Overcoming a Theoretical Limitation of Self-Attention

Anonymous ACL submission

Abstract

Although transformers are remarkably effec-
tive for many tasks, there are some surprisingly
easy-looking regular languages that they strug-
gle with. Hahn shows that for languages where
acceptance depends on a single input sym-
bol, a transformer’s classification decisions get
closer and closer to random guessing (that is, a
cross-entropy of 1) as input strings get longer
and longer. We examine this limitation using
two languages: PARITY, the language of bit
strings with an odd number of 1s, and FIRST,
the language of bit strings starting with a 1.
We demonstrate three ways of overcoming the
limitation implied by Hahn’s lemma. First,
we settle an open question by constructing a
transformer that recognizes PARITY with per-
fect accuracy, and similarly for FIRST. Sec-
ond, we use layer normalization to bring the
cross-entropy of both models arbitrarily close
to zero. Third, when transformers need to fo-
cus on a single position, as for FIRST, we find
that they can fail to generalize to longer strings;
we offer a simple remedy to this problem that
also improves length generalization in machine
translation.

1 Introduction

Although transformers (Vaswani et al., 2017) are
remarkably effective for many tasks, there are some
surprisingly easy-looking formal languages that
they struggle with. Hahn (2020) tries to explain
some of these by showing (his Lemma 5) that
changing a single input symbol only changes the
output of a transformer encoder by O(1/n), where
n is the input string length. Thus, for a language
where acceptance depends on a single input sym-
bol, the loss difference between a correct and in-
correct decision approaches zero as string length
increases. So even a transformer with perfect accu-
racy might, in some sense, not be very good, and,
in any case, it might be hard to learn.

Here, we examine this limitation using two sim-
ple regular languages:

PARITY = {w € £* | w has an odd number of 1s}
FIRST={w e X" |w; =1}

where (here and throughout the paper) £ = {0, 1}.
Hahn’s lemma applies to PARITY because the net-
work must attend to all the symbols of the string,
and a change in any one of them changes the correct
answer. We have chosen FIRST as one of the sim-
plestexamples of alanguage that the lemma applies
to. It only requires attention on the first symbol,
but the lemma still applies because a change in this
symbol changes the correct answer.

Although the lemma might be interpreted as lim-
iting the ability of transformers to recognize these
languages, we show three ways that this limitation
can be overcome.

First, we show by explicit constructions that
transformers do in fact exist that can perfectly
recognize both languages. We have implemented
these constructions and verified their accuracy ex-
perimentally (§2).

As predicted by Hahn’s lemma, our constructed
transformers have cross-entropy that approaches 1
bit (that is, just barely better than random guessing)
as input length increases. But we show that by
adding layer normalization, the cross-entropy can
be made arbitrarily close to zero, independent of
string length (§3).

In practice, we find, like Bhattamishra et al.
(2020), that transformers cannot learn PARITY.
Perhaps more surprisingly, when learning FIRST,
transformers can have difficulty generalizing from
shorter strings to longer strings. Although this is
not a logical consequence of Hahn’s lemma, it is
a consequence of the behavior that Hahn’s lemma
predicts. Fortunately, this problem can be fixed
with a simple modification, multiplying attention
logits by logn. This modification also improves
length generalization in machine translation (§4).

2 Exact Solutions

The first way to overcome the limitation suggested
by Hahn’s lemma is to show by explicit construc-
tion that our two languages can in fact be recog-
nized with perfect accuracy by transformers.

In this and later sections, we use the following
notation frequently. If ¢ is a true-or-false state-
ment, we write

1 if ¢ istrue
Mol =
9] {0 otherwise.

We define scaled dot-product attention as:

Att: RY x R4 « pxd _, R4

Kq
Att(q, K, V) = (softmax —) V.
Vd

For any m and n, we write 0" for the m X n zero
matrix and I"*" for the n X n identity matrix.

2.1 FFNN for PARITY

Rumelhart et al. (1986) showed that for any n, there
is a feedforward neural network (FFNN) that com-
putes PARITY for strings of length exactly n. They
also showed that a randomly initialized FFNN can
learn to do this automatically.

Since our construction is partially based on
theirs, it may be helpful to review their construc-
tion in detail. Let w be the input string, |w| = n,
and k be the number of 1s in w. The input is a
vector x such that x; = I[w; = 1]. The first layer

computes k and compares it against 1,2, ..., n:
-0.5
-1.5
w! = ‘ b! =
1 1 1 -n+0.5
so that
Ik > 1]

h' = HW'x+b") =
I[k > n]

where H is the step function (H(x) = I[x > 0]),
applied elementwise.

