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Abstract

Although transformers are remarkably effec-001
tive for many tasks, there are some surprisingly002
easy-looking regular languages that they strug-003
gle with. Hahn shows that for languages where004
acceptance depends on a single input sym-005
bol, a transformer’s classification decisions get006
closer and closer to random guessing (that is, a007
cross-entropy of 1) as input strings get longer008
and longer. We examine this limitation using009
two languages: PARITY, the language of bit010
strings with an odd number of 1s, and FIRST,011
the language of bit strings starting with a 1.012
We demonstrate three ways of overcoming the013
limitation implied by Hahn’s lemma. First,014
we settle an open question by constructing a015
transformer that recognizes PARITY with per-016
fect accuracy, and similarly for FIRST. Sec-017
ond, we use layer normalization to bring the018
cross-entropy of both models arbitrarily close019
to zero. Third, when transformers need to fo-020
cus on a single position, as for FIRST, we find021
that they can fail to generalize to longer strings;022
we offer a simple remedy to this problem that023
also improves length generalization in machine024
translation.025

1 Introduction026

Although transformers (Vaswani et al., 2017) are027

remarkably effective for many tasks, there are some028

surprisingly easy-looking formal languages that029

they struggle with. Hahn (2020) tries to explain030

some of these by showing (his Lemma 5) that031

changing a single input symbol only changes the032

output of a transformer encoder by 𝑂 (1/𝑛), where033

𝑛 is the input string length. Thus, for a language034

where acceptance depends on a single input sym-035

bol, the loss difference between a correct and in-036

correct decision approaches zero as string length037

increases. So even a transformer with perfect accu-038

racy might, in some sense, not be very good, and,039

in any case, it might be hard to learn.040

Here, we examine this limitation using two sim- 041

ple regular languages: 042

PARITY = {𝑤 ∈ Σ∗ | 𝑤 has an odd number of 1s} 043

FIRST = {𝑤 ∈ Σ∗ | 𝑤1 = 1} 044

where (here and throughout the paper) Σ = {0, 1}. 045

Hahn’s lemma applies to PARITY because the net- 046

work must attend to all the symbols of the string, 047

and a change in any one of them changes the correct 048

answer. We have chosen FIRST as one of the sim- 049

plest examples of a language that the lemma applies 050

to. It only requires attention on the first symbol, 051

but the lemma still applies because a change in this 052

symbol changes the correct answer. 053

Although the lemma might be interpreted as lim- 054

iting the ability of transformers to recognize these 055

languages, we show three ways that this limitation 056

can be overcome. 057

First, we show by explicit constructions that 058

transformers do in fact exist that can perfectly 059

recognize both languages. We have implemented 060

these constructions and verified their accuracy ex- 061

perimentally (§2). 062

As predicted by Hahn’s lemma, our constructed 063

transformers have cross-entropy that approaches 1 064

bit (that is, just barely better than random guessing) 065

as input length increases. But we show that by 066

adding layer normalization, the cross-entropy can 067

be made arbitrarily close to zero, independent of 068

string length (§3). 069

In practice, we find, like Bhattamishra et al. 070

(2020), that transformers cannot learn PARITY. 071

Perhaps more surprisingly, when learning FIRST, 072

transformers can have difficulty generalizing from 073

shorter strings to longer strings. Although this is 074

not a logical consequence of Hahn’s lemma, it is 075

a consequence of the behavior that Hahn’s lemma 076

predicts. Fortunately, this problem can be fixed 077

with a simple modification, multiplying attention 078

logits by log 𝑛. This modification also improves 079

length generalization in machine translation (§4). 080
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2 Exact Solutions081

The first way to overcome the limitation suggested082

by Hahn’s lemma is to show by explicit construc-083

tion that our two languages can in fact be recog-084

nized with perfect accuracy by transformers.085

In this and later sections, we use the following086

notation frequently. If 𝜙 is a true-or-false state-087

ment, we write088

I[𝜙] =
{

1 if 𝜙 is true
0 otherwise.

