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Abstract

Beam search is a standard tree search algorithm when it comes to finding sequences of
maximum likelihood, for example, in the decoding processes of large language models.
However, the algorithm is myopic—it does not take the whole path from the root to a leaf
into account. Moreover, it is agnostic to prior knowledge available about the process: It
does not consider that the objective being maximized is a likelihood and thereby has specific
properties like boundedness in the unit interval. Taking a probabilistic approach, we define
a Dirichlet prior over the transition probabilities and obtain a posterior distribution over
the most promising paths in each iteration. These distributions are helpful to define a non-
myopic Bayesian-optimization-like acquisition function that allows for a more data-efficient
exploration scheme than standard beam search. We discuss how to select the prior and
demonstrate in on- and off-model experiments with large language models that the method
achieves as high a likelihood as beam search with much fewer node expansions, avoiding
excessive (costly) LLM forward passes.

1. Introduction

Beam search (Koehn et al., 2003) is an optimization algorithm commonly applied to graph-
and often, in particular, tree-structured problems. However, the number of possible paths
that need to be considered in such settings typically grows exponentially, often exceeding the
computational budget required to examine them all. This inevitably leads to computational
uncertainty (Hennig et al., 2022): an uncertainty that could be fully resolved if enough
compute would be available to examine all paths, but in practice is present due to the
limited resources. The standard beam search algorithm, while ubiquitous—e.g., in natural
language processing (NLP) for generating sentences under a large language model (LLM)
and especially common in summarization and translation tasks (Vaswani et al., 2017; Zhu
et al., 2019; Zhang et al., 2020; Wang et al., 2022)—completely ignores this uncertainty.
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In this work, we incorporate computational uncertainty into the search process to guide
it in a non-myopic fashion (it takes the future nodes until the leaf into account) and impor-
tantly, in a more data-efficient manner, akin to Bayesian optimization methods (Kushner,
1964; Močkus, 1975; Garnett, 2023). These methods are recognized for their data efficiency,
not merely because they quantify uncertainty, but because they exploit the structural char-
acteristics within that uncertainty. E.g., in continuous optimization problems, prior knowl-
edge, such as the smoothness of a function, is often available through Gaussian processes
(Rasmussen and Williams, 2005) or even (Bayesian) neural networks (Hernández-Lobato
et al., 2017; Kristiadi et al., 2023).

Beam search, however, performs discrete optimization—its search space is a tree. More-
over, commonly, the values or rewards associated with each node are probabilities, bounded
between 0 and 1. This assumption is predominant in many NLP applications of beam search.
In this discrete setting, therefore, we will assume that rewards at a node of the search tree
are the components of a Categorical distribution, and the characteristic property we aim to
exploit then becomes the concentration strength: whether the Categorical distributions are
all peaked or if some of them are rather flat, too. Intuitively, one would expect this to have
a strong influence on the number of beams that need to be considered. For instance, when
the distribution is peaked, it becomes less likely that other paths will overtake later on and
one can be more greedy. Meanwhile, when the distribution is flat, the uncertainty about
which is best token choice is higher and thereby requires more exploration and computa-
tional budget. In this work we are therefore interested in whether a probabilistic model
that captures this aspect of the search space can help to decide which beams should be
pursued and which can be ignored. Experiments on real-world text-generation benchmarks
with GPT-2 (Radford et al., 2019) suggest that this is the case: Our method finds sentences
with higher rewards than beam search with significantly fewer LLM forward passes.

2. Setting

Let T = (X,E) be a tree with nodes X and edges E. For each edge eij = (xi, xj) between
a parent node xi and a child xj a transition probability c(xi, xj) = cij is defined. In our
setting, we have the additional constraint that the transition probabilities for sibling nodes
form a Categorical distribution, i.e. cij ∈ [0, 1] and

∑
j∈children(xi)

cij = 1. We assume that
all leaves are at depth d and the branching b size is the same for all nodes. Note that all of
these are standard assumptions in NLP, where the LLM’s outputs are softmax probabilities,
sentence lengths are bounded by d, and each node has the same number of children (the
number of tokens in the vocabulary).

