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Abstract

Event-based structured light (SL) systems have attracted increasing attention for
their potential in high-performance 3D measurement. Despite the inherent HDR
capability of event cameras, reflective and absorptive surfaces still cause event
clutter and absence, which produce overexposed and underexposed regions that
degrade the reconstruction quality. In this work, we present the first HDR 3D
measurement framework specifically designed for event-based SL systems. First,
we introduce a multi-contrast HDR coding strategy that facilitates imaging of areas
with different reflectance. Second, to alleviate inter-frame interference caused by
overexposed and underexposed areas, we propose a universal confidence-driven
stereo matching strategy. Specifically, we estimate a confidence map as the fusion
weight for features via an energy-guided confidence estimation. Further, we
propose the confidence propagation volume, an innovative cost volume that offers
both effective suppression of inter-frame interference and strong representation
capability. Third, we contribute an event-based SL simulator and propose the
first event-based HDR SL dataset. We also collect a real-world benchmarking
dataset with ground truth. We validate the effectiveness of our method with the
proposed confidence-driven strategy on both synthetic and real-world datasets.
Experimental results demonstrate that our proposed HDR framework enables
accurate 3D measurement even under extreme conditions. The code and data are
available athttps://github. com/Quma233/Event-based-HDR-SL.

1 Introduction

Structured light (SL) systems perform high-quality depth estimation by projecting predefined patterns
onto a scene and analyzing their deformation upon interaction with object surfaces. Their high
precision and dense reconstruction capabilities make them well-suited for applications in both
consumer electronics and industrial applications [} [2, 13]. However, reconstructing scenes under
high dynamic range (HDR) conditions remains a significant challenge, as conventional cameras only
capture the brightness levels with limited range. The target surfaces, such as rust, glossy paint, or
carbon fiber, always lead to overexposure or underexposure of the projected patterns in captured
images [4} |3]], resulting in degraded or failed reconstruction. Existing solutions typically adopt
multi-exposure fusion and multi-projection fusion techniques, but these approaches require extensive
manual tuning of exposure settings and projection intensity to achieve satisfactory results [[1].

Recently, event cameras [6], high-speed neuromorphic sensors with HDR capability, have been
integrated into SL systems, demonstrating advantages in capturing high-speed dynamic scenes and
maintaining imaging quality under complex illumination conditions. Previous work has shown that
event-based SL systems offer improved HDR scene reconstruction compared to frame-based cameras,
however, they still suffer from limitations of low reconstruction quality and insufficient robustness,
especially in overexposed and underexposed areas [7, 8| 9l]. Practical tests further indicate that,

*Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/Quma233/Event-based-HDR-SL

@ AL]

(a) HDR Scene (b) Event Frame with Speckle
Coding

(c) Disparity from (b) (d) Ours

Figure 1: Despite the inherent HDR capabilities of event cameras, they remain inadequate to handle
HDR scenes with high reflectance variations (a), which cause event clutter and absence in the captured
event frame (b). (c) shows the disparity estimated from (b) using SGBM, indicating the compromised
performance of common event-based structured light systems in HDR environments. To address this,
our HDR 3D measurement framework introduces a multi-contrast HDR coding strategy that employs
range-partitioned sensing to image regions with different reflectance. As shown in (d), combined with
our confidence-driven stereo matching strategy, our method demonstrates the ability to reconstruct
high-reflectance surfaces (lamp), low-reflectance surfaces (black tripod), and regions affected by
multipath interference (bowl), achieving superior reconstruction results even under extreme HDR
conditions.

despite the inherent dynamic range advantages of event cameras, existing event-based SL systems
remain inadequate for real-world HDR scene reconstruction, as illustrated in Fig. [T}

In this work, we pioneer the first HDR 3D measurement framework for event-based SL. First, we
propose a multi-contrast HDR coding strategy that uses three pairs of predefined speckle patterns
with different contrast and content for event triggering and depth encoding. Leveraging the HDR
capability of event cameras, different contrast enables imaging across different reflection regions
without tedious projection parameter tuning, while content-wise different speckles provide coding
and imaging gains, maximizing the depth information encoded in three frames.