089

We define scaled dot-product attention as:090

Att : R𝑑 × R𝑛×𝑑 × R𝑛×𝑑 → R𝑑091

Att(q,K,V) =
(
softmax

Kq
√
𝑑

)
V.092

For any 𝑚 and 𝑛, we write 0𝑚×𝑛 for the 𝑚 × 𝑛 zero093

matrix and I𝑛×𝑛 for the 𝑛 × 𝑛 identity matrix.094

2.1 FFNN for PARITY095

Rumelhart et al. (1986) showed that for any 𝑛, there096

is a feedforward neural network (FFNN) that com-097

putes PARITY for strings of length exactly 𝑛. They098

also showed that a randomly initialized FFNN can099

learn to do this automatically.100

Since our construction is partially based on101

theirs, it may be helpful to review their construc-102

tion in detail. Let 𝑤 be the input string, |𝑤 | = 𝑛,103

and 𝑘 be the number of 1s in 𝑤. The input is a104

vector x such that x𝑖 = I[𝑤𝑖 = 1]. The first layer105

computes 𝑘 and compares it against 1, 2, . . . , 𝑛:106

W1 =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


b1 =


−0.5
−1.5
...

−𝑛 + 0.5


107

so that108

h1 = 𝐻 (W1x + b1) =


I[𝑘 ≥ 1]
I[𝑘 ≥ 2]

...

I[𝑘 ≥ 𝑛]


109

where 𝐻 is the step function (𝐻 (𝑥) = I[𝑥 > 0]),110

applied elementwise.111

The second layer adds up the odd elements and112

subtracts the even elements:113

W2 =
[
1 −1 · · · (−1)𝑛+1] b2 = −0.5114

Then 𝑦 = 𝐻 (W2h1 + b2) is 1 if 𝑘 is odd and 0 is 𝑘115

is even.116

2.2 Transformer for PARITY 117

Following Hahn (2020), we consider transformer 118

encoders with a sigmoid output layer on a single 119

position. More precisely, given a string 𝑤, we as- 120

sume that the input to the network is CLS ·𝑤, where 121

CLS (for “classification”) is a special symbol com- 122

monly used for classification tasks. The network 123

linearly projects the encoding of CLS to a scalar 124

and applies a sigmoid function, and it accepts 𝑤 iff 125

the output probability is greater than 1
2 . 126

Proposition 1. There is a transformer encoder 127

with sigmoid output layer that recognizes (in the 128

above sense) the language PARITY. 129

Initially, we construct a transformer encoder 130

without layer normalization, then will show how 131

to add layer normalization (§3). Let 𝑛 = |𝑤 | + 1, 132

let 𝑤0 = CLS, and let 𝑤𝑖 be the 𝑖-th symbol of 𝑤. 133

Let 𝑘 be the number of occurrences of 1 in 𝑤. All 134

vectors computed by the network have 9 dimen- 135

sions; if we show fewer dimensions, assume the 136

remaining dimensions to be zero. 137

The word and position embeddings are: 138

WE(0) =


1
0
0
0
0


WE(1) =


0
1
0
0
0


139

WE(CLS) =


0
0
1
0
0


PE(𝑖) =


0
0
0
𝑖
𝑛

cos 𝑖𝜋


. 140

Since we are numbering positions starting from 0, 141

dimension 4 ranges from 0 to 𝑛−1
𝑛

, and dimension 5 142

is +1 for even positions and −1 for odd positions. 143

We argue that dimension 5, being a cosine wave, 144

is a fairly standard choice, although its period (2) 145

is shorter than the shortest period in standard sinu- 146

soidal encodings (2𝜋). Dimension 4 is admittedly 147

not standard; however, we argue that it is a reason- 148

able encoding, and extremely easy to compute. 149

Thus, the encoding of word 𝑤𝑖 is: 150

x𝑖 = WE(𝑤𝑖) + PE(𝑖) =


I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]

𝑖
𝑛

cos 𝑖𝜋


. 151

The first self-attention layer has a single head, 152

which finds 𝑘 , the number of 1s. More precisely, 153
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𝑘 − 2 𝑘 − 1 𝑘 𝑘 + 1 𝑘 + 2
0

1

Figure 1: Piecewise linear function equivalent on the
integers to I[𝑖 = 𝑘].

