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Abstract

In-Context Learning (ICL) is a technique by001
which language models make predictions based002
on examples provided in their input context.003
Previously, their context window size imposed004
a limit on the number of examples that can be005
shown, making example selection techniques006
crucial for identifying the maximally effective007
set of examples. However, the recent advent of008
Long Context Language Models (LCLMs) has009
significantly increased the number of examples010
that can be included in context, raising an im-011
portant question of whether ICL performance012
in a many-shot regime is still sensitive to the013
method of sample selection. To answer this,014
we revisit these approaches in the context of015
LCLMs through extensive experiments on 18016
datasets spanning 4 tasks. Surprisingly, we ob-017
serve that sophisticated example selection tech-018
niques do not yield significant improvements019
over a simple random sample selection method.020
Instead, we find that the advent of LCLMs021
has fundamentally shifted the challenge of ICL022
from that of selecting the most effective exam-023
ples to that of collecting sufficient examples024
to fill the context window. Specifically, in cer-025
tain datasets, including all available examples026
does not fully utilize the context window; how-027
ever, by augmenting the examples in context028
with a simple data augmentation approach, we029
substantially improve ICL performance by 5%.030

1 Introduction031

In-Context Learning (ICL) has emerged as a pow-032

erful paradigm in natural language processing that033

enables Language Models (LMs) to learn, adapt,034

and generalize from examples provided within their035

input context, eliminating the need for extensive036

training and parameter updates (Brown et al., 2020;037

Min et al., 2022; von Oswald et al., 2023). How-038

ever, due to the limited context lengths of earlier039

LMs (which accommodate only a few thousand to-040

kens), much of previous ICL work has focused on041

optimizing sample selection strategies (Liu et al., 042

2021; Rubin et al., 2022; Sorensen et al., 2022; An 043

et al., 2023; Mavromatis et al., 2023; Liu et al., 044

2024). With the advent of Long Context Language 045

Models (LCLMs), which are capable of processing 046

over a million tokens in a single context window, 047

these constraints are significantly relaxed as it en- 048

ables including a large number of examples to be 049

used in ICL, known as many-shot ICL (Agarwal 050

et al., 2024; Bertsch et al., 2024). 051

This expansion of context length raises an impor- 052

tant question: do previous sample selection strate- 053

gies, designed for shorter context windows in ear- 054

lier LMs, generalize to the many-shot ICL regime? 055

To answer this, we systematically revisit existing 056

sample selection strategies by conducting extensive 057

experiments across 18 datasets spanning diverse 058

tasks (namely, classification, translation, summa- 059

rization, and reasoning) with multiple LCLMs. Our 060

experiments include three types of sample selec- 061

tion methods: relevance, diversity, and difficulty- 062

based sample selection, as outlined in Dong et al. 063

(2023). From these experiments, we uncover novel 064

and surprising findings: contrary to prevailing ex- 065

pectations that carefully selected ICL demonstra- 066

tions would yield performance improvements, they 067

are similarly effective with a simple random selec- 068

tion approach, offering no statistically meaningful 069

improvements in almost all cases (Figure 1). An 070

additional reason to prefer the naive sample selec- 071

tion approach is that it enables greater efficiency 072

through key-value caching of in-context examples 073

(as the same examples can be reused across multi- 074

ple queries), unlike sophisticated sample selection 075

methods where the examples vary for each sample. 076

While the expanded context length in LCLMs 077

allows us to focus less on selecting optimal sub- 078

sets of examples, it introduces a new challenge: 079

effectively utilizing this expanded capacity when 080

the number of examples is limited. Specifically, in 081

scenarios where available data is sparse (such as 082
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Figure 1: Results of various sample selection approaches in many-shot ICL with LCLMs. Approaches include Retrieval that
selects examples similar to the target query, Diversity that aims for maximizing example variety, Curriculum that arranges
examples in order from easiest to hardest, and Hard that uses only challenging examples, alongside Random that selects examples
without any constraints. Results indicate that sample selection methods provide no significant improvement over the naive
(random) approach and sometimes perform worse. Meanwhile, Augmentation refers to the approach that generates additional
demonstrations and uses them along with original samples for ICL, for low-resource tasks (such as translation, reasoning, and
classification) that do not contain enough samples to utilize the full capacity of LCLMs, showing substantial performance gains.