Second, to alleviate inter-frame interference caused by overexposed and underexposed regions in
individual frames, we propose a universal confidence-driven stereo matching strategy. Specifically,
it includes an energy-guided confidence estimation (ECE) module, which leverages the energy
distribution of binary speckle patterns as a prior to estimate a confidence map for each of the three
input frames as the fusion weight. Building upon this, we innovate the confidence propagation
volume (CPV) — a confidence-driven cost volume construction method. During volume construction,
confidence maps are propagated along the channel and disparity dimensions, and subsequently used to
weight the left and right features. This enables accurate extraction of valid coding information across
the three frames, leading to a cost volume with suppressed inter-frame interference and enhanced
representation capability.

Third, for model training, we contribute a SL simulator based on Blender [10] and propose the first
event-based HDR SL dataset. We also build a real-world benchmarking dataset with ground truth
(GT) based on our built event-based SL system and a high-precision HDR SL scanner.

We integrate the confidence-driven stereo matching strategy into IGEV, a competing stereo network
[L1], to form our HDR 3D reconstruction method. Experiments on synthetic and real-world datasets
demonstrate the superior performance of our method, which achieves robust 3D reconstruction even
under extreme HDR conditions (Fig. m)(d). Besides, we also demonstrate the universality of our
confidence-driven strategy, which significantly enhances the accuracy of networks across diverse
paradigms.

2 Related Work

2.1 Event-based Structured Light

Existing event-based SL studies primarily focus on exploring event-triggering mechanisms and
corresponding algorithms to improve acquisition speed and reconstruction accuracy [7, (8} 9} [12, [13|
14,115]. Leveraging the inherent HDR capability of event cameras, existing event-based methods offer
certain advantages in HDR scene perception compared to frame-based cameras, yet they still struggle
to handle complex HDR scenes. Matsuda et al. explored a line-scanning-based reconstruction method
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Figure 2: Visualization of event frames derived by multi-contrast HDR coding and corresponding
estimated confidence maps.

and tested it on a shiny steel sphere [7]. However, the reconstruction quality was limited by the
constraints of early-generation event sensors. Muglikar et al. managed to reconstruct a plaster of
David under varying lighting conditions [8]], however, the target surface was diffuse and did not
represent a typical HDR scenario, which limited the persuasiveness of the results. In [9], the proposed
sinusoidal fringe-based encoding demonstrated ability in handling high-reflectance and high-contrast
scenes, but it still suffered from insufficient robustness, limited resolution and unsatisfactory detail
recovery. To address these challenges, we propose the first HDR 3D measurement framework tailored
for event-based SL systems, enabling accurate and robust reconstruction even in extreme scenarios.

2.2 Cost Volume-based Stereo Matching

Current cost volume—based deep stereo methods fall into two categories. One is cost-filtering
approaches, which build a dense 4D cost volume and aggregate matching costs via 3D CNN [[L6} 17,
18,119]]. These methods proposed various cost-volume paradigms: GC-Net introduces a simple yet
effective concatenation volume with strong representational power [16]; GwcNet presents a group-
wise correlation volume that combines the benefits of concatenation and correlation volume [[18]].
Recent attention-based variants ACVNet and FastACV [19] employ attention-weighted concatenation
volumes to suppress redundancy while preserving discriminative matching cues. The other category
is iterative-optimization approaches [20, 21]]. This category is exemplified by RAFT-Stereo [20],
which introduces a deep iterative architecture using a GRU-based updater to refine disparity by
sampling cost values from an all-pairs correlation volume. More recently, IGEV-Stereo [[11] combines
these two paradigms and achieves impressive results. However, when naively applied in our HDR
setting, existing approaches would suffer from inter-frame interference that undermines cost-volume
expressiveness and degrades the reconstruction quality.

3 Event-based HDR Structured Light

3.1 Multi-Contrast HDR Coding

To perceive HDR scenes using sensors with limited dynamic range, it is necessary to adopt a range-
partitioned sensing strategy. Considering that event cameras only respond to changes in illuminance,
we propose a multi-contrast encoding strategy to enable the imaging of surfaces with different
reflectance.