For a path ⟨x0, x1, ..., xn⟩ representing a generated text, denote with cx0→xn =
∏n−1

i=0 ci(i+1)

the product of the rewards —i.e., the probability of each token—along the path. Each node
xi has an optimal value vi attached. If xi is a leaf node, the optimal value vi corresponds
to cx0→xi and for inner nodes xi it is defined recursively as the maximum of the children’s
optimal values maxxc∈children(xi) vc. The goal is to find a path from the root x0 to a leaf xl
such that cx0→xl

is maximized. We refer to the corresponding maximum as v∗.
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3. Method

3.1. Probabilistic model for the transition probabilities

For a node xi, let ci = (ci1, ..., cib) be the vector containing the transition probabilities on
the edges between xi and its b children. The vectors ci define Categorical distributions, for
which a Dirichlet distribution is the common choice for a prior. For tractability, we assume
that the transition probabilities are distributed independently and identically (i.i.d.) as a
symmetric Dirichlet distribution with concentration parameter α > 0, i.e., ci ∼ Dir(α).

The parameter α controls how peaked the sampled probability vectors are. In the context
of LLMs, for small α, the LLM would typically strongly favor a few tokens, whereas for
large α the Categorical distribution would closely resemble a uniform distribution over the
tokens. The symmetry of the prior implies in our context that we do not have a preference
for particular tokens a priori. We will use this prior belief about the concentration of the
LLM’s softmax outputs to obtain (via a sampling-based approximation) the posterior over
the optimal paths in the search tree.

3.2. Probabilistic model for the optimal values

The optimal value vxi of a node xi factorizes as the product cx0→xi of the transition prob-
abilities from the root node x0 to xi and a remaining term which we refer to as ∆i i.e.,
we have vxi = cx0→xi · ∆i. Intuitively, the term ∆i, quantifies the reward/likelihood that
we get in the remaining steps from xi to a leaf node when we take all remaining decisions
optimally. It can be defined by the following recurrence relation:

∆i =

{
1 if xi is a leaf

maxxj∈children(xi){cij ·∆j} otherwise.

Due to the i.i.d. assumption above (Section 3.1), we have the joint distribution p(cx0→xi ,∆i) =
p(cx0→xi) · p(∆i). Whenever a new node xi is added to the search tree, cx0→xi is fully ob-
served —its distribution is simply a Dirac delta. Therefore, to sample from the posterior
p(vxi | cx0→xi) over vxi , it is sufficient to sample from p(∆i) and then simply scale all
samples by cx0→xi .

We now derive the approximate sampling scheme for the distribution p(∆i) of the dif-
ferences ∆i that we need to generate samples from the posterior p(vxi | cx0→xi). For
pseudocode, see Algorithm 1 in Appendix A. It closely follows the one used in (Hennig
et al., 2010; Grosse et al., 2021) with Gaussian priors. We recursively approximate the
prior distribution of the ∆i’s at level l with Beta distributions Bl(∆i) as they take values
in [a, b] with 0 < a, b < 1. In a bottom-up approach, we generate a set of samples

{maxj cnj | cn ∼ Dir(α)}Nn=1

for a ∆i at level l = d−1. Using these samples, we empirically fit the parameters of the Beta
distribution Bd−1(∆i) via maximum likelihood (AbouRizk et al., 1994). The distributions
of the ∆i are the same for all nodes on the same level due to the i.i.d. assumption, so this
has to be done only once. Note that we need this approximation since the distribution of
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the maximum maxj cij has no known analytic solution. We then continue, by recursively
sampling sets of the form (one per level)

{maxj cnj ·∆j | cn ∼ Dir(α),∆j ∼ Bl+1(∆)}Nn=1

for a ∆i of the level l and using it to fit the parameters of Bl(∆i). The time complexity is
O(d · b · N) for computing the approximations, i.e., it is linear in the depth and width of
the tree. Note that they can be computed before the search and reused across sentences,
i.e., these costs are irrelevant to the decoding process itself.1

3.3. Acquisition function

At each step of the search process, a new node is explored, and its children are added to
the search tree. As described in the previous section, we generate sets of samples from
the posteriors p(vxi | cx0→xi) for each child xi. Let L be the set of nodes at the current
boundary of the search tree, i.e., the set of potential beams. Having access to posterior
samples {(vxi)n}Nn=1 for the optimal values vxi in all subtrees, we estimate the probability
P(vxi = v∗) that the subtree below xi contains the maximal value v∗. We do this by taking
the empirical frequency with which the sampled optimal value vxi of node xi was the overall
maximal value across all subtrees:

P̂(vxi = v∗) = 1
N

∑N
n=1 I

[
(vxi)n = maxxj∈L(vxj )n

]
.

This allows us to define an acquisition function a(x) according to which the next node is
selected for exploration:

xi = arg max
x∈L

a(x) = arg max
x∈L

P̂(vx = v∗).

While new nodes are selected greedily, they are selected based on the beliefs over the non-
myopic optimal values vx, which take the rewards in the remaining steps into account.
Moreover, exploration-exploitation is indirectly implied since a(x) is constructed from the
posterior’s samples. These reduce the risk of getting stuck in a local optimum, in contrast to
standard optimization algorithms on LLMs’ search trees like beam search or greedy search.