low-resource translation or reasoning tasks where083

annotated data samples are difficult or costly to084

obtain), the examples available only utilize a small085

fraction of the full context window. In other words,086

this mismatch between context capacity and ex-087

ample availability introduces a new direction in088

ICL research, shifting the focus from optimizing089

sample selection to maximally utilizing the long090

context window. To address this, we propose a091

simple yet effective data augmentation approach to092

increase the number of in-context examples, which093

consists of two consecutive steps: (1) generating094

synthetic examples and (2) filtering out low-quality095

examples via LCLM prompting prepended with096

randomly sampled real examples. Then, by adding097

these augmented data samples to the context, we098

significantly improve ICL performance.099

Moreover, we explore other key factors unique100

to LCLM-enabled ICL. Specifically, we investigate101

the capacity of LCLMs to comprehend extremely102

long context (where a large number of examples103

up to the context length are present), as well as104

how they handle scenarios in which some of these105

examples introduce noise. Through comprehensive106

analyses, we find that while performance generally107

improves as the number of in-context examples in-108

creases, it eventually plateaus and begins to decline109

as the context length approaches the limit. This110

diminishing return highlights the need to carefully111

balance context length and example quantity within112

the expanded capacity of LCLMs. In addition, we113

observe that LCLMs exhibit robustness to noisy ex-114

amples in relatively simple tasks, but they become115

vulnerable to noise in more complex scenarios to116

which they might be less exposed during training,117

such as extremely low-resource translation tasks.118

Overall, we believe our work sheds new light on119

an important paradigm shift in ICL with LCLMs:120

the shift from optimizing sample selection to better121

utilizing extensive context capacity. In particular,122

our findings suggest that simpler, more efficient 123

random sampling approaches can be as effective as 124

previous sample selection approaches in many-shot 125

settings in most cases, and that data augmentation 126

can significantly improve ICL performance in low- 127

resource tasks. Furthermore, our study paves the 128

way for future research on understanding how to 129

better utilize large context windows and manage 130

the intricacies that arise in extended-context ICL. 131

2 Examining Sample Selection Methods 132

for In-Context Learning with LCLMs 133

2.1 Background 134

We begin with formally introducing LCLMs, fol- 135

lowed by describing the setup of ICL with LCLMs. 136

Long-Context Language Models A language 137

model (LM), which takes an input sequence of to- 138

kens x = [x1, x2, . . . , xn] and generates an output 139

sequence of tokens y = [y1, y2, . . . , ym], can be 140

represented as follows: y = LMθ(x), where θ is 141

the set of model parameters that are typically fixed 142

after training due to the high computational costs 143

of fine-tuning. A long-context LM (LCLM) is an 144

advanced LM (Reid et al., 2024) that is designed 145

to accommodate sequences with a large number of 146

tokens (e.g., n can exceed 1 million), typically far 147

surpassing the context sizes of earlier LMs. 148

In-Context Learning with LCLMs Given a set 149

of k input-output pairs {(xi,yi)}ki=1 as well as an 150

input query x′, the goal of ICL is to produce an out- 151

put y = LCLM(x′|{(xi,yi)}ki=1), where the model 152

(LCLM) uses the contextual examples {(xi,yi)}ki=1 153

to make predictions for x′. In prior research before 154

the advent of LCLMs, the value of k was often 155

limited by the relatively short context lengths of 156

earlier models, which constrained the number of ex- 157

amples that could be utilized for ICL. Subsequently, 158

significant work has focused on developing sam- 159

ple selection techniques to optimize performance 160
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within these restricted contexts (Liu et al., 2021;161

