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ABSTRACT

N-path filters are a practical method for implementing high
Q band pass filters in modern CMOS processes without in-
ductors using a combination of mixers and low pass filters.
This paper derives optimal practically realizable staircase and
2 level mixer sequences for maximizing the in band SNR and
minimizing the out of band harmonics.

Index Terms— Band pass filters, N-path filters, mixers

1. INTRODUCTION

Band pass filters (BPFs) are used in many applications in-
cluding radio frequency (RF) receiver (RX) paths and band
pass delta sigma analog to digital converters [11]. A problem
with typical BPF implementations is that they require induc-
tors, and it’s difficult to implement high quality (Q) inductors
in complementary metal oxide semiconductor (CMOS) pro-
cesses. Other BPF options exist, but they tend to have issues
with performance, power or process technology [3].

N-path filters [5] are a type of BPF that overcome a num-
ber of these problems. The basic structure of an N-path filter
is multiple paths, each path composed of a mixer, filter and
mixer, summed together to form the filter output. With trend-
s in process scaling leading to higher switching frequencies,
N-path filters are a viable option for integrated BPF designs
with center frequencies of interest in current communication
standards. As the center frequency of the filter is decoupled
from the bandwidth of the filter, high Q values are achievable.

The purpose of this paper is to look at different options
for N-path filter mixer sequence design, as the mixers have a
large impact on the filter performance. Optimal practically re-
alizable mixer sequences are derived for cases where the mix-
er sequence is constrained to a staircase sequence and con-
strained to a 2 level sequence.

2. RELATION TO PRIOR WORK

N-path filters grew out of traditional RF RX chains and re-
search into network synthesis. The first paper describing and
analyzing the mixer based N-path filter structure was [5].

On the circuits side, there have been many implementa-
tions of N-path filters. While different filter structures are
appropriate for different process nodes and requirements, in-
terest seems to be increasing in N-path filters based on current
trends in CMOS integration and the availability of faster tran-
sistors [1], [2], [3], [4], [6], [7], [8], [11].

With respect to mixer design, research into harmonic re-
jection mixers (HRMs) for RF RX chains is perhaps the clos-
est relation to N-path filter mixer optimization. Examples of
different HRM design methods can be found in [9] and [10].
These differ from the N-path filter in terms of the design cri-
teria and the availability of the 2nd mixer sequence. A HRM
is used in [4], however, there is no proof of optimality or con-
sideration of the 2 level sequence case.

3. N-PATH FILTERS

The structure of a N-path filter is shown in Fig. 1. In each
path, there are 2 real mixers, p(n)(t) and q(n)(t), with period
T which determines the center frequency Ω0 = 2π/T of the
BPF. The mixers transform the low pass filter (LPF) shape to
a pass band around Ω0 where the double sided bandwidth of
the LPF, BW , is the same as the bandwidth of the BPF.

Define X(jΩ) as the input and Y (jΩ) as the output spec-
trum of the N-path filter, and denote H(jΩ) as the LPF. Fol-
lowing the derivation in [5]:

Y (jΩ) =

∞∑
r=−∞

H(j(Ω− rΩ0)) · Yr(jΩ), (1)

in which the input and mixer related terms are

Yr(jΩ) =

∞∑
m=−∞

X(j(Ω + (m− r)Ω0)) · α(m, r), (2)

and

α(m, r) =

N∑
n=1

p̂
(n)
−m · q̂(n)

r =

N∑
n=1

(
p̂(n)
m

)∗
· q̂(n)

r , (3)

where p̂(n)
m and q̂(n)

m are the mth Fourier series coefficients
of p(n)(t) and q(n)(t), respectively. Typically, BW � Ω0



and (1) implies that the output only has significant power in
frequencies ±BW/2 around the harmonics of Ω0.

For simplicity, assume the power is flat in frequencies
±BW/2 around a harmonic, so only the midpoint of each
band (i.e., Y (j · lΩ0)) is considered. When Ω = lΩ0 in (1),
only the r = l term remains. Since H(j0) is the same scale
factor for all harmonics, let H(j0) = 1 to obtain

Y (j · lΩ0) ≈
∞∑

m=−∞
X(j ·mΩ0) · α(m, l). (4)

α(m, l) can be viewed as the transfer coefficient from themth
harmonic in the input to the lth harmonic in the output.

Assume the stationary input signals at different harmonics
are uncorrelated and both X(j ·mΩ0) and X2(j ·mΩ0) have
0 mean1. Denoting E {·} as the average operator, the output
signal power spectral density (PSD) at the lth harmonic is:

E
{
|Y (j · lΩ0)|2

}
≈

∞∑
m=−∞

E
{
|X(j ·mΩ0)|2

}
· |α(m, l)|2.