Specifically, we employ N pairs of binary speckle patterns [3] to trigger events, where each pair
consists of two sequentially projected frames with distinct contrast and content. As shown in Fig.
??, we define the white foreground speckles to constitute the foreground area and the rest to be the
background area. In each pair, the first frame F; assigns a uniform intensity I, to the background
area and O to the foreground, while the second frame F5 assigns I to the foreground and O to the
background. Let I(z,y,t — At) and I(z,y, t) denote the observed intensities at pixel (z,y) when
projecting Fy and Fb, respectively, where t — At and ¢ are the timestamps corresponding to the
two projections. An event is triggered when the intensity change between two projections exceeds
triggering thresholds:

1 if log _M@yt) > Cy
e(z,y,t) = I(z,y,t — At) )
o | iflog (—L®8D ) o ¢,
1(1‘7 Y, t— At) N ?

where C and Cs are triggering thresholds for positive and negative events, respectively.

This configuration ensures that the foreground speckle area exhibits a significant positive intensity
change, thereby triggering events. In contrast, non-speckle background regions undergo a negative
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Figure 3: Pipeline of the Confidence-Driven Stereo Matching strategy.

change. This design aims to suppress positive intensity changes in non-speckle regions, thereby
reducing unwanted event triggers that may arise from high reflectance. Note that, for bandwidth
efficiency, we do not use negative events in our setting, which also ensures that no interfering negative
events will be triggered. By adjusting I, and I in each pair, we construct multiple contrast levels to
enable imaging across regions with varying reflectance as shown in Fig. 2fa). Compared to frame-
based methods that require extensive per-scene adjustment of projection settings, a key advantage
of our strategy is that, leveraging the inherent HDR capability of event cameras, it can cover the
dynamic range of most complex scenes using only three preset [I},, []. This significantly simplifies
the cost of system deployment.

As for the content, we adopt N mutually independent speckle frames in each pair. As shown in
[22], this strategy offers greater coding distinguishability than using one single pattern, which in
turn improves reconstruction accuracy. Besides, projecting several mutually independent random-
speckle frames is equivalent to taking multiple independent samples of the surface micro-facet normal
distribution, which reduces the likelihood that all frames at a given pixel suffer from event clutter or
absence. In practice, it is found that selecting N = 3 strikes an optimal balance between accuracy
and efficiency (see the full supporting experiments in the supplement). This setting is used in all
subsequent method designs and experiments.

3.2 Confidence-Driven Stereo Matching

Our proposed confidence-driven stereo matching strategy is illustrated in Fig. [3} The inputs of
the network are three rectified stereo pairs: the left frames are three event frames produced by
the multi-contrast coding, and the right frames are corresponding projected reference frames. The
Energy-Guided Confidence Estimation (ECE) processes each left image together with its energy map
to predict a per-frame confidence map. These confidence maps, combined with the features from both
views, are subsequently fused to construct the Confidence Propagation Volume (CPV) that underpins
the final disparity-estimation stage.

3.2.1 Energy-Guided Confidence Estimation

Our design of the Energy-Guided Confidence Estimation (ECE) module is motivated by two key
observations. On the one hand, as shown in Fig. [J[a), overexposed and underexposed areas carry
no reliable coding information. When the three pairs are directly used to compute the cost as in
[22], overexposed and underexposed regions not only fail to provide valid matching cues, but also
contaminate the correct cost computed from well-exposed regions during multi-frame cost fusion,
ultimately leading to reconstruction failure. We refer to this phenomenon as inter-frame interference.
To alleviate this, low-quality areas should contribute less to cost fusion or to the construction of
the matching feature, which calls for a frame-wise confidence estimation mechanism. On the other
hand, low- and high-reflectance regions tend to exhibit event absence and event clutter, respectively,
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Figure 4: The overview of the proposed ECE (a) and CPV (b). (a) illustrates how the ECE mod-
ule processes the low-contrast input. MC and HC stand for medium contrast and high contrast,
respectively. Fsg1, Fsgo, and Fsgs are the fused features estimated from the low-, medium-, and
high-contrast branches.

leading to overly low or high local energy responses. Moreover, our binary event frames contain
only the projected speckles without background interference, making the local energy distribution a
meaningful prior for speckle quality. This motivates us to estimate the confidence maps using both
the speckle pattern and its corresponding energy map.