Rubin et al., 2022; Sorensen et al., 2022; An et al.,162

2023; Mavromatis et al., 2023; Liu et al., 2024).163

In the meantime, the expanded context capacity of164

LCLMs enables a larger k, facilitating many-shot165

learning with a far greater number of examples.166

2.2 Experimental Setup167

We now discuss the detailed experimental design.168

Tasks and Datasets We experiment with 18 dif-169

ferent datasets across four tasks to evaluate the ef-170

fectiveness and robustness of various approaches.171

• Translation: This task evaluates the ability of172

models to translate text from one language to an-173

other. We include translations from English to174

low-resource languages (namely, Bemba, North-175

ern Kurdish, and Ewe) and high-resource lan-176

guages (Spanish, French, and German) from the177

FLORES-200 benchmark (NLLB et al., 2022),178

with chrF scores (Popovic, 2015) as the metric.179

• Summarization: This task assesses the capabil-180

ity of models to generate concise and coherent181

summaries from articles. We include one widely-182

used XSum dataset (Narayan et al., 2018) and183

two long-context summarization datasets: ArXiv184

and GovReport (Cohan et al., 2018; Huang et al.,185

2021). ROUGE-L score is used for evaluation.186

• Reasoning: This task evaluates the capability187

of models to perform complex reasoning. We188

use three challenging datasets from Big Bench189

Hard (BBH) (Suzgun et al., 2022) following the190

experimental setting of Long-Context Frontiers191

(LOFT) benchmark (Lee et al., 2024a).192

• Classification: This task includes challenging193

benchmark datasets for ICL from Li et al. (2024),194

particularly designed for classification problems195

with diverse classes and long inputs.196

ICL Sample Selection Strategies To ensure197

comprehensive coverage of previously explored198

sample selection strategies, we follow the category199

of three core dimensions from Dong et al. (2023)200

(that extensively summarizes around ICL 200 pa-201

pers). This includes selecting samples based on202

their diversity, difficulty, and relevance to the query,203

with the baseline of random sample selection.204

• Naive: This method randomly selects examples205

from a dataset and uses this initial set of selected206

examples as ICL demonstrations for all queries.207

• Relevance: This method selects examples that208

are most similar to the input query to maximize209

the alignment of ICL demonstrations with the 210

query. To compute semantic similarity between 211

the query and each example, we use an embed- 212

ding model (Lee et al., 2024b). 213

• Diversity: This method selects examples that are 214

maximally distinct from each other to capture 215

a broad coverage of features and characteristics 216

within the task space. We first embed each exam- 217

ple in a shared embedding space with Lee et al. 218

(2024b) and utilize k-means clustering (where k 219

corresponds to the number of desired ICL exam- 220

ples) to group the examples into subcategories. 221

We then select the example closest to each cluster 222

center as the representative to capture a diverse 223

subset of the task features. 224

• Difficulty: This method selects examples based 225

on their difficulty. We examine two approaches: 226

the first method (called Curriculum) follows a 227

curriculum learning paradigm where examples 228

are ordered from easiest to hardest; the second 229

one (called Hard) includes only difficult exam- 230

ples, as simpler examples may already be well- 231

understood by models. To assess example diffi- 232

culty, we use model-based evaluation (Liu et al., 233

2023), which prompts LCLMs 30 times and aver- 234

ages difficulty scores weighted by probabilities. 235

LCLM Configurations for ICL We consider 236

LCLMs that support extensive token capacities to 237

evaluate ICL performance in long-context, many- 238

shot ICL scenarios. We focus on models that have 239

context window lengths on the order of millions: 240

Gemini 1.5 Flash, which can process up to 1 mil- 241

lion tokens; Gemini 1.5 Pro, which can process up 242

to 2 million tokens (Reid et al., 2024). In addition, 243

we also consider the Llama 3.1 70B model (Dubey 244

et al., 2024), which, while supporting the com- 245

paratively smaller context size of 128K tokens, is 246

still considered an LCLM. For all experiments, we 247

utilize the default hyperparameters for both Gem- 248

ini and Llama. To provide a comprehensive view 249

of performance under different shots, we vary the 250

number of ICL examples, starting from one and se- 251

quentially doubling to 2, 4, 8, 16, 32, and so forth, 252

until reaching either the context size limit or the 253

maximum number of dataset samples, whichever 254

is exhausted first. Furthermore, to ensure the re- 255

liability of our results, we conduct multiple runs 256

for each experimental setup: 3 runs for translation 257

and summarization tasks; 10 runs for reasoning 258

and classification tasks. The prompts used to elicit 259

responses from ICL are provided in Appendix A. 260
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Figure 2: Detailed results of various sample selection approaches on ICL with LCLMs, such as Gemini Pro (Top), Gemini Flash
(Middle), and Llama 3.1 (Bottom), across four different tasks (translation, summarization, reasoning, and extreme classification)
with 18 datasets. Each bar represents the averaged performance, with the upper and lower limits indicating standard deviation.

Table 1: Counting the statistical significance of sophisticated
selection approaches over random selection on each experi-
ment instance, by conducting the t-test with 95% confidence
threshold. Tran., Summ., Reas, Clas, denote translation, sum-
marization, reasoning, and classification tasks, respectively.

LCLMs Methods Tran. Summ. Reas. Clas. Total

Gemini Pro
Relevance 0 / 6 0 / 3 0 / 4 0 / 5 0 / 18
Diversity 0 / 6 0 / 3 1 / 4 2 / 5 3 / 18
Curriculum 1 / 6 0 / 3 0 / 4 1 / 5 2 / 18
Hard 0 / 6 0 / 3 1 / 4 0 / 5 1 / 18

Gemini Flash
Relevance 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18
Diversity 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18
Curriculum 0 / 6 0 / 3 0 / 4 0 / 5 0 / 18
Hard 0 / 6 0 / 3 0 / 4 0 / 5 0 / 18

Llama 3.1
Relevance 1 / 6 0 / 3 1 / 4 1 / 5 3 / 18
Diversity 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18
Curriculum 0 / 6 0 / 3 0 / 4 1 / 5 1 / 18
Hard 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18

Total
Relevance 1 / 18 0 / 9 1 / 12 3 / 15 5 / 54
Diversity 0 / 18 0 / 9 1 / 12 6 / 15 7 / 54
Curriculum 1 / 18 0 / 9 0 / 12 2 / 15 3 / 54
Hard 0 / 18 0 / 9 1 / 12 2 / 15 3 / 54

2.3 Experimental Results261

Results on Sample Selection Strategies We re-262

port the detailed results of various sample selection263

approaches in many-shot ICL scenarios in Figure 2.264

To rigorously evaluate each sample selection ap-265

proach and their statistically significant gains, we266

conduct a t-test with a 95% confidence threshold267

and report the results in Table 1. From these results,268

we observe that previously effective sample selec-269

tion methods, designed for shorter context LMs,270

yield little to no performance gains over the ran- 271

dom selection approach when applied to LCLMs. 272

Aggregated results across three different LCLMs 273

indicate statistical significance in fewer than 15% 274

of instances, indicating that they are not reliable. 275

Analysis on Number of ICL Examples To see 276

the performance of ICL with respect to the number 277

of examples, we visualize results in Figure 3. Over- 278

all, for any sampling method, we observe that per- 279

formance increases as the number of examples in- 280

creases. Also, when the number of examples is rel- 281

atively small, the relevance-based sample selection 282

approach performs particularly well, as focusing on 283

highly relevant examples maximizes learning effec- 284

tiveness when using a small number on examples. 285

However, as the number of examples increases, the 286

performance gap between various sample selection 287

methods diminishes, indicating that performance is 288

less dependent on selection strategies in many-shot 289

scenarios. Lastly, in the summarization task (where 290

samples tend to be longer than those in other tasks), 291

we observe an initial increase in performance as 292

more examples are added, followed by a decline 293
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Figure 3: Results with varying the number of examples for ICL with Gemini Pro, where we average the results for each task.