The second layer adds up the odd elements and
subtracts the even elements:

W2: [1 -1 (_1)n+1]

Then y = H(W?h! +b?) is 1 if k is odd and O is k
is even.

b’ =-0.5

2.2 Transformer for PARITY

Following Hahn (2020), we consider transformer
encoders with a sigmoid output layer on a single
position. More precisely, given a string w, we as-
sume that the input to the network is CLS - w, where
CLS (for “classification”) is a special symbol com-
monly used for classification tasks. The network
linearly projects the encoding of CLS to a scalar
and applies a sigmoid function, and it accepts w iff
the output probability is greater than %

Proposition 1. There is a transformer encoder
with sigmoid output layer that recognizes (in the
above sense) the language PARITY.

Initially, we construct a transformer encoder
without layer normalization, then will show how
to add layer normalization (§3). Letn = |w| + 1,
let wy = CLS, and let w; be the i-th symbol of w.
Let k be the number of occurrences of 1 in w. All
vectors computed by the network have 9 dimen-
sions; if we show fewer dimensions, assume the
remaining dimensions to be zero.

The word and position embeddings are:

[1] [0
0 1
WE(0) = (0 WE(1) = |0
0 0
10} 0
[0] [0
0 0
WE(CLS) = |1 PE(i)=| O
0 0
10] | cosim

Since we are numbering positions starting from 0,
dimension 4 ranges from 0 to ”T_l, and dimension 5
is +1 for even positions and —1 for odd positions.
We argue that dimension 5, being a cosine wave,
is a fairly standard choice, although its period (2)
is shorter than the shortest period in standard sinu-
soidal encodings (27r). Dimension 4 is admittedly
not standard; however, we argue that it is a reason-
able encoding, and extremely easy to compute.
Thus, the encoding of word w; is:

x' = WE(w;) + PE(i) = |I[w; = CLS]

COSIT

The first self-attention layer has a single head,
which finds k, the number of 1s. More precisely,

k=2 k-1 &k

k+1 k+2

Figure 1: Piecewise linear function equivalent on the
integers to I[i = k].

because attention always averages, it must compute
the “average” number of 1s, that is, % and stores
it in dimension 6. It also stores ,ll in dimension 7,
which we will need later.

whiQ =90
WI,I,K_O
05><5
whiv=1o0 1 0 0 0
00100

The second head doesn’t do anything (W!2V = 0;
the queries and keys can be anything). After the
residual connection, we have:

b = Au(W'Qx,

[Wl,l,KX] Wl,l,Kxn]T
[WI,I,VXI W1,1,vxn]T)
[]I[Wi = @] |
I[w; = 1]
I[w; = CLS]
— L
CoSIm
k
n
1
n

In the construction of Rumelhart et al. (1986),
the next step is to compute I[i < k] for each i,
using step activation functions. There are two dif-
ferences in our construction. First, we have ReLU
activation functions, not step activation functions.
Second, because attention must sum to one, if 7 is
odd then the even and odd positions will get dif-
ferent attention weights, so the trick of subtracting
even positions from odd positions will not work.
Instead, we want to compute I[i = k] (Fig. 1).

The first FFNN has two layers. The first is:

000 -101 -1 0
wxl=10 0 0 -1 0 1 0| b*'=]o0|.
000 -101 1 0

This gives:

b7 = max (0, W2l + b1

max(0,k —i—1)
= —| max(0,k —1i)
n max(0,k —i+ 1)

The second layer linearly combines these three val-
ues to get I[i = k] as desired.

2,2 07X3 2,2
W=l b>2 = 0.

After the residual connection, we have:

h2,i — W2,2h]1/2,i + b2,2 + hl,i
[I[w; = 0] |
H[W,’ = 1]
I[w; = CLS]
_ i
cosim

S =3 =

I[i=k]
n

The second self-attention layer tests whether po-
sition k is even or odd. It does this using two heads,
one which attends more strongly to the odd posi-
tions, and one which attends more strongly to the
even positions; both average dimension 8:

WH=10 0 ¢vd 0 0 0 0 0]

w»K=10 0 0 0 -1 0 0 0
08><8

3,1,V _

W ‘00000001}

W»2Q=10 0 ¢vd 0 0 0 0 0]

wHK=10 0 0 0 1 0 0 0
08><8

3,2,V

W ‘0000000—1}

where ¢ > 0 can be any constant. Then

h3,h,i — Att(w3,h,Qh2,i’
[W3,h,Kh2,l
[WS,h,VhZ,l

h3,i — h3,1,i + h3,2,i + h2,i.