Based on these insights, we propose ECE, as shown in Fig. @{a). For each left frame, features of the
energy map Fr and the raw speckle data Fs are processed using deformable convolution (DCNv4),
which adaptively adjusts sampling positions to accommodate the diverse and spatially irregular
random speckles caused by extreme reflectance variations in HDR scenes. This flexibility improves
the network’s ability to assess speckle quality, leading to more accurate confidence estimation
compared to conventional CNNs with fixed sampling grids. Next, we modulate the energy map
features through element-wise multiplication to enhance the raw speckle features, resulting in the
fused feature F'sgq. This operation leverages the complementary nature of the two inputs, where
the raw speckle provides fine-grained pixel-level details and the energy map offers noise-robust
confidence priors. Finally, since the confidence reflects the relative quality among the three frames,
the confidence estimation for each frame is made jointly based on all three fused features through a
residual structure. We visualize the learned confidence maps, as shown in Fig. 2[b). The visualizations
show a strong correspondence with the raw input data, demonstrating clear interpretability: regions
suffering from overexposure or underexposure exhibit low confidence, while well-exposed areas yield
high confidence values.

3.2.2 Confidence Propagation Volume Construction

Leveraging the estimated confidence maps, we propose a cost-volume construction strategy as shown
in Fig. |4[b). For each spatial location (z, y), the scalar confidences {Co(x,y), C1(z,y), C2(z,y)}
of the three input frames are individually expanded along the channel dimension to match the channel
number of each frame’s feature. These expanded vectors are then concatenated to form the fusion
weight vector C(z, y). The confidence-weighted feature is computed by element-wise multiplication
with the corresponding frame features:

FL(%ZJ) = FL(.T,y) © C(l’,y)

This process weights the features of each frame according to the quality of the projected speckle. In
this way, the resulting feature can minimize interference caused by suboptimal imaging regions.

Although the right features are extracted from reference frames that are free from under- or over-
exposure, it is still necessary to impose fusion weights on them in order to maintain consistency



with the confidence-weighted left features during disparity searching. Therefore, during the disparity
search of F,(z,y), we propagate the fusion weight C'(x, y) along the disparity dimension to weight
the right features within the disparity searching range:

Fr(d;z,y) = C(z,y) © Fr(z+d,y),
where Fr(xz+d,y) denotes the right feature sampled at (z+d,y), and Fr(d; x,y) denotes the
corresponding confidence-weighted right feature. This ensures that both left and right features are
modulated by the same fusion weights, enabling consistent and confidence-aware stereo matching.

The confidence-weighted features from both views are further refined by two independent feature
fusion modules, each consisting of 1 x 1 convolutions, to reorganize information along the channel
dimension, enhancing feature representation ability while reducing redundancy. Finally, the enhanced
left feature is matched with the right features in disparity searching range to assemble the CPV. By
integrating the proposed confidence-driven strategy into IGEV [11]], we derive our final method for
HDR 3D reconstruction.

4 Experiment

4.1 Dataset and Implementation Details

Synthetic Dataset. To support supervised training, we design an event-based SL simulator in Blender
[LO] and propose the first event-based HDR SL dataset. Using the calibrated intrinsic and extrinsic
parameters from our real SL system, we construct its digital twin in Blender. Since Blender lacks
a native event-camera sensor model, we render two RGB frames, one with the projected speckle
pattern and one without, and take their pixel-wise difference to approximate the imaging process of
the event camera. In addition, a physically based projector is implemented using Blender’s node-tree
system, allowing its optical properties to be precisely configured by the intrinsics. HDR scenes are
built from high-fidelity, textured meshes sourced from the OmniObject3D dataset [23]. To simulate
the reflectance behavior of real-world HDR surfaces, we vary each object’s metallicity, micro-facet
roughness and self-emission coefficient. The resulting scenes contain mirror-like specular peaks
alongside low-reflectance regions, offering realistic dynamic range diversity. High-precision scene
depth is also rendered by Blender for supervision. Samples are shown in the supplement. We render
a total of 8,550 image pairs at a resolution of 1280x704. The dataset is split into 7,500 training
samples and 1,050 test samples.