Table 2: Results with varying the order of ICL samples, where
Ascending and Descending represent cases where examples
closer to the query appear earlier and later in the LCLM con-
text, respectively. In contrast, random denotes the case where
examples are arranged randomly without a specific order.

Methods Summarization Translation Reasoning Classification

Random 0.310 ± 0.004 0.553 ± 0.004 0.650 ± 0.023 0.539 ± 0.007
Ascending 0.307 ± 0.006 0.557 ± 0.004 0.641 ± 0.027 0.534 ± 0.010
Descending 0.309 ± 0.003 0.552 ± 0.007 0.648 ± 0.021 0.539 ± 0.005

once the context becomes heavily populated with a294

large number of examples. We argue this decline295

likely reflects the challenges LCLMs face in pro-296

cessing extremely long contexts, and we offer more297

analysis and discussion in Section 4.2.298

Analysis on Example Order Previous work has299

shown that earlier LMs are sensitive to the order of300

examples when doing few-shot ICL. For example,301

LMs tend to follow the answer in the last exam-302

ple (Zhao et al., 2021; Lu et al., 2022). To investi-303

gate whether similar issues arise in many-shot ICL304

with LCLMs, we experiment by comparing per-305

formance when ordering ICL examples randomly,306

by increasing similarity, and by decreasing similar-307

ity. The results in Table 2 suggest that the order of308

examples does not affect performance of LCLMs.309

Analysis on Computational Complexity In ad-310

dition to performance, computational complexity311

is a critical factor to consider when assessing the312

practicality of many-shot ICL with LCLMs, as they313

often handle million-token contexts. We note that314

for approaches that adjust ICL examples based on315

the given query (such as relevance-based selection),316

the complexity scales quadratically, O(n2), where317

n represents the number of tokens used for ICL318

demonstrations. In contrast, the simpler naive selec-319

tion approach, which uses the same set of randomly320

selected examples for all queries, offers a signifi-321

cantly more efficient complexity of O(kn), where322

k is the number of tokens only within the target323

query (n ≫ k). This is because the selected exam-324

ples do not change based on the query; thus, the325

same set of examples can be key-value cached. As326

a result, random selection is a practical choice due327

to its equivalent performance with other selection328

methods and the added advantage of efficiency.329

3 Augmenting ICL Demonstrations to 330

Increase Context Capacity of LCLMs 331

3.1 ICL Example Augmentation Approach 332

Recall that recent advances in LCLMs offer un- 333

precedented context capacity, potentially amplify- 334

ing ICL performance by including more examples. 335

However, the available examples sometimes fall 336

short of filling this expanded capacity, and this 337

under-utilization of the context may result in sub- 338

optimal performance. To address this, we introduce 339

a simple yet effective ICL sample augmentation ap- 340

proach designed to increase the context capacity of 341

LCLMs, while being scalable for many-shot sce- 342

narios. This method consists of synthetic example 343

generation and low-quality example filtering. 344

Generation of Synthetic Examples Formally, 345

let D = {(xi,yi)}ki=1 be a dataset of available ICL 346

examples for a given target task, where each exam- 347

ple (xi,yi) represents an input-output pair. The 348

objective is to generate a set of synthetic examples 349

D′ = {(x′
j ,y

′
j)}mj=1 (to supplement the original 350

dataset D), such that the augmented set of exam- 351

ples DAUG = D ∪ D′ can increase the utilization 352

of the available context capacity of LCLMs. To 353

operationalize this, we generate each synthetic ex- 354

ample (x′
j ,y

′
j) by prompting an LM with randomly 355

selected real examples from D as context, to ensure 356

that the generated data retains meaningful patterns 357

and characteristics relevant to the task. 358

Filtering Out Low-Quality Examples Once the 359

synthetic examples are generated, we filter out low- 360

quality instances that may introduce noise or irrele- 361

vant information. To do this, we design a function 362

f that assigns a quality score to each synthetic ex- 363

ample (x′
j ,y

′
j) based on its contextual relevance 364

and alignment with real examples as well as over- 365

all quality. Specifically, each synthetic example is 366

rated on a 5-point Likert scale by prompting the 367

LM 30 times with the synthetic and 30 real exam- 368

ples. We then compute an aggregate score using a 369

weighted average of scores with their correspond- 370

ing probabilities from the LM. Only the synthetic 371

examples that exceed a quality threshold, τ , are 372
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Table 3: Results of LCLM-enabled ICL on four different tasks, where Random indicates the naive sample selection approach
without selection criteria, Best Selection indicates the model that achieves the best performance among sophisticated sample
selection methods for each experiment unit, and Augmentation indicates the proposed approach that generates demonstrations
and uses them alongside original samples with random selection. We emphasize statistically significant results over Random in
bold. We exclude Llama from the augmentation scenario as its context capacity is approximately ten times smaller than that of
Gemini, allowing it to fully utilize its available context with the original examples alone, making augmentation unnecessary.

