paper, we present
preliminary results with κ = 5.

x

Linear Transformer

(a0, b0, h0) · · · (aN , bN , hN ) x0

Figure 1. A Transformer receives an input embedding where each
token corresponds to the parameters (ai, , bi) of a single equation
within a linear system. A learned or predefined embedding hi can
be added for improved performance. The initial solution estimate
x0 is fed in as the final query token, and the final solution x is
obtained after passing through the Transformer layers.

2.3. Encoding of the tokens

The Transformer processes input data as a sequence of to-
kens. Each equation in the linear system is represented
as a distinct token ei = (ai, bi, hi) ∈ RD, where D =
N + 1 +K and hi ∈ RK are optional embedding vectors.
These embeddings can be either pre-defined or learned dur-
ing model training. We can represent them collectively in a
matrix form as H ∈ RN×K . This tokenization scheme en-
sures that the model remains invariant to the order in which
the equations are presented.

Additionally, we append a query token eN+1 = (x0, 11+K)
to the sequence, where x0 ∈ Rd is an input placeholder
from which the output will be read, initialized with all zeros.
We constrain the attention mechanism to focus solely on the
first N tokens of the sequence, ignoring the query token.

We use superscript notation (e.g. ali, b
l
i) to denote the

corresponding component of the i-th token in the Trans-
former’s output at layer l. The initial layer corresponds
to the input: (a0i , b

0
i ) = (ai, bi). For a model with pa-

rameters θ, the prediction is obtained as a transformation
of the x0 component of the final token in the last layer:
fθ({e1, ..., eN}, eN+1) = xLN+1.

To train the linear Transformer using the tokens, we mini-
mize the following mean squared error loss function using
batches of different generated problems {A, b, x}:

L(θ) = E
A,b

[
(fθ({e1, ..., eN}, eN+1)− x)2

]
. (4)

3. Re-parameterization of weight matrix
Given that each token consists of three componentsA, b and
H , we can equivalently rewrite the attention weight matrices
by expanding the interaction between each component:

2



Efficient Linear System Solver with Transformers

P

−0.25

0.00

0.25

Q

−1

0

1

Layer 0
P

−0.5

0.0

0.5

Q

−2.5

0.0

2.5

Layer 1
P

−0.2

0.0

0.2
Q

−0.25
0.00
0.25

Layer 2

P

−0.25

0.00

0.25
Q

−0.2

0.0

0.2

Layer 0 P

−0.5

0.0

0.5

Q

−1

0

1

Layer 1
P

−0.5

0.0

0.5
Q

−0.5

0.0

0.5

Layer 2

Figure 2. Learned weights for the 3-layer linear attention for 9× 9 linear system solver. Top: FULL encoding with a 27-dimensional extra
embedding hi. Bottom: BLOCK encoding with 3 N ×N identity matrices as extra embeddings.

P =

 PA,A PA,b PA,H
Pb,A Pb,b Pb,H
PH,A PH,b PH,H

 ,

Q =

 QA,A QA,b QA,H
Qb,A Qb,b Qb,H
QH,A QH,b QH,H

 .

Assuming for simplicity that the dimension K of vectors hi
is a multiple of N (i.e. K = lN ), H can be decomposed
into l blocks H l ∈ RN×N . Consequently, the components
of P and Q controlling the interaction between A and all
the H l will have a size N ×N . Components handling the
interaction with b will have sizes N × 1, 1×N or 1× 1.

We propose the following block-wise re-parametrization
the attention weights matrices. Each rectangular matrix is
represented as µ1N×1 or µ1>N×1, while each square matrix
is represented as µ1IN×N +µ21N×N . Here I is the identity
matrix, and 1 is a matrix where all elements are ones.

Our approach draws inspiration from low-rank approxima-
tions in numerical linear algebra (Halko et al., 2011) and is
motivated by several factors:

• Columns independence of A. The entries of A are
sampled independently, preventing the Transformer
from favoring any specific dimension. With sufficient
training data, the Transformer learns to apply the same
weight to the first N dimensions (corresponding to A)
and a separate weight to b.

• Performance. Our experiments show that training the
model with this parametrization achieves a loss com-
parable to training all weights independently.

• Efficiency. utilizing a single scalar for each block sig-
nificantly reduces per-block computation, enhancing
the overall speed of the algorithm.

0 20 40 60 80 100
Problem size

10−4

10−3

R
un

tim
e,

 s

AAT

Block Linear Tr
Exact (sym)

Exact (pos)
CG (8 iter)
CG (30 iter)

Figure 3. Runtime comparison of different linear system solvers
on an A100 GPU, using batches of 1 000 systems with vary-
ing matrix sizes.. AAT represents the runtime for a batch
of 1 000 matrix multiplications of matrix A provided for
reference. BLOCK LINEAR TR is our proposed algorithm
with 3 layers of linear Transformer using BLOCK encod-
ing. EXACT (SYM) and EXACT (POS) are computed using
jax.scipy.sparse.linalg.cg() solver assuming sym-
metric of positive definite matrix structure for A, respectively.
CG is computed using jax.scipy.sparse.linalg.cg()
solver for a given number of iterations.

• Generalization. This method decouples the problem
dimension N from the number of model parameters.
This allows us to apply the learned model to inputs
of different sizes, not just the size it was trained on.
We can also fine-tune model trained on one size for
another.