W3,h,Khz,n]T i
W3,h,vh2,n]T)

The second FFNN doesn’t do anything (W*! =
b*! = W42 = b*2 = 0). The vector at position 0

is then

TI—xm— O — O O

=
—
]

v

If n is even,

5= (_1)k+1 . g X exXpc — CXp(—C)
n expc+exp(—c)
which is positive if k is odd and negative if k is
even. As predicted by Hahn, it is in O(1/n). If
n is odd, the expression for s is somewhat more
complicated, but it is still positive iff £ is odd, and
itis still in O(1/n).

Finally, the output layer is a sigmoid layer that
just looks at dimension 9:

W>=[0 00000001 b=0
1

AR E=TEn)

So the output is greater than % iff k is odd.

2.3 Transformer for FIRST

Next, we construct a transformer for FIRST. In line
with the common practice of learning per-position
word embeddings (Gehring et al., 2017), we use
position embeddings that test whether a word is at
position 1:

[[w; = 0]
o = | Hwi=1]
]I[Wi CL]
Ii =1]
The first self-attention layer does nothing

(Wl’l’V = 0), so after the residual connection,
hli =xt,
The first FFNN computes a new component (5)

that tests whether i = 1 and w; = 1:
wWrl=[-1 0 -1 1] b>' =0

0
0
W22 =10 b*? =0
0
1

so that
]I[Wi = @]
]I[Wi = 1]
h> = | I[w; =CLS]
I[i =1]

Iw; =1Ai=1]

(We have chosen W>! in a slightly unusual way in
order to avoid using the bias term, in anticipation
of §3 when we will add layer normalization.)

The second self-attention layer has a single head,
which makes CLS focus on position 1.

WHQ=10 0 ¢Vd 0 0]
WHK=10 0 0 1 0

W3,1,V_ 05><5
000 -1

where ¢ > 0 is a constant. The second FFNN
doesn’t do anything (W*! = b*! = W2 = p*2 =
0). So at position 0,

S O = O O

exp ¢ _ 1
| exp c+n—1 (I[[W] =1] - f)_

The final output layer just selects component 6:

W =[0 00 00 1] b =0

So the output probability is greater than % iff w; =

1. However, it will get closer to % as n increases.

2.4 Experiments

We implemented both of the above constructions
using modified versions of PyTorch’s built-in im-
plementation of transformers (Paszke et al., 2017).
These constructions achieve perfect accuracy for
strings with lengths sampled from [1, 1000].

However, in Figure 2, the red curves (“no layer
norm’’) show that, as strings grow longer, the cross-
entropy approaches 1 bit (that is, barely better than
random guessing). We discuss this problem in the
next section.

3 Layer Normalization

The second way to mitigate or eliminate the limi-
tation of Hahn’s lemma is layer normalization (Ba

PARITY
2‘ s ‘ ‘ " no layer norm
S r
=
9] s
£ 05} layer norm € = 10
®
2 layer norm € = 0
5 0t | | | \ |
0 20 40 60 80 100
FIRST
;f 1 ‘ ‘ no la)‘/er norm
F L
z r
g layer norm € = 107>
= 051 .
it
é layer norm € = 0
5 | \ \ \ \ \

0 200 400 600 800
string length n

1,000

Figure 2: Cross-entropy of exact solutions for PAR-
ITY and FIRST computed over 1000 random strings of
length n. Without layer norm, the cross-entropy quickly
approaches its upper bound of one. With layer norm and
€ > 0, the cross-entropy is better but still grows with n.
With € = 0, cross-entropy is independent of n.

et al., 2016), which is defined, for any vector x, as

X — mean(x)
yvar(x) + €

where the functions mean and var compute the
mean and variance, respectively, of the elements of
X, and o is the elementwise (Hadamard) product.
We fix § = 0 and y = 1, so that the result has
approximately zero mean and unit variance. The
constant € was not present in the original definition
(Baetal.,2016) but is added in all implementations
that we are aware of, for numerical stability.