Translation Reasoning

LCLMs Methods ENG to BEM ENG to KMR ENG to EWE ENG to SPA ENG to FRA ENG to DEU Date Salient

Gemini Pro
Random 0.470 ± 0.003 0.439 ± 0.001 0.419 ± 0.004 0.580 ± 0.006 0.734 ± 0.002 0.676 ± 0.010 0.854 ± 0.009 0.776 ± 0.035
Best Selection 0.470 ± 0.004 0.443 ± 0.004 0.418 ± 0.002 0.583 ± 0.004 0.745 ± 0.005 0.676 ± 0.004 0.896 ± 0.021 0.772 ± 0.017
Augmentation 0.487 ± 0.007 0.469 ± 0.003 0.437 ± 0.003 0.595 ± 0.005 0.748 ± 0.007 0.694 ± 0.005 0.927 ± 0.019 0.784 ± 0.018

Reasoning Classification All

LCLMs Methods Tracking7 Web Banking77 DialogRE Discovery FewNERD GoEmotion Average

Gemini Pro
Random 0.294 ± 0.029 0.675 ± 0.021 0.878 ± 0.002 0.661 ± 0.009 0.195 ± 0.007 0.568 ± 0.012 0.393 ± 0.007 0.574 ± 0.010
Best Selection 0.311 ± 0.031 0.700 ± 0.028 0.886 ± 0.004 0.709 ± 0.014 0.204 ± 0.011 0.569 ± 0.006 0.413 ± 0.006 0.586 ± 0.011
Augmentation 0.307 ± 0.031 0.768 ± 0.040 0.889 ± 0.004 0.698 ± 0.010 0.209 ± 0.009 0.574 ± 0.008 0.428 ± 0.006 0.601 ± 0.012

Translation Reasoning

LCLMs Methods ENG to BEM ENG to KMR ENG to EWE ENG to SPA ENG to FRA ENG to DEU Date Salient

Gemini Flash
Random 0.419 ± 0.006 0.427 ± 0.004 0.363 ± 0.002 0.573 ± 0.004 0.726 ± 0.004 0.666 ± 0.005 0.754 ± 0.022 0.682 ± 0.019
Best Selection 0.421 ± 0.002 0.434 ± 0.002 0.360 ± 0.003 0.575 ± 0.002 0.732 ± 0.003 0.673 ± 0.001 0.777 ± 0.030 0.687 ± 0.015
Augmentation 0.436 ± 0.006 0.460 ± 0.002 0.378 ± 0.004 0.594 ± 0.007 0.737 ± 0.010 0.676 ± 0.012 0.804 ± 0.037 0.714 ± 0.013

Reasoning Classification All

LCLMs Methods Tracking7 Web Banking77 DialogRE Discovery FewNERD GoEmotion Average

Gemini Flash
Random 0.256 ± 0.030 0.582 ± 0.033 0.868 ± 0.004 0.541 ± 0.008 0.065 ± 0.007 0.521 ± 0.006 0.362 ± 0.016 0.520 ± 0.011
Best Selection 0.270 ± 0.031 0.566 ± 0.031 0.872 ± 0.006 0.547 ± 0.012 0.083 ± 0.007 0.532 ± 0.002 0.385 ± 0.006 0.528 ± 0.010
Augmentation 0.281 ± 0.035 0.609 ± 0.040 0.880 ± 0.006 0.578 ± 0.025 0.090 ± 0.005 0.537 ± 0.009 0.392 ± 0.015 0.544 ± 0.015

retained in the augmented example set, as follows:373

DAUG = D ∪ {(x′
j ,y

′
j) | f(x′

j ,y
′
j ,D) ≥ τ}mj=1,374

where f(x′
j ,y

′
j ,D) is the quality assessment func-375

tion, and τ is the threshold value for filtering.376

3.2 Experimental Setup377

For synthetic data generation and filtering, we use378

Gemini Pro, one of the state-of-the-art LMs. We379

focus on tasks that underutilize the context capac-380

ity of LCLMs even when all available samples are381

provided, such as translation, reasoning, and classi-382

fication. For each task, we generate 3,000 examples383

and retain only those with a quality score above the384

median among the generated samples. As a result,385

we use the original examples and 1,500 synthetic386

examples. The prompts used to elicit data genera-387

tion and filtering are provided in Appendix A.388

3.3 Experimental Results389

Main Results As shown in Table 3, which com-390

pares the example augmentation approach (with391

random selection) to other sample selection strate-392

gies, the augmentation approach demonstrates sub-393

stantial performance gains across various datasets,394

which can be attributed to the greater diversity and395

volume of ICL examples achieved through syn-396

thetic data generation, leading to the effective uti-397

lization of the context capacity of LCLMs. Also,398

like the random selection approach, our augmenta-399

tion method allows the reuse of the same examples400

across all queries. Thus, due to key-value caching,401

the augmentation approach is as efficient as random402

selection while achieving superior performance.403

Table 4: Results on ablation study, where w/o Filtering and w/o
Original denote the ICL results based on augmented samples
without filtering and without original samples, respectively.
Only Original is the performance without generated samples.