The in band output corresponds to l = 1 and has 2 com-
ponents: the in band signal and the folded harmonic. The de-
sired in band signal, which is the output of a traditional BPF,
corresponds to the term l = m = 1 and has average power

Psignal = E
{
|X(jΩ0)|2

}
· |α(1, 1)|2. (5)

The unwanted folded harmonics can be viewed as interfer-
ence to the in band signal. They correspond to terms with
l = 1,m 6= 1 in (4) and have average total power

Pfolded =
∑
m6=1

E
{
|X(j ·mΩ0)|2

}
· |α(m, 1)|2. (6)

In addition to the in band output, the N-path filter typically
has out of pass band outputs around the harmonics of Ω0. For
the lth harmonic (l 6= ±1), the average out of band power is

Pout(l) =

∞∑
m=−∞

E
{
|X(j ·mΩ0)|2

}
· |α(m, l)|2. (7)

The above analysis shows that the N-path filter transforms
a LPF to a BPF with 2 nonidealities: in band harmonic folding
and out of band signal residue [5], [4]. A method to reduce
these 2 nonideal effects is to use a loose pre and a post LPF
around the N-path filter as shown in Fig. 2. With cutoff fre-
quencies a little above Ω0, the pre LPF attenuates signals at
high harmonics to avoid folding onto the in band signal and
the post LPF removes residual out of band signal power.

Alternatively, as α(m, l) in (5)-(7) depends on the Fourier
coefficients of the mixer signals, it’s possible to design mixer
signals that reduce the in band harmonic folding and the out of
band signal residue such that the requirements on the pre and
post LPFs are reduced or eliminated. Mixer sequence design
for this purpose is explored in section 4.

1The assumption E {X(j ·mΩ0)} = E
{
X2(j ·mΩ0)

}
= 0 is satis-

fied for most digital communication systems.

Fig. 1. N-path filter.
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Fig. 2. Bandpass filter with N-path filter, pre and post LPF.

4. OPTIMAL MIXER DESIGN

This section determines optimal mixer sequences under d-
ifferent constraints. All mixers have periodic staircase se-
quences, i.e., each period is split into M equal time slots and
each mixer sequence is a constant within each slot.

4.1. Performance Evaluation Criteria

Two criteria are considered in evaluating N-path filters:

(1) In band signal to noise ratio (SNR). If the folded har-
monics are considered as in band noise, then the goal is
to maximize the in band SNR = Psignal/Pfolded.

(2) Out of band harmonic power ratio. For l 6= ±1, the
goal is to minimize Rout(l) = Pout(l)/Psignal.

The following lemma and corollary, which put an upper limit
on the achievable in band SNR and a lower limit on the out of
band harmonic power ratio, are used in the sequence design.

Lemma: For M slot staircase mixer sequences, the har-
monic power ratio for the lth harmonic is lower bounded by

Rout(l) = Pout(l)/Psignal ≥ (8)

∞∑
b=−∞

E{|X(j(bM+1)Ω0)|2}
(l(bM+1))2·E{|X(jΩ0)|2} , for l = cM + 1,

∞∑
b=−∞

E{|X(j(bM−1)Ω0)|2}
(l(bM−1))2·E{|X(jΩ0)|2} , for l = cM − 1,

0, otherwise,

and the lower bound is achieved if

α(m, l) = 0, for 0 ≤ m < M, 0 ≤ l < M,

except for (m, l) = (1, 1) or (M − 1,M − 1). (9)

Short proof outline due to space limitations: The ratio
α(bM+1, cM+1)/α(1, 1) is independent of the input, where
α(1, 1) controls Psignal and α(bM + 1, cM + 1) controls the
power contributed from the (bM + 1)th input harmonic to
Pout(cM + 1). The bound is achieved when no other input
harmonics contribute to the (cM+1)th output harmonic. The



case l = cM − 1 is due to spectrum symmetry. �
Setting l = 1 in the lemma leads to the corollary.
Corollary: With M slot staircase mixer sequences, the in

band SNR is upper bounded by

SNR ≤
E
{
|X(jΩ0)|2

}∑
b 6=0

E{|X(j·(bM+1)Ω0)|2}
(bM+1)2

, (10)

and the upper bound is achieved if

α(m, 1) = 0, for m 6= 1, 0 ≤ m < M. (11)

4.2. Staircase Sequences

This section considers M slot staircase mixer sequences,
while the signal amplitude can vary from time slot to time
slot and from path to path and there is no constraint on the re-
lationship between the mixer signals on different paths or the
number of paths N . For this situation, an optimal sequence is
provided by Theorem 1.