because attention always averages, it must compute154

the “average” number of 1s, that is, 𝑘
𝑛
, and stores155

it in dimension 6. It also stores 1
𝑛

in dimension 7,156

which we will need later.157

W1,1,Q = 0158

W1,1,K = 0159

W1,1,V =


05×5

0 1 0 0 0
0 0 1 0 0

160

The second head doesn’t do anything (W1,2,V = 0;161

the queries and keys can be anything). After the162

residual connection, we have:163

h1,𝑖 = Att
(
W1,1,Qx𝑖 ,[

W1,1,Kx1 · · · W1,1,Kx𝑛
]>

,[
W1,1,Vx1 · · · W1,1,Vx𝑛

]>)
164

=



I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]

𝑖
𝑛

cos 𝑖𝜋
𝑘
𝑛
1
𝑛


.165

In the construction of Rumelhart et al. (1986),166

the next step is to compute I[𝑖 ≤ 𝑘] for each 𝑖,167

using step activation functions. There are two dif-168

ferences in our construction. First, we have ReLU169

activation functions, not step activation functions.170

Second, because attention must sum to one, if 𝑛 is171

odd then the even and odd positions will get dif-172

ferent attention weights, so the trick of subtracting173

even positions from odd positions will not work.174

Instead, we want to compute I[𝑖 = 𝑘] (Fig. 1).175

The first FFNN has two layers. The first is:176

W2,1 =


0 0 0 −1 0 1 −1
0 0 0 −1 0 1 0
0 0 0 −1 0 1 1

 b2,1 =


0
0
0

 .177

This gives: 178

h1½,𝑖 = max
(
0,W2,1h1,𝑖 + b2,1

)
179

=
1
𝑛


max(0, 𝑘 − 𝑖 − 1)

max(0, 𝑘 − 𝑖)
max(0, 𝑘 − 𝑖 + 1)

 . 180

The second layer linearly combines these three val- 181

ues to get I[𝑖 = 𝑘] as desired. 182

W2,2 =

[
07×3

1 −2 1

]
b2,2 = 0. 183

After the residual connection, we have: 184

h2,𝑖 = W2,2h1½,𝑖 + b2,2 + h1,𝑖 185

=



I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]

𝑖
𝑛

cos 𝑖𝜋
𝑘
𝑛
1
𝑛

I[𝑖=𝑘 ]
𝑛


. 186

The second self-attention layer tests whether po- 187

sition 𝑘 is even or odd. It does this using two heads, 188

one which attends more strongly to the odd posi- 189

tions, and one which attends more strongly to the 190

even positions; both average dimension 8: 191

W3,1,Q =
[
0 0 𝑐

√
𝑑 0 0 0 0 0

]
192

W3,1,K =
[
0 0 0 0 −1 0 0 0

]
193

W3,1,V =

[
08×8

0 0 0 0 0 0 0 1

]
194

W3,2,Q =
[
0 0 𝑐

√
𝑑 0 0 0 0 0

]
195

W3,2,K =
[
0 0 0 0 1 0 0 0

]
196

W3,2,V =

[
08×8

0 0 0 0 0 0 0 −1

]
197

where 𝑐 > 0 can be any constant. Then 198

h3,ℎ,𝑖 = Att
(
W3,ℎ,Qh2,𝑖 ,[

W3,ℎ,Kh2,1 · · · W3,ℎ,Kh2,𝑛]> ,[
W3,ℎ,Vh2,1 · · · W3,ℎ,Vh2,𝑛]>)

199

h3,𝑖 = h3,1,𝑖 + h3,2,𝑖 + h2,𝑖 . 200

The second FFNN doesn’t do anything (W4,1 = 201

b4,1 = W4,2 = b4,2 = 0). The vector at position 0 202
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is then203

h4,𝑛 =



0
0
1
0
1
𝑘
𝑛
1
𝑛

I[𝑘=0]
𝑛

𝑠


.204

If 𝑛 is even,205

𝑠 = (−1)𝑘+1 · 2
𝑛
· exp 𝑐 − exp(−𝑐)

exp 𝑐 + exp(−𝑐)206

which is positive if 𝑘 is odd and negative if 𝑘 is207

even. As predicted by Hahn, it is in 𝑂 (1/𝑛). If208

𝑛 is odd, the expression for 𝑠 is somewhat more209

complicated, but it is still positive iff 𝑘 is odd, and210

it is still in 𝑂 (1/𝑛).211

Finally, the output layer is a sigmoid layer that212

just looks at dimension 9:213

W5 =
[
0 0 0 0 0 0 0 0 1

]
b5 = 0214

𝑦 = 𝜎(𝑠) = 1
1 + exp(−𝑠) .215

So the output is greater than 1
2 iff 𝑘 is odd.216

2.3 Transformer for FIRST217

Next, we construct a transformer for FIRST. In line218

with the common practice of learning per-position219

word embeddings (Gehring et al., 2017), we use220

position embeddings that test whether a word is at221

position 1:222

x𝑖 =


I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]
I[𝑖 = 1]