Real-World Dataset. We build a monocular event-based SL system using the Prophesee EVK4
event camera, which offers a resolution of 1280720 and a dynamic range exceeding 120 dB [24]],
and the DLP6500 projector from Texas Instruments [25]]. In addition, we use an HDR structured
light scanner [26] to capture GT point cloud. A total of 15 complex HDR scenes, including highly
reflective, absorptive, transparent, and fine-grained objects, are captured. Each sample contains three
event frames generated by our multi-contrast coding and corresponding GT point cloud.

Implementation Details. For multi-contrast HDR coding, the projection intensities of the three pairs
are set to [32,55], [32,200], and [0,255], respectively. The depth sensing rate of our system is 200
Hz. Our HDR 3D reconstruction method is implemented in PyTorch, trained on a synthetic dataset,
and evaluated on both synthetic and real-world data. The disparity search range is set to 256. All
experiments are conducted on the NVIDIA 3090 GPUs.

4.2 Baselines and Evaluation Metrics

For comparison, we evaluate our method against several baselines. They include two traditional
stereo algorithms, Block Matching (BM) [27] and Semi-Global Block Matching (SGBM) [28]], two
monocular structured-light depth estimation methods, CTD [29] and GigaDepth [30], as well as three
representative cost volume-based stereo networks, RAFT-Stereo [20]], FastACV [[19], and IGEV [L1]].
In our setting with three input frames, BM and SGBM are applied independently to each frame,
and the final disparity map is obtained by averaging the disparities of high-confidence regions. For
the deep learning-based methods, the three frames are concatenated along the channel dimension
and jointly fed into the network. We evaluate disparity quality with three metrics: end-point error
EPE (mean absolute pixel error), Bad 7 rates for 7 € {0.5,1, 2,3, 5} px (fraction of pixels whose
error exceeds 7), and D1 (pixels whose error is > 3 px and > 5% of GT). Together, they summarize
average accuracy, thresholded error rates, and gross outliers.



Methods | EPE| Bad0.5] Bad1.0] Bad2.0| Bad3.0| Bad5.0] D1] | Time(s)

BM 31.4518  0.3919 0.3213 0.3156 0.3120 0.3053  0.3112 | 0.0030
BM-3 18.2216  0.3141 0.2453 0.2401 0.2349 0.2274  0.2302 | 0.0120
SGBM 13.3384  0.2697 0.1563 0.1421 0.1390 0.1359  0.1363 | 0.0060
SGBM-3 6.3327  0.2243 0.1082 0.0918 0.0874 0.0830  0.0831 | 0.0210
CTD 26.8375  0.3341 0.2755 0.2638 0.2598 0.2465  0.2489 | 0.0190
GigaDepth | 8.6688  0.1425 0.1210 0.1135 0.1111 0.1082  0.1070 | 0.0210
FastACV 0.7112  0.1068 0.0600 0.0342 0.0243 0.0159  0.0154 | 0.0670
RAFT-Stereo | 0.4136  0.1286 0.0507 0.0219 0.0136 0.0077  0.0077 | 0.8490
IGEV 0.3863  0.0548 0.0311 0.0177 0.0127 0.0084  0.0076 | 0.4200
Ours 0.2937  0.0359 0.0203 0.0122 0.0090 0.0063  0.0062 | 0.4080

Table 1: Quantitative results on the synthetic dataset. All metrics are error rates (| lower is better).
Only BM and SGBM are single-frame methods, others are 3-frame methods.
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Figure 5: Qualitative results on the synthetic dataset. Two samples are shown, with the first row
showing the disparities and the second row showing the scene and the error maps.

4.3 Synthetic Results

The results in Table[T|clearly demonstrate the superiority of our proposed 3D measurement framework,
significantly outperforming existing event-based monocular and stereo methods. The performance of
BM and SGBM reflects the typical limitations of conventional event-based structured light systems
in HDR scenes, where large reconstruction errors are observed. Their three-frame variants (BM-3,
SGBM-3) exhibit noticeable improvements, which validates the effectiveness of our proposed multi-
contrast HDR coding. Among all baselines, deep learning-based stereo networks (RAFT-Stereo,
FastACYV, IGEV) achieve markedly better performance. In comparison, our method achieves further
improvements over the strongest baseline, IGEV, demonstrating the effectiveness of the proposed
confidence-driven stereo matching strategy.