Theorem 1: The 2 path sampled quadrature filter achieves
both the optimal in band SNR and the optimal harmonic pow-
er ratio at each harmonic frequency, among all N-path filters
with M slot staircase mixer sequences. In the period [0, T ],
the mixer sequences in the 2 path sampled quadrature filter
have values

p(1)(t) = q(1)(t) = cos (2πm/M)

p(2)(t) = q(2)(t) = sin (2πm/M) (12)

where (mT/M) ≤ t < ((m+1)T/M) and 0 ≤ m ≤M−1.
Short proof : From the lemma and corollary in section 4.1,

we only need to test the sequences in (12) satisfy (9) and (11).
Note that for 0 ≤ m ≤ M − 1, the only nonzero terms

of Fourier series coefficients of p(n)(t) and q(n)(t) in (12) are
p̂

(n)
1 , p̂(n)

M−1, q̂(n)
1 and q̂(n)

M−1. Thus, for 0 ≤ m, l ≤M−1, the
only possible nonzero terms of α(m, l) are α(1, 1), α(1,M−
1), α(M − 1, 1) and α(M − 1,M − 1). Direct calculation
can verify that α(1,M − 1) = α(M − 1, 1) = 0. As such,
(9) is satisfied and the minimum harmonic power ratio at each
harmonic is achieved.

Constraint (11) for the optimal in band SNR is a special
case of (9) with l = 1 which is already satisfied. Thus, the
mixer signals in (12) achieve both maximum in band SNR
and minimum harmonic power ratio at each harmonic. �

Theorem 1 has a number of interesting implications.
First, if the mixers are constrained to staircase sequences,
then adding more than 2 paths does not provide a gain for in
band SNR or out of band signal rejection. Second, the opti-
mal sequences are independent of the input signal PSD and
the location of any blockers. Third, improving the in band
SNR and out of band signal rejection requires an increase of
the number of time slots M in one period (i.e., the system
has to run at a higher clock frequency). Fourth, the optimal
sequences in (12) are also used in HRMs [4], [9], [10].

4.3. 2 Level Sequences

In this section the mixer sequences are further constrained to
taking on only 2 values in each of the M slots:

p(n)(t) ∈ {1,−1}, q(n)(t) ∈ {An,−An}, (13)

where An is a constant gain for the nth path. Limiting the
mixers to 2 levels makes them easier to implement in analog.

The cases of N ≥ M/2 and N < M/2 paths are sep-
arately considered and it’s assumed that M is even. Similar
results can be obtained if M is odd but they are omitted due
to space. Additionally, only the in band SNR criteria is used.

4.3.1. 2 Level Sequences with N ≥M/2 Paths

Theorem 2: Among N-path filters whose mixer sequences
have M slots per period and satisfy (13), the M/2-path fil-
ter with the following class of mixer sequences achieves the
optimal in band SNR:

p(n)(t) = p(1) (t− ((n− 1)T/M)) , (14)
q(n)(t) = q(1) (t− ((n− 1)T/M)) , (15)

p(1) (t+ (T/2)) = −p(1) (t) . (16)

Short proof : The antisymmetric condition (16) indicates
that p(n)(t) has no even harmonics; thus p̂

(n)
2m = 0 and

α(2m, 1) = 0. The delay relationships in (14) and (15) result
in a phase factor in the Fourier series coefficients and it can
be verified that α(2m + 1, 1) = 0 for 1 ≤ m < M/2. Thus,
(11) is satisfied and the optimal in band SNR is achieved. �

In particular, the half plus half minus (HPHM) sequences

p(1) (t) =

{
1, 0 ≤ t < (T/2),

−1, (T/2) ≤ t < T,
(17)

p(n)(t) = p(1) (t− ((n− 1)T/M)) , (18)
q(n) (t) = p(n) (t) . (19)

satisfy constraints (14)-(16) and have optimal in band SNR.
These sequences are particularly implementation friendly as
there are only 2 level changes in one period in each path and
mixer sequences in consecutive paths have a delay of one slot.

Similar to the staircase mixer in section 4.2, Theorem 2
implies that additional paths beyond M/2 do not provide a
gain for in band SNR. However, out of band signal rejection
could potentially be improved. Additionally, the optimal se-
quences are again independent of the input signal PSD.

4.3.2. 2 Level Sequences with N < M/2 Paths

This section considers 2 level M slot mixer sequences which
satisfy (13) where the number of paths N is restricted to N <
M/2 and only the in band SNR is considered. In contrast
to the previous results, an input signal independent mixer se-
quence has not been obtained. Instead, a heuristic optimiza-
tion algorithm is proposed.