Methods Translation Reasoning Classification

Augmentation 0.571 ± 0.005 0.696 ± 0.027 0.560 ± 0.008
w/o Filtering 0.552 ± 0.005 0.666 ± 0.031 0.548 ± 0.009
w/o Original 0.544 ± 0.002 0.611 ± 0.025 0.531 ± 0.007
Only Original 0.553 ± 0.004 0.650 ± 0.023 0.539 ± 0.007

Ablation Study on Augmentation To see how 404

each component in the augmentation approach con- 405

tributes to performance gains, we conduct an ab- 406

lation study. As shown in 4, we observe that the 407

full augmentation method (called Augmentation), 408

which uses both original examples and filtered syn- 409

thetic examples in combination, achieves the best 410

performance. In contrast, when the filtering step 411

is omitted, performance decreases, indicating that 412

filtering contributes positively by removing lower- 413

quality synthetic examples. Also, a large perfor- 414

mance drop occurs when original samples are ex- 415

cluded from the augmented set. This suggests that 416

although filtering helps maintain quality, the syn- 417

thetic samples generated still do not match the qual- 418

ity of the original examples. Thus, while our aug- 419

mentation approach is effective, further research 420

could improve data generation techniques to im- 421

prove the quality of the synthetic examples. 422

4 Behaviors of LCLM-Enabled ICL 423

4.1 LCLM-Based ICL with Noisy Examples 424

LCLMs can accommodate a large number of di- 425

verse ICL examples, which raises the question of 426

the impact and risk of including noisy examples in 427

the context. We investigate how the performance of 428
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Figure 4: Results with varying the ratio of noisy examples within the context of LCLMs, where we report the relative performance
over the ICL without noisy examples (i.e., the noise ratio of 0) and the results are averaged over multiple runs.
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Figure 5: Results across different percentages of context size utilized in LCLMs, where the x-axis represents the percentage of
the full LCLM context used (according to the number of tokens over the full token length), and the y-axis shows the relative
performance compared to the highest performance achieved for each dataset. Results are averaged over multiple runs.

LCLM-enabled ICL is impacted when some or all429

of the ICL examples are noisy. To simulate noisy430

examples, we modify the outputs of a subset of in-431

context demonstrations by replacing their outputs432

with outputs from other randomly selected demon-433

strations. As shown in Figure 4, LCLM-enabled434

ICL is largely robust to noise when the propor-435

tion of noisy examples is relatively low (i.e., below436

25%). This observation highlights why augmented437

examples, even if slightly lower quality, can still438

enhance performance as it increases the utilization439

of the context window. Also, when the amount440

of noise exceeds this threshold, LCLMs become441

vulnerable to the negative effects of noise and the442

performance notably declines. This adverse effect443

is more pronounced for challenging tasks, such as444

the GovReport dataset in summarization and low-445

resource translation tasks (e.g., English to Bemba446

or Ewe). This is likely because LCLMs are less447

familiar with those tasks, and therefore rely more448

on learning from in-content examples.449

4.2 LCLM-Based ICL with Long Context450

As the context length capacity of LCLMs contin-451

ues to grow, it becomes increasingly important to452

assess whether LCLMs can reliably utilize a large453

number of ICL examples. To investigate this, we454

conduct an experiment analyzing the performance455

as a function of the context utilization. Specifically,456

we gradually increase the number of examples by457

powers of two, and if the entire set of examples458

within the dataset is used, we further extend the con-459

text utilization by repeating these examples. The460

hypothesis being tested is that if LCLMs can effec-461

tively understand and utilize extremely long con-462

text, performance should remain consistent even 463

with repeated examples, as the presence of dupli- 464

cates should not impact contextual understanding. 465

However, as shown in Figure 5, a substantial perfor- 466

mance decline occurs when LCLMs are pushed to 467

use extremely large contexts. Specifically, this de- 468

cline generally begins when more than 25% of the 469

available context capacity is utilized. Also, the per- 470

formance drop is pronounced in tasks such as xsum, 471

which requires generating abstractive summaries 472

(unlike other summarization datasets like arXiv 473

or GovReport) and in tasks demanding complex 474

reasoning such as date understanding (Date) and 475

object tracking (Tracking7). These findings sug- 476

gest that while LCLMs can handle moderately long 477

contexts, they encounter limitations with exceed- 478

ingly large contexts, particularly in tasks requiring 479

fine-grained reasoning or abstractive generation. 480

This may be due to challenges in distinguishing 481

and integrating relevant information across numer- 482

ous examples, especially when tasks require high 483

levels of nuanced abstraction and precise reasoning. 484

485

5 Related Work 486

Long Context Language Models The field of 487

language modeling has witnessed remarkable ad- 488

vancements, particularly with the development of 489

Large Language Models (LLMs) (Brown et al., 490

2020; OpenAI, 2023; Reid et al., 2024; Dubey et al., 491

2024). However, early LLMs were oftentimes con- 492

strained by relatively short context windows, typi- 493

cally handling only a few thousand tokens at a time, 494

which limits their applicability in advanced tasks 495

requiring broader context comprehension, such as 496

document-level summarization or complex reason- 497
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ing (Koh et al., 2023; Suzgun et al., 2022). To498