We refer to this new re-parameterization as BLOCK embed-
ding, as opposed to FULL embedding where the full weight
matrices are learned. Figure 2 shows the learned weights
of the trained FULL and BLOCK embeddings for a 3-layer
linear Transformer.

3



Efficient Linear System Solver with Transformers

5 10 15 20 25 30
Input size

10−8

10−7

10−6

10−5

10−4

10−3

M
S

E
 lo

ss

Full, N=9
Block, N=9
Block, N∈ [2, 9]
Block, N∈ [10, 20]
CG, 4 iterations
CG, 5 iterations
CG, 6 iterations
CG, 7 iterations
CG, 8 iterations
CG, 9 iterations

Figure 4. MSE loss comparison of several 3-layers Transformer-based linear system solvers against a Conjugate Gradient baseline with
varying numbers of iterations. Markers indicate the problem size where the method is applied within its training domain. Solid lines
indicate out-of-domain generalization. The dashed line represents the baseline performance.

4. Experiments
Figure 3 compares the runtime required to compute the
solution using different solvers on A100 GPU. Our pro-
posed method (BLOCK LINEAR TR) requires only a few
matrix multiplications to compute a forward pass through 3
layers of the linear Transformer. While the Conjugate Gra-
dient (CG) method theoretically scales as O(N2), which is
asymptotically faster than matrix multiplication’s O(N2.8),
the constant overhead associated with CG becomes signif-
icant for the small values of N considered here. More-
over, matrix multiplication is a more native operation for
GPUs compared to the CG, which involves dot products
and matrix-vector products. In this context, computing 3
layers of linear attention proves to be considerably faster
than competing methods.

Figure 4 compares the accuracy of our solver. We trained
several variants of the 3-layer linear Transformer:

• FULL, N = 9. This variant trains full weight matrices
on problems with size N = 9 only. Due to the fixed
9× 9 weight dimensions, this model cannot generalize
to matrices of other sizes. However, it achieves the best
performance we observed for problems of size N = 9
using linear Transformers.

• BLOCK, N = 9. This variant trains weights using
BLOCK encoding with 3N×N identity matrices as ex-
tra embeddings, also on N = 9 problems only. While
the results can be applicable to problems of other sizes,
the generalization qualiry is limited.

• BLOCK, N ∈ [2, 9]. This variant is trained with
BLOCK encoding for problems with sizes N ∈ [2, 9].
It performs willwithin this range and exhibits general-
ization to other sizes.

• BLOCK, N ∈ [10, 20]. This model was fine-tuned
from model above trained on N ∈ [2, 9] using data

with sizes N ∈ [10, 20]. The performance significantly
improves the sizes N ∈ [10, 20], albeit with a small
degradation in performance for sizes N ∈ [2, 9].

Compared to the Conjugate Gradient baseline, our algorithm
achieves an accuracy roughly equivalent to 6-8 iterations of
CG, depending on the input size.

5. Conclusions
This paper explored the novel application of linear Trans-
formers for efficiently solving small systems of linear equa-
tions with symmetric and positive definite coefficient ma-
trices. We demonstrated that by encoding each equation
as a distinct token and implementing a block-wise re-
parameterization technique, Transformers could achieve
accuracy comparable to 6-8 iterations of Conjugate Gradi-
ent, while being faster for small problem sizes. Our model
exhibited the ability to generalize beyond its training data,
effectively handling systems of varying sizes and unseen
condition numbers.

This research opens up exciting possibilities for utilizing
Transformers in numerical tasks. Further investigation into
architectural choices, training strategies, and the boundaries
of generalization could lead to the development of even
more efficient and adaptable solvers. This work reinforces
the notion that Transformers, initially designed for natural
language processing, hold remarkable potential as powerful
tools across various scientific computing domains.

While our approach shows promise, it has several limitations.
Currently, we only handle positive definite symmetric matri-
ces, which restricts the applicability of our method. Future
work should explore extending this approach to general ma-
trices, including non-symmetric and indefinite cases. Addi-
tionally, our method’s performance on very large systems or
highly ill-conditioned matrices needs further investigation.

4



Efficient Linear System Solver with Transformers

Scaling the approach to handle sparse matrices efficiently is
another important direction for future research. Integrating
our Transformer-based solver with classical methods, po-
tentially as a preconditioner or in a hybrid algorithm, could
leverage the strengths of both approaches and is an exciting
area for further study.

References
Ahn, K., Cheng, X., Daneshmand, H., and Sra, S.

Transformers learn to implement preconditioned gra-
dient descent for in-context learning. arXiv preprint
arXiv:2306.00297, 2023.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011.

Hestenes, M. R., Stiefel, E., et al. Methods of conjugate
gradients for solving linear systems, volume 49. NBS
Washington, DC, 1952.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess, D.,
Arenas, M. G., Rao, K., Sadigh, D., and Zeng, A. Large
language models as general pattern machines. arXiv
preprint arXiv:2307.04721, 2023.

Trefethen, L. N. and Bau, D. Numerical linear algebra.
SIAM, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vladymyrov, M., von Oswald, J., Sandler, M., and Ge,
R. Linear transformers are versatile in-context learners.
arXiv preprint arXiv:2402.14180, 2024.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. arXiv
preprint arXiv:2309.03409, 2023.

5