Qualitative results are shown in Fig. @ As observed, traditional methods and monocular estimation
networks produce large areas of mismatches and perform poorly near object boundaries. While deep
learning-based stereo methods partially solve these issues, however, as indicated in the error map,
they still exhibit noticeable reconstruction errors in regions with specular reflections or fine structures.
In contrast, our method achieves superior reconstruction quality in both general and HDR-challenging
regions, delivering more accurate disparity estimates. See more qualitative results in the supplement.

4.4 Ablation Study
To validate the effectiveness of each component in our framework, we conduct an ablation study
based on our method and present quantitative results in Table[2]

Content Variation in Multi-Contrast HDR Coding. The first two variants (#A and #B) compare
the impact of different 3-frame inputs, with and without speckle content variation. As can be seen,



Table 2: Ablation study on the content variation in multi-contrast HDR coding (Content), confidence
propagation volume (CPV), energy prior (EnP), and the energy-guided confidence estimation module
(ECE).

Variants \ Content CPV EnP ECE \ EPE | Bad0.5| Bad1.0 | Bad2.0| Bad3.0| Bad5.0] D1|

#A X X X X 05915 0.0776  0.0507  0.0324  0.0221  0.0141 0.0145
#B 4 X X X |03863 0.0548 0.0311 0.0177 0.0127  0.0084 0.0076
#C v v X X |0.3433 0.0415 0.0242 0.0145 0.0111  0.0077 0.0073
#D v v v X |03215 0.0376 0.0218 0.0131  0.0097  0.0067 0.0065
#E v v v v/ 02937 0.0359 0.0203 0.0122  0.0090  0.0063 0.0062

2.778/0.138

Scene GT SGBM_3 GigaDepth FastACV IGEV Ours

Figure 6: Qualitative and quantitative results of real-world HDR scenes. The numbers above each
result denote the EPE and Bad 2.0 error for the corresponding scene.

applying our proposed content-varying coding reduces Bad 1.0 by 38.7%, indicating that introducing
content diversity enhances the distinguishability of speckle coding and enables more accurate local
matching. Meanwhile, Bad 5.0 decreases by 47.6%, suggesting that our method not only brings
imaging gains in challenging HDR regions but also provides richer cues for disparity completion.

Confidence Propagation Volume. For variant #C, we substitute the ECE with convolutions and
cancel the use of the energy prior, resulting in a compromised confidence estimation. Nevertheless,
comparing the results of variants #B and #C, it can be found that applying CPV can still effectively
suppress the inter-frame interference and provide better results.

Energy-guided Confidence Estimation. We add the energy prior (EnP) to variant #C to produce
variant #D. The results are improved, demonstrating the effectiveness of energy prior in confidence
estimation. Finally, we substitute convolutions with the proposed ECE and achieve the best result
in variant #E. It can be deduced that the high-quality confidence map estimation provides better
fusion weights for multi-frame information, which maximizes the suppression of the interference and
enhances the representation capability.

4.5 Real-World Results

To evaluate the generalizability of our method, we test it on real-world HDR scenes captured by our
custom-built SL system. For qualitative and quantitative comparison, we first convert the estimated
disparity maps into depth and reconstruct corresponding 3D point clouds. The GT point cloud
captured by the Photoneo MotionCam-3D M+ is then aligned to each predicted point cloud using
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Figure 7: Reconstruction results of the proposed method in a challenging dynamic HDR scene.