address this, recent efforts have led to the develop-499

ment of Long Context Language Models (LCLMs),500

designed specifically to process much larger con-501

texts, sometimes accommodating over a million502

tokens within a single prompt (Reid et al., 2024).503

To mention a few, models like Longformer and504

BigBird (Beltagy et al., 2020; Zaheer et al., 2020)505

incorporate sparse attention mechanisms to effi-506

ciently handle extended contexts without compro-507

mising on computational feasibility. Recent work508

has pushed these limits even further – for exam-509

ple, LongRoPE extends the the context window of510

LLMs to 2M tokens by interpolating their specific511

positional embeddings (Ding et al., 2024).512

In-Context Learning In-Context Learning (ICL)513

is a recent paradigm that enables language models514

to learn from examples provided within their input515

context and then perform given tasks (Brown et al.,516

2020; Min et al., 2022; von Oswald et al., 2023).517

Since its introduction, previous studies have con-518

centrated on developing the strategies to optimize519

the quality and arrangement of in-context examples520

to maximize performance, especially given the lim-521

itations of early LMs on context length. For exam-522

ple, these approaches include selecting examples523

that maximize relevance to the target query (Liu524

et al., 2021; Rubin et al., 2022), ensuring diver-525

sity among examples to cover a range of possible526

cases (Sorensen et al., 2022; An et al., 2023), strate-527

gically ordering examples to improve model adap-528

tation (Zhao et al., 2021; Lu et al., 2022), and pri-529

oritizing examples by their ease of learning based530

on their difficultly (Mavromatis et al., 2023; Liu531

et al., 2024). Yet, as the context capacity expands532

with LCLMs, these conventional selection strate-533

gies warrant re-evaluation, particularly in many-534

shot settings; thus, we focus on revisiting them.535

Many-Shot ICL Early approaches in many-shot536

ICL have primarily focused on the paradigm shift537

brought by the ability to incorporate a larger num-538

ber of examples within the input context (Agar-539

wal et al., 2024; Bertsch et al., 2024), without540

giving much consideration to example selection541

strategies other than the random selection. De-542

spite their simplicity, such many-shot ICL methods543

have sometimes demonstrated performance com-544

parable to fine-tuning. Also, there is a very recent545

work that explores retrieval strategies in many-shot546

ICL (Bertsch et al., 2024); however, they use mod-547

els with relatively limited context capacities (e.g.,548

under 100k tokens with Llama 2), resulting in re- 549

strictions on the number of examples included and, 550

consequently, making retrieval-based methods ap- 551

pear more advantageous. However, contrary to this 552

finding, we uncover that this advantage diminishes 553

as the context capacity increases, allowing random 554

sampling to perform on par with more sophisticated 555

selection methods when a large number of exam- 556

ples is used. Lastly, other recent efforts include 557

establishing benchmarks for long-context ICL (Lee 558

et al., 2024a; Li et al., 2024). Unlike prior studies, 559

our work offers a novel perspective by systemati- 560

cally re-evaluating traditional selection strategies 561

in the expanded context regime and highlighting 562

the shift from selection optimization to effectively 563

leveraging the extensive context space in many- 564

shot ICL, with the proposal of data augmentation 565

for cases where the number of examples is not suf- 566

ficient to populate the context capacity of LCLMs. 567

568
6 Conclusion 569

We explored ICL in the context of LCLMs, which 570

the enable inclusion of significantly more exam- 571

ples in-context than previously possible, and inves- 572

tigated whether traditional sample selection strate- 573

gies remain effective in these many-shot scenar- 574

ios. Through extensive experiments across diverse 575

tasks and datasets, we observed that previously fa- 576

vored, sophisticated sample selection techniques 577

offer minimal to zero performance gains over sim- 578

ple random selection in most cases. We believe this 579

unexpected finding suggests a potential paradigm 580

shift in ICL research: as LCLMs allow the process- 581

ing of extensive contexts, sample selection may no 582

longer be a priority, with simpler methods proving 583

similarly effective and more computationally effi- 584

cient due to key-value caching. We also highlighted 585

the emerging challenge of underutilized context in 586

low-resource tasks due to limited example availabil- 587

ity, and, to address this, proposed a data augmenta- 588

tion strategy, which substantially boosts ICL perfor- 589

mance by increasing context utilization of LCLMs. 590

Lastly, we analyzed the behavior of LCLM-enabled 591

ICL when operating with extremely long context 592

and in the presence of noisy examples, and found 593

that while performance improves with added exam- 594

ples, it plateaus and even declines when the context 595

becomes too long, with increased vulnerability to 596

noise in complex tasks. This suggests promising 597

future directions in making LCLMs more robust to 598

lengthy context and noise examples alongside the 599

direction of extending their context length. 600
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Limitations601

While this work explores the new opportunity of602

ICL with LCLMs, a couple of limitations can be603

considered. First, the computational cost associated604

with LCLMs remains a significant challenge, partic-605

ularly for researchers and practitioners in resource-606

constrained settings. Second, while the proposed607

data augmentation method enhances context utiliza-608

tion of LCLMs and improves ICL performance, the609

quality of synthetic examples often falls short of the610

quality of original data. Addressing them through611

cost-efficient strategies for leveraging LCLMs and612

developing improved data augmentation techniques613

would be an exciting area for future work.614

Ethics Statement615

We believe this work does not raise any direct ethi-616

cal concerns, as it primarily focuses on advancing617

the understanding of ICL with LCLMs. However,618

as with any other application of LCLM-based ICL,619

careful consideration must be given to the quality620

of the examples used in the context. Specifically,621

the inclusion of biased, harmful, or otherwise prob-622

lematic examples in the input context can propagate623

or amplify these issues in the model’s outputs, and624

we advise practitioners to carefully evaluate and625

select ICL examples to avoid potential issues.626
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A Prompts883

We provide the prompts used for many-shot ICL884

on translation, summarization, and reasoning tasks885

in Table 5 and on classification tasks in Table 6.886

Also, we provide the prompts used for synthetic887

data augmentation and filtering in Table 7.888
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Table 5: A list of prompts that we use for many-shot ICL on translation, summarization, and reasoning tasks.