Let v(n)
k and w(n)

k represent the values in the kth time slot
(1 ≤ k ≤ M ) of the mixer sequences p(n)(t) and q(n)(t),
respectively. The in band SNR has the form of

SNR =
E
{
|X(jΩ0)|2

}
· |α(1, 1)|2∑

m 6=1 E {|X(j ·mΩ0)|2} · |α(m, 1)|2
. (20)

Since the Fourier coefficients p̂(n)
m and q̂(n)

1 are linear in the
values of v(n)

k and w(n)
k , respectively, α(m, 1) is a bilinear

form with respect to v(n)
k and w(n)

k . Therefore, the powers
of the signal and folded harmonic are both quadratic forms
with respect to either v(n)

k or w(n)
k . The total order of 4 is a

challenge for optimizing (20).
To reduce the order of the objective function, an iterative 2

part heuristic algorithm is used. The first part optimizes over
v

(n)
k with w(n)

k held constant. The second part optimizes over
w

(n)
k with v(n)

k held constant.
The optimization problem in part 1 can be written as

max
v∈{−1,1}MN

SNR =
vTSv

vTNv
, (21)

where S and N are positive semidefinite matrices dependent
on N,M,w

(n)
k and the input signal PSD E

{
|X(j ·mΩ0)|2

}
.

If Nv 6= 0 for the all “binary” v vectors 2, it can be shown
that the optimal objective function of (21) has the value of λ
if and only if the following problem

max
v∈{−1,1}MN

(
vTSv − λ · vTNv

)
(22)

has a maximum of 0. Equation (22) is an unconstrained bina-
ry quadratic programming problem and can be approximately
solved by greedy local search. The solution of (22) never de-
creases SNR, which typically leads to convergence. Thus, the
following iterative method is used:

Algorithm for Part 1
(1) Initialize v and w with the HPHM in (17)-(19).
(2) Compute the current λ = (vTSv)/(vTNv).
(3) Solve (22) with the current λ.
(4) Update vector v with the solution to (22).
(5) If the optimal cost is 0 or the limit on iteration steps

is reached, then terminate; otherwise, go to step (2).

For the second part, since the in band SNR involves only
q̂

(n)
1 , the optimization is performed on [q̂

(1)
1 , . . . , q̂

(N)
1 ] ∈ CN .

Equation (20) is the ratio of semidefinite quadratic forms with
respect to q̂(n)

1 , hence, its solution is available in closed form.
After solving for the optimal q̂(n)

1 , its phase is quantized into
delays which are multiples of T/M .

The 2 parts may take multiple iterations to determine
a heuristic based optimal solution for the 2 level mixer se-
quences in each path. There are potentially local minimums
and no guarantees of global optimality are provided.

2The special case of Nv = 0 is handled separately.
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Fig. 3. N-path filter in band SNR.

In contrast to the staircase mixer sequence or 2 level se-
quence with N ≥ M/2 paths, the optimal sequence in the
case of N < M/2 paths depends on the input signal and the
number of paths.

5. RESULTS

This section presents simulation results for 2 level mixer se-
quences with N < M/2. The center frequency of the pass-
band is at 1GHz and the bandwidth is 10MHz for a quality
factor of Q = 100. The pre LPF and post LPF in Fig. 2 are
both 2nd order Chebyshev I filters with an in band ripple of
1dB and a cutoff frequency of 1.01GHz. The number of time
slots is fixed at M = 16. The input signal in Fig. 2 has a
flat PSD except for a 50dB blocker at the 9th harmonic (i.e.,
9GHz).

The in band SNR of the HPHM sequences defined in (17)-
(19) is compared to the optimal 2 level mixer sequences ob-
tained from the algorithm in section 4.3.2 with various num-
ber of paths. Fig. 3 shows that the optimal sequences achieve
a gain of 7dB and 22dB for in band SNR for 2 path and 4 path
filters over the HPHM sequence, respectively.

6. CONCLUSIONS

This paper derived optimal mixer sequences for N-path fil-
ters under a variety of practical constraints. For staircase se-
quences, it was shown that a 2 path sampled quadrature filter
achieves both the optimal in band SNR and the optimal out of
band harmonic power ratio at each harmonic frequency. For 2
level mixer sequences with M slots per period (M even), a 2
transition per period shifted mixer sequence with M/2 paths
achieves the optimal in band SNR. For situations where less
than M/2 paths are available, a heuristic optimization algo-
rithm was provided for designing 2 level mixing sequences
which optimized in band SNR.
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