Finally, the posterior distributions over the optimal values can not only be used for the
selection of new nodes but also to monitor the progress of the optimization. E.g., one can
decide to stop the search as soon as the probability P(m < v∗) that maximum v∗ is higher
than the maximal value m found so far drops below a confidence level ϵ > 0. Algorithm 2
in Appendix A contains pseudocode for the method. In order to put an upper bound on
the runtime, we introduce a hard constraint kmax on the maximum number of nodes that
can be expanded per level. This means that it is no longer possible to guarantee that a
certain confidence level will be achieved, but it is still possible to estimate the confidence
level that was achieved in the end.

1. Recall that the distribution over ∆i is still a prior distribution; its samples only become the posterior
samples for vxi when combined with the observation cx0→xi .
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Figure 1: Comparison on trees, where the transition probabilities are sampled from a Dirich-
let prior for two different values of the concentration parameter.

4. Experiments

4.1. Toy Example

As a first experiment, we compare the probabilistic search to beam search on artificially
generated search problems from Dirichlet priors. The trees have branching factor b = 8 and
depth d = 5. The transition probabilities at each node are sampled from a Dirichlet prior
with fixed α ∈ {0.1, 0.2, 0.5, 0.8}. The comparison is on-model, i.e., the probabilistic search
is run with the ground truth parameter of α. We repeat the experiment with different
values for the confidence parameter ϵ of the probabilistic search from {0.05, 0.1, 0.3}. Since
the toy problems are so small, the exploration of too many nodes is not an issue and we use
kmax =∞. Beam search is run with beam sizes ranging from 1 to 7. The results in Fig. 1
show for α = 0.1 and α = 0.2 that the probabilistic search dominates across the entire
range of hyperparameters. The results for α = 0.5 and α = 0.8 (see Appendix B) show the
same pattern. This suggests that knowledge of the strength of concentration helps reduce
the number of search steps.

4.2. Experiments with LLMs

We continue with off-model experiments, where we test the probabilistic search for the
decoding process of LLMs. We use GPT-2 (Radford et al., 2019) for text generation on
articles from Wikipedia and the CNN Daily Mail datasets (See et al., 2017; Hermann et al.,
2015). Since many of the text samples in the Wikipedia dataset end with e.g., references
instead of full sentences, we filter for text samples with at least 500 tokens, resulting in a
test set with 379 token sequences. We use 200 tokens as input and predict 20 tokens. We
do the same for the CNN Daily Mail dataset, where we end up with 234 token sequences.
We use 300 tokens as input, and predict 20 tokens. We also include a summarization task,
where the goal is to generate a 40 token long summary of the input sequence. For this,
we use 1000 random samples from the TL;DR dataset (Völske et al., 2017). We use the
full input sequences of variable length. On the same dataset, we also experimented with
a version of GPT-2 that was finetuned with human feedback for summarization tasks in
particular (Stiennon et al., 2020).

Before the decoding, we fitted the concentration parameter of the Dirichlet prior based
on the output of the LLM along the greedy paths on samples from the training data. It
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Figure 2: Distribution of the maximum of categorical distributions sampled from an LLM,
as well as from Dirichlet priors with different concentrations parameters.

is possible to adjust α using maximum likelihood optimization (Minka, 2000). However,
we have found that this did not work very well in our experiments: We suspect that it
is either due to numerical problems of the optimization algorithm, or that the best fit for
the Dirichlet distribution does not necessarily coincide with the best fit for the implied
distribution of the (recursive) maximum. Figure 2 shows samples for the maximum of
Categorical distributions returned by the LLM, as well as the distribution of the maximum
of the Categorical distribution from a Dirichlet prior for α = 10−1, 10−4, 5 × 10−6. While
α = 10−1 is in the order of the maximum likelihood estimator, the other values seem to
fit better. An alternative possibility is to sample the Categorical distributions used for
the approximate sampling scheme in Section 3.2 not from a Dirichlet prior directly, but
instead use Categorical distributions from the LLM output on sequences from the training
set. To do so, we generate a set of samples by greedily decoding input sequences from the
training set and tracking the observed Categorical distributions along the paths. Instead of
sampling from the a Dirichlet in the sampling scheme in Section 3.2, we then draw a sample
from this empirically generate set of Categorial distributions. Below, we will refer to this
as “empirical prior”.