LN(x;y,8) = oy+p

The original transformer definition performs
layer normalization immediately after every resid-
ual connection.! In this section, we modify our
two constructions above to use layer normaliza-
tion. This modification has two steps.

3.1 Removing recentering

The first is to nullify the recentering effect of
layer normalization by making the network com-
pute each value x as well as its negation —x. The
new word encodings are defined in terms of those

1t is also common to place layer normalization before
residual connections (Wang et al., 2019; Nguyen and Salazar,
2019), but we follow the original transformer definition here.

in the original construction:

Likewise for the self-attention parameters:

Wf,h,Q — [Wf,h,Q 0]
WohK _ [WERK)
_ Wf,h,V 0
WonY = [_We,h,v ()] :

Likewise for the position-wise FFNN parameters:

Wt’,l — [Wt’,l 0] bt’,l bt’l
_ Wf,Z _ b€,2
Wf,Z — [_W€’2:| b€,2 — [_bf,Z

Then each layer of activations is (before layer nor-

malization)
. hf,i
hg’l = |:—h€’i] .

which always has zero mean, so that layer normal-
ization does not add or subtract anything. It does
scale the activations, but the two transformers con-
structed above are scale-invariant in the sense that
any activation layer can be scaled by any positive
number without changing the final decisions.

3.2 Reducing cross-entropy

Furthermore, in any transformer, we can use layer
normalization to shrink the cross-entropy as small
as we like, contrary to Hahn’s Lemma 5. In Hahn’s
formulation, position-wise functions like layer nor-
malization can be subsumed into his £, but the
lemma assumes that £ is Lipschitz-continuous,
and layer normalization with € = 0 is not.

Proposition 2. For any transformer T with layer
normalization (e = 0) that recognizes a language
L, and for any n > 0, there is a transformer with
layer normalization that recognizes L with cross-
entropy at most 1.

Proof. Let d be the number of dimensions in the
original vectors of activations, and let L be the
index of the output layer (above, L = 5). Then
we add a new layer whose self-attention doesn’t do

anything (WX"V = 0) and whose FFNN is:

d d

V_VL’I = |:_IId] BL’I = gd}
wi -wt
WE2=[-1¢ 19]+| -WE wE

0(d-2xd ((d-2)xd

bL
—bhL
0d—2

L2 =

This causes the residual connection to zero out all
dimensions except two, so that if s was the original
output logit, the output of this new layer (before
layer normalization) is

0d—2 ‘

Now, if € = 0, layer normalization scales this vector
to have unit variance exactly, so it becomes

++/d /2
LN(h™') = |£4/d/2| .
0d—2
The new output layer simply selects the first di-
mension, scaling it by c:

Wil=[c 0 042 BL=o0.

Finally, set ¢ = ——— log(expy — 1).

Var If the

input string is in £, then the cross-entropy is
logo(cy/d/2) = n. Similarly, if the input string
is not in £, then the cross-entropy is log(l —

o (~cyfd]2)) = 7. 0

However, in practice, € is always set to a nonzero
value, which makes layer normalization Lipschitz-
continuous, so Hahn’s Lemma 5 still applies.

3.3 Experiments

We tested our exact solutions, modified as de-
scribed above to use layer normalization. Figure 2
shows that layer normalization with € > 0 im-
proves the cross-entropy, but it still grows with n
and approaches 1. With € = 0, the cross-entropy
is independent of n and, as argued above (Proposi-
tion 2), can be made as low as desired.

4 Learnability

In this section, we turn to the question of learnabil-
ity, which will lead to a third way of overcoming
the limitation suggested by Hahn’s lemma.

cross-entropy (bits)

o
o0
I
|

o
~
I

accuracy

e
o
T
!

0 | | |
0 0.5 1 1.5 2

parameter value

Figure 3: The cross-entropy and accuracy of our so-
lution to PARITY are both extremely sensitive to the
parameter [W'"1V]¢ 5, which is responsible for com-
puting %

4.1 Experiments: standard transformers

We tried training transformers on both PARITY and
FIRST. We used transformers with the same num-
ber of layers and heads as the corresponding exact
solution. We used dpodet = 16 dimensions for
word encodings and for self-attention and FFNN
outputs and drpny = 64 dimensions for FFNN
hidden layers. We used layer normalization after
residual connections. We used PyTorch’s default
initialization and trained using Adam (Kingma and
Ba, 2015) with learning rate 3 x 10~* (Karpathy,
2016). We did not use dropout, as it did not seem
to help.