Methods \ EPE| Bad0.5| Bad1.0] Bad2.0| Bad3.0] Bad50] D1|

FastACV 0.7112  0.1068 0.0600 0.0342 0.0243 0.0159  0.0154
Ours(FastACV) | 0.4983  0.0753 0.0475 0.0261 0.0177 0.0113  0.0112
RAFT-Stereo 0.4136  0.1286 0.0507 0.0219 0.0136 0.0077  0.0077
Ours(RAFT-Stereo) | 0.3248  0.0717 0.0324 0.0170 0.0117 0.0070  0.0069

Table 3: Quantitative evaluation of the universality of our confidence-driven stereo matching strategy
on the synthetic dataset. Ours(*) indicates our strategy with * as the baseline.

iterative closest point (ICP) registration. Finally, the aligned GT point cloud is projected onto the
image plane to generate the disparity maps used for evaluation. The qualitative and quantitative results
are presented in Fig. [6] Among traditional methods, SGBM-3 can recover coarse disparity but suffers
from large mismatched regions. The monocular method GigaDepth performs even worse, yielding
noisy and fragmented outputs, indicating inferior robustness compared to stereo-based methods. Deep
learning-based stereo networks generate more complete disparity maps. However, both FastACV
and IGEYV fail to reconstruct fine-scale structures. For instance, in the second row, neither method
accurately recovers the legs and the left eye of the small skeleton figure, resulting in missing or overly
smoothed geometry. In contrast, our method successfully reconstructs these fine-grained details,
yielding a complete and structurally consistent skeleton. Our method also demonstrates remarkable
disparity inference and completion capabilities. As shown in the third row, our method manages to
reconstruct a black metallic object with extremely weak reflectance, where all other methods fail
due to poor speckle quality. Moreover, our method shows the capability to reconstruct transparent
objects, as shown in the fourth row, highlighting its strong generalization ability and robustness to
non-Lambertian surfaces.

The quantitative results are consistent with the qualitative observations, confirming the superiority
of our methods. However, the improvements are less pronounced than those on the synthetic
dataset. This is primarily due to the sparsity and incompleteness of the real-world ground-truth data,
particularly in extreme HDR regions where even the GT fails to make an accurate reconstruction.

We further evaluate our method under dynamic HDR conditions. To this end, we construct a dynamic
HDR scene by placing three geometrically complex objects with diverse surface reflectance properties
on a rotating platform with a controllable angular velocity. The captured dynamic scenes and their
corresponding reconstructions are shown in Fig. [7} The results demonstrate that our method achieves
high-quality reconstruction with high inter-frame consistency. Notably, for metallic surfaces whose
reflected intensity varies drastically—from highly saturated to extremely weak—as the platform
rotates, our approach consistently produces accurate and stable reconstructions, clearly showcasing
its robustness in dynamic HDR environments.

4.6 Universality of Confidence-Driven Stereo Matching

We further validate the universality of our confidence-driven stereo matching strategy. Quantitative
results are shown in TableEl Specifically, we observe a reduction in EPE from 0.7112 to 0.4983 on
FastACYV, and from 0.4136 to 0.3248 on RAFT-Stereo, corresponding to performance gains of 29.9%
and 21.5%, respectively. Similar improvements are consistently observed across all Bad 7 rates and



D1 metric. It has been proved that incorporating our strategy can significantly improve the accuracy
of stereo matching across models with different paradigms. See also the qualitative results in the
supplement.

5 Conclusion and Discussion

Conclusion. In this work, we innovate the first framework for event-based HDR structured light. The
proposed event-based HDR coding scheme encodes depth information using three speckle projections
with variations in both intensity and content, enabling robust representation across challenging HDR
scenes. Furthermore, the proposed confidence-driven stereo matching strategy fully leverages the
multi-frame encoding by employing ECE and CPV to suppress inter-frame interference and enhance
the representation ability of the cost volume, leading to highly accurate disparity estimation. We
validate the effectiveness of our method on both synthetic and real-world datasets. Our method
significantly outperforms existing baselines and demonstrates robust reconstruction performance
even under extreme HDR conditions.

Limitation. Our method does not explicitly address occlusions. There exist no speckles in occluded
regions, leaving the disparity estimation of these regions ill-posed. Due to the network’s inherent
disparity completion behavior, this often results in over-smoothed or expanded boundaries near the
left edges in large-disparity scenes. A potential solution is to estimate a confidence score for the
predicted disparity and filter out unreliable estimates based on this confidence, which we leave as
future work.
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Justification: No theoretical result.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See implementation details.
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* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will public them if the manuscript is accepted.
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* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See tables.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See implementation details.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Will be released once accepted.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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