 .223

The first self-attention layer does nothing224

(W1,1,V = 0), so after the residual connection,225

h1,𝑖 = x𝑖 .226

The first FFNN computes a new component (5)227

that tests whether 𝑖 = 1 and 𝑤1 = 1:228

W2,1 =
[
−1 0 −1 1

]
b2,1 = 0229

W2,2 =


0
0
0
0
1


b2,2 = 0230

so that 231

h2,𝑖 =


I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]
I[𝑖 = 1]

I[𝑤𝑖 = 1 ∧ 𝑖 = 1]


. 232

(We have chosen W2,1 in a slightly unusual way in 233

order to avoid using the bias term, in anticipation 234

of §3 when we will add layer normalization.) 235

The second self-attention layer has a single head, 236

which makes CLS focus on position 1. 237

W3,1,Q =
[
0 0 𝑐

√
𝑑 0 0

]
238

W3,1,K =
[
0 0 0 1 0

]
239

W3,1,V =

[
05×5

0 0 0 −1
2 1

]
240

where 𝑐 > 0 is a constant. The second FFNN 241

doesn’t do anything (W4,1 = b4,1 = W4,2 = b4,2 = 242

0). So at position 0, 243

h4,𝑛 =



0
0
1
0
0

exp 𝑐
exp 𝑐+𝑛−1

(
I[𝑤1 = 1] − 1

2

)


. 244

The final output layer just selects component 6: 245

W5 =
[
0 0 0 0 0 1

]
b5 = 0. 246

So the output probability is greater than 1
2 iff 𝑤1 = 247

1. However, it will get closer to 1
2 as 𝑛 increases. 248

2.4 Experiments 249

We implemented both of the above constructions 250

using modified versions of PyTorch’s built-in im- 251

plementation of transformers (Paszke et al., 2017). 252

These constructions achieve perfect accuracy for 253

strings with lengths sampled from [1, 1000]. 254

However, in Figure 2, the red curves (“no layer 255

norm”) show that, as strings grow longer, the cross- 256

entropy approaches 1 bit (that is, barely better than 257

random guessing). We discuss this problem in the 258

next section. 259

3 Layer Normalization 260

The second way to mitigate or eliminate the limi- 261

tation of Hahn’s lemma is layer normalization (Ba 262
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Figure 2: Cross-entropy of exact solutions for PAR-
ITY and FIRST computed over 1000 random strings of
length 𝑛. Without layer norm, the cross-entropy quickly
approaches its upper bound of one. With layer norm and
𝜖 > 0, the cross-entropy is better but still grows with 𝑛.
With 𝜖 = 0, cross-entropy is independent of 𝑛.

et al., 2016), which is defined, for any vector x, as263

LN(x; 𝛾, 𝛽) = x − mean(x)√︁
var(x) + 𝜖

◦ 𝛾 + 𝛽264

where the functions mean and var compute the265

mean and variance, respectively, of the elements of266

x, and ◦ is the elementwise (Hadamard) product.267

We fix 𝛽 = 0 and 𝛾 = 1, so that the result has268

approximately zero mean and unit variance. The269

constant 𝜖 was not present in the original definition270

(Ba et al., 2016) but is added in all implementations271

that we are aware of, for numerical stability.272

The original transformer definition performs273

layer normalization immediately after every resid-274

ual connection.1 In this section, we modify our275

two constructions above to use layer normaliza-276

tion. This modification has two steps.277

3.1 Removing recentering278

The first is to nullify the recentering effect of279

layer normalization by making the network com-280

pute each value 𝑥 as well as its negation −𝑥. The281

new word encodings are defined in terms of those282

1It is also common to place layer normalization before
residual connections (Wang et al., 2019; Nguyen and Salazar,
2019), but we follow the original transformer definition here.