We found, like Bhattamishra et al. (2020), that
we were unable to get a transformer to learn to rec-
ognize PARITY. Figure 3 shows the cross-entropy
and accuracy of the model if we start with the solu-
tion constructed above (with layer normalization,
€ = 0) and vary the parameter [W!!-V]¢ 5, which
is responsible for computing % It’s not surprising
that, although we can perturb the parameters a lit-
tle bit and the model can recover, it is incapable of
learning from scratch.

FIRST is much easier to learn, but the bad news
is that the learned transformers do not generalize
well to longer sentences. Figure 4, left, shows that
when a transformer is trained on shorter strings
(n = 10, 30, 100, 300) and tested on longer strings
(n = 1000), the accuracy is not perfect. Indeed, for
training n = 10, the accuracy is hardly better than
random guessing.

4.2 Flawed transformer for FIRST

To explain why, we describe a simpler but worse
transformer for FIRST. In our solution above
(§2.3), the second self-attention layer attended
mostly to the first position, but not totally. It relied
on the fact that in the second self-attention layer,
the values of the non-first positions (W31-Vh?? for
i > 1) are exactly zero and therefore do not con-
tribute to the output.

But consider the following transformer, which
uses only a single layer and does not zero out the
values of the non-first positions:

whe=1To 0 cVd 0]
whiKk=To 0 0 1]

04><4
Wl’l’V=[11 _1]
2 3 2 0

The FFNN doesn’t do anything (W>! = b>! =
W22 = b?? = 0), and the final output layer just
selects component 5. So if k is the total number of
1s, the final logit at position 0 would be

expc—1 1
=]I :]_ —_ =
* expc+n-—1 (bwr =11 2)

1 n
il (S B
expc+n—1 2

If ¢ > log(n — 1), then this is positive iff w; = 1.
But if ¢ < log(n — 1), the new second term can be
big enough to make the model output an incorrect
answer. This suggests that if we train a transformer
on strings with length up to N, then the learned
parameters will be large enough to classify strings
of length up to N correctly, but may misclassify
strings longer than N.

This explanation is corroborated by the bottom-
left graph in Figure 4 shows the combined attention
weight of both layers on the first position. Ini-
tially, attention weight increases on position 1, and
test cross-entropy decreases while test accuracy in-
creases. But the lower the training length # is, the
earlier and lower the attention weight plateaus.

4.3 Log-length scaled attention

Fortunately, this problem is easy to fix by scaling
the logits of each attention layer by logn, that is,
redefining attention as

logdan) V. (1)

Att(q, K, V) = (softmax

train all train short

test all test long
baseline 32.6 11.4
scaled 32.5 124

Table 1: When training and testing on data with the
same length distribution, scaling attention logits has no
significant effect on BLEU, but when training on short
sentences (< 20 tokens) and testing on long sentences
(> 20 tokens), scaling helps significantly (p < 0.01).

Then taking the model in §4.2 with ¢ = 1 gives

n-—1

1 1 n
2n—1(]I[W1:1]_§)+2n—1(k_§)

which is positive iff w; = 1. Moreover, scaling is
another way to make the cross-entropy low:

S =

Proposition 3. For any n > 0 there is a trans-
former with attention defined as in Eq. (1), and
with or without layer normalization, that recog-
nizes FIRST with cross-entropy at most 1.

Proof. Without layer normalization, we can take
the model in §2.3 with ¢ = 1, which gives

n

Szzn—l(ﬂ[wlzl]_%)

1<||<1
i s_2.

With layer normalization, we can apply the mod-
ification of §3 to nullify the recentering effect of
layer normalization. The final logit is

=
\Y
N
—_——
)
R«
+
m
N —
N‘I'—‘

§=s(é(l+sz)+e)_

In either case, since the final logit has a lower
bound not dependent on #, the output layer weights
can be scaled as in the proof of Proposition 2 to
make the cross-entropy at most 7. O

4.4 Experiments: scaled attention

Figure 4, right column, shows the training of trans-
formers with scaling of attention logits by logn.
For all training lengths n, the model is able to learn
with perfect test cross-entropy and accuracy.