Types Prompts

Translation

You are an expert translator. I am going to give you one or more example pairs of text snippets where the first is
in {SOURCE_LANGUAGE} and the second is a translation of the first snippet into {TARGET_LANGUAGE}.

The sentences will be written as the following format:
{SOURCE_LANGUAGE}: <first sentence>
{TARGET_LANGUAGE}: <translated first sentence>

After the example pairs, I am going to provide another sentence in {SOURCE_LANGUAGE} and I want you
to translate it into {TARGET_LANGUAGE}. Give only the translation, and no extra commentary, formatting,
or chattiness. Translate the text from {SOURCE_LANGUAGE} to {TARGET_LANGUAGE}.

{EXAMPLES}

{TARGET_QUERY}

Summarization

You are an expert in article summarization. I am going to give you one or more example pairs of article and its
summary in fluent English.

The pairs will be written as the following format:
Article: <article>
Summary: <summary>

After the example pairs, I am going to provide another article and I want you to summarize it. Give only the
summary, and no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

Reasoning

You are an expert in multiple-choice question answering tasks. I am going to give you one or more example
pairs of question and its answer in a multiple-choice question answering format.

The pairs will be written as the following format:
Question: <question>
Answer: <answer>

After the example pairs, I am going to provide another question and I want you to predict its answer. Give only
the answer that follows a consistent format as in the provided examples, and no extra commentary, formatting,
or chattiness.

{EXAMPLES}

{TARGET_QUERY}
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Table 6: A list of prompts that we use for many-shot ICL on five different extreme classification tasks.

Types Prompts

BANKING77

I am going to give you one or more example pairs of customer service query and its intent.

The pairs will be written as the following format:
service query: <query>
intent category: <category>

After the example pairs, I am going to provide another customer service query and I want you to classify the
label of it that must be one among the intent categories provided in the examples. Give only the category, and
no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

DialogRE

I am going to give you one or more examples of the dialogue, the list of entity pairs within it, and their
corresponding relation types.

The examples will be written as the following format:
Dialogue: <dialogue>
The list of k entity pairs are (<entity 1>, <entity 2>), ...
The k respective relations between each entity pair are: <relation>, ...

After the examples, I am going to provide another dialogue along with its associated entity pairs, and I want
you to classify their corresponding relation types that must be one among the relation types provided in the
examples. Give only the relations, and no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

Discovery

I am going to give you one or more example pairs of two sentences and the conjunction word between them.

The pairs will be written as the following format:
<sentence 1> ( ) <sentence 2>
the most suitable conjunction word in the previous ( ) is <conjunction word>

After the example pairs, I am going to provide another two sentences and I want you to classify the conjunction
word between them that must be one among the conjunction words provided in the examples. Give only the
conjunction word, and no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

FewNERD

I am going to give you one or more examples of the sentence, the named entities within it, and their corre-
sponding entity types.

The examples will be written as the following format:
Sentence: <sentence>
<named entity>: <entity type>

After the example pairs, I am going to provide another comment and I want you to classify the label of it that
must be one among the emotion categories provided in the examples. Give only the category, and no extra
commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

GoEmotion

I am going to give you one or more example pairs of comment and its emotion category.

The pairs will be written as the following format:
comment: <comment>
emotion category: <category>

After the example pairs, I am going to provide another sentence, and I want you to classify the named entities
within it and their corresponding entity types that must be one among the entity types provided in the examples.
Give only the named entities and their corresponding entity types, and no extra commentary, formatting, or
chattiness.

{EXAMPLES}

{TARGET_QUERY}
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Table 7: A list of prompts that we use for generating synthetic demonstrations and filtering them of low-quality.

Types Prompts

Generation

You are an expert in data augmentation. You will be provided with a series of demonstrations that show how
a task is performed. Your objective is to generate a new example that closely follows the pattern, structure,
and style of the demonstrations. Carefully analyze the key steps, transitions, and output style in the provided
demonstrations. Then, create a new sample that maintains consistency in format and correctness while
introducing variety in content.

Here are the demonstrations:

{EXAMPLES}

Now, as an expert, generate a new sample that aligns with the original demonstrations:

Filtering

You are an expert in assessing data quality. Given the original set of samples, your task is to carefully evaluate
the provided sample in comparison to the original samples. Based on your expertise, determine whether the
provided sample is of high quality, meeting or exceeding the standards set by the original set.

Here are the original samples:
{EXAMPLES}

Now, as an expert, evaluate the provided sample:
{GENERATED_SAMPLE}

Please provide only a single numerical rating (1, 2, 3, 4, or 5) based on the quality of the sample, without any
additional commentary, formatting, or chattiness.
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