in the original construction: 283

x̄ =

[
x
0

]
. 284

Likewise for the self-attention parameters: 285

W̄ℓ,ℎ,Q =
[
Wℓ,ℎ,Q 0

]
286

W̄ℓ,ℎ,K =
[
Wℓ,ℎ,K 0

]
287

W̄ℓ,ℎ,V =

[
Wℓ,ℎ,V 0
−Wℓ,ℎ,V 0

]
. 288

Likewise for the position-wise FFNN parameters: 289

W̄ℓ,1 =
[
Wℓ,1 0

]
b̄ℓ,1 = bℓ,1 290

W̄ℓ,2 =

[
Wℓ,2

−Wℓ,2

]
b̄ℓ,2 =

[
bℓ,2

−bℓ,2

]
. 291

Then each layer of activations is (before layer nor- 292

malization) 293

h̄ℓ,𝑖 =

[
hℓ,𝑖

−hℓ,𝑖

]
. 294

which always has zero mean, so that layer normal- 295

ization does not add or subtract anything. It does 296

scale the activations, but the two transformers con- 297

structed above are scale-invariant in the sense that 298

any activation layer can be scaled by any positive 299

number without changing the final decisions. 300

3.2 Reducing cross-entropy 301

Furthermore, in any transformer, we can use layer 302

normalization to shrink the cross-entropy as small 303

as we like, contrary to Hahn’s Lemma 5. In Hahn’s 304

formulation, position-wise functions like layer nor- 305

malization can be subsumed into his 𝑓 act, but the 306

lemma assumes that 𝑓 act is Lipschitz-continuous, 307

and layer normalization with 𝜖 = 0 is not. 308

Proposition 2. For any transformer 𝑇 with layer 309

normalization (𝜖 = 0) that recognizes a language 310

L, and for any 𝜂 > 0, there is a transformer with 311

layer normalization that recognizes L with cross- 312

entropy at most 𝜂. 313

Proof. Let 𝑑 be the number of dimensions in the 314

original vectors of activations, and let 𝐿 be the 315

index of the output layer (above, 𝐿 = 5). Then 316

we add a new layer whose self-attention doesn’t do 317
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anything (W𝐿,ℎ,V = 0) and whose FFNN is:318

W̄𝐿,1 =

[
I𝑑
−I𝑑

]
b̄𝐿,1 =

[
0𝑑
0𝑑

]
319

W̄𝐿,2 =
[
−I𝑑 I𝑑

]
+


W𝐿 −W𝐿

−W𝐿 W𝐿

0(𝑑−2)×𝑑 0(𝑑−2)×𝑑

320

b̄𝐿,2 =


b𝐿

−b𝐿

0𝑑−2

 .321

This causes the residual connection to zero out all322

dimensions except two, so that if 𝑠 was the original323

output logit, the output of this new layer (before324

layer normalization) is325

h̄𝐿,𝑖 =


𝑠

−𝑠
0𝑑−2

 .326

Now, if 𝜖 = 0, layer normalization scales this vector327

to have unit variance exactly, so it becomes328

LN(h̄𝐿,𝑖) =

±
√︁
𝑑/2

∓
√︁
𝑑/2

0𝑑−2

 .329

The new output layer simply selects the first di-330

mension, scaling it by 𝑐:331

W̄𝐿+1 =
[
𝑐 0 0𝑑−2] b̄𝐿 = 0.332

Finally, set 𝑐 = − 1√
𝑑/2

log(exp 𝜂 − 1). If the333

input string is in L, then the cross-entropy is334

log𝜎(𝑐
√︁
𝑑/2) = 𝜂. Similarly, if the input string335

is not in L, then the cross-entropy is log(1 −336

𝜎(−𝑐
√︁
𝑑/2)) = 𝜂. �337

However, in practice, 𝜖 is always set to a nonzero338

value, which makes layer normalization Lipschitz-339

continuous, so Hahn’s Lemma 5 still applies.340

3.3 Experiments341

We tested our exact solutions, modified as de-342

scribed above to use layer normalization. Figure 2343

shows that layer normalization with 𝜖 > 0 im-344

proves the cross-entropy, but it still grows with 𝑛345

and approaches 1. With 𝜖 = 0, the cross-entropy346

is independent of 𝑛 and, as argued above (Proposi-347

tion 2), can be made as low as desired.348

4 Learnability349

In this section, we turn to the question of learnabil-350

ity, which will lead to a third way of overcoming351

the limitation suggested by Hahn’s lemma.352
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Figure 3: The cross-entropy and accuracy of our so-
lution to PARITY are both extremely sensitive to the
parameter [W̄1,1,V]6,2, which is responsible for com-
puting 𝑘

𝑛
.