We see a similar effect on low-resource English-
to-Vietnamese machine translation (Table 1), us-
ing Witwicky, an open-source implementation of
transformers, with all default settings.2 When train

2https://github.com/tnql77/witwicky

https://github.com/tnq177/witwicky

Baseline

1P T T T T T T
2
g Zre W4 gy
£ 0.5 lv/"__/v—okut VA ™
51 .
g

0 Ll | L
ey 1.5 T T T T/TT T T T T T T T T
E /
z ! *
2
S 051
§
19} 0 Lol R Lol
= T T T T TTT] T T T T T
.20 1 N
5
=]
8]
5 05) i
=
:g 0 \M,‘ﬂw‘m"‘-w—*‘-u\ T R Y B

1 10 100 1000

epoch (log-scale)
—n=10 n =30

Scaled attention logits

T

0.5 I

(=]

1.5 \

=)

T T T T 11T
NTWTRVIV

T T T TTT] T
PRI

0 L | Lol Lo
1 10 100 1000
epoch (log-scale)
n =100 n =300

Figure 4: Training a transformer on FIRST. Each epoch has 100 training strings of varying length (see legend)
and 100 test strings of length 1000. All curves are averaged over 20 runs. Left: Standard transformer with layer

normalization. Right: Attention logits scaled by log n.

and test length distributions are the same, scaling
attention logits has no significant effect. But if we
train only on sentences with the median length or
shorter (< 20 tokens) and test only on sentences
longer than median length (> 20 tokens), scaling
attention logits by log n helps significantly.

5 Related Work

RASP (Weiss etal., 2021) is a simple programming
language in which programs can be compiled into
transformers. While the two languages studied
here can easily be written in RASP, this does not
imply in itself the existence of transformers that
can recognize these languages. First, RASP’s ag-
gregate operation (which corresponds to attention)
always attends uniformly to a subset of positions,
unlike softmax attention. Second, RASP’s ele-
mentwise operations are embedded directly in the
output transformer, not translated into FFNNs.
Bhattamishra et al. (2020) carry out theoretical
and experimental studies of transformers for vari-
ous formal languages. The theoretical results are
for a different variant of transformers than ours

(transformer encoders with self-attention masked
so that each position attends only to previous po-
sitions), and focus on such transformers’ ability to
maintain counters that are constrained to be non-
negative. Their experimental results suggest that
transformers have difficulty learning some regular
languages, including PARITY.

6 Conclusion

We have shown that the questions of (a) whether
a neural network can recognize a language, (b)
whether it can achieve low cross-entropy on a lan-
guage, and (c) whether it can learn a language are
three separate questions — since we have given ex-
amples of (a) without (b) and (b) without (c). In
particular, since the answer to (b) can hinge on
small details of the model, we conclude that it is
not very useful as a way of measuring expressivity.
Furthermore, we found that although the limited in-
fluence of a single input symbol implied by Hahn’s
lemma can lead to failure to generalize to longer
lengths. Our proposed fix, scaling attention logits
by log n, is easy to implement and very effective.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization. arXiv:1607.06450.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the ability and limitations of Transformers
to recognize formal languages. In Proc. EMNLP,
pages 7096-7116.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proc. ICML, pages
1243-1252.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Trans. ACL,
8:156-171.

Andrej Karpathy. 2016. 3e-4 is the best learning rate
for Adam, hands down. Twitter.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A
method for stochastic optimization. In Proc. ICLR.

Toan Q. Nguyen and Julian Salazar. 2019. Transform-
ers without tears: Improving the normalization of
self-attention. In Proc. International Workshop on
Spoken Language Translation.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS
Workshop on the Future of Gradient-Based Machine
Learning Software & Techniques.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986.
Learning Internal Representations by Error Propa-
gation, pages 318-362. MIT Press, Cambridge, MA,
USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. NeurlIPS, pages 5998—6008.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proc. ACL, pages 1810—1822.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021.
Thinking like Transformers. In Proc. ICML.

https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://www.aclweb.org/anthology/2020.tacl-1.11
https://www.aclweb.org/anthology/2020.tacl-1.11
https://www.aclweb.org/anthology/2020.tacl-1.11
https://twitter.com/karpathy/status/801621764144971776
https://twitter.com/karpathy/status/801621764144971776
https://twitter.com/karpathy/status/801621764144971776
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.5281/zenodo.3525484
https://doi.org/10.5281/zenodo.3525484
https://doi.org/10.5281/zenodo.3525484
https://doi.org/10.5281/zenodo.3525484
https://doi.org/10.5281/zenodo.3525484
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://arxiv.org/abs/2106.06981