Based on the results from the previous section, we run the probabilistic search with
α = 10−4 (Figure 3) We use ϵ = 0.1 and kmax ∈ {2, 3, 4, 10, 20}. For the beam search,
we show results for k ∈ {1, 2, 3, 4, 10, 20} as well. For the experiment with the fine-tuned
LLM, we used α = 5× 10−6, k and kmax ∈ {1, 2, 3, 4, 5}. No matter the choice of kmax, the
probabilistic search returns on average sequences with the same or a higher log-likelihood
while expanding fewer nodes (i.e., requires fewer calls to the LLM). Both ways of building
the prior work well, with the empirical prior encouraging exploration a bit more.

5. Conclusion

We suggested a probabilistic model for the decoding process of LLM search trees. The
resulting method uses the computational uncertainty over the maximum value of the opti-
mization process along with exploiting the structure of the optimization problem to guide
exploration-expoloitation in a non-myopic manner. It allows for a better search efficiency by
allowing for more flexibility in the number of nodes that are expanded vis-à-vis the standard
beam search. As an interesting future direction, uncertainty over the LLM’s outputs (e.g. in
the context of Bayesian LLMs) can be taken into account. Moreover, it is also interesting to
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Figure 3: Comparison with beam search on LLM decoding tasks for different (maximal)
beam sizes and two ways of choosing the prior.

expand the probabilistic model to incorporate (possibly uncertain) external rewards (such
as ones coming from a reward model) in addition to the current LLM’s likelihood rewards.
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Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. TL;DR: Mining Reddit
to learn automatic summarization. In Proceedings of the Workshop on New Frontiers in
Summarization, 2017.

8



Uncertainty-Guided Optimization on LLM Search Trees

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang
Zhou, Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modali-
ties through a simple sequence-to-sequence learning framework. In ICML, 2022.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization. In ICML, 2020.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and
Tieyan Liu. Incorporating BERT into neural machine translation. In ICLR, 2019.

9



Grosse Wu Rashid Hennig Poupart Kristiadi

Appendix A. Pseudocode

Algorithm 1 shows the pseudocode for the approximate sampling scheme described in Sec-
tion 3.2 of the main text.

Algorithm 1: Computing the distributions of the ∆

Input: depth of the tree d, branching size of tree b, concentration parameter α,
number of samples used for the approximation N

Output: table with parameters paramsl for beta distributions Bl for each level l of the
tree

for l← d− 1 to 1 do
for n← 1 to N do

cn ∼ Dirichlet(α, b)
for j ← 1 to b do

if l = d− 1 then
∆nj ← 1

else
// sample from beta distirbution with paramsl+1

∆nj ∼ Bl+1(∆)

end

end
∆n ← maxj=1,...,b(cnj ·∆nj)

end
paramsl ← fit-beta-distribution({∆n}Nn=1)

end

Algorithm 2 shows the pseudocode for the full search algorithm described in Section 3.3.
of the main text.
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Algorithm 2: Uncertainty-guided search algorithm

Input: number of tokens to generate d, number of samples used for the approximation
N , parameters for beta distributions Bl for all levels l = 1, .., d, confidence
parameter ϵ

Output: best found leaf node x∗

// Initialization
L ← {x0}
for l← d− 1 to 1 do

(vx0)n ∼ B1(∆) // Samples for optimal values of root x0
end
m← −∞
x∗ ← None
//v∗ is value of overall best leaf node
while P̂(m < v∗) > ϵ do

//Compute acquisition function
for x ∈ L do

a(x)← 1
N

∑N
n=1 I

[
(vx)n = maxxj∈L(vxj )n

]
end
//Select node for expansion
xi ← arg maxx∈L a(x)
L ← (L \ {xi}) ∪ children(xi)
for xc ∈ children(xi) do

//Generate samples for optimal value vxc of child xc
for n ∈ 1, ..., N do

(∆xc)n ∼ Blevel(xc)(∆)
(vxc)n ← cx0→xc · (∆xc)n

end
//Potentially update value of best complete path so far
if level(xc) = d and cx0→xc) > m then

m← cx0→xc

x∗ ← xc
end

end
//Update estimate that optimal path was not yet found
P̂(m < v∗)← 1

N

∑N
n=1 I

[
m ≤ maxxj∈L(vxj )n

]
end
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Appendix B. Additional Experimental Results

Figure 4 shows the additional results from the experiment on on-model samples from Dirich-
let priors for α = 0.5 and α = 0.8 as described in Section 4.1 of the main text. Here, too,
the probabilistic versions outperforms beam search.
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Figure 4: Comparison on trees, where the transition probabilities are sampled from a Dirich-
let prior for two different values of the concentration parameter.
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