4.1 Experiments: standard transformers 353

We tried training transformers on both PARITY and 354

FIRST. We used transformers with the same num- 355

ber of layers and heads as the corresponding exact 356

solution. We used 𝑑model = 16 dimensions for 357

word encodings and for self-attention and FFNN 358

outputs and 𝑑FFNN = 64 dimensions for FFNN 359

hidden layers. We used layer normalization after 360

residual connections. We used PyTorch’s default 361

initialization and trained using Adam (Kingma and 362

Ba, 2015) with learning rate 3 × 10−4 (Karpathy, 363

2016). We did not use dropout, as it did not seem 364

to help. 365

We found, like Bhattamishra et al. (2020), that 366

we were unable to get a transformer to learn to rec- 367

ognize PARITY. Figure 3 shows the cross-entropy 368

and accuracy of the model if we start with the solu- 369

tion constructed above (with layer normalization, 370

𝜖 = 0) and vary the parameter [W̄1,1,V]6,2, which 371

is responsible for computing 𝑘
𝑛
. It’s not surprising 372

that, although we can perturb the parameters a lit- 373

tle bit and the model can recover, it is incapable of 374

learning from scratch. 375

FIRST is much easier to learn, but the bad news 376

is that the learned transformers do not generalize 377

well to longer sentences. Figure 4, left, shows that 378

when a transformer is trained on shorter strings 379

(𝑛 = 10, 30, 100, 300) and tested on longer strings 380

(𝑛 = 1000), the accuracy is not perfect. Indeed, for 381

training 𝑛 = 10, the accuracy is hardly better than 382

random guessing. 383

6



4.2 Flawed transformer for FIRST384

To explain why, we describe a simpler but worse385

transformer for FIRST. In our solution above386

(§2.3), the second self-attention layer attended387

mostly to the first position, but not totally. It relied388

on the fact that in the second self-attention layer,389

the values of the non-first positions (W3,1,Vh2,𝑖 for390

𝑖 > 1) are exactly zero and therefore do not con-391

tribute to the output.392

But consider the following transformer, which393

uses only a single layer and does not zero out the394

values of the non-first positions:395

W1,1,Q =
[
0 0 𝑐

√
𝑑 0

]
396

W1,1,K =
[
0 0 0 1

]
397

W1,1,V =

[
04×4

− 1
2

1
2 − 1

2 0

]
.398

The FFNN doesn’t do anything (W2,1 = b2,1 =399

W2,2 = b2,2 = 0), and the final output layer just400

selects component 5. So if 𝑘 is the total number of401

1s, the final logit at position 0 would be402

𝑠 =
exp 𝑐 − 1

exp 𝑐 + 𝑛 − 1

(
I[𝑤1 = 1] − 1

2

)
+ 1

exp 𝑐 + 𝑛 − 1

(
𝑘 − 𝑛

2

)
.

403

If 𝑐 > log(𝑛 − 1), then this is positive iff 𝑤1 = 1.404

But if 𝑐 ≤ log(𝑛 − 1), the new second term can be405

big enough to make the model output an incorrect406

answer. This suggests that if we train a transformer407

on strings with length up to 𝑁 , then the learned408

parameters will be large enough to classify strings409

of length up to 𝑁 correctly, but may misclassify410

strings longer than 𝑁 .411

This explanation is corroborated by the bottom-412

left graph in Figure 4 shows the combined attention413

weight of both layers on the first position. Ini-414

tially, attention weight increases on position 1, and415

test cross-entropy decreases while test accuracy in-416

creases. But the lower the training length 𝑛 is, the417

earlier and lower the attention weight plateaus.418

4.3 Log-length scaled attention419

Fortunately, this problem is easy to fix by scaling420

the logits of each attention layer by log 𝑛, that is,421

redefining attention as422

Att(q,K,V) =
(
softmax

log 𝑛
√
𝑑

Kq
)

V. (1)423

train all train short
test all test long

baseline 32.6 11.4
scaled 32.5 12.4

Table 1: When training and testing on data with the
same length distribution, scaling attention logits has no
significant effect on BLEU, but when training on short
sentences (≤ 20 tokens) and testing on long sentences
(> 20 tokens), scaling helps significantly (𝑝 < 0.01).

Then taking the model in §4.2 with 𝑐 = 1 gives 424

𝑠 =
𝑛 − 1
2𝑛 − 1

(
I[𝑤1 = 1] − 1

2

)
+ 1

2𝑛 − 1

(
𝑘 − 𝑛

2

)
425

which is positive iff 𝑤1 = 1. Moreover, scaling is 426

another way to make the cross-entropy low: 427

Proposition 3. For any 𝜂 > 0 there is a trans- 428

former with attention defined as in Eq. (1), and 429

with or without layer normalization, that recog- 430

nizes FIRST with cross-entropy at most 𝜂. 431

Proof. Without layer normalization, we can take 432

the model in §2.3 with 𝑐 = 1, which gives 433

𝑠 =
𝑛

2𝑛 − 1

(
I[𝑤1 = 1] − 1

2

)
434

1
4
< |𝑠 | ≤ 1

2
. 435

With layer normalization, we can apply the mod- 436

ification of §3 to nullify the recentering effect of 437

layer normalization. The final logit is 438

𝑠 = 𝑠

(
1
6
(1 + 𝑠2) + 𝜖

)− 1
2

>
1
4

(
5
24

+ 𝜖

)− 1
2

. 439

In either case, since the final logit has a lower 440

bound not dependent on 𝑛, the output layer weights 441

can be scaled as in the proof of Proposition 2 to 442

make the cross-entropy at most 𝜂. � 443

4.4 Experiments: scaled attention 444

Figure 4, right column, shows the training of trans- 445

formers with scaling of attention logits by log 𝑛. 446

For all training lengths 𝑛, the model is able to learn 447

with perfect test cross-entropy and accuracy. 448

We see a similar effect on low-resource English- 449

to-Vietnamese machine translation (Table 1), us- 450

ing Witwicky, an open-source implementation of 451

transformers, with all default settings.2 When train 452

2https://github.com/tnq177/witwicky
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Figure 4: Training a transformer on FIRST. Each epoch has 100 training strings of varying length (see legend)
and 100 test strings of length 1000. All curves are averaged over 20 runs. Left: Standard transformer with layer
normalization. Right: Attention logits scaled by log 𝑛.

and test length distributions are the same, scaling453

attention logits has no significant effect. But if we454

train only on sentences with the median length or455

shorter (≤ 20 tokens) and test only on sentences456

longer than median length (> 20 tokens), scaling457

attention logits by log 𝑛 helps significantly.458

5 Related Work459

RASP (Weiss et al., 2021) is a simple programming460

language in which programs can be compiled into461

transformers. While the two languages studied462

here can easily be written in RASP, this does not463

imply in itself the existence of transformers that464

can recognize these languages. First, RASP’s ag-465

gregate operation (which corresponds to attention)466

always attends uniformly to a subset of positions,467

unlike softmax attention. Second, RASP’s ele-468

mentwise operations are embedded directly in the469

output transformer, not translated into FFNNs.470

Bhattamishra et al. (2020) carry out theoretical471

and experimental studies of transformers for vari-472

ous formal languages. The theoretical results are473

for a different variant of transformers than ours474

(transformer encoders with self-attention masked 475

so that each position attends only to previous po- 476

sitions), and focus on such transformers’ ability to 477

maintain counters that are constrained to be non- 478

negative. Their experimental results suggest that 479

transformers have difficulty learning some regular 480

languages, including PARITY. 481

6 Conclusion 482

We have shown that the questions of (a) whether 483

a neural network can recognize a language, (b) 484

whether it can achieve low cross-entropy on a lan- 485

guage, and (c) whether it can learn a language are 486

three separate questions – since we have given ex- 487

amples of (a) without (b) and (b) without (c). In 488

particular, since the answer to (b) can hinge on 489

small details of the model, we conclude that it is 490

not very useful as a way of measuring expressivity. 491

Furthermore, we found that although the limited in- 492

fluence of a single input symbol implied by Hahn’s 493

lemma can lead to failure to generalize to longer 494

lengths. Our proposed fix, scaling attention logits 495

by log 𝑛, is easy to implement and very effective. 496
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